Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/86482
Título : Comparing ensemble tree-based machine lerarning mod-els to the regression for credit scorning – An emprircial analysis on home credit data
Autor : Borrás Pala, Francisco
Coronado Vaca, María
Strasser, Luisa María
Universidad Pontificia Comillas, Facultad de Empresariales (ICADE)
Palabras clave : 53 Ciencias económicas;5307 Teoría económica;530702 Teoría del crédito
Fecha de publicación : 2023
Resumen : In the view of recent developments in Machine Learning techniques for Credit Scoring, a range of promising approaches have emerged. These advancements have challenged tradi-tional methods, such as the Logistic Regression model, and highlighted the effectiveness of ensemble tree-based models in achieving strong predictive outputs. However, it is crucial to consider factors beyond performance metrics, such as interpretability and business case criteria, when comparing these models. This thesis takes a comprehensive approach to evaluate selected tree-based models against the Logistic Regression across multiple evalua-tion metrics, including performance, interpretability and business case examination. Re-sults indicate that ensemble tree-based models outperform the Logistic Regression in all aspects, particularly in achieving higher recall values. Hence, it is suggested to explore newer Machine Learning methods as an alternative to traditional Credit Scoring tech-niques, depending on specific business requirements and data availability, with the aim of improving predictive performance and enabling more effective risk management in credit evaluation.
Descripción : Grado en Administración y Dirección de Empresas Mención Internacional (E-4)
URI : http://hdl.handle.net/11531/86482
Aparece en las colecciones: KE4-Trabajos Fin de Grado

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
TFG001836.pdfTrabajo Fin de Grado835,8 kBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.