Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/96508
Título : DiffSim2Real: Deploying Quadrupedal Locomotion Policies Purely Trained in Differentiable Simulation
Autor : Bagajo, Joshua
Schwarke, Clemens
Klemm, Victor
Georgiev, Ignat
Sleiman, Jean-Pierre
Tordesillas Torres, Jesús
Garg, Animesh
Hutter, Marco
Resumen : ..
Differentiable simulators provide analytic gradients, enabling more sample-efficient learning algorithms and paving the way for data intensive learning tasks such as learning from images. In this work, we demonstrate that locomotion policies trained with analytic gradients from a differentiable simulator can be successfully transferred to the real world. Typically, simulators that offer informative gradients lack the physical accuracy needed for sim-to-real transfer, and viceversa. A key factor in our success is a smooth contact model that combines informative gradients with physical accuracy, ensuring effective transfer of learned behaviors. To the best of our knowledge, this is the first time a real quadrupedal robot is able to locomote after training exclusively in a differentiable simulation.
URI : http://hdl.handle.net/11531/96508
Aparece en las colecciones: Documentos de Trabajo

Ficheros en este ítem:
Fichero Tamaño Formato  
202411281054346_26_DiffSim2Real_Deploying_Quad.pdf4,45 MBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.