Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/88301
Título : A geo-remote IoT seismic sensing device, made of robust high-sensitivity TENGs
Autor : Sánchez del Río Saez, José
Yusuf, Abdulmalik
Astarloa Olaizola, Ignacio
Urbelz López-Puertas, Lucía
Jiménez Sánchez, José Luís
Martínez, Vanesa
Ballesteros Iglesias, María Yolanda
Giannetti, Romano
Bravo Monge, José Benito
Cantavella Nadal, Juan Vicente
González González, Carlos
Chen, Xiaosui
Wang, De-Yi
Resumen : 
This work presents the best TENG (Triboelectric Energy NanoGenerator) candidate to be used as a seismic sensor and integrated into any global seismic network. Toe most optimal one out of six different compositions' was made of PPA-PEI: PVDF with 10 of PPA, which is flame retardant and has a very low dynarnic resolution. Oscillations with an Instrom electromechanical machine in the range of (0.5-50 Hz) were generated and tested with the PVDF-based TENG. An estimated sensitivity of 250 pulsess was calculated, and the electrical power density was measured at 100 mWm2 Pulses were Wi-Fi transmitted following the LoRA protocol. After being analyzed, they were received and decoded in The Things of Stack platform (TTS). Simulations of real ground motions caused by seismic waves were performed by hand-tapping the surface of a table on which a TENG was fixed with a calibrated metallic weight (inercial mass) resting on its upper surface. Pulses generated by the TENG were detected with a high-resolution DAQ, and the frequency spectrum was studied. In addition, they were tested in a triaxial vibrating platform with micro­electromechanical sensors (MEMS), giving very simi­lar results. Toe possibility that hundreds of these low-cost TENGs are integrated into seismic networks, and that frequency spectra and pulse shapes generated by seismic waves can be monitored anywhere in the globe makes this application one of the most relevant in the geo-remote sensing field. 
URI : http://hdl.handle.net/11531/88301
Aparece en las colecciones: Documentos de Trabajo

Ficheros en este ítem:
Fichero Tamaño Formato  
IIT-21-329C.pdf4,05 MBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.