Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/97745
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorCastro Ponce, Marioes-ES
dc.date.accessioned2025-03-04T17:53:37Z-
dc.date.available2025-03-04T17:53:37Z-
dc.identifier.urihttp://hdl.handle.net/11531/97745-
dc.description.abstractes-ES
dc.description.abstractMathematical is a valuable tool in Immunology, enabling us to understand complex mechanisms at different scales and make predictions about their behaviour. However, designing a model that accurately represents a system can be challenging. One important consideration is the level of detail required to make the model interpretable because, often, adding more levels of detail turns the model unidentifiable, i.e., it cannot be uniquely estimable from data. In this talk, we will explore the importance of identifiability in model analysis and design and discuss strategies for finding the optimal level of model detail. We will examine several case studies highlighting challenges and opportunities in balancing model complexity with identifiability and point to some examples where simplicity trumps excessive focus on details.  en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.rightses_ES
dc.rights.uries_ES
dc.titleIdentifiability matters: a closer look at the art of simple mathematical models for complex systemses_ES
dc.typeinfo:eu-repo/semantics/workingPaperes_ES
dc.description.versioninfo:eu-repo/semantics/draftes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses_ES
dc.keywordses-ES
dc.keywordsVirus dynamics; Statistical Physics; Mathematical modelsen-GB
Aparece en las colecciones: Documentos de Trabajo

Ficheros en este ítem:
Fichero Tamaño Formato  
IIT-24-341C_abstract.pdf243,19 kBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.