Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/62879
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorPisano, Alanes-ES
dc.contributor.authorCocero Quintanilla, Davides-ES
dc.contributor.otherUniversidad Pontificia Comillas, Escuela Técnica Superior de Ingeniería (ICAI)es_ES
dc.date.accessioned2021-10-28T09:35:37Z-
dc.date.available2021-10-28T09:35:37Z-
dc.date.issued2022es_ES
dc.identifier.urihttp://hdl.handle.net/11531/62879-
dc.descriptionGrado en Ingeniería en Tecnologías de Telecomunicaciónes_ES
dc.description.abstractEl objetivo del Proyecto es crear una aplicación multiplataforma para Android y para IOS. La aplicación ayuda a los Agentes inmobiliarios a filtrar los propietarios que contactan intentando que vendan su casa para poder obtener su comisión. Para conseguir esto, se intenta predecir cómo de probable es que el propietario ponga en venta su casa. Los agentes inmobiliarios que cuenten con la ayuda de la app solo contactarán con los dueños de las propiedades con mayor probabilidad de venta, descartando aquellas con bajas probabilidades. Para obtener esta probabilidad, primero se calcula el precio de una vivienda a partir de sus características usando Machine Learning. Luego, se compara este precio con el de la última venta para obtener el porcentaje del crecimiento medio anual del precio. En función de este porcentaje, las propiedades se dividen en 5 partes que son las que determinan la probabilidad de venta. En la aplicación, el usuario puede iniciar sesión con Google o su propia cuenta. El usuario puede filtrar las viviendas de un código postal con varios parámetros. Una vez filtradas, las propiedades aparecerán sobre el mapa, coloreadas en función de la probabilidad de venta ya discutida. El usuario puede seleccionar una casa en particular para conocer más detalles e incluso añadirla a marcadores. Es posible acceder a las propiedades en marcadores desde otra pantalla, pudiéndose además añadir comentarios a estas propiedades.es-ES
dc.description.abstractThe objective of this project is to create a multiplatform application that can be run both on Android and IOS. The application will help realtors save time by filtering the owners that are approached looking for a sale to obtain their commission. This will be done by trying to predict how likely a house is to be sold by its owner. The realtors using the app will only contact the owners whose selling probability is high, discarding those with low probability. To obtain this probability, first Machine Learning is used to estimate the current price of the house based on its features. Then, this prediction is compared to the last sale price to obtain the average annual growth price percentage. Based on this percentage, the listings are divided into 5 bins which will determine the likelihood of sale. In the app, the user can log in to the application using Google or their own account. The application will allow the user to filter the listings of a zip code based on several parameters. Once filtered, the properties will appear over a map color coded based on how likely they are to be sold. The user can click on a listing to know further details and bookmark it if they want. The bookmarked properties of a user can be accessed in a different screen, and the user can add comments to a bookmark.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United Stateses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/es_ES
dc.subject12 Matemáticases_ES
dc.subject1203 Ciencias de los ordenadoreses_ES
dc.subject120317 Informáticaes_ES
dc.subject.otherKTT (GITT)es_ES
dc.titleA machine learning approach to the Real State marketes_ES
dc.typeinfo:eu-repo/semantics/bachelorThesises_ES
dc.rights.accessRightsinfo:eu-repo/semantics/closedAccesses_ES
dc.keywordsMercado Inmobiliario, Probabilidad, Machine Learning, Aplicaciónes-ES
dc.keywordsReal State, Likelihood, Machine Learning, Applicationen-GB
Aparece en las colecciones: KTT-Trabajos Fin de Grado

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
TFG- Cocero Quintanilla, David.pdfTrabajo Fin de Grado3,36 MBAdobe PDFVisualizar/Abrir
AnexoI.pdfAutorización26,86 kBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.