Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/11531/87264
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Monteagudo Honrubia, Miguel | es-ES |
dc.contributor.author | Herraiz Martínez, Francisco Javier | es-ES |
dc.contributor.author | Matanza Domingo, Javier | es-ES |
dc.date.accessioned | 2024-02-27T15:17:15Z | - |
dc.date.available | 2024-02-27T15:17:15Z | - |
dc.identifier.uri | http://hdl.handle.net/11531/87264 | - |
dc.description.abstract | es-ES | |
dc.description.abstract | This paper presents the application of Support Vector Regressor models trained with glycerin-water mixture signals from a Dielectric Resonator sensor. Each signal is labeled with a concentration considered. The performance of these models indicates which mixing rule fits the most with experimental permittivity values. Some modifications of these formulas are validated to acquire better estimations. | en-GB |
dc.format.mimetype | application/pdf | es_ES |
dc.language.iso | en-GB | es_ES |
dc.rights | es_ES | |
dc.rights.uri | es_ES | |
dc.title | A Machine Learning approach for the validation and optimization of permittivity mixing rules for binary liquids | es_ES |
dc.type | info:eu-repo/semantics/workingPaper | es_ES |
dc.description.version | info:eu-repo/semantics/draft | es_ES |
dc.rights.accessRights | info:eu-repo/semantics/restrictedAccess | es_ES |
dc.keywords | es-ES | |
dc.keywords | en-GB | |
Aparece en las colecciones: | Documentos de Trabajo |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
IIT-23-142C.pdf | 1,59 MB | Adobe PDF | Visualizar/Abrir Request a copy |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.