Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/11531/96508
Título : | DiffSim2Real: Deploying Quadrupedal Locomotion Policies Purely Trained in Differentiable Simulation |
Autor : | Bagajo, Joshua Schwarke, Clemens Klemm, Victor Georgiev, Ignat Sleiman, Jean-Pierre Tordesillas Torres, Jesús Garg, Animesh Hutter, Marco |
Resumen : | .. Differentiable simulators provide analytic gradients, enabling more sample-efficient learning algorithms and paving the way for data intensive learning tasks such as learning from images. In this work, we demonstrate that locomotion policies trained with analytic gradients from a differentiable simulator can be successfully transferred to the real world. Typically, simulators that offer informative gradients lack the physical accuracy needed for sim-to-real transfer, and viceversa. A key factor in our success is a smooth contact model that combines informative gradients with physical accuracy, ensuring effective transfer of learned behaviors. To the best of our knowledge, this is the first time a real quadrupedal robot is able to locomote after training exclusively in a differentiable simulation. |
URI : | http://hdl.handle.net/11531/96508 |
Aparece en las colecciones: | Documentos de Trabajo |
Ficheros en este ítem:
Fichero | Tamaño | Formato | |
---|---|---|---|
202411281054346_26_DiffSim2Real_Deploying_Quad.pdf | 4,45 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.