Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/97870
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorFioriti, Davidees-ES
dc.contributor.authorLutzemberger, Giovannies-ES
dc.contributor.authorPoli, Davidees-ES
dc.contributor.authorDueñas Martínez, Pabloes-ES
dc.date.accessioned2025-03-05T10:48:29Z-
dc.date.available2025-03-05T10:48:29Z-
dc.identifier.urihttp://hdl.handle.net/11531/97870-
dc.description.abstractes-ES
dc.description.abstractStochastic operation of power systems has risen attention of researchers as fluctuating energy sources like renewables are being increasingly integrated into existing grids. Uncertainties can be higher in small power systems like isolated microgrids, where both renewables and load can be extremely unpredictable, thus causing increasing operating costs and business risks. In the last years, many approaches have been proposed to account for uncertainties in off-grid microgrids, usually simulating several size, load and renewables scenarios. Among them, a simplified stochastic approach, namely Aggregating-Rule-based Stochastic Optimization (ARSO), which decomposes the N-scenario problem into N deterministic subproblems whose solutions are finally processed and aggregated, has been recently proposed with interesting results in terms of optimality of results and computational requirements. In this paper, two ARSO approaches are compared with standard stochastic and deterministic methodologies used to operate isolated microgrids, to assess advantages and drawbacks of all these techniques and their ability in handling uncertainties. The two ARSO methodologies differ in the aggregating rule: to take into account the load and RES forecasting errors, the Improved-ARSO employs a Monte Carlo procedure, whereas the Mixed ARSO technique makes use of statistical rules. A numerical case study for a typical isolated microgrid in Africa is proposed and discussed.en-GB
dc.format.mimetypeapplication/octet-streames_ES
dc.language.isoen-GBes_ES
dc.titleStochastic operation of isolated microgrids: aggregating-rule-based optimization versus standard approacheses_ES
dc.typeinfo:eu-repo/semantics/workingPaperes_ES
dc.description.versioninfo:eu-repo/semantics/draftes_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordses-ES
dc.keywordsAggregating-Rule-based Stochastic Optimization (ARSO) scenario decomposition mini-grid hybrid energy system Monte Carlo scenariosen-GB
Aparece en las colecciones: Documentos de Trabajo

Ficheros en este ítem:
Fichero Tamaño Formato  
IIT-20-235C400,05 kBUnknownVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.