Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/62404
Título : Combinación eficiente de modelos de regresión y redes neuronales. Sistema de predicción avanzado en mercados financieros
Autor : Maté Jiménez, Carlos
García Lorenzana, Sonia
Universidad Pontificia Comillas, Escuela Técnica Superior de Ingeniería (ICAI)
Palabras clave : 12 Matemáticas;1209 Estadística;120903 Análisis de datos;33 Ciencias tecnológicas;3325 Tecnología de las telecomunicaciones
Fecha de publicación : 2022
Resumen : El análisis y predicción de series temporales presentan resultados increíbles tras muchos años de investigación y que, en particular, tienen una aplicación directa con los sistemas financieros. A pesar de que se ha trabajado ampliamente en los puntos anteriores y se haya recogido en la bibliografía, en el presente trabajo se desarrollará como novedad la combinación eficiente de diferentes métodos para datos de intervalo previamente analizados. La combinación de modelos de series de intervalo consiste en la utilización eficiente de varios métodos ponderados en uno único, para conseguir una mayor adaptación a las variables de los datos, construyendo una relación no lineal. En comparación con los modelos de regresión lineal tradicionales y las redes neuronales convencionales, según (Maté, 2021) las combinaciones presentan menor error de predicción entre los datos de entrada y salida, además de superarlos también en precisión tras reflejar el rango de fluctuación o incertidumbre.
The analysis and prediction of time series present groundbreaking results after many years of research and, in particular, have a direct application in the financial sector. Although the topic state-of-art is advanced and has been extensively collected in the literature, in this paper the work will be developed as a novelty efficiently combining different methods for previously analyzed interval data. The combination of interval series models consists of the efficient use of several weighted methods in a single one, to achieve a better fit to the data variables, building a nonlinear relationship. Compared to traditional linear regression models and conventional neural networks, according to (Maté, 2021), the combinations present lower prediction error between input and output data. In addition, the innovative methods outperform traditional ones also in accuracy after reflecting the range of fluctuation or uncertainty.
Descripción : Grado en Ingeniería en Tecnologías de Telecomunicación y Grado en Análisis de Negocios/Business Analytics
URI : http://hdl.handle.net/11531/62404
Aparece en las colecciones: KTT-Trabajos Fin de Grado

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
TFG-GarciaLorenzana,Sonia.pdfTrabajo Fin de Grado10,5 MBAdobe PDFVisualizar/Abrir
2022-07-07_Autorizacion_TFG_Sonia.pdfAutorización31,27 kBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.