Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/87339
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorRajora, GopaL Lales-ES
dc.contributor.authorCalvo Báscones, Pabloes-ES
dc.contributor.authorMateo Domingo, Carloses-ES
dc.contributor.authorSanz Bobi, Miguel Ángeles-ES
dc.contributor.authorPalacios Hielscher, Rafaeles-ES
dc.contributor.authorBolfek, Martines-ES
dc.contributor.authorVrbicic Tendera, Dajanaes-ES
dc.contributor.authorKeko, Hrvojees-ES
dc.date.accessioned2024-02-27T15:25:37Z-
dc.date.available2024-02-27T15:25:37Z-
dc.identifier.urihttp://hdl.handle.net/11531/87339-
dc.description.abstractes-ES
dc.description.abstractAsset Management is one of the foremost vital chapters within the power system's operation and, in general, within energy systems. Electric utilities are a capital-intensive industry with assets such as power transformers, power lines, and switch gears spread across a large geographic area. This paper examines the business drivers, challenges, and innovations for maximizing power network reliability through Asset Management (AM). It presents the main features of an open-source software platform that can be used to evaluate indicators that guide the process of making decisions. This tool is being developed inside a European research project named ATTEST. The machine learning algorithms implemented in the tool for AM and described in the paper can assess indicators for evaluating asset health and prioritize preventive and proactive maintenance strategies. The article describes the tool's outcomes, including an overall health score and risk ranking.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.rightses_ES
dc.rights.uries_ES
dc.titleApplication of machine learning techniques for asset management and proactive analysis in power systemses_ES
dc.typeinfo:eu-repo/semantics/workingPaperes_ES
dc.description.versioninfo:eu-repo/semantics/draftes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses_ES
dc.keywordses-ES
dc.keywordsCondition Monitoring, Intelligent Systems, Assets Management, Proactive Analytics, Power Grids.en-GB
Aparece en las colecciones: Documentos de Trabajo

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-22-124C.pdf1,14 MBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.