Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/96444
Título : An adjustable robust optimization approach for the expansion planning of a virtual power plant
Autor : Baringo Morales, Ana
Baringo Morales, Luis
Arroyo Sánchez, José Manuel
Resumen : 
This paper proposes a novel approach based on adjustable robust optimization for the expansion planning of a virtual power plant (VPP) that participates in the energy electricity market. The VPP comprises conventional, renewable, and storage units, as well as flexible demands, and analyzes the possibility of building new conventional, renewable, and storage units with the aim of maximizing its profit. The uncertainty related to future production costs of the conventional generating units, future consumption levels of the flexible demands, and future energy market prices is modeled using confidence bounds and uncertainty budgets. The resulting model is formulated as a trilevel program with lower-level binary variables that is solved using a nested column-and-constraint generation algorithm. Results from a case study show the effective performance of the proposed approach.
URI : http://hdl.handle.net/11531/96444
Aparece en las colecciones: Documentos de Trabajo

Ficheros en este ítem:
Fichero Tamaño Formato  
IIT-22-290C.pdf254,62 kBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.