
Journal of Number Theory 207 (2020) 349–355
Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

General Section

A complete classification of well-rounded real 
quadratic ideal lattices

Anitha Srinivasan
Saint Louis University-Madrid Campus, Avenida del Valle 34, 28003 Madrid, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 5 February 2019
Received in revised form 29 July 
2019
Accepted 29 July 2019
Available online 26 August 2019
Communicated by L. Smajlovic

Keywords:
Ideal lattices
Real quadratic fields
Well-rounded lattices
Binary quadratic forms

We provide a complete classification of well-rounded ideal 
lattices arising from real quadratic fields Q(

√
d) where d is 

a field discriminant. We show that the ideals that give rise to 
such lattices are precisely the ones that correspond to divisors 
a of d that satisfy 

√
d
3 < a <

√
3d.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Let d be field discriminant, that is d ≡ 1 (mod 4) is square free, or d ≡ 0 (mod 4)
and d4 is square free with d4 ≡ 2 or 3 (mod 4). A lattice in Rn is a Z module generated 
by n linearly independent vectors in Rn. Recently ideal lattices (see Section 2.4 for the 
definition in the quadratic case) have come into the forefront as a new tool for cryptog-
raphy and coding theory, claiming to defeat the possible threats of a quantum attack on 
the hitherto established systems. Non-zero vectors in a lattice with least Euclidean norm 
play a key role as finding these vectors is considered to be a computationally difficult 
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problem. Therefore one is interested in a lattice that has a basis comprising of only such 
vectors. We look for such lattices arising from ideals in the full ring of integers of a real 
quadratic field Q(

√
d); these ideals are called well-rounded (WR). The reader is directed 

to [1], [2] and [3] for more information and results on the topic. In [2] the authors ex-
hibit infinite families of real and imaginary quadratic fields with ideals that give rise to 
well-rounded lattices.

In [3] the authors prove that an imaginary quadratic field Q(
√
−d) contains well-

rounded ideals if and only if d has a divisor a satisfying the inequality 
√

d
3 < a <

√
d. 

In the case of real quadratic fields, they pose a question whether well-rounded ideals 
lattices can exist when this condition is not satisfied. Our main theorem answers this 
question in the affirmative. Indeed the necessary and sufficient condition given in the 
following theorem properly contains the condition given above.

Theorem 1. Let K = Q(
√
d) be a real quadratic field where d is a field discriminant. A 

primitive ideal I = aZ + b−
√
d

2 Z in the ring of integers is well-rounded if and only if 
b = a, where a is a positive integer that divides d and satisfies 

√
d
3 < a <

√
3d. Moreover 

if d = 4d1 and I is well-rounded then d1 ≡ 3 (mod 4).

Remark 1. The well-rounded ideal I in the above theorem has order dividing 2 in the 
class group. Indeed d = a2 − 4ac for some integer c, and hence the norm of the ideal I, 
a = N(I), divides d. If an ideal I is not primitive, then I = γJ , where J is a primitive 
ideal and γ is a positive integer. It is easy to see that I is well-rounded if and only if J
is well-rounded. In [3, Question 2] the authors asked whether principal WR ideals exist 
in the case when d = 4d1. Recall that d is a fundamental discriminant and so d1 ≡ 2
or 3 (mod 4). In [4, Proposition 4] the authors show that there are infinitely many 
real quadratic fields with WR principal ideals in the case when d1 ≡ 3 (mod 4). These 
authors were interested in principal ideals, however, our theorem above shows that if 
d = 4d1 and I is any well-rounded ideal, then d1 ≡ 3 (mod 4). Hence well-rounded 
ideals (principal or otherwise) do not exist if d = 4d1 and d1 ≡ 2 (mod 4).

2. Binary quadratic forms, ideals and lattices

2.1. Forms

A binary quadratic form is a function f(x, y) = ax2 + bxy + cy2, where a, b, c are 
real numbers (called the coefficients of f) and d = b2 − 4ac is the discriminant. A 
form is called positive definite if the discriminant is negative. We consider only integral 
forms, that is a, b, c are integers. In the case when gcd(a, b, c) = 1, the form is primitive. 
Often we will suppress the variables x and y, writing a form f(x, y) as simply f =
(a, b, c).
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Two forms f and f ′ are said to be equivalent, written as f ∼ f ′, if for some A =(
α β
γ δ

)
∈ SL2(Z) we have f ′(x, y) = f(αx + βy, γx + δy). It is easy to see that ∼ is 

an equivalence relation on the set of forms of discriminant d.
A form f is said to represent an integer m if there exist coprime integers x and y, 

such that f(x, y) = m. Note that equivalent forms represent the same integers and hence 
sometimes we refer to a class of forms f that represents a given integer.

The set of equivalence classes of primitive forms is an abelian group called the form 
class group, with group law as composition given in Definition 2.1 in the next section.

If f = (a, b, c), then the form (a, −b, c) is the inverse of f . The identity form e is defined 
as the form (1, 0, −d

4 ) or (1, 1, 1−d
4 ) depending on whether d is even or odd respectively. 

A useful fact is that any form that represents the integer 1 is equivalent to the identity 
form.

The infimum of a binary quadratic form f is defined as m(f) = inf{|f(x, y)| : x, y ∈
Z}, where x, y are not both 0. Note that m(f) = m(f−1) and m(kf) = km(f) for any 
real number k.

A form (a, b, c) of negative discriminant is reduced if |b| ≤ a ≤ c, where b > 0 in the 
case when |b| = a or a = c. Symmetric forms satisfy a = c.

2.2. Ideals

Recall that d ≡ 0, 1 (mod 4) denotes a field discriminant and all ideals are in the ring 
of integers. We present below a description of an ideal and the rule for composing two 
primitive ideals. The reader may refer to [5, Sections 1.1 and 1.2] for more information.

Let

w =

⎧⎨
⎩

1+
√
d

2 , d ≡ 1 (mod 4)√
d
4 , d ≡ 0 (mod 4).

The ring of algebraic integers is the module with basis [1, w]. A primitive ideal I can be 
written in the form

I = aZ + −b +
√
d

2 Z, (1)

where a, b are integers such that a > 0 is the norm of the ideal, 0 ≤ b < 2a and 4a
divides b2 − d.

If c = b2−d
4a then gcd(a, b, c) = 1 as d is a field discriminant and so (a, b, c) = ax2 +

bxy + cy2 is a primitive form of discriminant d. Also, if I is not primitive then there is 
a primitive ideal J such that I = γJ for some integer γ.

In the following definition we present the formula for the product of ideals which leads 
to composition of forms.
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Definition 2.1. (Composition law) Let Ik = akZ + −bk+
√
d

2 Z, k = 1, 2, be two primitive 
ideals. Let f1 = (a1, b1, c1) and f2 = (a2, b2, c2) be the corresponding binary quadratic 
forms of discriminant d. Let g = gcd(a1, a2, (b1 + b2)/2) and let v1, v2, w be integers such 
that

v1a1 + v2a2 + w(b1 + b2)/2 = g.

If a3 and b3 are given by

a3 = a1a2

g2 ,

b3 = b2 + 2 a2

g

(
b1 − b2

2 v2 − c2w

)
mod 2a3,

then I1 ·I2 is the ideal a3Z + −b3+
√
d

2 Z. Also, the composition of the forms (a1, b1, c1) and 
(a2, b2, c2) is the form (a3, b3, c3), where c3 is computed using the discriminant equation.

Note that this gives the multiplication in the class group.

2.3. Lemmas on binary quadratic forms

The following lemma contains some elementary results on binary quadratic forms that 
we use in the proof of the main theorem.

Lemma 2.

1. The form (a, b, c) is equivalent to the form (a, b +2aδ, aδ2 + bδ+ c) for any integer δ.
2. The form (a, b, c) is equivalent to the form (c, −b, a).
3. If f = (a, b, c) is a reduced form of negative discriminant, then a and c are the two 

smallest integers represented by f .

Proof. Parts are 1 and 2 are achieved by the transformation matrices 
(

1 δ
0 1

)
and (

0 −1
1 0

)
. For the third part see [6, Chapter 6, Section 8].

In the following lemma we present an elementary fact on forms of order dividing two 
that is the principal tool in proving our main result.

Lemma 3. Let f = (a, b, c) be a positive definite form of discriminant d such that f2 ∼ e. 
Then either a divides b or a2

(gcd(a,b))2 ≥ |d|
4 .

Proof. Let the composition of f with itself using the composition law (Definition 2.1) 
be (A, B, C). Then A =

(
a

)2
and as equivalent forms represent the same integers, 
gcd(a,b)
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the identity form e represents A. As e is either (1, 0, −d
4 ) or (1, 1, 1−d

4 ) (depending on 

the parity of d), from Lemma 2, part 3, if A �= 1 then A =
(

a
gcd(a,b)

)2
≥ |d|

4 . Note that 
A = 1 corresponds to a|b.

2.4. Real quadratic ideal lattices

Let I be an ideal in the ring of integers of a real quadratic field Q(
√
d) with basis [

a, b−
√
d

2

]
. The ideal lattice associated to I denoted by LI has a basis matrix

AI =
(
a b−

√
d

2
a b+

√
d

2

)
,

so that if 
(
m
n

)
∈ Z2, the elements of the lattice are given by x = AI

(
m
n

)
, with norm 

form

QI = ||x||2 = (m n)AT
I AI

(
m
n

)
. (2)

The lattice is well-rounded or WR if there is a basis of elements both of which have the 
shortest norm. We call an ideal well-rounded if the corresponding lattice is WR.

Lemma 4. An ideal I is WR if and only if its norm form QI = tQ, for some positive 
integer t and Q a primitive form that is equivalent to a reduced symmetric form.

Proof. Let I = γJ where J is a primitive ideal. Then AI = γAJ and from the norm 
equation (2), it follows that QI = γ2QJ . Let Q be the primitive form obtained by dividing 
the three coefficients of QJ by their greatest common divisor g. Then QI = γ2gQ and 
the least positive integers represented satisfy m(QI) = γ2gm(Q). Clearly I is WR if and 
only if Q is WR. By Lemma 2, part 3, Q is WR if and only if it is equivalent to a reduced 
symmetric form and the result follows.

3. Proof of Theorem 1

Let I = aZ + b−
√
d

2 Z be a primitive ideal. Recall that d is a field discriminant and 
hence gcd(a, b, c) = 1, where d = b2 − 4ac. The corresponding lattice LI has norm form 
(given by (2))

QI = 2a2m2 + 2abmn + b2 + d

2 n2.

Note that QI is a positive definite form of discriminant −4a2d.
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Let g = gcd(2a2, 2ab, b
2+d
2 ). As d = b2 − 4ac we have g ≤ gcd(a, b). It follows that

Q = QI

g
= 2a2

g
m2 + 2ab

g
mn + b2 + d

2g n2

is a primitive form of discriminant −4a2d
g2 .

Claim 1. Q2 ∼ e if and only if a|b.

Proof. It is easy to see from Definition 2.1 that for any primitive form (A, B, C), if 
A|B, then the composition of the form with itself gives the identity form (as a3 = 1
in Definition 2.1). Therefore if a|b then Q2 ∼ e. Now assume that Q2 ∼ e. We have 
gcd(2a2

g , 2abg ) = 2a
g gcd(a, b). By Lemma 3 either a|b or

(
2a2

g

)2

(
2a
g gcd(a, b)

)2 = a2

gcd(a, b)2 ≥ a2

g2 d.

The above gives d ≤ g2

gcd(a,b)2 ≤ 1 (as g ≤ gcd(a, b)), which is not possible.

Claim 2. If a|b then Q is equivalent to a reduced symmetric form if and only if a = b and √
d
3 < a <

√
3d.

Proof. We first consider the case when d ≡ 1 (mod 4). As 0 ≤ b < 2a, if a|b it follows 
that b = a (as b ≡ d (mod 4) is odd) and QI = (2a2, 2a2, a

2+d
2 ). Moreover d = a2 − 4ac

and gcd(a, c) = 1 gives Q = (2a, 2a, a − 2c).
Using the equivalences given in parts 1 and 2 of Lemma 2, we have Q ∼ (a −

2c, −2a, 2a) ∼ (a − 2c, 4c, a − 2c) = f0. Observe that f0 is symmetric. Also, f0 is re-
duced if and only if |4c| ≤ a − 2c. Using c = a2−d

4a , it is easy to show that the condition 

|4c| ≤ a − 2c is equivalent to 
√
d < a <

√
3d when c > 0 and to 

√
d
3 < a <

√
d when 

c < 0.
Now consider the case d ≡ 0 (mod 4). Let d = 4d1 and b = 2b1. In this case a|b

gives b = a or b = 0. We look first at the case when a = b. As d1 = b21 − 2b1c and 
gcd(a, b, c) = 1, we have b1 and c are odd. Therefore it follows that QI = (2a2, 2ab, 2(b21+
d1)) = 2(a2, ab, 2b21 − ac) = 8b1(b1, b1, b1−c

2 ) and thus Q = (b1, b1, b1−c
2 ). We have the 

equivalences (using Lemma 2)

(
b1, b1,

b1 − c

2

)
∼

(
b1 − c

2 ,−b1, b1

)
∼

(
b1 − c

2 ,−b1 + 2b1 − c

2 ,
b1 − c

2

)

∼
(
b1 − c

, c,
b1 − c

)
= f0.
2 2
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The form f0 is reduced iff |c| ≤ b1−c
2 . In an identical fashion to the case above, noting 

that a = b = 2b1, we obtain that f0 is reduced if and only if 
√
d

3 < a <
√

3d. To complete 
the proof of Claim 2 it remains to consider the case b = 0. We have d1 = −ac and hence 
QI = (2a2, 0, −2ac) and Q = (a, 0, −c). One of (a, 0, −c) or (−c, 0, a) is reduced and 
clearly neither is symmetric as a �= −c (gcd(a, c) = 1).

From Lemma 4 the ideal I is WR if and only if Q is equivalent to a reduced symmetric 

form. From Claims 1 and 2 it follows that I is WR if and only if a = b and 
√

d
3 < a <

√
3d.

Lastly, note that if d = 4d1 is even, then b = a = 2a1 so that d1 = a2
1 − 2a1c, from 

which it follows that d1 ≡ 3 (mod 4). �
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