

GRADO EN INGENIERÍA EN TECNOLOGÍAS DE

TELECOMUNICACIÓN

TRABAJO FIN DE GRADO

Hardware Trojans: implementation and testing

Autor: Luis Foncillas Gutiérrez

Director: Erdal Oruklu

Madrid

Declaro, bajo mi responsabilidad, que el Proyecto presentado con el título

Hardware Trojans: implementation and testing

en la ETS de Ingeniería - ICAI de la Universidad Pontificia Comillas en el

curso académico 2022/23 es de mi autoría, original e inédito y

no ha sido presentado con anterioridad a otros efectos.

El Proyecto no es plagio de otro, ni total ni parcialmente y la información que ha sido

tomada de otros documentos está debidamente referenciada.

Fdo.: Luis Foncillas Gutiérrez Fecha: ……/ ……/ ……

Autorizada la entrega del proyecto

EL DIRECTOR DEL PROYECTO

Fdo.: Dr. Erdal Oruklu Fecha: ……/ ……/ ……

GRADO EN INGENIERÍA EN TECNOLOGÍAS DE

TELECOMUNICACIÓN

TRABAJO FIN DE GRADO

Hardware Trojans: implementation and testing

Autor: Luis Foncillas Gutiérrez

Director: Dr. Erdal Oruklu

Madrid

TROYANOS HARDWARE: IMPLEMENTACIÓN Y VERIFICACIÓN

Autor: Foncillas Gutiérrez, Luis.

Director: Oruklu, Erdal.

Entidad Colaboradora: Illinois Institute of Technology

RESUMEN DEL PROYECTO

La producción de circuitos integrados es un proceso global, en cuyo diseño y producción

intervienen varias casas de diseño y fundiciones de todo el mundo. Este proceso de

producción global ha abierto la puerta a que agentes maliciosos introduzcan modificaciones,

conocidas como troyanos de hardware, en el diseño del circuito con el fin de perturbar la

funcionalidad diseñada. El proyecto diseña e implementa troyanos de hardware en un

conjunto de circuitos de encriptado, utilizando VHDL y realizando pruebas para un

dispositivo FPGA, ideando así posibles mecanismos de defensa contra tales intrusiones.

Palabras clave: Troyano de hardware, Circuitos integrados, Design for Security

1. Introducción

La cadena de suministro de circuitos integrados implica a varios sujetos repartidos por

todo el mundo, la falta de confianza en fabricantes terceros o licenciatarios de propiedad

intelectural supone un riesgo en la integridad y seguridad de dichos circuitos, abriendo

la posibilidad a una modificación maliciosa del hardware conocida como Troyano de

Hardware. Estos troyanos pretenden impedir la funcionalidad o dificultar el rendimiento

de los circuitos atacados.

El proyecto tendrá como objetivo insertar un troyano de hardware en un circuito

criptográfico, tratando de filtrar información/denegar servicio, esencialmente

inutilizando su funcionalidad e idear y explorar potenciales métodos de defensa contra

este tipo de ataques, y aplicarlos a los circuitos diseñados.

2. Definición del proyecto

La relativa falta de conocimientos sobre los troyanos de hardware y sus

implementaciones hace que los métodos de defensa y prevención sean escasos o caros.

Este proyecto pretende, primero actuando como agente malicioso en un conjunto de

circuitos criptográficos, y luego estudiando técnicas de defensa contra troyanos de

hardware, idear un nuevo método a través del cual defenderse adecuadamente contra la

inserción de dichos troyanos. Estos esfuerzos conducirán a hallazgos relevantes para el

desarrollo en FPGAs, utilizando código VHDL para primero insertar y posteriormente

prevenir troyanos.

Se ha desarrollado un conjunto de dos circuitos criptográficos para el proyecto, cuyo

conocimiento a fondo ha permitido un acercamiento a la metodología detrás del

desarrollo de troyanos hardware. Una vez hecho esto, la siguiente parte del estudio se

centró en la defensa contra troyanos. Con lo aprendido al atacar los circuitos,

aprovechando sus debilidades y, basándonos en las técnicas de prevención de troyanos

ya establecidas, se aplicaron los esfuerzos de defensa a los circuitos criptográficos

desarrollados.

3. Descripción del modelo/sistema/herramienta

En el proyecto se desarrollaron dos circuitos criptográficos, el primero, un prototipo

sencillo, desarrollado con un simple xor y cifrado César. El segundo circuito es más

complejo, utilizando el prototipo como base, incluye una máquina de estados para

controlar el proceso de cifrado. A continuación, se estudió la posibilidad de insertar un

troyano en ambos circuitos de cifrado. El primer troyano, con un mecanismo de

activación externo, se insertó en el prototipo. Al insertar una entrada específica al

circuito, el troyano se activa, filtrando la clave de cifrado a través de la salida habitual.

El segundo diseño de troyano se desarrolló para, además de afectar a la función de

cifrado, perturbar la máquina de estados del segundo diseño de circuito. Para explotar

mejor la arquitectura del circuito, se eligió un mecanismo de activación interno. En

función del número de cifrados, el troyano se activaría para realizar diferentes acciones,

primero filtrando la clave de cifrado, después denegando el servicio mediante la salida

cero y eliminando los esfuerzos de cifrado, y finalmente interrumpiendo el flujo de la

máquina de estados, bloqueando el circuito hasta su reinicio.

Figura 1: Circuitos de encriptado con troyanos

Para finalizar el estudio, y con los conocimientos obtenidos de la inserción del troyano,

se implementaron mecanismos de defensa de los circuitos, implementando técnicas DFS

(Design for Security) y métodos de verificación efectivos sobre los circuitos,

modificando el diseño.

Figura 2: Circuitos reforzados con técnicas de defensa DFS

4. Resultados

Todas las simulaciones del troyano proporcionaron la funcionalidad correcta,

demostrando una implementación efectiva, especialmente el segundo diseño, que ofreció

una buena visión de la metodología detrás del diseño de troyanos de hardware. Tenga en

cuenta que la clave de cifrado para ambos diseños es 01101110.

Figura 3: Simulación del primer troyano

input output

00000000 01110000

00001000 01101000

10011001 01101110

Tabla 1 : Resultados de la simulación del primer troyano

Figura 4: Simulación de troyano de la máquina de estados

input output

00000001 01110001

00100010 01101110

00000011 01101111

00000100 01101100

00000101 00000000

00000110 01101010

00000111 01101010

Tabla 2 : Resultados de la simulación del segundo troyano

Los métodos de defensa también resultaron eficaces, dificultando la inserción de un

troyano o, si este estaba dentro, ofreciendo buenas posibilidades de detección,

especialmente en el primer circuito. Los problemas surgieron en el segundo diseño, ya

que el mecanismo de activación, al ser interno, es difícil de detectar con los métodos de

verificación tradicionales presentes en FPGA.

5. Conclusiones

El principal objetivo del proyecto, comprender los troyanos de hardware, fue un éxito.

Se obtuvo una visión útil de cómo se diseñan e implementan los troyanos en el hardware

del host, lo que proporcionó una primera visión de cómo defenderse adecuadamente

contra este tipo de ataques. Desde el punto de vista de la defensa, la parte de ataque del

estudio mostró cómo un cambio de perspectiva puede ofrecer una estructura más robusta

y resistente a la inserción de troyanos. La exploración de los retos de implementar

únicamente una defensa VHDL demostró que ningún método o vía es infalible en la

defensa contra troyanos, reforzando la necesidad de incorporar varias tácticas defensivas.

Figura 5: estrategia de defensa basada en bucle ataque-defensa

El hecho de haber actuado como un adversario, intentando insertar un troyano de

hardware en los circuitos, ha demostrado que es una técnica muy efectiva en preparar

mejor la defensa de los circuitos, pues se conocen de antemano sus debilidades. El bucle

de ataque-defensa realizado en el proyecto ha demostrado su valor como técnica a la hora

de defender de intrusiones de troyanos.

HARDWARE TROJANS: IMPLEMENTATION AND TESTING

Author: Foncillas Gutiérrez, Luis.

Supervisor: Oruklu, Erdal.

Collaborating Entity: Illinois Institute of Technology

ABSTRACT

Modern integrated circuit production is a global process, various design houses and

manufacturing foundries from over the world intervene in the design and production of a

single circuit. This global production process has opened the door for malicious agents to

insert modifications, known as hardware trojans, in the circuit design aiming to disrupt the

intended functionality. The project designs and implements hardware trojans on a set of

encryption circuits, using VHDL and testing for an FPGA device, devising then potential

defense mechanisms for such intrusions.

Keywords: Hardware Trojans, Integrated circuits, Design for Security.

1. Introduction

Modern Integrated circuit supply chain involves various actors spread across the globe,

the lack of trust in third party manufacturers or IP licensers suppose a risk in the integrity

and security of said circuits, opening the chance for a malicious hardware modification

known as a Hardware Trojan. These trojans aim to impede functionality or hamper

performance of the target circuits.

The project will aim to insert a hardware Trojan into a cryptographic circuit, trying to

leak information/deny service, essentially rendering the cryptographic effort useless.

Once these efforts have been completed, potential defense methods will be explored and

applied to the designed circuits.

2. Project definition

The relative lack of knowledge about hardware trojans and their implementations mean

that defense and prevention methods are scarce or expensive. This project pretends, first

by acting as the malicious agent on a set of cryptographic circuits, and then studying

modern hardware trojan defense techniques, to devise a new method trough which to

properly defend against hardware trojan insertion. These efforts will lead to findings

relevant to FPGA development, using VHDL code to first insert and then prevent

hardware trojans.

A set of two cryptographic circuits have been developed for the project, with their

intimate knowledge and study allowing for a proper study of the methodology behind

hardware trojan development. Once this had been done, the next part of the study focused

on trojan defense. Seeing what posing as the adversary shows regarding exploiting circuit

weaknesses, basing our effort on established trojan prevention techniques, defense

efforts were applied to the cryptographic circuits developed.

3. Implementation

To start with two cryptographic circuits were developed, the first, a simple prototype, as

developed with a simple xor and Caesar cipher encryption. The second circuit is more

complex, using the prototype as a base, it includes a state machine to control the

encryption process. Both encryption circuits were then studied to have a trojan inserted

in them. The first trojan, with an external triggering mechanism, was inserted in the

prototype. If a specific input plaintext is sent to the circuit, the trojan activates, leaking

the encryption key through the usual encryption output. The second trojan design was

developed to, apart from affecting the encryption function, to target the state machine of

the second circuit design. To better exploit the circuit architecture, an internally

triggering mechanism was chosen. Based on the number of encryptions, the trojan would

activate to do different actions, first leaking the encryption key, then denying service by

outputting zero and eliminating encryption efforts, and finally disrupting the state

machine flow, essentially locking the circuit until reset.

Figure 1: Encryption circuits schematics with trojan present

To end the study, and with the knowledge gained from the trojan insertion, defense

mechanisms for the circuits, implementing DFS techniques and effective verification

methods were implemented on the circuits, modifying the design.

Figure 2: Reinforced designs with defense techniques

4. Results

All trojan simulations gave the correct functionality, demonstrating an effective

implementation, specially the second design, which offered good insight in the

methodology behind hardware trojan design. Please note that the encryption key for both

designs is 01101110.

Figure 3: Prototype circuit trojan simulation

input output

00000000 01110000

00001000 01101000

10011001 01101110

Table 1: Prototype circuit trojan simulation outputs

Figure 4: Second circuit trojan simulation

input output

00000001 01110001

00100010 01101110

00000011 01101111

00000100 01101100

00000101 00000000

00000110 01101010

00000111 01101010

Table 2: Second circuit trojan simulation outputs

The defense methods also proved effective, hampering trojan insertion efforts, or if

inserted, offering a good chance for detection, specially in the first prototype circuit.

Problems arose in the second design, seeing as the triggering mechanism, it being

internal, is difficult to detect using traditional verification methods present for FPGA

development.

5. Findings

The main goal of the project, understanding hardware trojans was successful. Useful

insight was gained in how the trojans are designed and implemented on host hardware,

providing an early look in how to properly defend against these types of attacks. From

the defense point of view, the attack portion of the study showed how a change of

perspective can offer a more robust structure resilient to trojan insertion. Exploring the

challenges in implementing only a VHDL defense proved that no method or avenue is

foolproof in the defense against trojans, reinforcing the need to incorporate various

defensive tactics.

Figure 5: Defense method proposal based on feedback loop.

Posing as an attacker however has shown that it is a very effective technique in the fight

against hardware trojans. The weak points of a circuit can be better known and reinforced

if one tries attacking it first. A feedback loop of attack-defense is an effective method of

reinforcing the design and structure of a circuit in the face of trojan attacks.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

1

CONTENTS

CHAPTER 1: INTRODUCTION ...7

1.1 MOTIVATION .. 10

1.2 OBJECTIVES .. 11

1.3 METHODOLOGY .. 12

CHAPTER 2: DESCRIPTION OF TECHNOLOGIES ... 14

2.1 CHOICE OF PLATFORM: FPGA ... 14

2.2 VHDL.. 15

2.3 DEVELOPMENT PLATFORM .. 17

2.4 CRYPTOGRAPHIC CIRCUIT ELEMENTS ... 18

2.4.1 Caesar Cipher: .. 19

2.4.2 XOR cipher: ... 19

CHAPTER 3: STATE OF AFFAIRS ... 21

3.1 Modern Integrated Circuit design and fabrication ... 21

3.2 Trojan Taxonomy .. 22

3.3 Hardware Trojan methodology ... 24

3.4 Trojan defense and detection .. 26

3.4.1 Design for security .. 28

3.4.2 MERO testbench... 29

3.4.3 Potential strategies for defense .. 31

CHAPTER 4: HARDWARE TROJAN IMPLEMENTATION ... 33

4.1 Implementation details ... 33

4.2 Prototype circuit .. 33

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

2

4.2.1 Hardware Trojan implementation: externally triggered trojan...................... 34

4.3 Second circuit design: state machine circuit ... 36

4.3.1 Second design Trojan implementation: internally triggered trojan 38

4.3.2 Triggering mechanism .. 38

4.3.3 Payloads ... 39

4.3.4 Integration in the circuit .. 42

4.4 Simulation and results: ... 42

4.4.1 Prototype circuit .. 43

4.4.2 Second circuit .. 43

4.5 Trojan Insertion Results ... 45

CHAPTER 5: HARDWARE TROJAN DEFENSE .. 47

5.1 Prototype circuit .. 47

5.1.1 DFS .. 47

5.1.2 Verification... 49

5.2 Second Circuit ... 50

5.2.1 DFS .. 50

5.2.2 Verification... 52

5.3 Results ... 52

CHAPTER 6: CONCLUSIONS AND FUTURE WORK ... 54

CHAPTER 7: REFERENCES .. 57

APPENDIX A: SDG OBJECTIVES .. 60

APPENDIX B: VHDL SOURCE CODE ... 61

Design 1 ... 61

VHDL behavioral model .. 61

VHDL testbench .. 61

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

3

DFS design... 62

DFS design testbench ... 63

Design 2 ... 65

VHDL behavioral model: ... 65

VHDL Testbench ... 67

DFS DESIGN .. 70

DFS design testbench ... 74

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

4

FIGURES

Figure 1 : Apple M1 Pro SoC [4] ...8

Figure 2 : Global semiconductor supply chain [6] ..9

Figure 3 : Project objectives ... 12

Figure 4 : project methodology .. 13

Figure 5 : Xilinx Spartan 6 FPGA chip [13] ... 14

Figure 6 : Xilinx ISE logo [16] ... 17

Figure 7 : Xilinx ISE main screen .. 17

Figure 8 : Modelsim simulation screen ... 18

Figure 9 : XOR encryption block schematic ... 20

Figure 10 : Modern IC production process ... 22

Figure 11 : Trojan Taxonomy [22] ... 23

Figure 12 : Hardware trojan insertion process .. 25

Figure 13 : Logic locking ... 28

Figure 14 : Polymorphism .. 29

Figure 15 : MERO testbench design ... 31

Figure 16 : Initial encryption circuit ... 34

Figure 17 : Prototype circuit with HW trojan .. 35

Figure 18 : prototype circuit trojan functionality .. 36

Figure 19 : Second design state machine .. 37

Figure 20 : Second circuit design ... 38

Figure 21 : Second design with HW trojan ... 41

Figure 22 : Prototype design trojan simulation ... 43

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

5

Figure 23 : Prototype design testbench console output.. 43

Figure 24 : Second circuit simulation screenshot .. 44

Figure 25 : State machine full cycle simulation .. 45

Figure 26 : Second circuit state machine trojan simulation ... 45

Figure 27 : protype circuit with DFS techniques ... 48

Figure 28 : Second circuit with DFS techniques ... 51

Figure 29: Second circuit new block design ... 51

Figure 30 : Defense feedback loop proposal ... 55

Figure 31 : SDG objectives [25] ... 60

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

6

TABLES

Table 1 : Caesar Cipher example .. 19

Table 2 : XOR truth table ... 19

Table 3 : Second circuit HW trojan implementation ... 42

Table 4 : prototype circuit simulation results .. 43

Table 5 : Second circuit simulation results ... 44

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

7

CHAPTER 1: INTRODUCTION

As the hardware industry has advanced over the last couple of decades, design houses and

foundries from across the world intervene in the design and fabrication of a single circuit.

The global economy has allowed for the offloading of many processes in remote locations

[1], meaning that design and fabrication are usually separated into two distinct and

separate processes. The outsourcing of production, nowadays relegated to external

foundries, and the fact that many smaller components that build modern integrated

circuits (IC) are sourced from third party design houses, raises questions about the

integrity of the circuits, seeing as there are many open avenues for a malicious agent, an

adversary, to introduce changes in the design without the original design houses noticing.

These malicious changes, known as Hardware Trojans [2], have emerged as a major

security threat for most modern IC. The rise of System-on-Chip (SoC) designs, which

integrate most or all components of a computer on a single IC, and embedded computing

has allowed the public to have access to highly capable computing devices, such as

smartphones or laptops, and low powered machines, such as wearable medical devices or

electronic car keys. This physical access to technology has contributed to the rise of

hardware security modules on the computing elements themselves, in the form of

specialized circuitry. With so many people accessing sensitive information on their

devices, such as banking information or private legal documents, security has been shown

to be imperative, as even the slightest mistake can lead to millions of affected users, with

no real easy way to fix a Hardware problem other than mass recalls.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

8

Figure 1 : Apple M1 Pro SoC [4]

It is in this context that hardware trojans show their potential danger. Hardware Trojans

relate to a malicious modification of an IC during its design or fabrication process,

especially when handled by external agents, such as an untrusted design house or foundry,

or even when designed with the use of third-party tools or components over which the

original design house has no control. These modifications aim to modify the functionality

of an IC, reducing performance, changing behavior, or even neutralizing the computer in

its totality, acting as a “kill-switch”. These changes are introduced by the adversary in a

manner such that standard verification tests will not detect the intrusion, with the Trojans

presence only being revealed after prolonged operation in the hands of consumers.

The name comes from the Trojan war in mythical ancient Greece, where a wooden horse

was gifted to the Trojan army, who brough it inside their city, thought impenetrable,

without the knowledge that in the inside of the horse the enemy’s forces were hiding. The

horse turned into a powerful weapon that came to be one of the major causes for the fall

of Troy [5]. The name then gives the Hardware Trojans their nature: it is intended to be a

weapon with malicious intent, and should try to evade all detection, acting stealthily when

under standard circuit verification processes.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

9

As stated before, the global economy has been one of the main contributing factors to the

rise in Hardware Trojan attacks. Modern IC design techniques usually involve using

components and intellectual property cores derived from third parties, which design firms

have to trust, but have no real guarantee over the integrity and security measures

implemented in said components. Even the tools used to design IC may be vulnerable to

tampering, leaving design firms oblivious to the actual end result of their product. The

problem grows when considering the manufacturers themselves, as economically the

most logical solution for a lot of teams is to outsource production, due to the high cost of

having an in-house manufacturing solution, even if the manufacturing partner operates in

an insecure facility. This globalization has forced the design firms to let go of the control

they once had over the security measures they require, having to trust their partners to

enforce them fully. The many steps involved in modern IC design and manufacturing all

pose an opportunity for attack, seeing as each different partner involved in the overall

process can be a possible adversary.

Figure 2 : Global semiconductor supply chain [6]

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

10

In recent times Hardware Trojan attacks have been discovered, with a wide range of

impacts. In 2012 a hidden back-door was discovered in military systems and aircraft such

as the Boeing 787 [7] , allowing the adversary to take control of the flight remotely

through the internet. Or in 2007, Israeli forces managed to destroy a nuclear reactor, due

to the Syrian air defense system not responding in time, this was speculated to have been

caused by a built-in kill-switch on the system [3]. No system is completely secure for

hardware tampering, meaning that potentially every circuit in the wild today is susceptible

to a Hardware trojan attack.

Modern verification techniques should be capable of detecting these unwanted and

hazardous modifications. But the modern nature of IC design has complicated the

issue[8], mainly due to the lack of a golden model [9], a reference model of the entire

built circuit. Licensed IP cores from third parties may not be tested and simulated

properly, leading to not being able to recreate a golden model. Exhaustive verification

would be the way to go, but on most modern IC it is not feasible to test, as the possibilities

far exceed any reasonable time limits for simulation [10]. Once the IC leave the

production run, they could be tested, either via reverse engineering, tested against a

reference model, or via side-channel analysis, but these options prove to be very costly,

either due to the tools necessary for said tests, or may be ineffective due to the fact that

not all of the IC manufactured could have been affected by the Hardware Trojan attack,

and if the sample size tested is not sufficiently large, due to cost or time constraints, the

attack may go unnoticed.

1.1 MOTIVATION

The very present danger Hardware Trojans pose to our everyday lives highlight the

pressing need to gain a deeper understanding of the entire lifecycle of hardware trojans,

ranging from their design to their insertion. The more we comprehend how these trojans

operate and how they manage to remain undetected, the better equipped we become to

mitigate the risks they pose. It is crucial to acknowledge that hardware trojans extend

beyond targeting large, centralized computer systems. Their true potential for damage lies

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

11

in compromising consumer devices, where they can illicitly acquire sensitive information

for malicious purposes or disrupt interconnected networks on a significant scale.

The primary objective of this project is to foster comprehension. By thoroughly studying

the intricacies involved in designing and implementing a hardware trojan, we can

effectively develop defensive strategies and explore detection methods. Essentially, by

adopting an adversarial mindset and analyzing the various stages of an attack, we can

enhance our ability to protect against such threats.

1.2 OBJECTIVES

The project will aim to develop the following:

1) Design a simple cryptographic circuit: this circuit will be a very simple VHDL

implementation of a cryptographic circuit, using XOR encryption and Caesar

cipher as a base, as cryptography is not the focus of the project, and it needs to be

in scale of the FPGA board available.

2) Design and implement a Hardware trojan: based on the circuit previously

developed, a set of hardware trojans will be designed and inserted into the circuit,

trying to explore different avenues for attacks and exploit the structural

weaknesses of the circuits. It is in this point where the methodology behind

Hardware Trojan attacks will be studied and applied, hopefully leading to a better

understanding of the process.

3) Test the hardware trojan: simulation and verification of the Trojans inserted in the

cryptographic circuits.

4) Exploring possible methods of defense for the trojan implementations: for the

previously designed trojans approaches for defense or detection of the trojans will

be explored and developed, and their effectiveness will be studied.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

12

Figure 3 : Project objectives

1.3 METHODOLOGY

The project will be based on a feedback loop of progress. To start with, a simple prototype

cryptographic circuit will be designed. This circuit will then be subjected to a Hardware

Trojan attack, since we have participated in both the design and the attack, the inner

workings of the circuit will be well-known to us, with its weak points being known from

the get-go. This intimate knowledge of the circuit will allow us to tailor the hardware

trojan to the circuit, trying to affect its main functionality, and do so in a stealthy manner.

From then, a more comprehensive study will be conducted on how the Trojan has affected

the circuit, allowing us to devise a coherent defense structure for the existing design,

finalizing in a new circuit. This process will then be repeated on a more complex circuit,

with different characteristics.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

13

Figure 4 : project methodology

With this process, the nature of Hardware Trojan attacks will be better understood, and

with the knowledge gained from posing as the attacker, the exploration of defense

mechanisms will be more effective, and lead to a more structured process to better defend

against hardware Trojans. Doing this process twice will create a feedback loop of

knowledge, when designing the second more complex circuit, the lessons learned from

the prototype can be applied, allowing for a comprehensive study on the nature of these

attacks. During each step simulations to verify and test both the circuits and the Trojans

will be done.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

14

CHAPTER 2: DESCRIPTION OF

TECHNOLOGIES

The project will have a focus on the study of Hardware Trojans on an FPGA environment;

therefore, the choice of tools and platforms must be adequate for FPGA development and

implementation.

2.1 CHOICE OF PLATFORM: FPGA

A Field-Programmable Gate Array chip is a reprogrammable integrated circuit that allows

users to design and implement digital logic circuits [11] - [12]. FPGA boards provide a

platform for designing, prototyping, and deploying digital circuits and systems. They

offer flexibility and configurability, allowing users to define the desired functionality of

the FPGA chip by programming it using hardware description languages like VHDL or

Verilog. With various I/O interfaces, clock management resources, and on-board

components, FPGA boards enable the development of custom digital circuits tailored to

specific applications and can be used in diverse fields such as embedded systems, digital

signal processing, communication systems, and more.

Figure 5 : Xilinx Spartan 6 FPGA chip [13]

The specific FPGA used for the project is a Xilinx Spartan 6 board. It is a low-cost, high-

capacity FPGA, balancing power consumption, performance and cost [13]. The Spartan

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

15

6 series uses dual-register, 6-input LUTs, and one Series of built-in system-level modules,

which include an SDRAM memory interface, PCIe interface, 18Kb Block Ram, and a

robust hybrid clock management module.

2.2 VHDL

The project will be based on an FPGA platform; therefore, a hardware description

language will be used. In our case, the main hardware description language of choice will

be VHDL, as it offers intuitive and easy solutions for both the design of the cryptographic

circuits and their respective trojans, and the later simulation and verification of the

implementations developed via a VHDL testbench.

VHDL (Very High-Speed Integrated Circuit Hardware Description Language) is a

hardware description language used to model and simulate digital systems. It is a

standardized language that enables designers to describe the structure and functionality

of electronic systems, such as integrated circuits, programmable logic devices, and

system-on-chip designs [14] - [15].

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity AND is

 Port (A : in STD_LOGIC_VECTOR (7 downto 0);

 B : in STD_LOGIC_VECTOR (7 downto 0);

 Y : out STD_LOGIC_VECTOR (7 downto 0));

end AND;

architecture Behavioral of AND is

begin

 Y = A and B;

end Behavioral;

VHDL was created in a United States Department of Defense program, Very High-Speed

Integrated Circuits Program (VHSIC) [15]. The program aimed to develop a new HDL

for use in integrated circuit development, which resulted in VHDL version 7,2, released

in 1985, with IEEE standardization efforts beginning in the following year.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

16

VHDL allows designers to specify the functionality of a digital system using a

combination of concurrent and sequential statements. It supports the representation of

complex digital circuits and systems by providing a hierarchical structure for modular

design, based on the behavioral model design, which is normally used to describe the

functionality of an inner module of the circuit, with the modules that group many of these

smaller modules being the structural model design. This allows designers to create

reusable components and easily integrate them into larger designs, translating to a more

structured way to describe and define their circuits, separating different functional blocks

which allow easier handling of highly complex structures.

After the circuit is designed and compiled, its functionality can be tested via what is

known as a testbench. A VHDL testbench is a separate VHDL script in which the designer

generates a set of stimuli to feed into the circuits inputs and sets controls over the outputs

in order to check the designed circuit is working as intended.

Once the VHDL design is simulated and verified, it can be synthesized into a target

hardware technology, such as an FPGA (Field-Programmable Gate Array) or an ASIC

(Application-Specific Integrated Circuit). Synthesis tools map the VHDL code to the

specific gates and flip-flops available in the target technology, optimizing for factors like

area, power, and performance.

VHDL serves as a useful tool for describing and simulating digital systems. Its modular

nature allows for efficient design and development, making it the perfect choice for this

project.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

17

2.3 DEVELOPMENT PLATFORM

Figure 6 : Xilinx ISE logo [16]

The choice of board of the project is a Xilinx Spartan 6 FPGA board, specifically model

xc6slx45, with speed setting -3. The VHDL development environment must then be

compatible with the board of choice. This leads us to Xilinx ISE, a native Xilinx platform

software which supports the Spartan 6 board. It is not as modern or as efficient as the new

Xilinx software, Vivado, but seeing as that software does not support the choice of board

there is no option other than ISE.

Figure 7 : Xilinx ISE main screen

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

18

ISE will be used to code and compile the VHDL implementation code and testbench script

for verification. For the actual simulation of the circuit an integrated simulation

environment in ISE, ISim, will be used.

Figure 8 : Modelsim simulation screen

2.4 CRYPTOGRAPHIC CIRCUIT ELEMENTS

As the focus of the project will be on Hardware trojan development on FPGA boards, the

encryption algorithms must not be too complex, as the FPGA boards may not have

sufficient overhead to support the algorithms themselves, let alone additional structures.

This is the reason why popular encryption algorithms such as AES and RSA are not

present in the circuits developed, the FPGA board of choice, the Spartan 6, does not have

sufficient hardware overhead to support the VHDL implementations of said algorithms.

Even if the encryption algorithms are not very complex, the project can still be successful,

the methodology behind hardware trojan design and integration depends on the whole

architecture of the circuits designed, not only on the encryption base.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

19

2.4.1 Caesar Cipher:

The Caesar cipher is a simple and widely known encryption technique. Originally used

by Julius Caesar in his private correspondence, it is a substitution cipher where each letter

in the plaintext is shifted a certain number of positions down the alphabet [17] – [18]. It

requires two elements, the plaintext, and the shift amount. To decrypt a Caesar cipher the

process is very simple, with the same shift amount, shift each letter of the ciphertext a up

the alphabet, restoring the original text.

The encryption and decryption processes are represented by the following equations [18]:

𝐸𝑛(𝑥) = (𝑥 + 𝑛) 𝑚𝑜𝑑 26

𝐷𝑛(𝑥) = (𝑥 − 𝑛) 𝑚𝑜𝑑 26

Where n is the shift amount, and mod is the modulo operation.

A graphical representation would be as follows, two aligned alphabets, in this case, a shift

amount of 3 is represented, A is shifter three letters down the alphabet to turn into D.

Plaintext A B C D E F

Cipher D E F G H I

Table 1 : Caesar Cipher example

2.4.2 XOR cipher:

The XOR cipher is a simple symmetric encryption algorithm that works on binary data.

It is based on the exclusive or (XOR) operation, which outputs binary 1 if both of the

elements being compared are different.

Y = A XOR B

A B Y

0 0 0

0 1 1

1 0 1

1 1 0

Table 2 : XOR truth table

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

20

Figure 9 : XOR encryption block schematic

The XOR cipher requires a key to function, which will be a binary sequence of digits.

This key should be equal or greater in length compared to the plaintext to encrypt. The

XOR operation is then applied between the plaintext and the key, resulting in the

ciphertext. For decryption purposes the same key is applied, and the same XOR operation

is applied to the ciphertext.

It is important to recognize that both encryption methods are not very strong, and are very

easy to break, but that is not the focus of the project. These algorithms have been chosen

for ease of implementation in VHDL, and for the little overhead they need in order to be

implemented, seeing as more complex encryption algorithms such as RSA or AES need

greater hardware requirements than what are available in the board used as a basis for the

project. However, from these simple examples more complex trojans for heavier

algorithms could be devised, as the rationality behind the process would be the same.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

21

CHAPTER 3: STATE OF AFFAIRS

Hardware trojans might seem like a shadowy force of which little is known about, but

that could not be farther from the truth. Several aspects of their nature have been

established to form a scheme to classify them depending on when, where, and how the

hardware trojans are implemented. These studies have also allowed for a rough outline

behind the way these types of attacks are introduced in IC. This chapter will go over this

public knowledge, as well as discuss the various defense methods that have been proposed

to combat and properly prevent hardware trojan attacks. All the methods and techniques

mentioned in this chapter will aid in the planification of an attack on two host circuits, as

well as devising defense strategies for them to prevent said attacks.

3.1 Modern Integrated Circuit design and fabrication

The process behind modern IC design and fabrication involves many different steps. It

typically starts with the design phase, where engineers use hardware description

languages, such as VHDL or Verilog to define the behavior of a circuit, also establishing

in the process the architecture and interconnections present in the circuit design. This

design is then verified and validated through simulations using testbenches, scripts of

code that simulate the behavior of the circuit under certain inputs chosen by the designers.

Once the design has been finalized and properly tested, it undergoes photolithography, a

process where the design is transferred onto a silicon wafer. Photolithography involves

depositing and etching layers of materials onto the wafer to create the structural base for

the circuit. Specialized software is usually involved in this process, transforming the HDL

description into a physical circuit, whose properties are then usually refined by the

engineer in order to meet the optimal specifications for the design.

This physical structure is then subjected to various processes such as doping, oxidation

and deposition to reach the desired electrical properties, creating transistors,

interconnects, and other components necessary for the design.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

22

Figure 10 : Modern IC production process

After the fabrication process, the wafers are inspected and tested to identify defective

properties or deviations from the original design, discarding the ones that deviate from

the desired specifications. The wafers are then sent to packaging, which involve

encapsulating the individual chips present in the wafers in protective casings, which

provide electrical connections and protect them from environmental factors. Another

round of testing is conducted on the packaged chips to ensure correct functionality. Once

they pass the last round of verification, the chips are ready for whatever purpose they

were designed for, integrating them in smartphones, computers, or other electronic

devices [19] – [21].

3.2 Trojan Taxonomy

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

23

Hardware Trojans can be separated and classified based on a variety of different factors,

such as insertion phase, (when the Trojan will be implemented), the abstraction level of

the trojan design, its trigger mechanism, the effect it has on the host circuit, the location

where it is inserted and its physical characteristics.

Figure 11 : Trojan Taxonomy [22]

During the insertion phase, a trojan can be inserted by modifying the design specification,

like the operating temperature of an IC, to degrade its performance and dependability.

During its design and fabrication stages, as mentioned before, it can be subjected to

tampering by undesirable parties. When a trojan reaches the testing stage, the adversary

can maneuver around the usual testing methods, ensuring it cannot be traced.

The abstraction level of a Trojan design determines how involved the trojan is in the

circuit’s characteristics. The higher the abstraction level the less control the designed has

over the Trojans implementation. At the system level the adversary can only define the

Trojan based on the modules that conform the host circuit, only being able to tamper with

the interfaces and their interconnections. The lower the level goes, the more options open

for the adversary, from being able to take advantage of hardware description languages

or other software tools, to even modifying the physical characteristics of the transistors

that form the circuit.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

24

The activation mechanism of the Trojan is very important, as it is one of the main factors

to take into account when considering detectability of the implementation. A trojan may

always be active, or it may be conditionally activated due to external or internal factors.

An adversary may decide to set the trojan to activate with a specific input sequence or let

the trojan activate itself when certain conditions are met, such as a timer or when a certain

temperature is reached.

A Trojans effect depends on the target circuits characteristics. If a cryptographic circuit

is the subject of an attack, the trojan may leak the encryption key, or the original plaintext.

In the case of a modern processor, from performance degradation to functionality changes

are possible. The extent of the effect is up to the imagination of the attacker, and the

options available to it offered by the original circuit’s design.

The last two methods to differentiate Trojans are the most logical, based on the Trojans

location, such as a processor’s memory controller, or the physical characteristics of the

Trojan implementation itself.

Even though there are many ways to distinguish between Hardware Trojans, this study

will focus on two categories, activation mechanisms and effect. The Activation

mechanism of trojans greatly affects the implementation and design, as too easy a trigger

will be cause for early detection, and therefore not a good implementation of a trojan.

When studying the trojans in terms of their effect on the circuit, the most generic

distinctions are changing functionality or degrading performance. In the case of

cryptographic circuits, this can be concreted into two cases: denial of service or

information leakage, which will render any cryptographic circuit useless.

3.3 Hardware Trojan methodology

Trojans are divided into many different groups and are usually categorized according to

a functionality or behavioral pattern. Trojan taxonomy shows the many possibilities

trojans have for approaching an attack, from the abstraction level to the way the trojan is

activated. Although these infinite possibilities would infer that there is not a standard

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

25

method for Hardware Trojan design and Implementation, that is not the case, there is a

pattern in the approach [2], [23]:

1. Design: In this phase, the attacker identifies the target system and analyzes its

architecture and design. The attacker then identifies the potential insertion points

for the Trojan and selects a suitable Trojan design that will meet their objectives

while remaining undetected.

2. Implementation: The attacker modifies the design of the hardware component by

inserting the Trojan circuitry. The attacker typically uses a hardware description

language such as VHDL or Verilog to make the modifications. The Trojan

circuitry may be inserted directly into the original design, or it may be added as a

separate module that is connected to the original design.

3. Testing: The hardware component is then tested to ensure that the Trojan circuitry

is functioning as intended and that it is not causing any unintended effects. The

attacker may also perform testing to ensure that the Trojan is difficult to detect by

security measures such as side-channel analysis or functional testing.

4. Deployment: The Trojan-infected hardware component is deployed to the target

system.

Figure 12 : Hardware trojan insertion process

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

26

The methodology behind a hardware trojan is very simple, and in a similar manner to

other type of hardware attacks, it is all based on an intimate knowledge of the architecture

of the target circuit. Once the adversary is familiar with the circuit, the hosts’ weaknesses

are then exploited and the hardware trojan is successfully inserted into the host circuit.

3.4 Trojan defense and detection

Perhaps the most damaging aspect of the hardware trojan is its secretive nature. The

adversary will design and try to insert the trojan in a way that evades all detection. A host

may be suffering an attack by a trojan, and not even be aware of it, as the process of

detecting a hardware trojan is highly complicated. This is mainly due to the small

overhead a Hardware Trojan has on the overall circuit [23], not considering that Trojans

can be designed with complicated triggers in mind, passing any functional tests the

circuits may be subjected to. Not only that, but due to the iterative nature of circuit

manufacturing and design nowadays, leftover unused blocks may be kept from previous

designs, acting as shelters for the Trojans.

There exist some general common techniques for Hardware Trojan defense, which can

be done on the prevention stage:

1. Design for security (DFS): aims to prevent hardware Trojan prevention by making

it difficult for attackers to understand the function and behavior of a hardware

component, this can be done with encryption, circuit obfuscation or

authentication.

2. Trustworthy manufacturing: to prevent Trojan insertion during the manufacturing

process it is important to use trusted foundries, suppliers, and distributors. This is

attained by implementing supply chain security measures, such as tamper-evident

packaging, or by directly manufacturing in house, not outsourcing the process.

3. Testing and verification: comprehensive testing and verification of the circuits can

detect and prevent less complex Hardware Trojans.

4. Side-Channel analysis: Side-channel attacks involve exploiting information

leaked by a device during its operation, such as power consumption,

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

27

electromagnetic radiation, or thermal emissions. By analyzing these side-channel

signals, attackers can gain information about the internal workings of the device,

including the presence of hardware Trojans. To prevent such attacks, designers

can implement countermeasures such as differential power analysis (DPA) and

electromagnetic interference (EMI) shielding.

5. Reverse engineering: by breaking down the manufactured circuits and comparing

to the golden or reference model of the circuit, any Trojans present could be

detected.

6. Trusted Execution Environments (TEE): TEEs are isolated environments that

provide secure storage and execution of sensitive code and data. By running

critical functions within a TEE, designers can prevent hardware Trojans from

compromising sensitive information or critical operations.

A lot of these techniques can be combined and implemented in a comprehensive security

strategy to ensure the highest level of security available.

However, not all these techniques are effective in a general manner or cheap to

implement. A lot of them are usually not feasible on actual production circuits, as they

require what is known as the golden model, a reference design used to compare

characteristics, which, due to the outsourcing nature of modern production schemes, is

not realistically available.

Reverse engineering approaches are not very effective as they are expensive, having to

break down the circuit, and the fact that the Hardware Trojan may only be inserted into a

small selection of circuits in the whole production batch, proving the samples tested

useless.

Logic Testing is not usually viable due to the large number of test patterns [2], especially

in more complex and intricate circuits, and the specific and complex nature of Trojan

trigger design. Side Channel Analysis is highly effective, but the great cost of the

measuring tools and large noise signals received during the process and measurement

render it less effective than desired.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

28

To make matters worse, a lot of the techniques previously outlined are not effective on

FPGA design, as they require a specific circuit board, not a multipurpose circuit board

like an FPGA. Specifically for FPGA design, without taking into consideration Side

Channel Analysis, two important avenues for study of defense have risen: Design for

Security (DFS), and MERO testbench design.

3.4.1 Design for security

Design for security, specifically Circuit obfuscation, aims to prevent hardware Trojan

prevention by making it difficult for attackers to understand the function and behavior of

a hardware component. Circuit obfuscation will increase complexity and randomness of

the hardware design, by various methods:

1. Logic locking: adding an extra layer of security by encrypting/locking the

design using a secret key. It functions like a traditional lock, hiding

functionality behind a key. It can be applied to the circuit as a whole, in a

similar manner to how a computer password works, or it can be applied in a

way that modifies the output of the design if the incorrect key is inserted.

Figure 13 : Logic locking

2. Randomization: involves implementing random elements to hardware design,

such as interconnects or random gate placements.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

29

3. Polymorphism: using multiple versions of the same circuit that have different

functions, making the attacker have a harder time identifying the true circuit

functionality. This can have a high hardware cost due to requirements needed to

properly hide the functionality, as the other implementations need to have a

similar complexity for the effort to be effective. This additional hardware cost can

be softened by implementing other desired designs into the circuit, not wasting

the resources used.

Figure 14 : Polymorphism

4. Obfuscation: involves hiding the function and behavior of the circuit behind

code obfuscation or encryption.

These techniques can be combined to offer a more robust defense, however, it is important

to note that these techniques can also greatly increase the cost of the hardware design, as

well as add unexpected new vulnerabilities due to the higher complexity of the design.

3.4.2 MERO testbench

The other main pillar to take into consideration is MERO testbench design. Although it

is important to design an effective testbench in general for hardware verification, MERO

differs from standard testbench design by testing for unexpected circuit behavior, instead

of testing for the usual functionality [24].

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

30

MERO starts with establishing normal circuit behavior, and from then enters a recursive

loop, generating excitation patterns, analyzing the circuit response, and in the case of a

rare pattern or unexpected output, the testbench is refined to explore the root causes of

the rare pattern, by exploring similar inputs. In depth explanations of the steps are as

follows:

1. Establish normal behavior: establish normal circuit behavior by simulating its

response to a variety of input conditions. This is done to determine the expected

output under normal conditions.

2. Generate excitation patterns: once the normal behavior is set, a special set of input

patters are generated, these patterns are designed to trigger any hardware Trojans

present in the circuit.

3. Apply patterns: The patterns are inserted into the circuit and the response is

measured.

4. Analyze response: after measuring the circuit response to the pattern, it is

compared to the normal behavior to see if any unexpected or rare patterns occur.

5. Identify potential Trojans: If any rare patterns are detected, it may indicate the

presence of a Hardware Trojan, thus the pattern that triggered the response is

analyzed, and other, similar patterns are generated, repeating the process.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

31

Figure 15 : MERO testbench design

Once sufficient tests are made, potential trojans are identified, if the detection of rare

patterns is successful. Overall, MERO has proven to be highly effective for detecting

hardware trojans that may be missed with traditional testing methods.

3.4.3 Potential strategies for defense

With the previous methods and techniques an initial defense strategy could be developed.

The options displayed show that in the prevention stage, for FPGA development, a

combination of robust verification, that is via exhaustive verification if feasible, or the

development of a MERO testbench, and a strong, resilient design that applies the core

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

32

ideas of DFS, be it circuit obfuscation or logic locking, will prove to be a good

combination for a starting point in hardware trojan defense.

An expansive analysis of the host circuits will be conducted, and from then on their

potential weaknesses will be remedied with DFS techniques if applicable, with other

avenues of attack being covered with the testbench design.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

33

CHAPTER 4: HARDWARE TROJAN

IMPLEMENTATION

With all the strategies and methods laid out, they will now be exercised to instigate a

hardware trojan attack. A set of host circuits will be developed, with each of them being

subjected to an attack that exploits their internal structure and functionality.

4.1 Implementation details

The Hardware trojan design and implementation has been done in two main stages, one

with a prototype circuit and another with a more complex circuit built on top of the

original, expanding the Trojan insertion possibilities. The cryptographic circuits are based

on a combination of a Caesar cipher and an XOR cipher, which are described in chapter

2. The Trojan design will follow the standard procedure outlined in chapter 3: an in-depth

study of the circuit’s functionality and its characteristics will grant avenues for attack,

these will then be exploited, and a Trojan will be inserted into the existing design, aiming

for a stealth approach, and changing the original circuit’s purpose.

4.2 Prototype circuit

The original prototype circuit will consist of a direct VHDL implementation of an XOR

cipher followed by a Caesar cipher.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

34

Figure 16 : Initial encryption circuit

xor_cypher <= plaintext XOR key;

cae_cypher <= std_logic_vector(unsigned(xor_cypher) + shift_amount);

The circuit will have a plaintext input and a ciphertext output (in this case being the

cae_cypher signal). The key and shift amount are predetermined in the circuit as internal

signals defined in VHDL. The circuit will then encrypt the plaintext with the XOR

encryption, and that ciphertext will be encrypted again with the binary Caesar encryption

algorithm, this last ciphertext being the output of the main circuit.

4.2.1 Hardware Trojan implementation: externally triggered

trojan

A quick study of the circuit shows that it does not offer many possibilities for creative

Trojan design. Internally, the functionality consists of two simple lines of VHDL code. If

one where to modify said lines, the trojan would be always activated, and the functionality

always modified, thus being easily detectable, and not resulting in an effective approach.

The next logical step would be to explore other avenues of activation: external and

internal triggers. Seeing as the internal structure is not very complex, an external trigger

looks to be the best option for this circuit design.

The next step is to decide what the actual trojan will be, and how that relates to the trigger

mechanism. The circuit under attack has cryptographic purposes, so the main goal will be

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

35

to deny said encryption efforts, and, by the nature of the circuit, one of the better options

would be to leak the encryption key used in the XOR cipher. Leaking the shift amount

could also be done, but seeing as the Caesar cipher is easily breakable (there are very few

options for the shift amount), the option to leak the XOR key seemed best. The XOR key

is then leaked through the regular ciphertext output.

Figure 17 : Prototype circuit with HW trojan

To activate the trojan an arbitrary plaintext binary sequence is chosen, and whenever that

sequence is used as input to the circuit, the trojan will activate and leak the encryption

key through the circuit output.

xor_cypher <= plaintext XOR key;

cae_cypher <= std_logic_vector(unsigned(xor_cypher) + shift_amount);

 --TROJAN

 trojan: process(plaintext, key, cae_cypher)

 begin

 if plaintext = "10011001" then

 cypher<=key;

 else

 cypher<=cae_cypher;

 end if;

 end process trojan;

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

36

Figure 18 : prototype circuit trojan functionality

This original circuit, although it offered an initial look at the process behind Trojan design

and implementation, it proved to be too simple to offer any real insight into the

development process behind Trojans. For this reason, a more complex encryption circuit

needs to be developed, leading to the second design of this study.

4.3 Second circuit design: state machine circuit

The second circuit design parted from the original prototype circuit of a simple XOR and

Caesar cipher implementations. The need for greater complexity to allow for a more

comprehensive trojan implementation led to the decision to add a state-machine to the

circuit. The state machine will control the encryption process and introduce a more

complex internal structure to the original circuit design. The design then has four different

states: Idle, Listen XOR and CAESAR. The following states do as follow:

- Idle: the circuit waits for an activation signal start in order to start the encryption

process.

- Listen: in this second state the circuit will receive the input plaintext and stores it

in a bus, which will then be used in the next encryption process.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

37

- XOR: applies the XOR encryption and feeds it to the next stage.

- CAESAR: applies the Caesar cipher to the XOR ciphertext and outputs the

ciphertext directly to the circuit output.

Figure 19 : Second design state machine

After CAESAR the circuit returns to the idle state, where the output from the previous

cycle stays until the next encryption process is activated by the start signal. The state

transitions are dictated by a rising clock edge, meaning that each state will last for one

clock cycle, and all actions will be synchronized to a clock cycle.

 --state machine transition

 StateTransition : process (start, act_state, reset_n)

 begin

 nxt_state <= act_state;

 case act_state is

 when Reset =>

 if reset_n = '1' then

 nxt_state <= Idle;

 end if;

 when Idle =>

 if start='1' then

 nxt_state <= Listen;

 end if;

 when Listen =>

 nxt_state <= xor_st;

 when xor_st =>

 nxt_state <= cae_st;

 when cae_st =>

 nxt_state <= Idle;

 when others=>

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

38

 nxt_state <= Idle;

 end case;

 end process StateTransition;

Figure 20 : Second circuit design

4.3.1 Second design Trojan implementation: internally triggered

trojan

After verifying and testing the second circuit design, the Hardware Trojan

implementation process begins. A similar approach to the previous example was done.

First, a study of the circuit is done. There are two major components in the circuit

structure, the state machine, and the encryption process. For this second Trojan design,

both characteristics of the circuit will be attacked and manipulated, for a more complex

Trojan implementation.

4.3.2 Triggering mechanism

Seeing as the internal structure of the circuit is governed by the state machine, it would

make most sense to take advantage of said internal structure to trigger the trojan

mechanism, and so an internally triggered trojan design was chosen as a basis. One option

would be to count clock cycles and activate the trojan after an arbitrary number of clock

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

39

cycles has passed. Another option, and the approach that was chosen, was to count

encryption iterations. A counter would be set up, and, depending on the number of

encryptions, a different Trojan payload would be delivered. This approach makes sense,

as it utilizes the internal structure of the circuit to its advantage, and the more integrated

the trojan is to the original structure of the circuit, the less overhead it presents and thus

much less noticeable.

trojan : process(reset_n, act_state)

 begin

 if reset_n = '0' then

 troj_counter <= (others=>'0');

 troj_counter_state <= (others=>'0');

 troj_en <= "00";

 troj_en_state <= '0';

 elsif act_state = Listen then

 troj_counter <= troj_counter + 1;

 troj_counter_state <= troj_counter_state + 1;

 --counter for key leak/ DoS

 if troj_counter = "001" then

 troj_en <= "01";

 elsif troj_counter = "100" then

 troj_counter <= (others=>'0');

 troj_en <= "10";

 else

 troj_en <= "00";

 end if;

 --counter for state machine freeze

 if troj_counter_state = "110" then

 troj_en_state <= '1';

 troj_counter_state <= (others=>'0');

 end if;

 end if;

 end process trojan;

4.3.3 Payloads

The Hardware Trojan design aimed to target the two main characteristics of the circuit,

the state machine, and the encryption process, and so the payloads were chosen to affect

those areas and disrupt their functionality.

For the encryption efforts of the circuit, the original concept trojan idea of key leakage

was reused, but this time internally triggered. However, an additional payload was added

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

40

to the design. This second payload was intended to deny service to any encryption effort,

so the Trojan would erase all encryption processes done before and output binary zero on

the circuit output, eliminating the ciphertext.

When looking to affect the state machine, many options were considered, such as skipping

a state, but seeing as they also touched on the encryption process, they seemed a bit

redundant, and having too many payloads would result in easier detectability. The third

and final payload of the Trojan consists of the trojan freezing the state machine

indefinitely, halting all processes and forcing a restart on the system. This option also

showed an aspect of trojan payloads that were not considered on the other payloads:

stealth. The payloads that affected the encryption process are easier to detect, seeing as if

they happen too frequently or are too obvious the designer will look to the internal

structure and revise it, maybe finding the trojan if it was inserted in the original design

process by the malicious agent. However, the state machine freeze could be attributed to

a simple hardware malfunction, and a reset would fix the problem. If the trigger is set to

activate once a very high amount of encryption cycles have passed, there is a minuscule

chance of discovery, with the trojan never being addressed.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

41

Figure 21 : Second design with HW trojan

--STATE MACHINE

 --state machine variation

 StateVar : process (clk,reset_n)

 begin

 if reset_n='0' then

 act_state<= Reset;

 elsif clk'event and clk='1' then

 if troj_en_state = '0' then

 act_state <= nxt_state;

 else

 act_state <= act_state;

 end if;

 end if;

 end process StateVar;

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

42

caesar: process (enable_cae, reset_n, xor_cypher)

 begin

 if reset_n='0' then

 cae_cypher <= (others=>'0');

 elsif enable_cae='1' then

 if troj_en <= "00" then

 cae_cypher <= std_logic_vector(unsigned(xor_cypher) +

shift_amount);

 elsif troj_en <= "01" then

 cae_cypher <= key;

 elsif troj_en <= "10" then

 cae_cypher <= (others=>'0');

 else

 cae_cypher <= std_logic_vector(unsigned(xor_cypher) +

shift_amount);

 end if;

 end if;

 end process caesar;

4.3.4 Integration in the circuit

These payloads are activated after an arbitrary number of encryption sequences have

passed, for easier simulation purposes a very low number of cycles was chosen for the

payloads to trigger, in an actual trojan design a higher number would be preferred, as it

hinders detectability of the trojans.

cycle trigger payload location

2nd key leakage caesar module

5th output zero (deny service) caesar module

8th freeze state machine state machine

Table 3 : Second circuit HW trojan implementation

4.4 Simulation and results:

Once the circuits were designed and tested, and the respective Trojans inserted, a VHDL

testbench was designed to evaluate and verify the functionality of the Trojan design. The

testbenches simulated the functionality of the circuit according to different inputs, with

enough encryption cycles being accounted for in the testbench for the second design in

order to go through the necessary cycles to get the Trojans properly activated. The

screenshots below show the circuit ouput cypher which displays the encryption result, or,

in the case of certain encryptions, the Trojan output.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

43

4.4.1 Prototype circuit

The first design was simulated with a very simple testbench, which only tested a regular

input, followed by the trigger input, to assess whether the Trojan reacted properly to the

trigger and leaked the key. The testbench was designed to notify the user via console if

the key had been successfully leaked.

Figure 22 : Prototype design trojan simulation

Figure 23 : Prototype design testbench console output

input output

00000000 01110000

00001000 01101000

10011001 01101110

Table 4 : prototype circuit simulation results

As seen in the screenshots above, and the following table displaying the results, the Trojan

was successful in leaking the key, which is the binary vector 01101110, responding

properly to the trigger (input 10011001).

4.4.2 Second circuit

In the second circuit, the Trojan is triggered internally, depending on the number of

encryption cycles, as mentioned before when discussing the design of the Trojan, the

number of encryption cycles needed to activate the triggers are 2, 5 and 8. The testbench

designed needs to accommodate enough encryption cycles to activate all the triggers, and

have each Trojan deliver its payload.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

44

Figure 24 : Second circuit simulation screenshot

input output

00000001 01110001

00100010 01101110

00000011 01101111

00000100 01101100

00000101 00000000

00000110 01101010

00000111 01101010

Table 5 : Second circuit simulation results

As seen above, the Trojan functionality works as expected, with the necessary Trojan

triggers activating properly, and the payloads being delivered accordingly. In the case of

the second encryption, the Trojan will activate and leak the key. The second trojan trigger

activates on the fifth encryption, in which the Trojan will deny the circuit of its

cryptographic purposes, outputting zero, nullifying the efforts done for that cycle. The

last Trojan cycle comes in the seventh encryption (input 00000111), where the state

machine freezes in a constant loop, never really finishing the encryption. This can be seen

in the simulation result thanks to the signal done, which is usually active during the idle

state, notifying the user that the circuit output is the final encryption result, and in the case

of the last cycle, it never activates, indicating that the encryption is not done.

Seeing as there are two distinct types of payloads, one regarding the encryption itself and

another targeting the state machine, a slight modification of the circuit and testbench was

done in order to better demonstrate the functionality of the state machine, and how it is

affected by the Trojan. For this second simulation an internal state counter was connected

to the circuit output, essentially showing the internal state of the circuit during each clock

cycle, shown in the ouput as an 8-bit vector (001 being Idle, 010 Listen, 011 XOR and

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

45

100 CAE). The screenshot directly below shows the usual state machine flow, switching

state on every rising clock edge.

Figure 25 : State machine full cycle simulation

For the last Trojan payload, the one that freezes the state machine, the circuit must stay

in the Listen state. Once the start signal activates, the circuit moves onto the Listen state

from Idle, resetting the done signal denoting the start of another encryption cycle, but

never manages to finish it.

Figure 26 : Second circuit state machine trojan simulation

4.5 Trojan Insertion Results

The Trojan implementations have proved to be highly successful. Although the first

circuit developed, the prototype design, did not allow for creative Trojan insertion, it

permitted an initial approach for a simple trojan implementation and trigger. The second

design, with a more comprehensive structure, permitted a more whole and complex

Trojan implementation, allowing for the integration of different trojan trigger

mechanisms and payloads. The second design, as it incorporates a state machine, also

showed a glimpse into how a hardware trojan can affect a circuit beyond the

cryptographic area. A state machine inhibitor could be applied to many different designs,

and although simple, it helped establish an initial workflow and methodology behind

trojan implementation and design, which could be useful for more complex circuits.

Mainstream computer and handheld computing devices take advantage of a multistage

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

46

processor design and pipelined architectures, this initial study could serve as a basis for

trojan insertion in a pipelined architecture, seeing as a processor pipeline could be

abstracted into a state machine of sorts.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

47

CHAPTER 5: HARDWARE TROJAN DEFENSE

For Hardware Trojan defense, similar to the insertion phase, intimate knowledge of the

circuit is imperative, as knowing the weaknesses of one’s design will allow for a more

robust defense, reinforcing the internal structure. In this final part of the study, a close

examination of the two developed circuits will be conducted, analyzing how the Trojans

were implemented, devising possible defense methods against the intrusions and how

those possible defense methods affect the overall complexity of the circuit.

As previously mentioned, since the focus of the study will be on FPGA development,

only solutions applicable to VHDL will be discussed, these being Design for Security

(DFS) and Verification via Testbench.

5.1 Prototype circuit

For the first design, as discussed in the previous chapter, there are not many possibilities

for a Trojan. The main vulnerabilities the circuit offers, from a VHDL perspective, are

the input and the encryption process itself. We know the Trojan attacks the input,

activating the trojan externally.

5.1.1 DFS

The circuit being as simple as it is can be made more secure by simply adding a couple

of elements. The need to secure the encryption process could be done in many ways, the

first, and easiest one, making the circuit require keys to activate the encryption process.

This could be further expanded by dividing the encryption process into blocks, taking

advantage of a VHDL structural architecture, but seeing as the inner workings of each

block would be too simple, and not really provide a challenge to the adversary, logic

locking techniques prove to be more effective. Taking advantage of the key system

already implemented, the decision was made to have the keys not only authorize the

circuit functionality, but also output a wrong ciphertext when the key is not correct,

hampering efforts from a malicious observer.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

48

These techniques will make the circuit harder to access and study, especially if we require

a separate key for each of the functional blocks resulting in three distinct keys, which

each access a different part of the circuit. This might not completely secure the circuit

from any attack, but it makes the process of inserting a Trojan more costly and arduous,

as the circuit has been overcomplicated for what is essentially two lines of VHDL code.

This overcomplication of the design, along with a robust verification via Testbench,

would cover the weaknesses present in the circuit.

Figure 27 : protype circuit with DFS techniques

--encryption circuit using logic locking techniques

 encryption : process(plaintext, key, key1, key2, key3, shift_amount)

 begin

 if auth_key = key1 then

 if xor_key = key2 then

 xor_cypher <= plaintext XOR key;

 if cae_key = key3 then

 cae_cypher <= std_logic_vector(unsigned(xor_cypher) +

shift_amount);

 else

 cae_cypher <= not xor_cypher;

 end if;

 else

 xor_cypher <= plaintext and "00010111";

 end if;

 else

 cae_cypher <= not plaintext;

 end if;

 end process encryption;

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

49

5.1.2 Verification

Seeing as the circuit only has a plaintext input of 8 bits, there are only 256 possible inputs,

which is a feasible size to exhaustively test. This would erase the need for MERO

testbench design, as all possible inputs are covered. In addition, the testbench could place

alerts for when critical elements of the circuit are leaked, such as the XOR encryption

key, or the Caesar cipher shift amount, covering any vulnerabilities that may escape

normal testing.

Were we to follow the DFS methods stated before and incorporated a set of keys to control

the encryption process, the testbench design would become more complicated as well,

needing to cover all the possible inputs on the plaintext, and all possible key combinations

inserted into the circuit, as the adversary may have tampered with the authentication

system of the circuit.

If we chose to have 3 authentication keys in the circuit, each authentication key consisting

of an 8-bit sequence, then the total number of inputs to consider in the testbench would

rise to 2^32, which would rule exhaustive verification out of the question. MERO could

then be applied to test this hypothetical circuit, subdividing the exhaustive verification

into various smaller testbenches, and applying the MERO methodology to refine and

develop a more precise testbench, were unexpected behavior be found in the circuit. The

problem with a MERO approach is that it requires a statistical analysis of the input

frequency, identifying rare combinations, which, on this circuit, is the same for all. In the

end the testbench was designed with an exhaustive approach, which would take long to

simulate but still cover all possible avenues, and seeing the simplicity in the design, can

still be completed, although it may take a lot longer.

It is important to decide whether this strategy acts in benefit of the design. The extra

security awarded by the keys comes at a cost to simulation complexity, and the feasibility

of the original design’s exhaustive verification is a factor not to be taken lightly, seeing

as it is a robust defense. If authentication in the field were a necessity, then maybe a

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

50

compromise with the key sizes could be considered, reaching a point where exhaustive

verification was still possible, with the added security that the extra set of keys bring.

5.2 Second Circuit

For the second circuit, the case is much different, as the circuit is already more complex.

There are two main aspects of the circuit to analyze and try to defend, the state machine,

which governs the internal flow of the circuit, and the cryptographic purposes of the

circuit.

5.2.1 DFS

With design for security, one of the possible solutions would be to, similar to one of the

solutions applied to the prototype, apply a circuit obfuscation technique: divide the circuit

into different functional blocks taking advantage of the VHDL structural model,

separating them and making the overall structure more complex, leaving less wiggle room

for the adversary to insert a Trojan stealthily.

This seems like the most robust option, as adding a layer of keys would disrupt the state

machine behavior: instead of having the circuit move from state to state automatically

after every clock cycle, having keys in a similar way to the prototype, one per stage,

would disrupt the flow of the circuit, requiring the user to constantly input the keys, and

essentially acting himself as the state machine, and thus the circuit would be changed too

drastically and would end up as a similar circuit to the prototype developed before. If one

was insistent on implementing a key authentication system, it would be best to require it

as a single external input to activate the circuit, instead of the start signal already present

in the circuit.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

51

Figure 28 : Second circuit with DFS techniques

Figure 29: Second circuit new block design

The final, more robust design after implementing DFS techniques would change the

original design in the following way: it would separate the circuit into smaller functional

blocks and would require an input key to activate the encryption process and state

machine functionality.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

52

5.2.2 Verification

Similar to the prototype, the final circuit has an 8-bit sequence as the plaintext input, so a

testbench verification for the encryption from the input side would be feasible. If one

were to add a single 8-bit key to the design for authentication purposes, the simulation

would need to consider many more options (2^16). This increment in simulation

requirements means a MERO approach would benefit the circuit, recursively testing for

unusual patterns.

But, as we know, the Trojan inserted in the circuit activates internally, not from the inputs

of the circuit. This poses a problem, as formal verification cannot accurately test for this

type of trigger. If the trigger is based on a timer or counter, which is our case, for how

many cycles should one simulate? In the case of there being a very high number of cycles

required for the Trojan to activate, there exists a very strong possibility that it may go

undetected during testing, and only manifest its effects on the actual production circuit,

after a long time has passed. Seeing as it is not realistic to simulate indefinitely, a

compromise would need to be reached, by conducting a study on how long the circuit

would usually be operated for between resets, and redoing the simulations based on that.

And here we finally meet the true difficulties of dealing with Hardware Trojans, there are

too many possibilities for an attack, and our verification methods and defense and

prevention techniques might not cover all possible avenues.

5.3 Results

The exploration of defense methods has also been successful, although the similarities in

design in both encryption circuits has given a more limited scope in what is possible. In

the case of the first encryption circuit a robust implementation was obtained, locking all

functional modules behind a key, however this increase in input options would allow a

potential adversary to tamper with the authentication, apart from increasing the

computational overhead of the simulation. This first defense strategy is a good example

of how a simple change can increase the complexity of the process, as the extra keys

suppose extra simulation requirements, and we go from one simple exhaustive testbench

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

53

present in the original design, to the need to develop a recursive system for testing,

implementing MERO, without a true guarantee that the system is trojan free.

The defense strategy for the second circuit illustrates the process of implementing DFS

in a more general manner, similar to how it also offered a more general take on trojan

implementation. The defense strategy depends greatly on the design’s characteristics. The

initial strategy devised would compromise the circuit’s functionality, being more of a

problem than a solution. The encryption process was addressed with an initial

authentication key, which, in combination with the input plaintext size, would be an

acceptable number for exhaustive verification, or would take less computation if a

recursive approach were taken. The issue rises however on the internal trigger mechanism

and serves to illustrate the potential danger that these types of attacks have. Simulating

and testing infinitely will never be an option, and a lot of these types of attacks take

advantage of that, leaving the manufacturers to constantly be on the lookout for reports

of their products malfunctioning, and highlighting the need for extra security hardware

present on the chip, such as a security module and performance monitor.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

54

CHAPTER 6: CONCLUSIONS AND FUTURE

WORK

Hardware Trojans pose a grave threat to the security and integrity of integrated circuits.

The rise of SoCs and embedded computing require extra measures to be taken to prevent

hardware trojan insertion, as their secretive nature and potential impact can gravely affect

millions of users. In this project, two different trojan configurations, externally an

internally triggered were designed and implemented in a set of simple encryption circuits.

The first circuit, a simple encryption circuit based on xor encryption and the Caesar

cipher, offered an initial approach to the philosophy behind hardware trojan insertion,

taking advantage of the circuits internal structures and functionality to hide the trojan

behind normal behavior. The second design expanded on that idea, exploiting internal

structures to deliver different types of attacks and to do so in an undetectable manner,

understanding the limits present in standard verification procedures.

From here, more complex trojan implementations could be tested on a different set of

circuits, not limited to cryptography. For example, a processor implementation could be

studied and have a Trojan inserted, offering much more possibilities for study, such as a

PC register modification, or tampering with the RAM’s internal contents.

As the technology continues to evolve, and our reliance of embedded computing devices

increases with it, it is imperative that the understanding of Hardware Trojans continues,

with more robust detection methods and defense mechanisms developed and

implemented.

The exploration of defense methods present in this study help illustrate how complex of

a task it is. The first circuit showed that a balance between the added complexity and the

security incorporated must be struck, as overcomplicating the circuit too much may hurt

the integrity of the device instead of aiding it. The second circuit and the trojan inside it

exhibit the true difficulty behind security measures from hardware trojans. Trojans are by

nature stealthy and are designed to activate in unusual or rare occasions. The project has

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

55

given us the realization that the fight against hardware trojans is a constant one, and no

security measure will be totally secure.

The main goal of this project, to understand hardware trojans, has also given a strong

method in the defense against them. The feedback loop cycle established in this study,

using what was learned from attacking the circuit to prepare a better defense, reinforcing

their weaknesses by implementing DFS techniques, and covering other faults by a

comprehensive verification strategy, will prove even more useful in more advanced

projects. The more complex the trojan implementation developed, the more intimate the

knowledge of a circuit’s weaknesses, and thus more robust and efficient security measures

may be developed. However, it is important to consider the increase in complexity that

these security measures might cause, and it will be necessary to evaluate whether a circuit

truly benefits from these added security measures.

Figure 30 : Defense feedback loop proposal

The objectives set for this study have been met. However, by focusing on the design

aspects of security implementations feasible on FPGA hardware with hardware

description languages, other avenues for defense are not considered, and are equally

important for the prevention of hardware attacks. Further works could focus on these

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

56

aspects, although more expensive, and in conjunction with the methods and techniques

outlined in the project a more secure hardware environment could be achieved.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

57

CHAPTER 7: REFERENCES

[1] Casanova, Robert. “Global Billings Report History (3-Month Moving Average)

1976 – April 2023.” Semiconductor Industry Association, June 8, 2023.

https://www.semiconductors.org/resources/https-www-semiconductors-org-wp-

content-uploads-2023-06-gsr1976-april-2023-2-xls/.

[2] R. S. Chakraborty, S. Narasimhan and S. Bhunia, "Hardware Trojan: Threats and

emerging solutions," 2009 IEEE International High Level Design Validation and

Test Workshop, San Francisco, CA, USA, 2009, pp. 166-171, doi:

10.1109/HLDVT.2009.5340158.

[3] S. Adee, "The Hunt For The Kill Switch," in IEEE Spectrum, vol. 45, no. 5, pp. 34-

39, May 2008, doi: 10.1109/MSPEC.2008.4505310.

[4] “Introducing M1 Pro and M1 Max: The Most Powerful Chips Apple Has Ever

Built.” Apple Newsroom, May 23, 2023.

https://www.apple.com/newsroom/2021/10/introducing-m1-pro-and-m1-max-the-

most-powerful-chips-apple-has-ever-built/.

[5] Britannica, T. Editors of Encyclopaedia. "Trojan horse." Encyclopedia Britannica,

September 2, 2022. https://www.britannica.com/topic/Trojan-horse.

[6] EPRS. “Global Semiconductor Supply Chain.” Epthinktank, July 7, 2022.

https://epthinktank.eu/2022/07/08/strengthening-eu-chip-capabilities/global-

semiconductor-supply-chain/.

[7] Arthur, Charles. “Cyber-Attack Concerns Raised over Boeing 787 Chip’s ‘Back

Door.’” The Guardian, May 29, 2012.

https://www.theguardian.com/technology/2012/may/29/cyber-attack-concerns-

boeing-chip.

[8] Lin, L., Kasper, M., Güneysu, T., Paar, C., Burleson, W. (2009). Trojan

SideChannels: Lightweight Hardware Trojans through Side-Channel Engineering.

In: Clavier, C., Gaj, K. (eds) Cryptographic Hardware and Embedded Systems -

CHES 2009. CHES 2009. Lecture Notes in Computer Science, vol 5747.

Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04138-9_27

[9]Abramovici, Miron, and Paul Bradley. "Integrated circuit security: new threats and

solutions." In Proceedings of the 5th Annual Workshop on Cyber Security and

Information Intelligence Research: Cyber Security and Information Intelligence

Challenges and Strategies, pp. 1-3. 2009.

https://www.britannica.com/topic/Trojan-horse
https://epthinktank.eu/2022/07/08/strengthening-eu-chip-capabilities/global-semiconductor-supply-chain/
https://epthinktank.eu/2022/07/08/strengthening-eu-chip-capabilities/global-semiconductor-supply-chain/
https://doi.org/10.1007/978-3-642-04138-9_27

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

58

[10] Wolff, Francis, Chris Papachristou, Swarup Bhunia, and Rajat S. Chakraborty.

"Towards Trojan-free trusted ICs: Problem analysis and detection scheme." In

Proceedings of the conference on Design, automation and test in Europe, pp.

1362- 1365. 2008.

[11] Ltd., Arm. “What Is FPGA?” Arm. Accessed June 27, 2023.

https://www.arm.com/glossary/fpga#:~:text=What%20Is%20an%20FPGA%3F,re

quirements%20after%20the%20manufacturing%20process.

[12] “What Is an FPGA? Field Programmable Gate Array.” Xilinx. Accessed June 27,

2023. https://www.xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.html.

[13] www.fpgakey.com, FpgaKey |. “Xilinx Spartan 6 Fpgas.” FPGAKey. Accessed

June 27, 2023. https://www.fpgakey.com/xilinx-family/spartan-6-fpgas.

[14] Cadence PCB Solutions. “Hardware Description Languages: VHDL vs Verilog,

and Their Functional Uses.” Hardware Description Languages: VHDL vs Verilog,

and Their Functional Uses, October 13, 2022.

https://resources.pcb.cadence.com/blog/2020-hardware-description-languages-

vhdl-vs-verilog-and-their-functional-uses.

[15] “VHDL.” Wikipedia, June 26, 2023. https://en.wikipedia.org/wiki/VHDL.

[16] “Xilinx Ise.” Wikipedia, March 17, 2023.

https://en.wikipedia.org/wiki/Xilinx_ISE.

[17] GeeksforGeeks. “Caesar Cipher in Cryptography.” GeeksforGeeks, May 11, 2023.

https://www.geeksforgeeks.org/caesar-cipher-in-cryptography/.

[18] “Caesar Cipher.” Wikipedia, June 17, 2023.

https://en.wikipedia.org/wiki/Caesar_cipher.

[19] “Steps for IC Manufacturing.” Mepits. Accessed June 28, 2023.

https://www.mepits.com/tutorial/384/vlsi/steps-for-ic-manufacturing.

[20] From Sand to Silicon: Integrated Circuit Design and Manufacturing, 2011.

https://www.computerhistory.org/revolution/digital-logic/12/288/2220.

[21] “Integrated Circuit Design.” Wikipedia, June 11, 2023.

https://en.wikipedia.org/wiki/Integrated_circuit_design.

[22] Salmani, Hassan, and Mohammad Tehranipoor . “Taxonomy - Trust-Hub.” Trust-

hub. Accessed June 28, 2023. https://trust-

hub.org/downloads/resource/pdf/Taxonomy.pdf.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

59

[23] S. Bhunia, M. S. Hsiao, M. Banga and S. Narasimhan, "Hardware Trojan Attacks:

Threat Analysis and Countermeasures," in Proceedings of the IEEE, vol. 102, no.

8, pp. 1229-1247, Aug. 2014, doi: 10.1109/JPROC.2014.2334493.

[24] Chakraborty, Rajat Subhra, Francis Wolff, Somnath Paul, Christos Papachristou,

and Swarup Bhunia. "MERO: A statistical approach for hardware Trojan

detection." In Cryptographic Hardware and Embedded Systems-CHES 2009: 11th

International Workshop Lausanne, Switzerland, September 6-9, 2009

Proceedings, pp. 396-410. Springer Berlin Heidelberg, 2009.

[25] “Communications Materials - United Nations Sustainable Development.” United

Nations. United Nations. Accessed February 22, 2023.

https://www.un.org/sustainabledevelopment/news/communications-

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

60

APPENDIX A: SDG OBJECTIVES

The Sustainable Development Goals, as their name indicates, are a set of goals developed

for the 2030 agenda for Sustainable Development adopted by UN Member states. These

goals strive to open an opportunity for countries and their people to improve their lives,

recognizing that ending deprivations go together with improving other aspects of society

such as health and education, reducing inequality and tackling climate change, all while

boosting economic growth.

Figure 31 : SDG objectives [25]

The project aligns well with goal 9, industry, innovation, and infrastructure: Build

resilient infrastructure, promote inclusive and sustainable industrialization and foster

innovation. The study of hardware trojans will allow for much more secure equipment,

ensuring equal opportunity in private and public endeavors, and disincentivizing

malicious attacks on more technologically dependent populations.

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

61

APPENDIX B: VHDL SOURCE CODE

Design 1

VHDL behavioral model

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating

-- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity XOR_circuit is

 Port (plaintext : in STD_LOGIC_VECTOR(7 downto 0);

 cypher : out STD_LOGIC_VECTOR(7 downto 0));

end XOR_circuit;

architecture Behavioral of XOR_circuit is

 signal key : std_logic_vector(7 downto 0):= "01101110";

 signal xor_cypher, cae_cypher : std_logic_vector(7 downto 0);

 signal shift_amount : integer range 0 to 7 := 2;

begin

 xor_cypher <= plaintext XOR key;

 cae_cypher <= std_logic_vector(unsigned(xor_cypher) + shift_amount);

 --TROJAN

 trojan: process(plaintext, key, cae_cypher)

 begin

 if plaintext = "10011001" then

 cypher<=key;

 else

 cypher<=cae_cypher;

 end if;

 end process trojan;

end Behavioral;

VHDL testbench

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

-- Uncomment the following library declaration if using

-- arithmetic functions with Signed or Unsigned values

USE ieee.numeric_std.ALL;

ENTITY XOR_tb IS

END XOR_tb;

ARCHITECTURE behavior OF XOR_tb IS

 -- Component Declaration for the Unit Under Test (UUT)

 COMPONENT XOR_circuit

 PORT(

 plaintext : IN std_logic_vector(7 downto 0);

 cypher : OUT std_logic_vector(7 downto 0)

);

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

62

 END COMPONENT;

 --Inputs

 signal plaintext : std_logic_vector(7 downto 0) := (others => '0');

 --Outputs

 signal cypher : std_logic_vector(7 downto 0);

BEGIN

 -- Instantiate the Unit Under Test (UUT)

 uut: XOR_circuit PORT MAP (

 plaintext => plaintext,

 cypher => cypher

);

 -- Stimulus process

 stim_proc: process

 begin

 -- hold reset state for 100 ns.

 wait for 100 ns;

 -- insert stimulus here

 --normal test

 plaintext <= "00001000";

 wait for 100 ns;

 assert (cypher = std_logic_vector(unsigned(plaintext XOR "01101110") + 2))

 report "circuit functionality is not working as intended"

 severity failure;

 wait for 100 ns;

 --trojan activation

 plaintext <= "10011001";

 wait for 100 ns;

 --Trojan assert should trigger

 assert cypher/="01101110"

 report "Key has been leaked"

 severity failure;

 assert false

 report "End of simulation"

 severity failure;

 end process stim_proc;

END;

DFS design

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

entity XOR_circuit is

 Port (plaintext, auth_key, xor_key, cae_key : in STD_LOGIC_VECTOR(7 downto 0);

 cypher : out STD_LOGIC_VECTOR(7 downto 0));

end XOR_circuit;

architecture Behavioral of XOR_circuit is

 signal key : std_logic_vector(7 downto 0):= "01101110";

 --DFS system

 signal key1 : std_logic_vector(7 downto 0):= "00100111";

 signal key2 : std_logic_vector(7 downto 0):= "00110011";

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

63

 signal key3 : std_logic_vector(7 downto 0):= "01011011";

 signal xor_cypher, cae_cypher : std_logic_vector(7 downto 0);

 signal shift_amount : integer range 0 to 7 := 2;

begin

 --encryption circuit using logic locking techniques

 encryption : process(plaintext, key, key1, key2, key3, shift_amount)

 begin

 if auth_key = key1 then

 if xor_key = key2 then

 xor_cypher <= plaintext XOR key;

 if cae_key = key3 then

 cae_cypher <= std_logic_vector(unsigned(xor_cypher) + shift_amount);

 else

 cae_cypher <= not xor_cypher;

 end if;

 else

 xor_cypher <= plaintext and "00010111";

 end if;

 else

 cae_cypher <= not plaintext;

 end if;

 end process encryption;

end Behavioral;

DFS design testbench

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

-- Uncomment the following library declaration if using

-- arithmetic functions with Signed or Unsigned values

USE ieee.numeric_std.ALL;

ENTITY XOR_circ_DFS_TB IS

END XOR_circ_DFS_TB;

ARCHITECTURE behavior OF XOR_circ_DFS_TB IS

 -- Component Declaration for the Unit Under Test (UUT)

 COMPONENT XOR_circuit

 PORT(

 plaintext : IN std_logic_vector(7 downto 0);

 auth_key : IN std_logic_vector(7 downto 0);

 xor_key : IN std_logic_vector(7 downto 0);

 cae_key : IN std_logic_vector(7 downto 0);

 cypher : OUT std_logic_vector(7 downto 0)

);

 END COMPONENT;

 --Inputs

 signal plaintext : std_logic_vector(7 downto 0) := (others => '0');

 signal auth_key : std_logic_vector(7 downto 0) := (others => '0');

 signal xor_key : std_logic_vector(7 downto 0) := (others => '0');

 signal cae_key : std_logic_vector(7 downto 0) := (others => '0');

 --Outputs

 signal cypher : std_logic_vector(7 downto 0);

BEGIN

 -- Instantiate the Unit Under Test (UUT)

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

64

 uut: XOR_circuit PORT MAP (

 plaintext => plaintext,

 auth_key => auth_key,

 xor_key => xor_key,

 cae_key => cae_key,

 cypher => cypher

);

 -- Stimulus process

 stim_proc: process

 begin

 -- hold reset state for 100 ns.

 wait for 100 ns;

 -- insert stimulus here

 --first set tests only encryption

 auth_key <= "00100111";

 xor_key <= "00110011";

 cae_key <= "01011011";

 for data in 0 to 255 loop

 plaintext <= std_logic_vector(to_unsigned(data,8);

 wait for 5 ns;

 assert (ciphertext = std_logic_vector(unsigned(plaintext XOR "01101110") +

2))

 report "Error in encryption functionality"

 severity failure;

 end loop;

 wait for 100 ns;

 --comprehensive simulation looking at all possible key inputs

 for data in 0 to 255 loop

 plaintext <= std_logic_vector(to_unsigned(data,8);

 for i in 0 to 255 loop

 auth_key <= std_logic_vector(to_unsigned(i,8);

 for j in 0 to 255 loop

 xor_key <= std_logic_vector(to_unsigned(j,8));

 for z in 0 to 255 loop

 cae_key <= <= std_logic_vector(to_unsigned(z,8));

 wait for 5 ns;

 if auth_key = "00100111" and xor_key = "00110011" and cae_key =

"01011011" then

 assert (ciphertext = std_logic_vector(unsigned(plaintext XOR

"01101110") + 2))

 report "Error in encryption functionality"

 severity failure;

 else

 assert (ciphertext /= std_logic_vector(unsigned(plaintext

XOR "01101110") + 2))

 report "Error in authentication, circuit should not

encrypt"

 severity failure;

 end if;

 end loop;

 end loop;

 end loop;

 end loop;

 assert false

 report "End of simulation"

 severity failure;

 wait;

 end process;

END;

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

65

Design 2

VHDL behavioral model:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity StateMachineCirc is

 Port(

 plaintext : in STD_LOGIC_VECTOR(7 downto 0);

 start, reset_n, clk : in std_logic;

 cypher : out STD_LOGIC_VECTOR(7 downto 0);

 done : out std_logic

);

end StateMachineCirc;

architecture Behavioral of StateMachineCirc is

 --circuit signals

 signal key : std_logic_vector(7 downto 0):= "01101110";

 signal xor_cypher, cae_cypher, shift_reg: std_logic_vector(7 downto 0);

 signal shift_amount : integer range 0 to 7 := 2;

 --debug signals

 --uncomment all state signals present in the code to test in which state the

circuit is

 --signal state : std_logic_vector(7 downto 0);

 --state machine signals

 --state machine has 5 states

 type t_state is (Reset, Idle, Listen, xor_st, cae_st);

 signal act_state, nxt_state : t_state;

 --enable signals

 signal enable_xor, enable_cae, enable_reg: std_logic;

 --trojan signal

 signal troj_counter, troj_counter_state : std_logic_vector(2 downto 0):=(others=>'0');

 signal troj_en : std_logic_vector(1 downto 0);

 signal troj_en_state : std_logic;

 --behavioral--

begin

 --STATE MACHINE

 --state machine variation

 StateVar : process (clk,reset_n)

 begin

 if reset_n='0' then

 act_state<= Reset;

 elsif clk'event and clk='1' then

 if troj_en_state = '0' then

 act_state <= nxt_state;

 else

 act_state <= act_state;

 end if;

 end if;

 end process StateVar;

 --state machine transition

 StateTransition : process (start, act_state, reset_n)

 begin

 nxt_state <= act_state;

 case act_state is

 when Reset =>

 if reset_n = '1' then

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

66

 nxt_state <= Idle;

 end if;

 when Idle =>

 if start='1' then

 nxt_state <= Listen;

 end if;

 when Listen =>

 nxt_state <= xor_st;

 when xor_st =>

 nxt_state <= cae_st;

 when cae_st =>

 nxt_state <= Idle;

 when others=>

 nxt_state <= Idle;

 end case;

 end process StateTransition;

 --outputs

 Outputs : process (act_state)

 begin

 case act_state is

 when Reset =>

 enable_reg <= '0';

 enable_xor <= '0';

 enable_cae <= '0';

 done <= '0';

 when Idle =>

 --state <= std_logic_vector(to_unsigned(1,8));

 enable_reg <= '0';

 enable_xor <= '0';

 enable_cae <= '0';

 done <= '1';

 when Listen =>

 --state <= std_logic_vector(to_unsigned(2,8));

 enable_reg <= '1';

 --enable_xor <= '0';

 --enable_cae <= '0';

 done <= '0';

 when xor_st =>

 --state <= std_logic_vector(to_unsigned(3,8));

 --enable_reg <= '0';

 enable_xor <= '1';

 --enable_cae <= '0';

 done <= '0';

 when cae_st =>

 --state <= std_logic_vector(to_unsigned(4,8));

 --enable_reg <= '0';

 --enable_xor <= '0';

 enable_cae <= '1';

 done <= '0';

 when others=>

 enable_reg <= '0';

 enable_xor <= '0';

 enable_cae <= '0';

 done <= '0';

 end case;

 end process Outputs;

 --ENCRYPTION CIRCUIT

 --shift register

 shift_register : process(enable_reg, plaintext)

 begin

 if reset_n='0' then

 shift_reg <= (others =>'0');

 elsif enable_reg='1' then

 shift_reg <= plaintext;

 end if;

 end process shift_register;

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

67

 --xor and caesar

 xor_proc: process (enable_xor, key, shift_reg, reset_n)

 begin

 if reset_n='0' then

 xor_cypher <= (others=>'0');

 elsif enable_xor='1' then

 xor_cypher <= (shift_reg xor key);

 end if;

 end process xor_proc;

 caesar: process (enable_cae, reset_n, xor_cypher)

 begin

 if reset_n='0' then

 cae_cypher <= (others=>'0');

 elsif enable_cae='1' then

 if troj_en <= "00" then

 cae_cypher <= std_logic_vector(unsigned(xor_cypher) + shift_amount);

 elsif troj_en <= "01" then

 cae_cypher <= key;

 elsif troj_en <= "10" then

 cae_cypher <= (others=>'0');

 else

 cae_cypher <= std_logic_vector(unsigned(xor_cypher) + shift_amount);

 end if;

 end if;

 end process caesar;

 --map signal to circuit output

 cypher <= cae_cypher;

 --cypher <= state; --FOR DEBUG

 trojan : process(reset_n, act_state)

 begin

 if reset_n = '0' then

 troj_counter <= (others=>'0');

 troj_counter_state <= (others=>'0');

 troj_en <= "00";

 troj_en_state <= '0';

 elsif act_state = Listen then

 troj_counter <= troj_counter + 1;

 troj_counter_state <= troj_counter_state + 1;

 --counter for key leak/ DoS

 if troj_counter = "001" then

 troj_en <= "01";

 elsif troj_counter = "100" then

 troj_counter <= (others=>'0');

 troj_en <= "10";

 else

 troj_en <= "00";

 end if;

 --counter for state machine freeze

 if troj_counter_state = "110" then

 troj_en_state <= '1';

 troj_counter_state <= (others=>'0');

 end if;

 end if;

 end process trojan;

end Behavioral;

VHDL Testbench

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

USE ieee.numeric_std.ALL;

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

68

ENTITY StateMachineCirc_TB IS

END StateMachineCirc_TB;

ARCHITECTURE behavior OF StateMachineCirc_TB IS

 -- Component Declaration for the Unit Under Test (UUT)

 COMPONENT StateMachineCirc

 PORT(

 plaintext : IN std_logic_vector(7 downto 0);

 start : IN std_logic;

 reset_n : IN std_logic;

 clk : IN std_logic;

 cypher : OUT std_logic_vector(7 downto 0);

 done : OUT std_logic

);

 END COMPONENT;

 --Inputs

 signal plaintext : std_logic_vector(7 downto 0) := (others => '0');

 signal start : std_logic := '0';

 signal reset_n : std_logic := '0';

 signal clk : std_logic := '0';

 --Outputs

 signal cypher : std_logic_vector(7 downto 0);

 signal done : std_logic;

 -- Clock period definitions

 constant clk_period : time := 10 ns;

BEGIN

 -- Instantiate the Unit Under Test (UUT)

 uut: StateMachineCirc PORT MAP (

 plaintext => plaintext,

 start => start,

 reset_n => reset_n,

 clk => clk,

 cypher => cypher,

 done => done

);

 -- Clock process definitions

 clk_process :process

 begin

 clk <= '0';

 wait for clk_period/2;

 clk <= '1';

 wait for clk_period/2;

 end process;

 -- Stimulus process

 stim_proc: process

 begin

 -- hold reset state for 100 ns.

 reset_n <= '0';

 wait for 50 ns;

 reset_n <= '1';

 wait for 10 ns;

 --start <= '1';

 plaintext <= "00000001";

 wait for 20 ns;

 start <= '1';

 wait for 30 ns;

 start <= '0';

 wait for 120 ns;

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

69

 assert (cypher = std_logic_vector(unsigned(plaintext XOR "01101110") + 2))

 report "circuit functionality is not working as intended"

 severity failure;

 wait for 20 ns;

 plaintext <= "00100010";

 wait for 20 ns;

 start <= '1';

 wait for 30 ns;

 start <= '0';

 wait for 120 ns;

 assert (cypher = "01101110")

 report "key has not been leaked"

 severity failure;

 wait for 20 ns;

 plaintext <= "00000011";

 wait for 20 ns;

 start <= '1';

 wait for 30 ns;

 start <= '0';

 wait for 120 ns;

 assert (cypher = std_logic_vector(unsigned(plaintext XOR "01101110") + 2))

 report "circuit functionality is not working as intended"

 severity failure;

 wait for 20 ns;

 plaintext <= "00000100";

 wait for 20 ns;

 start <= '1';

 wait for 30 ns;

 start <= '0';

 wait for 120 ns;

 assert (cypher = std_logic_vector(unsigned(plaintext XOR "01101110") + 2))

 report "circuit functionality is not working as intended"

 severity failure;

 wait for 20 ns;

 plaintext <= "00000101";

 wait for 20 ns;

 start <= '1';

 wait for 30 ns;

 start <= '0';

 wait for 120 ns;

 assert (cypher /= std_logic_vector(unsigned(plaintext XOR "01101110") + 2))

 report "trojan functionality is not working as intended"

 severity failure;

 wait for 20 ns;

 plaintext <= "00000110";

 wait for 20 ns;

 start <= '1';

 wait for 30 ns;

 start <= '0';

 wait for 120 ns;

 assert (cypher = std_logic_vector(unsigned(plaintext XOR "01101110") + 2))

 report "circuit functionality is not working as intended"

 severity failure;

 wait for 20 ns;

 plaintext <= "00000111";

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

70

 wait for 20 ns;

 start <= '1';

 wait for 30 ns;

 start <= '0';

 wait for 120 ns;

 assert (done = '0')

 report "Error in trojan functionality: state machine not frozen"

 severity failure;

 wait for 20 ns;

 assert false

 report "end of simulation"

 severity failure;

 wait;

 end process;

END;

DFS DESIGN

- Top level entity (DFSCircuit)

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

entity DFSCircuit is

 Port (start_key : in STD_LOGIC_VECTOR (7 downto 0);

 plaintext : in STD_LOGIC_VECTOR (7 downto 0);

 reset_n : in STD_LOGIC;

 clk : in STD_LOGIC;

 start : in STD_LOGIC;

 done : out STD_LOGIC;

 ciphertext : out STD_LOGIC_VECTOR (7 downto 0));

end DFSCircuit;

architecture Structural of DFSCircuit is

 --components

 component stateMachine

 port(

 start : in STD_LOGIC_VECTOR (7 downto 0);

 start_pin : in STD_LOGIC;

 reset_n : in STD_LOGIC;

 clk : in STD_LOGIC;

 enable_reg : out STD_LOGIC;

 enable_xor : out STD_LOGIC;

 enable_cae : out STD_LOGIC;

 done : out STD_LOGIC

);

 end component;

 component xor_circ

 Port (plaintext : in STD_LOGIC_VECTOR (7 downto 0);

 reset_n : in STD_LOGIC;

 enable : in STD_LOGIC;

 xor_cypher : out STD_LOGIC_VECTOR (7 downto 0));

 end component;

 component caesar_circ

 Port (plaintext : in STD_LOGIC_VECTOR (7 downto 0);

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

71

 enable : in STD_LOGIC;

 reset_n : in STD_LOGIC;

 cae_cypher : out STD_LOGIC_VECTOR (7 downto 0));

 end component;

 --internal connection signals

 signal enable_reg, enable_xor, enable_cae, done_sig : std_logic;

 signal shift_reg, xor_cypher_sig : std_logic_vector(7 downto 0);

------------------ STRUCTURAL ----------------------------

begin

 --shift register

 shift_register : process(enable_reg, plaintext)

 begin

 if reset_n='0' then

 shift_reg <= (others =>'0');

 elsif enable_reg='1' then

 shift_reg <= plaintext;

 end if;

 end process shift_register;

 i_state : stateMachine

 port map(

 start => start_key,

 start_pin => start,

 reset_n => reset_n,

 clk => clk,

 enable_reg => enable_reg,

 enable_xor => enable_xor,

 enable_cae => enable_cae,

 done => done_sig

);

 i_xor : xor_circ

 port map(

 plaintext => shift_reg,

 reset_n => reset_n,

 enable => enable_xor,

 xor_cypher => xor_cypher_sig

);

 i_cae : caesar_circ

 port map(

 plaintext => xor_cypher_sig,

 reset_n => reset_n,

 enable => enable_xor,

 cae_cypher => ciphertext

);

end Structural;

- State Machine Circuit

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity stateMachine is

 Port (start : in STD_LOGIC_VECTOR (7 downto 0);

 start_pin : in STD_LOGIC;

 reset_n : in STD_LOGIC;

 clk : in STD_LOGIC;

 enable_reg : out STD_LOGIC;

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

72

 enable_xor : out STD_LOGIC;

 enable_cae : out STD_LOGIC;

 done : out STD_LOGIC);

end stateMachine;

architecture Behavioral of stateMachine is

 --state machine signals

 --state machine has 5 states

 type t_state is (Reset, Idle, Listen, xor_st, cae_st);

 signal act_state, nxt_state : t_state;

 --internal control signal for starting

 signal key : std_logic_vector(7 downto 0):= "01000101";

 signal start_sig : std_logic;

begin

 --control logic

 with start select

 start_sig <=

 '1' when key,

 '0' when others;

 --STATE MACHINE

 --state machine variation

 StateVar : process (clk,reset_n)

 begin

 if reset_n='0' then

 act_state<= Reset;

 elsif clk'event and clk='1' then

 act_state <= nxt_state;

 end if;

 end process StateVar;

 --state machine transition

 StateTransition : process (start, act_state, reset_n)

 begin

 nxt_state <= act_state;

 case act_state is

 when Reset =>

 if reset_n = '1' then

 nxt_state <= Idle;

 end if;

 when Idle =>

 if (start_sig='1' and start_pin='1')then

 nxt_state <= Listen;

 end if;

 when Listen =>

 nxt_state <= xor_st;

 when xor_st =>

 nxt_state <= cae_st;

 when cae_st =>

 nxt_state <= Idle;

 when others=>

 nxt_state <= Idle;

 end case;

 end process StateTransition;

 --outputs

 Outputs : process (act_state)

 begin

 case act_state is

 when Reset =>

 enable_reg <= '0';

 enable_xor <= '0';

 enable_cae <= '0';

 done <= '0';

 when Idle =>

 enable_reg <= '0';

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

73

 enable_xor <= '0';

 enable_cae <= '0';

 done <= '1';

 when Listen =>

 enable_reg <= '1';

 done <= '0';

 when xor_st =>

 enable_xor <= '1';

 done <= '0';

 when cae_st =>

 enable_cae <= '1';

 done <= '0';

 when others=>

 enable_reg <= '0';

 enable_xor <= '0';

 enable_cae <= '0';

 done <= '0';

 end case;

 end process Outputs;

end Behavioral;

- XOR encryption circuit

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity xor_circ is

 Port (plaintext : in STD_LOGIC_VECTOR (7 downto 0);

 reset_n : in STD_LOGIC;

 enable : in STD_LOGIC;

 xor_cypher : out STD_LOGIC_VECTOR (7 downto 0));

end xor_circ;

architecture Behavioral of xor_circ is

 signal key : std_logic_vector(7 downto 0):= "01101110";

begin

 process --xor encryption

 begin

 if reset_n='0' then

 xor_cypher <= (others=>'0');

 elsif enable='1' then

 xor_cypher <= (plaintext xor key);

 end if;

 end process;

end Behavioral;

- Caesar cipher encryption circuit

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

entity caesar_circ is

 Port (plaintext : in STD_LOGIC_VECTOR (7 downto 0);

 enable : in STD_LOGIC;

 reset_n : in STD_LOGIC;

 cae_cypher : out STD_LOGIC_VECTOR (7 downto 0));

end caesar_circ;

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

74

architecture Behavioral of caesar_circ is

 signal shift_amount : integer range 0 to 7 := 2;

begin

 process

 begin

 if reset_n = '0' then

 cae_cypher <= (others => '0');

 elsif enable = '1' then

 cae_cypher <= std_logic_vector(unsigned(plaintext) + shift_amount);

 end if;

 end process;

end Behavioral;

DFS design testbench

LIBRARY ieee;

 USE ieee.std_logic_1164.ALL;

 USE ieee.numeric_std.ALL;

 ENTITY testbench IS

 END testbench;

 ARCHITECTURE behavior OF testbench IS

 -- Component Declaration

 COMPONENT DFSCircuit

 PORT(

 start_key : in STD_LOGIC_VECTOR (7 downto 0);

 plaintext : in STD_LOGIC_VECTOR (7 downto 0);

 reset_n : in STD_LOGIC;

 clk : in STD_LOGIC;

 start : in STD_LOGIC;

 done : out STD_LOGIC;

 ciphertext : out STD_LOGIC_VECTOR (7 downto 0)

);

 END COMPONENT;

 SIGNAL reset_n, clk, start, done: std_logic := '0';

 SIGNAL start_key, plaintext, ciphertext : std_logic_vector(7 downto 0) :=

(others=>'0');

 constant clk_period : time := 10 ns;

 BEGIN

 -- Component Instantiation

 uut: DFSCircuit PORT MAP(

 start_key => start_key,

 plaintext => plaintext,

 reset_n => reset_n,

 clk => clk,

 start => start,

 done => done,

 ciphertext => ciphertext

);

 -- Clock process definitions

 clk_process :process

 begin

 clk <= '0';

 wait for clk_period/2;

 clk <= '1';

 wait for clk_period/2;

 end process;

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

75

 -- Test Bench Statements

 tb : PROCESS

 BEGIN

 reset_n <= '0'

 wait for 100 ns; -- wait until global set/reset completes

 reset_n <= '1';

 -- Add user defined stimulus here

 --first loop will be done with the correct key, just to test the plaintext and

encryption functions

 start_key <= "01000101";

 for i in 0 to 255 loop

 plaintext <= std_logic_vector(to_unsigned(i,8);

 wait for 5 ns;

 start <= '1';

 wait for 10 ns;

 start <= '0';

 wait for 50 ns;

 assert done = '1'

 report "Error in finish flag system"

 severity failure;

 assert (ciphertext = std_logic_vector(unsigned(plaintext XOR "01101110")

+ 2))

 report "Error in encryption functionality"

 severity failure;

 wait for 10 ns;

 end loop;

 --now that encryption functionality has been tested, all key inputs will be

tested

 for i in 0 to 255 loop

 for j in 0 to 255 loop

 start_key <= std_logic_vector(to_unsigned(j,8));

 plaintext <= std_logic_vector(to_unsigned(i,8);

 wait for 5 ns;

 start <= '1';

 wait for 10 ns;

 start <= '0';

 wait for 50 ns;

 assert done = '1'

 report "Error in finish flag system"

 severity failure;

 if start_key = "01000101" then

 assert (ciphertext = std_logic_vector(unsigned(plaintext XOR

"01101110") + 2))

 report "Error in encryption functionality"

 severity failure;

 else

 assert (ciphertext /= std_logic_vector(unsigned(plaintext XOR

"01101110") + 2))

 report "Error in authentication, circuit should not encrypt"

 severity failure;

 end if;

 wait for 10 ns;

 end loop;

 end loop;

 assert false

 report "End of simulation"

 severity failure;

 END PROCESS tb;

 -- End Test Bench

 END;

