Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/87275
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorPolo Molina, Alejandroes-ES
dc.contributor.authorSánchez Ubeda, Eugenio Franciscoes-ES
dc.contributor.authorPortela González, Josées-ES
dc.contributor.authorPalacios Hielscher, Rafaeles-ES
dc.contributor.authorRodríguez-Morcillo García, Carloses-ES
dc.contributor.authorMuñoz San Roque, Antonioes-ES
dc.contributor.authorÁlvarez Romero, Celiaes-ES
dc.contributor.authorHernández Quiles, Carloses-ES
dc.date.accessioned2024-02-27T15:18:45Z-
dc.date.available2024-02-27T15:18:45Z-
dc.identifier.urihttp://hdl.handle.net/11531/87275-
dc.description.abstractes-ES
dc.description.abstractThis study suggests using wearable activity trackers to identify mobility patterns in Chronic Complex Patients (CCP) and investigate their relation with the Barthel Index (BI) for assessing functional decline. CCP are individuals who suffer from multiple, chronic health conditions that often lead to a progressive decline in their functional capacity. As a result, CCP frequently require the use of healthcare and social resources, which can place a significant challenge on the healthcare system. Evaluating mobility patterns is critical for determining CCP’s functional capacity and prognosis. In order to monitor the overall activity levels of CCP, wearables activity trackers are proposed. Utilizing the data gathered by the wearables, time series clustering with Dynamic Time Warping (DTW) is employed to generate synchronized mobility patterns of mean activity and coefficient of variation profiles. The research has revealed distinct patterns in individuals’ walking habits, including the time of day they walk, whether they walk continuously or intermittently, and their relation to BI. These findings could significantly enhance CCP’s quality of care by providing a valuable tool for personalizing treatment and care plans.en-GB
dc.format.mimetypeapplication/octet-streames_ES
dc.language.isoen-GBes_ES
dc.titleAnalyzing mobility patterns of complex chronic patients using wearable activity trackers: a machine learning approaches_ES
dc.typeinfo:eu-repo/semantics/workingPaperes_ES
dc.description.versioninfo:eu-repo/semantics/draftes_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordses-ES
dc.keywordsBarthel Index · Chronic Complex Patients · Dynamic Time Warping · Functional Decline · Mobility Patterns · Time Series Clusteringen-GB
Aparece en las colecciones: Documentos de Trabajo

Ficheros en este ítem:
Fichero Tamaño Formato  
%20a%20machine%20learning%20approach1,46 MBUnknownVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.