Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/96445
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorFioriti, Davidees-ES
dc.contributor.authorPoli, Davidees-ES
dc.contributor.authorDueñas Martínez, Pabloes-ES
dc.contributor.authorMicangeli, Andreaes-ES
dc.date.accessioned2024-11-26T16:52:26Z-
dc.date.available2024-11-26T16:52:26Z-
dc.identifier.urihttp://hdl.handle.net/11531/96445-
dc.description.abstractes-ES
dc.description.abstractThe sizing of off-grid systems in developing countries can be very challenging and rarely mathematical modelling techniques are able to account for their multifaceted nature, even when using multi-objective optimization to capture economic, social and environmental aspects. To overcome that, developers perform sensitivity analyses to test whether different configurations, here denoted as Multiple Design Options (MDOs), may lead to acceptable economic performances, yet slightly more costly than the theoretical mathematical optimum. In this study, we propose a methodology to provide developers with a manageable number of design options that map the design space close to the Pareto frontier. First, we employ MDO - Multi Objective Particle Swarm Optimization (MDOMOPSO) algorithm to identify the Pareto frontier with respect to Net Present Cost and CAPEX. Then, all the explored configurations in the nearby of the Pareto frontier are stored, and a novel clustering methodology, namely Peripheral Mapping by Receding Nearest Neighbor (PM-RNN), based on hierarchical clustering, is used to reduce the selected space to a handy number of MDOs. The proposed approach is compared to the standard k-means to highlight benefits of the proposed method. Results of a numerical case study regarding a Kenyan hybrid minigrid support the findings.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.rightses_ES
dc.rights.uries_ES
dc.titleClustering approaches to select Multiple Design Options in multi-objective optimization: an application to rural microgridses_ES
dc.typeinfo:eu-repo/semantics/workingPaperes_ES
dc.description.versioninfo:eu-repo/semantics/draftes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses_ES
dc.keywordses-ES
dc.keywordsHierarchical clustering and kmeans; Modelling to Generate Alternatives (MGA); Modelling All Alternatives (MAA); Rural electrification; solution poolen-GB
Aparece en las colecciones: Documentos de Trabajo

Ficheros en este ítem:
Fichero Tamaño Formato  
IIT-22-373C.pdf1,74 MBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.