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a b s t r a c t

The phenomenon of adiabatic shear banding is analyzed theoretically in the context of metal
cutting. The mechanisms of material weakening that are accounted for are (i) thermal
softening and (ii) material failure related to a critical value of the accumulated plastic strain.
Orthogonal cutting is viewed as a unique configuration where adiabatic shear bands can be
experimentally produced under well controlled loading conditions by individually tuning the
cutting speed, the feed (uncut chip thickness) and the tool geometry. The role of cutting
conditions on adiabatic shear banding and chip serration is investigated by combining finite
element calculations and analytical modeling. This leads to the characterization and classifica-
tion of different regimes of shear banding and the determination of scaling laws which involve
dimensionless parameters representative of thermal and inertia effects. The analysis gives new
insights into the physical aspects of plastic flow instability in chip formation. The originality
with respect to classical works on adiabatic shear banding stems from the various facets of
cutting conditions that influence shear banding and from the specific role exercised by
convective flow on the evolution of shear bands. Shear bands are generated at the tool tip and
propagate towards the chip free surface. They grow within the chip formation region while
being convected away by chip flow. It is shown that important changes in the mechanism of
shear banding take place when the characteristic time of shear band propagation becomes
equal to a characteristic convection time. Application to Ti–6Al–4V titanium are considered and
theoretical predictions are compared to available experimental data in a wide range of cutting
speeds and feeds. The fundamental knowledge developed in this work is thought to be useful
not only for the understanding of metal cutting processes but also, by analogy, to similar
problems where convective flow is also interfering with adiabatic shear banding as in impact
mechanics and perforation processes. In that perspective, cutting speeds higher than those
usually encountered in machining operations have been also explored.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Adiabatic shear bands (ASB) are narrow zones with thickness of the order of few micro-meters where shear deformation
is highly localized (Rogers, 1979; Bai and Dodd, 1992; Wright, 2002). They are observed in metals subject to fast deformation
processes and are generally the result of thermal softening due to heating by plastic deformation (Tresca, 1878; Zener and
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Fig. 1. Chip morphology in orthogonal cutting of 42CrMo4 steel (AFNOR: 42CD4) with a rake angle of −31, according to Moufki et al. (2004). A transition
from continuous chip to segmented chip is observed with increasing of the cutting speed. At high cutting speed the chip segments are delimited by
adiabatic shear bands where plastic flow is localized.
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Hollomon, 1944). ASB are associated to peaks of temperature which coincide with strain localization zones. Temperature
peaks can happen in fast processes since in this case heat conduction has no enough time to smooth the temperature field.

At high strain rates, shear banding is frequently a consequence of thermal softening, but at lower rates shear bands can
be generated (or at least influenced) by other softening mechanisms (decay of the stress carrying capacity) due to dynamic
recrystallisation (Rittel et al, 2008) phase transformation or material damage (Cox and Low, 1974); Dodd and Atkins, 1983.

Adiabatic shearing was investigated in split torsional Hopkinson bars by Marchand and Duffy (1988). Modeling was
performed with linearized stability analyses (Clifton, 1980; Bai, 1982; Molinari, 1985) non-linear analytical approaches (Molinari
and Clifton, 1983, 1987; Wright, 1990, 1994; Mercier and Molinari, 1998) and numerical simulations using finite difference and
finite element approaches (Batra and Ravinsankar, 2000; Bonnet-Lebouvier et al., 2002; Meyers and Kuriyama, 1986; Wright and
Batra, 1985; Wright and Walter, 1987; Zhou et al., 1996b). A comprehensive modeling of adiabatic shearing has been established
including the analysis of the onset, growth, interaction and propagation of adiabatic shear bands and the role of material
parameters and loading conditions. Reviews on ASB can be found in Bai and Dodd (1992) and Wright (2002).

Orthogonal cutting is a quite interesting process for analyzing adiabatic shear banding. Fig. 1 shows chip serration due to
adiabatic shearing during orthogonal cutting of 42CrMo4 steel (Moufki et al., 2004). At high cutting speeds a family of
adiabatic shear bands with regular spacing is observed in the chip. Each chip serration is associated to a well formed
macroscopic shear band.

The process of orthogonal cutting is unique by offering the possibility of generating ASB under well controlled conditions
by tuning individually several control parameters: cutting speed, feed (uncut chip thickness), and tool geometry (inclination
of the tool rake face and tool edge radius). There exist just few other experimental configurations where ASB can be
produced under well controlled conditions. Shear banding can be triggered in a thin tube subject to rapid torsion on split
torsional Hopkinson bars (Marchand and Duffy, 1988). In this experiment a single adiabatic shear band is formed along the
circumference of the tube and the successive stages of the shear band development (nucleation and growth) were
investigated. ASB can also be generated by direct impact (Meyers et al., 1991; Klepaczko, 1994; Rittel et al., 2002).

Multiple shear banding can be produced within the wall of a hollow cylinder subject to rapid radial collapse produced by
a convergent shock wave (Nesterenko et al., 1994), or by the application of an intense magnetic field (Lovinger et al., 2011).
These experiments on hollow cylinders and orthogonal cutting tests share the aptitude of generating multiple shear bands.
However, in the case of hollow cylinders shear bands are nucleated almost simultaneously and mutual interactions take
place between these bands. On the contrary, in orthogonal cutting shear bands are generated sequentially. After being
nucleated at the tool tip an ASB propagates towards the free surface while being convected away from the chip formation
region by material flow. There is no interaction between shear bands if each individual band is convected outside from the
chip formation region before the next band is formed.

Adiabatic shear banding in machining has been investigated by experimental and theoretical means by Komanduri and
Von Turkovich (1981), Molinari et al. (2002) and in several other papers which are presented below. Theoretical results on
chip segmentation were derived by Burns and Davies (2002) by means of a one-dimensional continuummodel of machining
inspired by the early work of Recht (1964). Material failure due to internal damage has been incorporated in numerical
simulations of chip serration by using the Johnson–Cook fracture model (Subbiah and Melkote, 2008; Obikawa and Usui,
1996; Atlati et al., 2011). Chen et al. (2011) have performed orthogonal cutting tests for Ti–6Al–4V titanium alloy and have
simulated chip serration by using an energy-based ductile failure criterion. From their results, it appears that levels of peaks
and valleys of the serrated chip vary nearly in proportion to the feed. Calamaz et al. (2008) have introduced a constitutive
law with strain softening to analyze chip segmentation of titanium alloy Ti-6Al-4V.

Orthogonal cutting tests of Ti-6Al-4V titanium have revealed that the chip segmentation frequency is proportional to the
cutting speed (Molinari et al., 2002), and decreases with the feed rate (Cotterell and Byrne, 2008). These results were
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confirmed by the dry turning experiments of Sun et al. (2009) on Ti-6Al-4V alloy. Atlati et al. (2011) have found similar
results by carrying out finite element computations of orthogonal cutting of aluminum alloys.

Modeling of adiabatic shear banding in metal cutting is the subject of the present work. We do not investigate the
localized shear zone generated along the tool–chip interface by frictional heating and plastic deformations. This specific
problem has been analysed by Molinari et al. (2011, 2012) for continuous cutting processes.

The analysis of chip serration is of practical interest since machining processes are of importance for industrial
applications. With some modifications, the results can also be extrapolated to the understanding of chipping at much higher
velocities than those realized in machining. Such situations are found in oblique impact of projectiles with metallic
substrates, ballistic collision of small particles with planes or aerospace vehicles, accidental interaction of a turbine blade
with surrounding components and sharpening by adiabatic shearing of the head of a penetrator (made up of depleted
uranium or tungsten alloys) during perforation processes.

We focus on the effect of cutting speed and feed rate on chip serration. ASB are frequently observed during machining of
difficult-to-cut metals such as titanium, nickel based alloys and hardened steels (Komanduri and Von Turkovich, 1981). The
case of Ti–6Al–4V titanium alloy is considered in this paper. However, the particular choice of the work-material is not of
primary importance as we are mostly interested in developing the fundamental knowledge about adiabatic shear banding
during cutting and impact processes.

We assume that thermal softening is the sole mechanism triggering shear banding in chip formation. This is frequently
the case at high strain rates, but shear banding may be influenced by other softening mechanisms such as dynamic
recrystallization, phase transformation or material damage. However, we wish to concentrate on the thermal origin of chip
serration. Thermal aspects are of particular importance for Ti–6Al–4V titanium because of its weak thermal conductivity.

Based on finite element computations and analytical considerations, we show that adiabatic shear banding is ruled by
simple scaling laws governing the dependence of chip serration upon cutting speed and feed rate. The trends predicted by
these scaling laws are thought to be independent of the specific form assumed for the material constitutive law. Several
regimes of shear banding are brought to light and the physical aspects related to these regimes are elucidated. Of particular
importance is the role played by material convection (due to chip flow) on the evolution of shear bands. This is an important
aspect of the originality of the present work with respect to classical analyses of adiabatic shear banding. The results
obtained can be useful to other situations where convective flow interferes with the evolution of adiabatic shear bands
(impacts and perforation).

2. Problem formulation

2.1. Basic equations

The tool is assumed to be rigid. The work-material is taken as isotropic, elastic–viscoplastic. Plastic flow is governed by
the J2 flow-theory. We do not tackle the task of defining the constitutive law most appropriate to machining operations.
Given the high strain rates, large deformations and high temperatures encountered in cutting processes, this task is not an
easy one. A simple formulation is adopted here, based on the constitutive law proposed by Johnson and Cook (1983),
frequently used for numerical simulations of machining:

sY ¼ ðAþ Bðεeqp ÞnÞ 1þ Cln
_εeqp
_ε0

 !
1−

T−T0

Tm−T0

� �m� �
ð1Þ

sY is the tensile flow stress, _εeqp the equivalent Mises plastic strain rate, εeqp ¼ R
_εeqp dt the accumulated plastic strain, T the

current temperature, T0 a reference temperature and Tm the melting temperature. The values of the parameters of the
Johnson–Cook law (1) used in our simulations of Ti–6Al–4V alloy are those identified by Lee and Lin (1998), see Table 1.
Although the form of the constitutive law, Eq. (1), may appear as too simple for the large range of cutting speeds explored in
this work, it will be shown that the predictions of the modeling can be rather well correlated to available experimental
results. Therefore, using a simple constitutive law of the form given by Eq. (1) seems at least sufficient for the purpose of
characterizing the main trends associated to chip segmentation.

The evolution of temperature in the work-material is governed by the energy equation:

ρCp
_T−kΔT ¼ βdpijsij ð2Þ

_T is the material derivative of the temperature and ΔT is the Laplacian of T . By ρ, Cp and k we designate respectively the
mass density, the specific heat capacity and the heat conductivity of the work-material. The right hand side of Eq. (2)
represents the proportion β of the plastic work converted into heat. dpij and sij are respectively the components of the plastic
Table 1
Parameters of the Johnson–Cook constitutive law, Eq. (1), for the Ti–6Al–4V alloy according to Lee and Lin (1998).

A (MPa) B (MPa) n C m _ε0 (1/s)

Ti6Al4V 782 498 0.28 0.028 1.0 10–5



Table 2
Thermal parameters of Ti–6Al–4V alloy (k, heat conductivity; Cp, specific heat capacity; α, thermal expansion coefficient; Tm, melting temperature).

k (W/mK) Cp (J/kg K) α (mm/mK) Tm (K)

Ti6Al4V 7.2 560 9.2 1930
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strain rate tensor and of the Cauchy stress tensor. Thermal parameters of the Ti–6Al–4V alloy are given in Table 2. The initial
temperature, T0, is equal to 293 K. For keeping the formulation simple, it is assumed that the heat conductivity and the heat
capacity are independent of the temperature and that the Taylor–Quinney coefficient is constant and given by β¼ 0:9. Other
physical quantities are ρ¼4420 kg/m3 (mass density), E¼114 GPa (Young's modulus) and ν¼0.342 (Poisson's coefficient).

Mechanical contact at the chip–tool interface is governed by the Coulomb friction law with a constant value of the
friction coefficient.

A damage law is frequently brought in for modeling adiabatic shearing in machining (Atlati et al., 2011; Chen et al., 2011).
Damage impels a decay of the stress carrying capacity of the work-material that combines itself with the weakening due to
thermal softening. In the present paper a simple damage criterion is introduced. A material element is assumed to be
undamaged when the accumulated plastic strain εeqp is smaller than the critical value εcrit and to be totally damaged (nil
resistance) when εeqp reaches the value εcrit . It appears that the onset of adiabatic shearing is weakly influenced by the value
of εcrit . Thus, adiabatic shear banding in orthogonal cutting of titanium can be triggered without including a damage
criterion in the modeling. However, the capacity of the material to deform is limited, and the concept of a critical value of
the plastic strain appears as a simple way to account for this limit of material resistance. Another useful aspect granted by
the concept of limit strain is to avoid excessive mesh distortion in the finite element computations, as an element is deleted
when εeqp ¼ εcrit . It is worth noting that this simple damage criterion was proved to be effective in predicting the failure of
ductile materials subject to high loading rates in different situations (fragmentation of thin metallic rings and shells under
explosive or blast loadings, failure due to impact loading), see for instance Rusinek and Zaera (2007) and Rodriguez-
Martinez et al. (2013). In our problem, fracture is controlled by εcrit and can be triggered by the high level of plastic strain
localized within shear bands.
2.2. Dimensional analysis

The link between adiabatic shearing, chip morphology and cutting conditions can be clarified by carrying out a
dimensional analysis. Let us denote by L a given characteristic length related to the chip morphology. L may be the average
chip thickness, the shear band spacing or the shear band width. Generally, L is function of the cutting conditions (cutting
speed V, uncut chip thickness t1, rake angle α, tool edge radius R, see Fig. 2), and depends also on the physical and
mechanical properties of the work-material: mass density, ρ; parameters of the Johnson–Cook law, Eq. (1), A, B, n, C, _ε0,m, T0,
Tm; elastic constants (Young's modulus, E; Poisson's ratio, ν); thermal parameters (heat conductivity, k; heat capacity, Cp).
Tool–chip interface characteristics are also involved (sliding friction coefficient, μ; thermal compliance, κ). The tool is
assumed to be non-deformable. Thus, only its thermal properties kT ; C

T
p

� �
are considered.

Dimensional analysis and application of the Vaschy–Buckingham Π-theorem show that L is related to other parameters
through the following relationship involving dimensionless numbers:

L
t1

¼ gðRk;Rκ ;Rh;RI ;Rrate;
k
kT

;
ρCp

ρTC
T
p

; α;
R
t1

;
A
E
;
B
E
; ν;n;C;m;

Tm

T0
; μÞ ð3Þ

with

Rk ¼
ρCpt1V

k
; Rκ ¼

ρCpV
κ

; Rh ¼
βA

ρCpTm
; RI ¼

ρV2

A
; Rrate ¼

V
t1 _ε0

ð4Þ

Rk is inversely proportional to the heat conductivity of the work-material. Rκ is the dimensionless thermal resistance of the
tool–chip interface (κ being the interface conductance). Rh characterizes the internal heating due to plastic deformation of
the work-material. We note that β features the proportion of plastic work converted into heat and that the yield stress of the
work-material is calibrated by the parameter A; therefore, βA scales the amount of dissipated heat energy. RI characterizes
inertia effects and Rrate represents the effects of material rate sensitivity. R=t1 is the normalized tool edge radius.

The characteristics of the work-material and those of the interface (μ and κ) are kept constant. The rake angle α is zero.
Only the cutting speed V , the feed t1 and the edge radius R are varied. Therefore, by omitting the parameters that are not
dependent upon V, t1 and R, Eq. (3) can be written as

L
t1

¼ g Rk;Rκ ;RI ;Rrate;
R
t1

� �
ð5Þ

Adiabatic conditions are fulfilled when Rk and Rκ are large, i.e. when k and κ are tending to zero, or when the cutting speed V
is high.
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Fig. 2. (a) Orthogonal cutting configuration, (b) decomposition of the workpiece in different zones A, B and C. The damage parameter εcrit has the value 2 in
the separation layer B. In most of calculations the value εcrit ¼ 8 is assigned to zones A and C, but this value may be changed in order to investigate the effect
of the damage parameter on chip segmentation.
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The effects of material inertia are carried by RI . These effects become significant when the cutting speed is large.
Interestingly, there exists a range of intermediate cutting speeds, Vinf ðLÞoVoVsupðLÞ (a priori function of the characteristic
length L of the phenomenon under consideration), for which inertia effects can be neglected (because the velocity is not too
large) and heat transfer effects are also negligible (since the velocity is not too small). These features are clearly seen in the
numerical modeling of chip formation and will be exemplified later. Vinf ðLÞ represents the cutting speed above which heat
transfer effects are negligible at the scale L, while VsupðLÞ marks the limit above which inertia effects become important.

For Vinf ðLÞoVoVsupðLÞ, the characteristic length L is related to cutting conditions by Eq. (5) where the dependence upon
Rk, Rκ and RI can be omitted:

L
t1

¼ g Rrate;
R
t1

� �
¼ g

V
t1 _ε0

;
R
t1

� �
ð5′Þ

We note that the ratio L=t1 remains unaltered when the feed, t1, the tool edge radius, R, and the cutting velocity, V, are
changed in same proportions: t1-λt1, R-λR, V-λV , where λ is a scaling factor. This observation is in keeping with
experimentally and theoretically established scaling laws in high speed machining (Sutter et al., 2012).
2.3. Numerical model

A plane strain model of orthogonal cutting is developed using the Finite Element code ABAQUS/Explicit with Lagrangian
formulation. A thermo-mechanical coupled analysis is carried out by considering CPE4RT elements, see Abaqus Manual
(2003). Those are plane strain, quadrilateral, linearly interpolated, and thermally coupled elements with reduced integration
and automatic hourglass control.

The basic geometry of the numerical model is presented in Fig. 2b. Except otherwise specified, a sharp tool edge is
considered. The workpiece is fixed at the lowest contour and the cutting speed is applied to the tool. The mesh of the
workpiece is divided in three different zones. The layer of material which will be removed by cutting is composed of zone A
(main part) and zone B (thin bottom layer of 4 mm thickness). The upper limit of zone C corresponds to the machined
surface. The mesh at zones B and C is parallel to horizontal and vertical directions, while the mesh at the zone A is
characterized by an inclination angle θ with the horizontal direction. The orientation of the mesh is aimed to facilitate the
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formation of segmented chip during orthogonal cutting of Ti alloys (Hortig and Svendsen, 2007; Soldani et al., 2010). It will
be shown in Appendix A that an optimal orientation is given by θ¼¼451.

No remeshing technique is used. However, the nominal element size is varied from 1 mm to 8 mm in order to check the
convergence of results, Appendix A.

An element is deleted when εeqp ¼ εcrit . The level of the erosion parameter is taken as εcrit ¼ 8 in both zones A and C and is
assigned a lower value εcrit ¼ 2 in zone B in order to allow for easy separation between chip and substrate. The value of εcrit
in zone A will be varied to check the impact of this damage parameter on chip serration.

Except otherwise specified, calculations are conducted with εcrit ¼ 8 in zones A and C, mesh orientation θ¼451 in zone Α
and with nominal mesh size δ¼ 1:5 μm for t1 ¼ 50 μm; δ¼ 3 μm for t1 ¼ 100 μm and δ¼ 5 μm for t1 ¼ 250 μm.

3. Analysis of chip segmentation and chip morphology

Numerical simulations of adiabatic shear banding in orthogonal cutting are analyzed and compared to experimental data
obtained for Ti–6Al–4V alloy. The effects of the cutting speed and of the uncut chip thickness (feed) are discussed. The rake
angle is zero in all simulations and the sliding friction coefficient has a fixed value μ¼ 0:4.

3.1. Characterization of the chip morphology

A view of a serrated chip obtained from Finite Element simulations is displayed in Fig. 3a. The cutting speed, the uncut
chip thickness are respectively V ¼ 4 ms−1and t1 ¼ 0:1 mm. The chip appears to be divided into small segments delimited by
nearly regularly spaced shear bands. The chip morphology will be mostly analysed along the flat rake face of the tool. Chip
curling is not studied here.

An idealized view of the chip along the rake face is presented in Fig. 3b. The morphology is characterized by four
parameters: the characteristic spacing between shear bands Ls, the shear band inclination ϕs, the maximum and minimum
chip thicknesses (i.e. peak and valley levels) , respectively tþ2 and t−2 . ϕs is the final orientation of shear bands which is
different from the orientation at the onset of shear banding. ϕs is not an independent parameter as it is related to tþ2 and t−2
by Eq. (7). It should be noted that the chip morphology in Fig. 3a is not as regular as in Fig. 3b. Indeed, Ls, ϕs, t

þ
2 and t−2 have

to be viewed in Fig. 3b as average values along the chip. For Ls this aspect will be specified later.
The length of the chip segment, L1 (see Fig. 3b), and the average chip thickness, t2, are respectively defined by

L1 ¼ Ls= cosϕs; t2 ¼
1
2
ðtþ2 þ t−2 Þ; ð6Þ

This definition of the average chip thickness is consistent if we assume that peaks and valleys are triangular shaped as in
Fig. 3b. Then, the volume of the chip is given by t2nðchip lengthÞ. Also, ϕs is related to the mean chip thickness by

ϕs ¼ arctanðt1=t2Þ ð7Þ
In the absence of shear instability, we have tþ2 ¼ t−2 ¼ t2, where t2 is the chip thickness.
Fig. 3c is an enlarged view of the segmented chip obtained at a different time from those of Fig. 3a. Fluctuations are

observed in the serration pattern and shear bands are curved. Thus, characterizing the shear band spacing is not
straightforward. In fact, the distance between shear bands appears to be smaller near the free surface than nearby the
tool. Therefore, two measures of the spacing are introduced, resp. L−s and Lþs . Let us denote by Band1 and Band2 two
neighboring bands, see Fig. 3c. Point A is located within Band1 at the valley bottom and in the middle of the band. L−s ¼ AA′ is
the distance between A and the middle line of Band2. L−s represents roughly a measure of the distance between two valleys.

Point B is located at the center of Band2 at the tool–chip interface. Lþs ¼ BB′ is the distance between B and the middle line
of Band1. As AA′ (resp. BB′) varies along the chip, L−s (resp. Lþs ) is viewed as an average value of AA′ (resp. BB′) along the chip.
Finally, the mean shear band spacing is defined as

Ls ¼
1
2
ðL−s þ Lþs Þ ð8Þ

In the ideal case of regular straight parallel shear bands as in Fig. 3b, we have Ls ¼ L−s ¼ Lþs , and Ls is simply the distance
between the neighboring bands.

The intensity of the localization process along shear bands is characterized by the segmentation index, Si, defined as

Si ¼ ðtþ2−t−2 Þ=tþ2 ð9Þ

In the case of irregular chip segments (Fig. 3c), tþ2 (resp. t−2 ) is taken as the average value of the distance between peaks
(resp. valleys) and the opposite surface of the chip.

It was observed in our simulations that the chip could be fragmented at high cutting speeds by crack propagation along
shear bands. In this case Si was evaluated by considering the chip morphology prior to fragmentation of the chip. In other
words, if a crack is developing, t−2 is not referring to the crack tip position but rather to the valley bottom from which the
crack is initiated.



TOOL

Fig. 3. (a) Chip morphology obtained for orthogonal cutting of Ti–6Al–4V alloy with FEM simulations. The cutting speed, the feed and the rake angle are
respectively V ¼ 4 ms−1, t1 ¼ 0:1 mm and α¼ 0. Calculations are conducted for a mean mesh size of 3 μm and the value εcrit ¼ 8 of the critical plastic strain.
(b) Idealized view of a regularly segmented chip with definition of the shear band spacing Ls and of the levels of peaks and valleys tþ2 and t−2 .
(c) Characterization of Lþs ¼ BB′ and L−s ¼ AA′. Since the pattern of chip segmentation is not quite regular, Lþs and L−s are respectively average values of BB′ and
AA′ along several chip segments.

A. Molinari et al. / J. Mech. Phys. Solids 61 (2013) 2331–2359 2337
Shear bands observed during machining of Ti–6Al–4V have a thickness of few micro-meters (Komanduri and von
Turkovich, 1981; Molinari et al., 2002). A fine mesh must be used to capture the high level of strain localization in these
narrow zones. Convergence of the computations is checked in Appendix A by considering decreasing mesh sizes up to 1 μm.
3.2. Conditions for the onset of adiabatic shearing

Simulations show the existence of a speed, Vsegm, marking the transition from uniform chip to segmented chip. No shear
banding is observed for cutting speeds below Vsegm. Flow instability and shear banding are activated for V4Vsegm because
effects of heat diffusion are slowed down when the cutting speed is increased. Then, localized heating and plastic flow
localization are promoted. There is no need for true adiabatic conditions to activate shear banding. Diminishing heat transfer



Fig. 4. Evolution of the chip morphology for increasing cutting speeds and two values of the feed (t1 ¼ 50 and 100 μm). The transition speed Vsegm to chip
segmentation is observed to be about Vsegm≈3 ms−1 for t1 ¼ 50 μm and Vsegm≈1:5 ms−1 for t1 ¼ 100 μm.
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effects is enough. According to Childs (2013), the occurrence of thermal shear bands in metal cutting is ruled by a critical
value Rsegm

k of the normalized cutting speed Rk (also denoted as “thermal number” by Childs, 2013). Considering the
definition of Rk, Eq. (4), the onset of chip serration is characterized by the transition speed:

Vsegm ¼ kRsegm
k =ρCpt1 ð10Þ

The transition between continuous chip and segmented chip is illustrated in Fig. 4. Chip morphologies are displayed for
several values of cutting speed and feed. The speed characterizing the onset of flow instability can be estimated as
Vsegm≈3 ms−1 for t1 ¼ 50 μm, Vsegm≈1:5 ms−1 for t1 ¼ 100 μm and Vsegm≈0:7 ms−1 for t1 ¼ 250 μm (chip morphology not
shown in this case). It is checked that Vsegm is approximately ruled by Eq. (10) with Rsegm

k ¼ 40. The value Rsegm
k ¼ 40

characterizing the transition to chip serration will be confirmed later by the evolution of the segmentation index versus Rk

shown in Fig. 13a.
Following Eq. (10), it appears that Vsegm is inversely proportional to t1. This is in keeping with the “chip load criterion”

introduced by Bayoumi and Xie (1995) assuming that chip serration is triggered when Vt1 reaches a critical value. According
to Eq. (10), this critical value is proportional to the thermal diffusivity k=ρCp of the work material if the same critical value
Rsegm
k ¼ 40 is assumed to control the transition to chip serration for metals.
It should be recalled that chip segmentation is ruled by thermal softening in the present modeling. However, at low

cutting speeds, other softening mechanisms such as material damage or dynamic recrystallization may also trigger chip flow
instabilities. This point will be further discussed in Section 3.7.
3.3. Shear band spacing: subcritical regime

The formation of thermal shear bands is governed by distinct regimes depending on the level of the cutting speed.
The subcritical regime of shear banding occurs for cutting speeds lower than a critical value V+ which is characterized in
Section 3.4. In this regime, shear bands propagate through the entire chip thickness. After being nucleated at the tool tip, a
shear band is fully developed and a high level of strain localization is reached within the band. Because of the significant
unloading that results from this intense localization process, there is no possibility to nucleate a new band before the
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previous one has been convected away from the chip formation region. Therefore, direct interaction between successive
shear bands cannot take place.

Above V+ (supercritical regime) we report the existence of a totally different mechanism of adiabatic shear banding
involving important inertia effects, an abrupt drop of the shear band spacing and significant interactions between
shear bands.

Fig. 5a shows the evolution of the normalized shear band spacing Ls=t1 in terms of the normalized cutting speed
Rk ¼ ρCpt1V=k for three values of the feed t1. It is recalled that Ls is defined by Eq. (8), with Lþs and L−s being average values
characterized in Fig. 3c. As said in Section 2.3 and discussed in Appendix A, to insure the accuracy of numerical simulations
for Ls the mesh size is δ¼ 1:5 μm for t1 ¼ 50 μm, δ¼ 3 μm for t1 ¼ 100 μm and δ¼ 5 μm for t1 ¼ 250 μm.

At low speed, we observe in Fig. 5a an increase of the shear band spacing followed by a plateau where Ls=t1 is almost
independent from cutting speed and feed.

These trends are in agreement with the experiments performed on hardened steels by Davies et al. (1997) who reported
that by increasing the cutting speed the normalized spacing Ls=t1 becomes periodic, increases and finally approaches an
asymptotic value (corresponding to our plateau regime).
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two sub-regimes can be distinguished. Heat transfer effects are effective in the thermal diffusion sub-regime and negligible
(at the scale of the shear band spacing Ls) in the plateau sub-regime. The transition between the thermal diffusion sub-regime and the plateau sub-regime
occurs for the value R−

k ¼ 332. Note that the normalized shear band spacing is independent of cutting speed and feed in the plateau sub-regime.
(c) Normalized shear band spacing Ls=t1 in terms of the cutting speed V. Note the sudden drop of the shear band spacing at Vþ . The supercritical regime of
shear band spacing is defined by V4Vþ and the subcritical regime by VoVþ .
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It can be noted that for a smaller feed the plateau is less extended in terms of the normalized cutting speed Rk (Fig. 5a)
but has same extension in terms of the cutting speed (Fig. 5c). Indeed, the end of the subcritical regime is characterized by
the critical velocity Vþ ¼ 270 ms−1 which is independent of the feed. For V4Vþ the shear band spacing is drastically
reduced (supercritical regime discussed in Section 3.4).

Two sub-regimes of shear band spacing can be defined within the subcritical regime VoVþ� �
. At relatively low cutting

speeds VoV− (thermal diffusion sub-regime), the shear band spacing is affected by heat conduction. Following the
dimensional analysis of Section 2.2, L=t1 is given by Eq. (5). For a rate independent work-material we have C¼0 in the
Johnson–Cook law, Eq. (1), and the effect of the parameter _ε0 disappears. Thus L=t1 does not depend on Rrate ¼ V=t1 _ε0.
The rate sensitivity of Ti–6Al–4V titanium being rather weak, the contribution of Rrate in Eq. (5) will be neglected.

Except otherwise specified, the tool edge is assumed to be sharp. Therefore, R=t1 ¼ 0 in Eq. (5). The effect of the tool edge
radius will be investigated in Fig. 9.

With the above assumptions of weak rate sensitivity and sharp tool, Eq. (5) with L¼ Ls can be simplified as

Ls=t1 ¼ g Rk;RIð Þ ð11Þ
Rκ is not included in Eq. (11) since the effect of the thermal compliance of the tool–chip interface on shear band spacing
appears to be negligible.

Based on Eq. (11), a rational interpretation of the results obtained at various feeds and cutting speeds can be proposed.
At low cutting speeds (thermal diffusion sub-regime) inertia plays no role but heat conduction effects are operant.
Consequently Ls=t1 is solely function of Rk:

Ls
t1

¼ g
ρCpt1V

k

� �
ð12Þ

This relationship explains why the results displayed in Fig. 5a for various cutting speeds and feeds are nearly grouped
along a single master curve at low values of Rk.

By increasing the cutting speed, the effect of heat conduction on shear band spacing declines until being ineffective on
the plateau seen in Fig. 5b (plateau sub-regime). In this case, Eq. (12) reduces to

Ls=t1 ¼ const ð13Þ
The shear band spacing is independent of cutting speed and is proportional to the feed.
The transition to the plateau sub-regime is controlled by the thermal number Rk. Beyond a critical value R−

k the effects of
heat transfer are inoperative on the shear band spacing Ls. But it would be ambiguous to qualify the process as truly
adiabatic since heat flow remains effective at the shear-band level. At the most, the process can be viewed as adiabatic at the
scale Ls.

The transition to the plateau regime takes place around the velocity:

V− ¼ kR−
k =ρCpt1 ð14Þ

From our simulations the transition velocity is V− ¼ 20 ms−1 for t1 ¼ 50 μm, V− ¼ 10 ms−1 for t1 ¼ 100 μm and
V− ¼ 3 ms−1 for t1 ¼ 250 μm. These values of V− are compared in Fig. 6 to the prediction of Eq. (14) with R−

k ¼332 (noting
that the value k=ρCp ¼ 2:9 mm2s−1 was used for Ti6Al4V). Thus, the transition to adiabatic conditions (at the scale Ls)
appears to be ruled by the value R−

k ¼ 332 of the thermal number and the transition velocity V− is inversely proportional to
the feed t1 (Eq. (14) and Fig. 6).

3.4. Shear band spacing: supercritical regime

Beyond V+ (supercritical regime) a totally different mechanism of adiabatic shear banding is activated. Shear bands do
not cross the entire chip thickness, an abrupt drop of the shear band spacing Ls is observed (Fig. 5a and b), several shear
bands are simultaneously growing within the chip formation region and these bands interact mutually. It will be seen that
these aspects are related to inertia effects which become significant at very high cutting speeds.

When Ls is displayed in terms of the cutting speed, as in Fig. 5c, it appears that the transition to the supercritical regime
occurs at the cutting speed Vþ≈270 ms−1 (for Ti–6Al–3V). It is noticeable that Vþ is nearly insensitive to the feed.

Cutting speeds of the order of Vþ or higher are not achieved at present in current machining operations.
Notwithstanding, the problem has an interest in other contexts, including impact problems. In particular the sharpening
of the head of a penetrator (made up of depleted uranium or tungsten alloys) during perforation is due to adiabatic shear
banding, and this process bears some similarity with adiabatic shearing in metal cutting operations.

For V4Vþ, the shear band spacing is drastically reduced to a small fraction of the feed of the order of Ls=t1≈0:2. The
spacing is small enough so that shear bands can interact before they are moved away from the chip formation region
(primary shear zone). This is a notable difference with the subcritical regime VoVþ� �

where shear bands are formed
sequentially without interfering between each other. On the contrary, in the supercritical regime V4Vþ� �

a new band is
formed while the previous band is still active.

The phenomena observed in the supercritical regime are due to inertia effects. This causality is supported by various
arguments. Firstly, we note that inertia effects are embodied in the dimensionless inertial number RI ¼ ρV2=A. Thus, the idea
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that the transition to the supercritical regime is controlled by inertia, i.e. by a critical value Rþ
I of the inertial number, bears

out the observation that the critical speed Vþ is insensitive to the feed t1 (Fig. 5c). According to the idea that the transition is

governed by Rþ
I , the critical velocity would be Vþ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rþ
I A=ρ

q
, thus depending on the mass density, ρ, and on the yield

resistance of the work-material (related to parameter A), but being independent from the feed t1.
To support further the role of inertia with respect to the occurrence of the supercritical regime, we refer to the problem

of multiple shear banding arising during the rapid radial collapse of hollow cylinders subject to a radial compressive shock
wave (Nesterenko et al., 1994). In this process, the material sustains nominal shear rates of the order of 104 s−1. A family of
adiabatic shear bands is spontaneously formed. Using a linearized perturbation approach, it was theoretically demonstrated
that the shear band spacing declines when the overall applied strain rate is increased (Wright and Ockendon, 1996;
Molinari, 1997). This effect is due to inertia which impedes the growth of long wavelength perturbations (Molinari, 1985).

However, we should be cautious when transposing these results to orthogonal cutting. During the collapse of cylinders
the whole set of shear bands is activated almost simultaneously and therefore mutual interactions between shear bands can
be effective. Instead, as mentioned before, in machining shear bands are formed sequentially and are convected away from
the chip formation region. Nonetheless, our numerical simulations show that, at very high cutting speeds V4Vþ� �

, several
shear bands are simultaneously active in the chip formation region. These shear bands interact and the resulting trends can
be investigated with a linearized perturbation approach. Such a perturbation analysis was attempted by Molinari et al.
(2002) in the context of machining, but very high cutting speeds should be explored experimentally to validate the
theoretical results.

Results of the linearized stability analysis indicate that, when shear bands interact, the band spacing is a decreasing
function of the applied nominal strain rate. This is a general feature that is supported by experimental results and theoretical
analyses (Wright and Ockendon, 1996; Molinari, 1997). The shear band spacing Ls is displayed in Fig. 7a in terms of the strain
rate measure V=t1 for V4Vþ and for several feeds. Ls appears as a decreasing function of the strain rate in agreement with
the theoretical predictions. It should be noted that the nominal shear rate _γ applied to the primary shear zone (chip
formation region) is scaled by V=t1 if we assume that the thickness of this zone is of the form wPSZ ¼ at1 with the factor a
being constant. This scaling law was experimentally and theoretically verified at high cutting speeds by Sutter et al. (2012).

It was established in Section 3.3 that adiabatic conditions are prevailing at the scale of the shear band spacing in the
plateau regime. However, because of the important decay of Ls observed for V4Vþ, heat conduction effects can affect the
band spacing in the supercritical regime. By using a linearized perturbation analysis it results that the shear band spacing is
ruled by the following scaling law (Wright and Ockendon, 1996; Molinari, 1997; Molinari et al., 2002):

Ls≈
m3kρCpT0

2

ρβ2 _γ3τ0ν2

 !1=4

ð15Þ

This result was derived for a non-hardening material obeying the following constitutive law:

τ¼ τ0
_γ

_γ0

� �m T
T0

� �ν

: ð16Þ
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where τ is the shear flow stress and _γ is the shear rate. The analysis can be also extended to the case of hardening materials
(Molinari, 1997) but to investigate the effect of the strain rate, the simple approach based on Eq. (15) is sufficient . In terms of
dimensionless numbers, Eq. (15) can be expressed as

Ls≈
m3Rk

ν2R2
hRI

 !1=4

ð17Þ

This relationship illustrates the contribution of heat conduction Rkð Þ, heat generation Rhð Þ and inertia RIð Þ to the shear band
spacing in the supercritical regime. From Eq. (15), we note that Ls ∝ _γ−3=4. In the context of orthogonal cutting, _γ is the
nominal shear rate applied to the chip formation region (primary shear zone) which is scaled by V=t1 as seen above.
Therefore, the following scaling law is obtained:

Ls∝
V
t1

� �−3=4

ð18Þ
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The trend predicted by the linearized stability analysis is in agreement with the numerical results displayed in Fig. 7b
showing Ls versus V=t1 in a log–log scale (slope (−3/4)).

A second approach, based on the momentum diffusion theory of shear band spacing of Grady and Kipp (1987) and Grady
(1992), would provide the same power law dependence with respect to strain rate as in Eq. (15). Therefore, both approaches
(linear perturbation and momentum diffusion) provide the same dependence of the shear band spacing with respect to the
nominal shear rate. We refer to Zhou et al. (2006b) for a comprehensive analysis of the formation of multiple shear bands
and a critical review of analytical approaches.

Ye et al. (2013) have theoretically analyzed the formation of shear bands in high speed machining by adapting the
momentum diffusion theory to the context of metal cutting. They predicted a decreasing of the shear band spacing with the
cutting speed. However, our numerical calculations show a decreasing of the shear band spacing for higher values of the
cutting speed than those predicted by Ye et al. (2013).

One should recall that in the subcritical regime VoVþ� �
each band is formed independently with no interaction with the

other bands. In this case the scaling law (18) does not apply.

3.5. Shear band spacing: comparison with experimental results

Experimental data on shear band spacing are reported in Table 3 and are displayed in Fig. 8. These data are rather well
correlated with simulation results. High cutting speeds were experimentally explored by Gente and Hoffmeister (2001) and
Bäker et al. (2002). Lower speeds were considered by Chen et al. (2011) with a rake angle of 31. However, this angle is small
enough for meaningful comparison with our simulations carried out with α¼0. The values of Ls given in Table 3 were
estimated from our own measurements on chip morphologies reported in Gente and Hoffmeister (2001), Bäker et al. (2002)
and Chen et al. (2011).

It should be noted that simulations were carried out with a sharp tool. To better compare experiments and modeling, the
influence of the tool edge radius is investigated in Fig. 9. Ls=t1 is displayed in terms of the normalized cutting speed Rkfor a
tool edge radius of 25 mm and a sharp tool. The feed is t1 ¼ 100 μm. The shear band spacing appears to be an increasing
function of R. Thus, by taking account of the tool edge-radius the simulation results would be shifted upwards in Fig. 8
Table 3
Cutting conditions and experimental data for orthogonal cutting of Ti–6Al–4V from Chen et al. (2011) (tests #1–2), Gente and Hoffmeister (2001) (#3 and 5),
Bäker et al. (2002) (#4).

Test # Cutting speed, V (ms−1) Feed, t1 (μm) Rake angle, α (deg) Mean shear band spacing, Ls (mm)

1 2.85 150 3 89
2 4.2 100 3 56
3 20 70 0 40
4 40 42 0 27
5 80 35 0 22
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(by about 20% for a tool with R¼25 mm) . This effect would even improve the quality of the correlation between simulations
and experimental data.

3.6. Mean chip thickness

The characteristic length L considered in this section is the mean chip thickness t2. The same analysis applies as for the
mean shear band spacing Ls. Fig. 10 shows, in semi-logarithmic scale, the dependence of t2=t1 with respect to the
normalized cutting speed Rk ¼ ρCpt1V=k for several values of the feed. As in Fig. 5b, we note the existence of a plateau where
t2 is nearly independent of V and is proportional to the feed t1. However, the plateau extends to velocities larger than Vþ.

Data corresponding to several feeds and cutting speeds are gathered in a single master curve. This is a proof that the
mean chip thickness (and therefore also the final shear band orientation ϕs ¼ arctanðt1=t2Þ) is mostly controlled by heat
transfer effects. These effects are embedded in Rk through the heat conductivity k . The transition to the plateau sub-regime
occurs at the same value R−

k ¼ 332 as for LS=t1, see Fig. 5b. The plateau observed at high cutting speeds is related to adiabatic
conditions at the scale t2 (as for Ls).

3.7. Frequency of segmentation

Shear banding causes oscillations of the cutting force. The period of oscillations is the time interval ðΔtÞf orce between two
successive peaks of the force (associated to successive bands). The frequency of oscillations is defined as

f f orce ¼ 1=ðΔtÞf orce ð19Þ
ðΔtÞf orce can be estimated from the time recording of the cutting force obtained numerically.

It is worth to correlate f f orce with the mean shear band spacing Ls characterized in the previous section. In that purpose,
we introduce another relevant definition of the segmentation frequency, f segment , derived from the time period
ðΔtÞsegment ¼ L1=Vchip necessary to form a chip segment of length L1 ¼ Ls= cosϕs, see Fig. 3b. Thus, we have

f segment ¼ 1=ðΔtÞsegment ¼ Vchip=L1 ð20Þ
The average chip velocity, Vchip, is determined from volume conservation

Vchip ¼ Vðt1=t2Þ ð21Þ
In the idealized view of Fig. 3b, the inclination of shear bands is characterized by the angle ϕs which is related to the

mean chip thickness t2 by Eq. (7). Then, Eq. (20) can be written as

f segment ¼
Vt1
Lst2

cos ðarctanðt1=t2ÞÞ ð22Þ

f f orce and f segment are displayed in Fig. 11a in terms of the cutting speed for t1 ¼ 100 μm. It is seen that force oscillations ðf f orceÞ
are well correlated to chip segmentation ðf segmentÞ. In Fig. 11a the frequency of segmentation appears to be proportional to
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the cutting speed. This result agrees with Eq. (22) if we recall that Ls and t2=t1 are nearly insensitive to the cutting speed V in
the plateau sub-regime V−oVoVþ, see Figs. 5b, c and 10. Cutting speeds larger than Vþ ¼ 270 ms−1 (supercritical regime)
are not displayed in Fig. 11a. For these velocities, the shear band spacing is significantly reduced and consequently an abrupt
increase of the segmentation frequency would be seen.

Another outcome of Eq. (22) is that f segment should be inversely proportional to the feed t1 on the plateau sub-regime,
since Ls is proportional to the feed in this regime while t2=t1 is independent of t1. The results shown in Fig. 11b confirm this
dependence. In Fig. 11c, f segment is rescaled by the multiplicative factor t1ðμmÞ=100, so that all results are merging on the
curve associated to the feed t1 ¼ 100μm.

In Fig. 12 f segment is displayed in terms of the cutting speed V in a log–log scaling. Results of simulations at the feed
t1 ¼ 100 μm are compared to experimental data of Molinari et al. (2002) (with t1 ¼ 120 μm) and Cotterell and Byrne (2008)
(with t1 ¼ 100 μm). In the experiments of Molinari et al. (2002) cutting speeds from 0.01 m/s to 40 m/s were obtained by
using a ballistic set-up for V410 m=s and a hydraulic machine for lower cutting speeds. The frequency of segmentation was
derived from the time period defined as the ratio of the cutting time by the number of shear bands counted in the recovered
chip. The correlation between theoretical prediction and experimental measurements appears to be quite satisfactory for
the range of cutting speeds V41:5m=s for which the theory predicts the existence of thermal shear bands (it is recalled that
Vonset ¼ 1:5m=s is the theoretical threshold above which chip serration is activated when t1 ¼ 100 μm, see Fig. 4). The results
follow a slope equal to one for V41:5m=s, indicating that the frequency of segmentation is proportional to the cutting
speed as predicted in Fig. 11.

However, experimental results indicate that the slope is different from 1 for Vo1:5m=s. For these low velocities, chip
flow instabilities are experimentally triggered but these instabilities cannot be predicted by the present theory. Here, it
should be recalled that thermal softening is the sole mechanism of shear banding introduced in the modeling. Thermal
softening is certainly a prevalent mechanism of chip serration at large cutting speeds, but other weakening mechanisms
may predominate at low cutting speeds (dynamic recrystallisation, material damage by micro-voiding etc.). Dynamic
recrystallisation seems to be an important softening mechanism in Ti–6Al–4V (Rittel et al., 2008). The existence at low
velocities of weakening mechanisms, different from thermal softening, may be the reason for the change of slope associated
to experimental data for Vo1:5m=s observed in Fig. 12. Therefore, the theoretical framework should be augmented by
additional softening mechanisms to describe chip segmentation at low cutting speeds. In the present work the focus is made
on thermal effects which allow for describing chip segmentation for large enough cutting speeds (V41:5m=s for
t1 ¼ 100 μm).
3.8. Intensity of segmentation and cutting force

The segmentation index Si defined by Eq. (9) characterizes the intensity of chip serration. For fragmented chip
(discontinuous chip) Si is defined by considering the chip morphology prior to fracture. We note that Si ¼ 0 when the chip
is uniform and that Si increases with the intensity of strain localization (characterized as the ratio of the average strain
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in a band by the average strain between two bands) (Atlati et al., 2011). Higher intensity of strain localization (i.e. higher Si)
is associated to at least one of the following factors:
(F1) larger shear band spacing and
(F2) smaller shear band width.
The dependence of Si and of the specific cutting force Fx=t1 with respect to the normalized cutting speed Rk ¼ ρCpt1V=k
is illustrated in Fig. 13a and b for several values of the feed. Fx denotes the time average of the component of the cutting
force in the direction of the cutting speed. It is recalled that forces per unit cutting width are considered.

In Fig. 13a, a rather good correlation is found between the trends for Si provided by simulation results and experimental
data from Gente and Hoffmeister (2001), Bäker et al. (2002) and Chen et al. (2011). Experimental conditions are given in
Table 3. Si was obtained by our own measurements from the chip morphologies displayed in these papers. The comparison
with experimental results will be further examined in Section 3.10.

There is a striking similarity between evolutions of Si and Fx=t1. It is seen that Si increases first, then passes by a
maximum and finally decays to zero. The variation of Fx=t1 goes in the opposite way. For low velocities (thermal diffusion
sub-regime), both evolutions are ruled by the normalized velocity Rk ¼ ρCpt1V=k , the results for various feeds being
clustered along a well defined ascending branch for Si and descending branch for Fx=t1. On the contrary, the results are
dispersed at large values of Rk. This provides a confirmation that (i) for low values of the quantity Vt1 (small Rk), chip
serration is essentially governed by heat transfer effects as already observed in Section 3.3 and (ii) other physical aspects are
involved at high cutting speeds as indicated by the dispersion of results at large values of Rk.
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speeds Vo1:5m=s

� �
, chip serration is observed in the experiments but not in the simulations. Therefore, other mechanisms of chip serration than thermal

softening are expected to be activated for Vo1:5m=s.
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In Fig. 13a the increasing of Si starts at about Rsegm
k ¼ 40, which is in agreement with the analysis of the onset of flow

instability developed in Section 3.2. The end of the rapid growth of Si occurs at about the critical value R−
k ¼ 332 that was

found to characterize the transition from the thermal diffusion sub-regime to the plateau regime of shear band spacing, see
Section 3.3 and Fig. 5b.

Similarly, the normalized cutting force Fx=t1 starts to decrease at about Rsegm
k ¼ 40, Fig. 13b, and the force drops rapidly up

to the end of the thermal diffusion sub-regime which is characterized by R−
k ¼ 332.

Increasing the cutting speed promotes adiabatic conditions that in turn stimulate thermal softening and flow instability.
This leads to higher strain concentration within shear bands and to the increasing of Si. The opposite trend observed for
Fx=t1 makes sense since a larger value of Si is associated to stronger shear localization, higher temperature within shear
bands and higher tool–chip interface temperature that together induce a decreasing of the cutting force by thermal
softening.

It is well known that plastic flow localization is slowed down by inertia at high strain rates. This is a general feature that
is true for dynamic necking (Fressengeas and Molinari, 1994; Mercier and Molinari, 2003; Zhou et al., 2006a) and adiabatic
shear banding. For shear localization this was demonstrated with finite difference simulations and perturbation analysis by
Molinari (1985), see also Wright and Ockendon (1996) and Molinari (1997). Thus, inertia effects that are significant at high
cutting speeds can contribute to the decreasing of Si by slowing down the process of strain concentration within bands
(stabilizing effect due to local inertia forces that impede the movement of particles subject to high accelerations within the
shear zone).

To corroborate the idea that the process is significantly influenced by inertia at high cutting speeds, results for Si and
Fx=t1 are displayed in Fig. 14 in terms of the cutting speed. It is seen that, at high cutting speeds, results are grouped along a
well defined descending branch for Si , Fig. 14a, and a well defined ascending branch for Fx=t1, Fig. 14b. This is a proof that for
large values of V , chip serration and specific cutting force are not depending upon the feed t1 and are solely controlled by
velocity i.e. by inertia (represented by the inertial number RI , Eq. (4)). It is noticeable that inertia effects begin to be
significant when approaching the cutting velocity of 100 ms−1. It is also worth noting that the sharp drop of the
segmentation index Si occurs at about Vþ ¼ 270 ms−1 characterizing the transition to the supercritical regime of shear
banding.

By contrast, results in Fig. 14a and b are dispersed at low velocities, while they were grouped along well defined curves in
Fig. 13a and b where results were displayed in terms of Rk.

So far, the calculations were performed for fixed values of the nominal mesh size (δ¼ 1:5 μm for t1 ¼ 50 μm; δ¼ 3 μm for
t1 ¼ 100 μm and δ¼ 5 μm for t1 ¼ 250 μm). This is sufficient as long as trends related to the evolution of Si versus cutting
speed are the sole interest. However, for quantitative comparison with experimental results, the convergence analysis of
Appendix A should be used. This aspect will be further discussed in Section 3.10.

The evolution of the specific cutting force Fx=t1 in terms of cutting speed displayed in Fig. 14b can be compared to
experimental data of Molinari et al. (2002), Hoffmeister et al. (1999) and Larbi (1990). The minimum of the force was found
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to be 950 N/mm2 for Larbi (1990), 1200 N/mm2 for Molinari et al. (2002) (feed of 120 mm) and 1900 N/mm2 for Hoffmeister
et al. (1999). Variations between these results may be attributed in part to the difference of thermo-mechanical treatment
and microstructure between the materials tested. In our simulations the minimum of Fc=t1 depends on the feed and varies
between 1300 and 1800 N/mm2. However, with a finer mesh size providing better accuracy, the force level would be
decreased by 10–20%, see figure 21 of Appendix A. But, the opposite variation is obtained (increasing of the force) by
considering the effect of the tool edge radius. Altogether, the force evaluated in the simulations is comparable to
experimental data. The characterization of the cutting speed at which the force is minimum is also instructive. In the
ballistic experiments of Molinari et al. (2002) the minimum was found at about 70 m/s. This value is in agreement with the
simulation results displayed in Fig. 14b.

The increasing of Fx=t1 at high cutting speed is due to inertia effects. The effect of inertia on the cutting force can be
evaluated analytically in the case of uniform chip (no chip serration). This condition is approached when the cutting speed is
increased since the segmentation index drops when entering into the supercritical regime. It is known that Fx can be
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decomposed into a quasistatic term and an inertial contribution (Arndt, 1973; Recht, 1984; Dudzinski and Molinari, 1997):

Fx ¼ Fstaticx þ Fdynx ð23Þ

Fstaticx =t1 depends on the shear flow stress of the work-material and on the shear angle ϕ (orientation of the primary shear
zone). For α¼0, we have

Fdynx

t1
¼ ρV2 cos ðλapÞ

cos ϕ cos ðϕþ λapÞ ð24Þ

ϕ is close to 451 at cutting speeds larger than 10 m/s. λap is the apparent friction angle characterizing the overall frictional
response of the tool–chip interface. For cutting speeds larger than 10 m/s the overall friction coefficient is small, see Molinari
et al. (2011). Therefore, a reasonable estimate of Fdynx =t1 is obtained by taking cos ðλapÞ≈1 and cos ðϕþ λapÞ≈ cos ðϕÞ ¼

ffiffiffi
2

p
=2.
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It follows that

Fdynx

t1
¼ 2ρV2 ð25Þ

Following Eqs. (23) and (25) we have

Fx=t1 ¼ Fstaticx =t1 þ 2ρV2 ð26Þ

This theoretical result is reported in Fig. 14b with the value Fstatx =t1 ¼ 1500 N=mm2 calibrated at the level of the cutting
force at intermediate cutting speeds. It is clearly seen that the inertia effect predicted by Eq. (25) matches quite well the
trend given by the Finite Element simulations (parabolic growth as V2). From the quasistatic theory of metal cutting
(Merchant, 1945) Fstatx =t1 is scaled by the yield stress of the work material, i.e. by the parameter A in the Johnson–Cook law
(1). Therefore, according to Eq. (26), the relative contribution of inertia to the cutting force is scaled by the inertial number
RI ¼ ρV2=A. These considerations illustrate the role of the inertial number in the evolution of the cutting force at high
velocities.

Finally, the global evolution of the cutting force can be viewed as follows. For relatively low cutting speeds, the cutting
force decreases by increasing the cutting speed. This is due to thermal effects that soften the overall frictional response at
the tool-chip interface in the range of cutting speeds Vo10 m/s (as discussed by Molinari et al., 2011) and to chip serration
by adiabatic shearing. At high cutting speed inertia dominates the evolution of the cutting force. Inertia effects reduce the
intensity of chip serration (decreasing of the segmentation index Si). The decreasing of Si contributes in turn to the growth of
the cutting force (a variation of Si produces the opposite trend on the cutting force). However, at large cutting speeds the
increasing of the cutting force is mainly governed by the overall change of momentum in the chip flow which contributes to
an increasing of the cutting force scaled by ρV2, Eq. (26). The segmentation index Si is rapidly tending to zero and therefore
does not contribute anymore to the evolution of the cutting force at very high cutting speeds.

3.9. Characterization of the transition to the supercritical regime

The questions addressed in this section are the following. What is the physical origin of the sharp transition to the
supercritical regime of shear band spacing ? Can the transition velocity Vþ be characterized theoretically?

It was previously pointed out that inertia effects play a crucial role in the transition from subcritical to supercritical
regime of shear banding. This was attested by the results shown in Figs. 5c and 14a. At a certain value of the cutting speed
Vþ (independent from the feed t1) a sharp drop of the shear band spacing and of the segmentation index Si are observed. It
was noticed in Section 3.8 that inertia plays a stabilizing role that slows down plastic flow localization within shear bands
when strain rates are augmented. However, there exists another effect that is also related to inertia and that can strongly
influence the decay of Si and the transition to the supercritical regime.

Let us recall that shear bands are nucleated sequentially at the tool tip. After being nucleated, a band propagates towards
the free surface of the chip. We denote by CS the (time average) propagation speed of a shear band. Regarding the chip
segmentation problem, two important characteristic times can be defined: (i) the time , tpropagation, necessary for a shear
band to propagate through the chip thickness and reach the free surface and (ii) the time, tconvection, for a shear band to be
convected away from the chip formation region by material flow . A shear band has no enough time to reach the free surface
of the chip if tpropagation4tconvection. As a matter of fact, in this case the shear band is arrested at the time t ¼ tconvection at which
it leaves the primary shear zone (considering that t ¼ 0 is the nucleation time of the band). Thus, chip serrations are much
attenuated when tpropagation4tconvection. Such a case is illustrated in Fig. 15 showing the chip morphology and strain contours
for V ¼ 350 ms−1 and t1 ¼ 100 μm. The chip thickness appears as almost uniform. A family of shear bands is clearly seen but
none of them reach the free surface of the chip.

According to the present analysis, the transition to vanishing serrations occurs for tpropagation ¼ tconvection. This criterion can
be quantified. The orientation of shear bands at high cutting speeds is about 451 with respect to the cutting speed direction
(Fig. 15). Thus, we have tpropagation≈ðt2

ffiffiffi
2

p
Þ=CS, with t2

ffiffiffi
2

p
being the mean distance to be covered by a shear band to attain the

free surface. On the other hand, we have tconvection≈wPSZ
ffiffiffi
2

p
=Vchip where wPSZ is the thickness of the primary shear zone (chip

formation region). From volume conservation it follows that t2Vchip ¼ t1V . By estimating that wPSZ≈at1 (with a of the order of
0.2–0.4), it turns out that tconvection≈at2

ffiffiffi
2

p
=V . Thus the criterion tpropagation4tconvection corresponding to the extinction of chip

serration takes the form

V=a4CS: ð27Þ
As later commented, the shear band speed CS is function of the cutting speed V. Thus, according to the criterion (27), the
cutting speed Vþ beyond which the segmentation index drops abruptly (onset of the supercritical regime of shear band
spacing) is given by the intersection of the straight line V=a with the curve CSðVÞ, i.e. by the relationship:

Vþ ¼ a CSðVþÞ ð28Þ
The shear band speed CS is displayed in Fig. 16a in terms of the cutting speed V for the feed t1 ¼ 100 μm. The speed CS was

estimated by following the propagation of strain isoclines with time, see Bonnet-Lebouvier et al. (2002). For VoVsegm there



Fig. 15. Chip morphology and strain isoclines for V ¼ 350 ms−1 and t1 ¼ 100 μm. A family of shear bands is clearly seen within the chip. However, at this
high level of the cutting speed, the shear bands have no enough time to reach the free surface of the chip. This is an effect of chip flow convection that
pushes shear bands away from the chip formation region before they can be fully developed.
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is no shear banding. For V4Vsegm, it is seen in Fig. 16a that CS increases almost linearly with V for small cutting speeds.
However, at large cutting speed (V4100 ms−1) CS saturates to the asymptotic value 700 ms−1.

Similar trends were observed by Zhou et al. (1996a, 1996b) when considering a pre-notched plate (made up of C300
steel) subject to the impact of a projectile. Their experimental results revealed that, beyond a certain critical impact velocity,
an adiabatic shear band is generated at the notch tip and propagates with an average speed CS that increases with the
impact velocity. These trends were confirmed by their numerical simulations. The analysis of the onset and propagation of
adiabatic shear bands in the configuration of thin tubes subject to rapid torsion (experiments of Marchand and Duffy (1988)
on torsional Kolsky bars) was addressed by Batra and Zhang (1994) and Bonnet-Lebouvier et al. (2002). The latter authors
developed a theoretical modeling providing the same trends as those observed by Zhou et al. (1996a, 1996b) for impact
loading of pre-notched plates. It was observed by Bonnet-Lebouvier et al. (2002) that CS is tending asymptotically to a limit
value Clim

S at high cutting speeds.
The configuration of orthogonal cutting experiments bears some similarities with the abovementioned works since thematerial

is subject in all cases to intense shear loading. Thus, similar trends are obtained for the dependence of CS with respect to the loading
velocity V, the latter being the impact velocity for Zhou et al. (1996a, 1996b), the shear velocity applied at the boundaries of a layer
for Bonnet-Lebouvier et al. (2002) and the cutting speed in the present work. This similarity can be illustrated by comparing the
results of Fig. 16a to those reported in figure 5 of Bonnet-Lebouvier et al. (2002) for a CRS1018 steel. Although the materials are
distinct (Ti-6Al-4V in the present work) and the experimental configuration are different, the limit Clim

S is reached at comparable
values of the applied velocity (about V ¼ 150 ms−1 in both cases). The value Clim

S is also comparable (about 700 ms−1 for cutting of
Ti-6Al-4V as compared to 800 ms−1 for the case of CRS1018 steel analyzed by Bonnet-Lebouvier et al. (2002)). Such a coincidence in
quantitative values is fortuitous, but the trend towards an asymptotic limiting value is in any case robust.

From Fig. 16b it is seen that for a40:2 the intersection of the straight line V=a with the curve CSðVÞ (Eq. (28)) occurs on
the plateau associated to Clim

S ¼ 700 ms−1. Thus, we have Vþ ¼ 700a ðms−1Þ. For 0:2≤a≤0:4 (corresponding to typical values
of wPSZ which are usually considered to be between 20% and 40% of the uncut chip thickness t1) we obtain
140 ms−1 ≤Vþ≤280 ms−1. The result Vþ ¼ 270 ms−1 given by the present numerical modeling falls within this range. This
value of Vþ corresponds to a¼ 0:368 as illustrated in Fig. 16b.

For V4Vþ, shear bands have no time to reach the free surface of the chip. Consequently, the chip is just mildly wavy and
becomes in fact uniformwhen the cutting speed is still augmented. In addition, for V4Vþ, the numerical simulations reveal
that several bands are growing together within the chip formation region and mutual interactions take place between these
bands. Consequently, the shear band spacing decreases with the cutting speed (Fig. 7). The possibility for several bands
to grow together is related to the fact that shear localization cannot fully develop within a given band when
tpropagation4tconvection. Consequently, the unloading process in the chip formation region is weak and a growing band cannot
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impede the nucleation of the subsequent band. The opposite situation prevails in the subcritical regime VoVþ� �
where just

a single well developed shear band is growing at a time in the chip formation region.
It can be checked that the saturation value, Clim

S ≈700 ms−1, is weakly sensitive to the feed t1. Thus, V
þ characterized as in

Fig. 16b appears to be also insensitive to t1, in agreement with the results found in Section 3.4.
It was demonstrated by Bonnet-Lebouvier et al. (2002) that the limit value Clim

S at high loading velocities is related to
inertia effects that control the propagation of the band via the elastic release rate, the speed of elastic shear waves and the
variation of kinetic energy of material elements through the process zone at the tip of the band. Thus, it can be concluded
that inertia effects are responsible of the transition to the supercritical regime of shear band spacing through several
aspects. Firstly, shear flow localization is slowed down by inertia at very high cutting speeds and consequently the chip
segmentation index is reduced as previously noticed. Secondly, the relationship found between Vþ and Clim

S indicates that
the transition to the supercritical regime of shear banding is also ruled by inertia through the asymptotic limit Clim

S .

3.10. Effect of damage

In our modeling, fracture of a material element occurs when the accumulated plastic strain reaches the critical value εcrit .
In the calculations, elements are deleted when this critical condition is reached. Therefore cracks can propagate along shear
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bands where plastic strain is localized. In a certain range of cutting speeds, the chip can be completely fragmented in small
segments by crack propagation along shear bands. It is recalled that for a completely fragmented chip, Si characterizes the
chip morphology prior to chip fracture.

The effect of εcrit on Si is analyzed in Fig. 17a for the feed t1 ¼ 100 μm. With the low value of the damage parameter
εcrit ¼ 3 damage and crack propagation are favoured. Consequently, the segmentation index is augmented as compared to
the case εcrit ¼ 8. However, the onset of chip flow instability at Vsegm≈1:5 ms−1 is not affected by εcrit (see Fig. 17a) since the
damage parameter εcrit is only operant at large strains. It is also observed that the transition to the supercritical regime at
Vþ ¼ 270 ms−1 is not affected by εcrit probably because the threshold values considered here (εcrit¼3 and 8) are too high for
material failure to affect Clim

S .
Si was compared to experimental results in Fig. 13a for a restricted range of cutting speeds. Characterizations of chip

morphologies were recently obtained by Sutter and List (2013) by performing the same experiments on lathe and ballistic
set-up as Molinari et al. (2002) allowing to explore cutting speeds up to 70ms−1. Their measurements of the segmentation
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index Si in terms of cutting speed is reported in Fig. 17b for the feed t1 ¼ 100 μm together with a result from Chen et al.
(2011) at the cutting speed V ¼ 4:2 ms−1.

For a quantitative comparison between experimental data and theory, two aspects of the modeling will be discussed.
Firstly, it is recalled that εcrit is the sole adjustable parameter in the model. This parameter allows for calibrating the amount
of damage within shear bands and has consequently an influence on the segmentation index. The results of Fig. 17a show
that the level of Si can be significantly increased by considering lower values of the damage parameter εcrit .

Secondly, for this quantitative comparison, the convergence analysis developed in Appendix A is considered (see Fig. 20).
According to this analysis , values of Si extrapolated at vanishing mesh size should be about 50% higher than those obtained
with the mesh size of 3 μm used so far for t1 ¼ 100 μm. The extrapolation at vanishing mesh size is made in Fig. 17b showing
the evolution of Si in terms of the cutting speed. The value εcrit ¼ 3 considered in Fig. 17b provides a quite good correlation
between experiments and modeling.

It should be noted that results on the shear band spacing are weakly sensitive to the value of εcrit in the range explored
3≤εcrit ≤12. This point is checked in Appendix A for VoVþ, Fig. 19.

More interesting than quantitative agreement is the correspondence between experimental trends and those predicted
by the modeling: a rapid increasing of Si at small cutting speeds followed by a saturation at high cutting speeds. These
trends are conserved for all values of εcrit considered here. Indeed, it is worth noticing that all phenomena discussed in this
work are essentially preserved whatever is the value of εcrit in the range 3≤εcrit ≤12. For instance, Vsegm and Vþ appeared in
Fig. 17a to be insensitive to εcrit .

4. Summary and discussion

Thermal softening and the damage criterion εcrit are the sole mechanisms of material weakening considered in the
present modeling of chip serration. Thermal softening becomes operative at high enough cutting speeds when the process is
tending to adiabatic conditions. Fragmentation occurs at large plastic strains and is governed by the limit strain εcrit .

The main findings are summarized in Fig. 18.
� The onset of chip flow instability and chip serration occurs at the cutting speed Vsegm ¼ kRsegm

k =ρCpt1 with Rsegm
k ¼ 40.

� Shear band spacing (and chip serration) is governed by two distinct regimes (subcritical and supercritical regimes). For
Ti–6Al–4V, the transition between these regimes occurs at the cutting speed Vþ ¼ 270 ms−1. For VoVþ (subcritical regime),
each shear band propagates through the entire chip thickness. Shear bands are formed sequentially and do not interact with
each other. For V4Vþ (supercritical regime), shear bands are incompletely formed (they do not reach the free surface of the
chip, see Fig. 15) and they interact with each other. The transition between subcritical and supercritical regimes manifests
itself by a sudden drop of shear band spacing and chip serration.

� Within the subcritical regime VoVþ� �
several sub-regimes can be distinguished for the mean shear band spacing LS

thermal-diffusion sub-regime: At low cutting speeds LS=t1 (average shear band spacing divided by feed) is controlled by
thermal diffusion through the dimensionless cutting speed (thermal number) Rk ¼ ρCpt1V=k. Below the critical value
Rsegm
k ¼ 40 no thermal shear bands are observed in the simulations and the chip is continuous. The onset of shear banding

occurs at the value Rsegm
k ¼ 40. LS=t1 increases with Rk for RkoR−

k ¼ 332. The transition to the plateau regime occurs at the
cutting speed V− ¼ kR−

k =ρCpt1. Thus LS increases with V for VonsetoVoV−.
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plateau sub-regime: Beyond the critical value R−
k ¼ 332, the normalized shear band spacing LS=t1 becomes nearly

independent of cutting speed and feed. The plateau sub-regime corresponds to adiabatic conditions at the scale of the
shear band spacing. Inertia effects are negligible in the thermal-diffusion sub-regime and in most of the plateau sub-
regime.
inertial sub-regime: For high cutting velocities , V470 ms−1, inertia effects become operative. The time average cutting
force increases in proportion to r V2. The transition towards the supercritical regime happens at the cutting speed
Vþ ¼ 270 ms−1 with a sudden drop of the shear band spacing, Fig. 5c.
� The supercritical regime occurs when shear bands have no enough time to propagate from the tool tip to the free
surface of the chip. This feature is a manifestation of inertia, as the propagation of a shear band is controlled by inertia
effects at high velocities. A sudden drop of the segmentation index is observed when shear bands do not reach the free
surface of the chip. Chip serration is also reduced by the stabilizing effects of inertia that slow down plastic flow localization.
Thus, inertia can be viewed as the dominant factor governing the supercritical regime (by saturating the propagation speed
of shear bands and slowing down the shear localization process within bands). The value of the transition velocity
Vþ ¼ 270 ms−1 could be estimated with a criterion based on characteristic propagation and convection times. This criterion
illustrates the interference between adiabatic shear banding and convective flow.

� The shear band spacing is drastically reduced in the supercritical regime. Several shear bands are growing together
within the chip formation region and interactions take place between these bands. Trends concerning the dependence of
the shear band spacing with respect to the cutting speed can be predicted with the linearized perturbation approach or the
momentum diffusion theory.

� It has been also shown that the segmentation index and the shear band spacing follow similar variations in terms of
the cutting speed, while the cutting force shows an opposite trend. These trends are summarized in Fig. 18 together with
those related to the mean chip thickness.

� It should be recalled that the model contains some simplifications. The modeling of damage refers to a critical value,
εcrit , of the accumulated plastic strain for which a material element loses completely its stress carrying capacity. This
criterion was successfully used to model fragmentation for high strain rate processes, see for instance the works of Rusinek
and Zaera (2007) and Rodriguez-Martinez et al. (2013) on fragmentation of dynamically expanding rings. More
sophisticated damage laws may be used that involve the effect of loading conditions and of pressure to describe material
failure by crack propagation.

� The effect of the damage parameter εcrit on chip serration was investigated. The segmentation index Si is significantly
increased in the plateau regime when εcrit is reduced from 8 to 3 and the cutting force is decreased. However, the shear band
spacing and consequently the segmentation frequency are weakly sensitive to εcrit in the range explored 3oεcrito12ð Þ. Also,
the onset of shear banding, the transition to the supercritical regime and in general all the trends observed in this work are
similar whatever is the value of εcrit .

� The present model of chip serration has been validated experimentally for a large range of cutting speeds and feeds.
However, extrapolations to very high cutting speeds should be considered with some caution. In particular, the
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disappearance of chip serration for V4Vþ ¼ 270 ms−1 observed in the present modeling means that chip segmentation is
hardly feasible by the sole effect of adiabatic shear banding and material failure based on the concept of limit strain εcrit .
Nevertheless, another mechanism of material failure may predominate in these extreme loading conditions. Experimental
data are needed to improve the modeling for extremely high velocities. In any case, it appears useful to have preliminary
results with a simplified approach that could be confronted against experimental results to push forward the theory.

5. Conclusions

Shear banding in orthogonal cutting was theoretically investigated by Finite Element calculations combined with
analytical considerations. The proposed approach provides a general framework explaining how chip formation is affected
by adiabatic shear banding. The effects of feed (uncut chip thickness) and cutting speed were systematically analysed and
rationalized. A classification of the different regimes of shear banding has been proposed. The underlying physical aspects
associated to these regimes have been elucidated and characterized in terms of scaling laws involving dimensionless
parameters related to heat conduction and inertia effects.
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The results were compared against experimental data for Ti–6Al–4V alloy in a wide range of cutting speeds and feeds,
but the methodology can be applied to other materials and the theoretical results presented have a general character.

The fundamental knowledge developed in this work is thought to be useful not only for the understanding of metal
cutting processes but also, by analogy, to similar problems where convective flow is also interfering with adiabatic shear
banding as in impact mechanics and perforation processes. In that perspective, cutting speeds higher than those usually
encountered in machining operations have been explored.
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Appendix A. Sensitivity analysis with respect to mesh size and mesh orientation

The dependence of Ls with respect to the mesh size δ is illustrated in Fig. 19 for the cutting speed V¼20 m/s , the feeds
t1¼100 mm and t1¼250 mm and several values of the deletion parameter εcrit . It is seen that Ls becomes independent of the
mesh size when δ⧸t1 is smaller than 0.05. The level of the damage parameter εcrit has a moderate influence on results. When
varying the cutting speed, it can be checked that convergence is achieved in a similar way as for V¼20 m/s.

Fig. 20a shows the evolution of the segmentation index Si (defined by Eq. (9)) in terms of δ⧸t1 for various values of the
feed t1 and of the damage parameter εcrit . Si is a decreasing and affine function of δ⧸t1. The segmentation index increases
significantly from the value 0.15 at δ⧸t1¼0.08 to about 0.7 when the mesh size decreases to zero. In Fig. 20b the cutting
speed has a smaller value, V¼6 m/s. The segmentation index is reduced, the same affine dependence of Si with respect to
δ⧸t1 is conserved. From these results, it appears that Si can be estimated by extrapolating the results at vanishing mesh size.
Thus, to analyze the segmentation index, one needs to work with finer mesh size than for the analysis of the shear band
spacing. As we are mostly interested by analysing trends, calculations are made for the fixed value δ=t1 ¼ 0:03 to save
computational time (except for the feed t1¼250 μm for which we took δ=t1 ¼ 0:02).

However, when the modeling is compared against experimental results, accurate quantitative results can be obtained by
extrapolating the values of Si to vanishing mesh size, see Fig. 17b.

Fig. 21 shows the dependence of the time average specific cutting force, Fx/t1 with respect to the normalized mesh-size
δ⧸t1. It is seen that Fx/t1 increases with the mesh size. Here again, the value of the specific cutting force can be obtained by
extrapolating the results at vanishing mesh size.

To summarize, the shear band spacing can be accurately defined by using mesh-sizes such that δ=t1 ≤0:05. The
segmentation index and the cutting force can be obtained by extrapolating results at vanishing mesh size, taking advantage
of the affine trends illustrated in Figs. 20–21. In any case, the above results show that to compare results obtained at
different feeds, it is better using mesh sizes that are proportional to the feed (same values of δ⧸t1).
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Table 4
Cutting force Fx in terms of the mesh orientation θ. Simulations are carried out for
the feed t1 ¼ 100 μm, the deletion parameter εcrit ¼ 8 and mesh size δ¼ 5 μm. The
minimum of Fx is obtained at θ¼ 45∘ .

V¼6 m/s

θ (deg) 40 45 50
Fx (N/mm) 228 211 223

V¼20 m/s

Fx (N/mm) 193 183 205

A. Molinari et al. / J. Mech. Phys. Solids 61 (2013) 2331–23592358
Simulations have been conducted by considering the mesh orientation, θ¼ 451 in zone A. This value was chosen since it
corresponds to the optimum orientation for which the time average, Fx, of the cutting force is minimum, i.e. for which the
rate of cutting work, FxV , is minimized. This is in line with usual optimization procedures used in numerical methods.

For illustration, we have reported in Table 4 the values of the cutting force Fx for two cutting speeds and several mesh
orientations. It is seen that Fx is minimum for θ¼ 451. This value was used in all simulations.
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