Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/87302
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorMonteagudo Honrubia, Migueles-ES
dc.contributor.authorHerraiz Martínez, Francisco Javieres-ES
dc.contributor.authorMatanza Domingo, Javieres-ES
dc.date.accessioned2024-02-27T15:21:46Z-
dc.date.available2024-02-27T15:21:46Z-
dc.identifier.urihttp://hdl.handle.net/11531/87302-
dc.description.abstractes-ES
dc.description.abstractThis paper presents the application of a dielectric resonator sensor to characterize glycerin solutions. Air and nine different concentrations were measured within a relative permittivity range from 1 to 78.3. Principal Component Analysis (PCA) and Support Vector Machine (SVM) were used to perform automatic classification with an 100 accuracy and the regression of both concentration and permittivity with a RMSE of 0.34 and 0.287 respectively.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.rightses_ES
dc.rights.uries_ES
dc.titleAutomatic classification and permittivity estimation of glycerin solutions using a dielectric resonator sensor and machine learning techniqueses_ES
dc.typeinfo:eu-repo/semantics/workingPaperes_ES
dc.description.versioninfo:eu-repo/semantics/draftes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses_ES
dc.keywordses-ES
dc.keywordsDielectric resonator, microwave sensor, machine learning, dielectric characterization, glycerin purificationen-GB
Aparece en las colecciones: Documentos de Trabajo

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-23-021C.pdf2,08 MBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.