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RESUMEN DEL PROYECTO  

La producción de circuitos integrados es un proceso global, en cuyo diseño y producción 

intervienen varias casas de diseño y fundiciones de todo el mundo. Este proceso de 

producción global ha abierto la puerta a que agentes maliciosos introduzcan modificaciones, 

conocidas como troyanos de hardware, en el diseño del circuito con el fin de perturbar la 

funcionalidad diseñada. El proyecto diseña e implementa troyanos de hardware en un 

conjunto de circuitos de encriptado, utilizando VHDL y realizando pruebas para un 

dispositivo FPGA, ideando así posibles mecanismos de defensa contra tales intrusiones. 

Palabras clave: Troyano de hardware, Circuitos integrados, Design for Security  

1. Introducción 

La cadena de suministro de circuitos integrados implica a varios sujetos repartidos por 

todo el mundo, la falta de confianza en fabricantes terceros o licenciatarios de propiedad 

intelectural supone un riesgo en la integridad y seguridad de dichos circuitos, abriendo 

la posibilidad a una modificación maliciosa del hardware conocida como Troyano de 

Hardware. Estos troyanos pretenden impedir la funcionalidad o dificultar el rendimiento 

de los circuitos atacados.  

El proyecto tendrá como objetivo insertar un troyano de hardware en un circuito 

criptográfico, tratando de filtrar información/denegar servicio, esencialmente 

inutilizando su funcionalidad e idear y explorar potenciales métodos de defensa contra 

este tipo de ataques, y aplicarlos a los circuitos diseñados. 

2. Definición del proyecto 

La relativa falta de conocimientos sobre los troyanos de hardware y sus 

implementaciones hace que los métodos de defensa y prevención sean escasos o caros. 

Este proyecto pretende, primero actuando como agente malicioso en un conjunto de 

circuitos criptográficos, y luego estudiando técnicas de defensa contra troyanos de 

hardware, idear un nuevo método a través del cual defenderse adecuadamente contra la 

inserción de dichos troyanos. Estos esfuerzos conducirán a hallazgos relevantes para el 

desarrollo en FPGAs, utilizando código VHDL para primero insertar y posteriormente 

prevenir troyanos. 

Se ha desarrollado un conjunto de dos circuitos criptográficos para el proyecto, cuyo 

conocimiento a fondo ha permitido un acercamiento a la metodología detrás del 

desarrollo de troyanos hardware. Una vez hecho esto, la siguiente parte del estudio se 

centró en la defensa contra troyanos. Con lo aprendido al atacar los circuitos, 

aprovechando sus debilidades y, basándonos en las técnicas de prevención de troyanos 



ya establecidas, se aplicaron los esfuerzos de defensa a los circuitos criptográficos 

desarrollados. 

3. Descripción del modelo/sistema/herramienta 

En el proyecto se desarrollaron dos circuitos criptográficos, el primero, un prototipo 

sencillo, desarrollado con un simple xor y cifrado César. El segundo circuito es más 

complejo, utilizando el prototipo como base, incluye una máquina de estados para 

controlar el proceso de cifrado. A continuación, se estudió la posibilidad de insertar un 

troyano en ambos circuitos de cifrado. El primer troyano, con un mecanismo de 

activación externo, se insertó en el prototipo. Al insertar una entrada específica al 

circuito, el troyano se activa, filtrando la clave de cifrado a través de la salida habitual. 

El segundo diseño de troyano se desarrolló para, además de afectar a la función de 

cifrado, perturbar la máquina de estados del segundo diseño de circuito. Para explotar 

mejor la arquitectura del circuito, se eligió un mecanismo de activación interno. En 

función del número de cifrados, el troyano se activaría para realizar diferentes acciones, 

primero filtrando la clave de cifrado, después denegando el servicio mediante la salida 

cero y eliminando los esfuerzos de cifrado, y finalmente interrumpiendo el flujo de la 

máquina de estados, bloqueando el circuito hasta su reinicio. 

 

Figura 1: Circuitos de encriptado con troyanos 

Para finalizar el estudio, y con los conocimientos obtenidos de la inserción del troyano, 

se implementaron mecanismos de defensa de los circuitos, implementando técnicas DFS 

(Design for Security) y métodos de verificación efectivos sobre los circuitos, 

modificando el diseño. 

 

Figura 2: Circuitos reforzados con técnicas de defensa DFS 



4. Resultados 

Todas las simulaciones del troyano proporcionaron la funcionalidad correcta, 

demostrando una implementación efectiva, especialmente el segundo diseño, que ofreció 

una buena visión de la metodología detrás del diseño de troyanos de hardware. Tenga en 

cuenta que la clave de cifrado para ambos diseños es 01101110. 

 

Figura 3: Simulación del primer troyano 

input output 

00000000 01110000 

00001000 01101000 

10011001 01101110 

Tabla 1 : Resultados de la simulación del primer troyano 

 

Figura 4: Simulación de troyano de la máquina de estados 

input output 

00000001 01110001 

00100010 01101110 

00000011 01101111 

00000100 01101100 

00000101 00000000 

00000110 01101010 

00000111 01101010 

Tabla 2 : Resultados de la simulación del segundo troyano 

Los métodos de defensa también resultaron eficaces, dificultando la inserción de un 

troyano o, si este estaba dentro, ofreciendo buenas posibilidades de detección, 

especialmente en el primer circuito. Los problemas surgieron en el segundo diseño, ya 

que el mecanismo de activación, al ser interno, es difícil de detectar con los métodos de 

verificación tradicionales presentes en FPGA. 

5. Conclusiones 

El principal objetivo del proyecto, comprender los troyanos de hardware, fue un éxito. 

Se obtuvo una visión útil de cómo se diseñan e implementan los troyanos en el hardware 

del host, lo que proporcionó una primera visión de cómo defenderse adecuadamente 

contra este tipo de ataques. Desde el punto de vista de la defensa, la parte de ataque del 

estudio mostró cómo un cambio de perspectiva puede ofrecer una estructura más robusta 

y resistente a la inserción de troyanos. La exploración de los retos de implementar 

únicamente una defensa VHDL demostró que ningún método o vía es infalible en la 

defensa contra troyanos, reforzando la necesidad de incorporar varias tácticas defensivas. 



 

Figura 5: estrategia de defensa basada en bucle ataque-defensa 

El hecho de haber actuado como un adversario, intentando insertar un troyano de 

hardware en los circuitos, ha demostrado que es una técnica muy efectiva en preparar 

mejor la defensa de los circuitos, pues se conocen de antemano sus debilidades. El bucle 

de ataque-defensa realizado en el proyecto ha demostrado su valor como técnica a la hora 

de defender de intrusiones de troyanos. 
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ABSTRACT  

Modern integrated circuit production is a global process, various design houses and 

manufacturing foundries from over the world intervene in the design and production of a 

single circuit. This global production process has opened the door for malicious agents to 

insert modifications, known as hardware trojans, in the circuit design aiming to disrupt the 

intended functionality. The project designs and implements hardware trojans on a set of 

encryption circuits, using VHDL and testing for an FPGA device, devising then potential 

defense mechanisms for such intrusions.  

Keywords: Hardware Trojans, Integrated circuits, Design for Security.  

1. Introduction 

Modern Integrated circuit supply chain involves various actors spread across the globe, 

the lack of trust in third party manufacturers or IP licensers suppose a risk in the integrity 

and security of said circuits, opening the chance for a malicious hardware modification 

known as a Hardware Trojan. These trojans aim to impede functionality or hamper 

performance of the target circuits.  

The project will aim to insert a hardware Trojan into a cryptographic circuit, trying to 

leak information/deny service, essentially rendering the cryptographic effort useless. 

Once these efforts have been completed, potential defense methods will be explored and 

applied to the designed circuits. 

2. Project definition 

The relative lack of knowledge about hardware trojans and their implementations mean 

that defense and prevention methods are scarce or expensive. This project pretends, first 

by acting as the malicious agent on a set of cryptographic circuits, and then studying 

modern hardware trojan defense techniques, to devise a new method trough which to 

properly defend against hardware trojan insertion. These efforts will lead to findings 

relevant to FPGA development, using VHDL code to first insert and then prevent 

hardware trojans. 

A set of two cryptographic circuits have been developed for the project, with their 

intimate knowledge and study allowing for a proper study of the methodology behind 

hardware trojan development. Once this had been done, the next part of the study focused 

on trojan defense. Seeing what posing as the adversary shows regarding exploiting circuit 

weaknesses, basing our effort on established trojan prevention techniques, defense 

efforts were applied to the cryptographic circuits developed.  

3. Implementation 



To start with two cryptographic circuits were developed, the first, a simple prototype, as 

developed with a simple xor and Caesar cipher encryption. The second circuit is more 

complex, using the prototype as a base, it includes a state machine to control the 

encryption process. Both encryption circuits were then studied to have a trojan inserted 

in them. The first trojan, with an external triggering mechanism, was inserted in the 

prototype. If a specific input plaintext is sent to the circuit, the trojan activates, leaking 

the encryption key through the usual encryption output. The second trojan design was 

developed to, apart from affecting the encryption function, to target the state machine of 

the second circuit design. To better exploit the circuit architecture, an internally 

triggering mechanism was chosen. Based on the number of encryptions, the trojan would 

activate to do different actions, first leaking the encryption key, then denying service by 

outputting zero and eliminating encryption efforts, and finally disrupting the state 

machine flow, essentially locking the circuit until reset. 

 

Figure 1: Encryption circuits schematics with trojan present 

To end the study, and with the knowledge gained from the trojan insertion, defense 

mechanisms for the circuits, implementing DFS techniques and effective verification 

methods were implemented on the circuits, modifying the design. 

 

Figure 2: Reinforced designs with defense techniques 

4. Results 

All trojan simulations gave the correct functionality, demonstrating an effective 

implementation, specially the second design, which offered good insight in the 

methodology behind hardware trojan design. Please note that the encryption key for both 

designs is 01101110. 

 



 

Figure 3: Prototype circuit trojan simulation 

input output 

00000000 01110000 

00001000 01101000 

10011001 01101110 

Table 1: Prototype circuit trojan simulation outputs 

 

Figure 4: Second circuit trojan simulation 

input output 

00000001 01110001 

00100010 01101110 

00000011 01101111 

00000100 01101100 

00000101 00000000 

00000110 01101010 

00000111 01101010 

Table 2: Second circuit trojan simulation outputs 

The defense methods also proved effective, hampering trojan insertion efforts, or if 

inserted, offering a good chance for detection, specially in the first prototype circuit. 

Problems arose in the second design, seeing as the triggering mechanism, it being 

internal, is difficult to detect using traditional verification methods present for FPGA 

development. 

5. Findings 

The main goal of the project, understanding hardware trojans was successful. Useful 

insight was gained in how the trojans are designed and implemented on host hardware, 

providing an early look in how to properly defend against these types of attacks. From 

the defense point of view, the attack portion of the study showed how a change of 

perspective can offer a more robust structure resilient to trojan insertion. Exploring the 

challenges in implementing only a VHDL defense proved that no method or avenue is 

foolproof in the defense against trojans, reinforcing the need to incorporate various 

defensive tactics.  



 

Figure 5: Defense method proposal based on feedback loop. 

Posing as an attacker however has shown that it is a very effective technique in the fight 

against hardware trojans. The weak points of a circuit can be better known and reinforced 

if one tries attacking it first. A feedback loop of attack-defense is an effective method of 

reinforcing the design and structure of a circuit in the face of trojan attacks. 
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CHAPTER 1: INTRODUCTION 

As the hardware industry has advanced over the last couple of decades, design houses and 

foundries from across the world intervene in the design and fabrication of a single circuit. 

The global economy has allowed for the offloading of many processes in remote locations 

[1], meaning that design and fabrication are usually separated into two distinct and 

separate processes. The outsourcing of production, nowadays relegated to external 

foundries, and the fact that many smaller components that build modern integrated 

circuits (IC) are sourced from third party design houses, raises questions about the 

integrity of the circuits, seeing as there are many open avenues for a malicious agent, an 

adversary, to introduce changes in the design without the original design houses noticing. 

These malicious changes, known as Hardware Trojans [2], have emerged as a major 

security threat for most modern IC. The rise of System-on-Chip (SoC) designs, which 

integrate most or all components of a computer on a single IC, and embedded computing 

has allowed the public to have access to highly capable computing devices, such as 

smartphones or laptops, and low powered machines, such as wearable medical devices or 

electronic car keys. This physical access to technology has contributed to the rise of 

hardware security modules on the computing elements themselves, in the form of 

specialized circuitry. With so many people accessing sensitive information on their 

devices, such as banking information or private legal documents, security has been shown 

to be imperative, as even the slightest mistake can lead to millions of affected users, with 

no real easy way to fix a Hardware problem other than mass recalls. 
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Figure 1 : Apple M1 Pro SoC [4] 

It is in this context that hardware trojans show their potential danger. Hardware Trojans 

relate to a malicious modification of an IC during its design or fabrication process, 

especially when handled by external agents, such as an untrusted design house or foundry, 

or even when designed with the use of third-party tools or components over which the 

original design house has no control. These modifications aim to modify the functionality 

of an IC, reducing performance, changing behavior, or even neutralizing the computer in 

its totality, acting as a “kill-switch”. These changes are introduced by the adversary in a 

manner such that standard verification tests will not detect the intrusion, with the Trojans 

presence only being revealed after prolonged operation in the hands of consumers. 

The name comes from the Trojan war in mythical ancient Greece, where a wooden horse 

was gifted to the Trojan army, who brough it inside their city, thought impenetrable, 

without the knowledge that in the inside of the horse the enemy’s forces were hiding. The 

horse turned into a powerful weapon that came to be one of the major causes for the fall 

of Troy [5]. The name then gives the Hardware Trojans their nature: it is intended to be a 

weapon with malicious intent, and should try to evade all detection, acting stealthily when 

under standard circuit verification processes. 
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As stated before, the global economy has been one of the main contributing factors to the 

rise in Hardware Trojan attacks. Modern IC design techniques usually involve using 

components and intellectual property cores derived from third parties, which design firms 

have to trust, but have no real guarantee over the integrity and security measures 

implemented in said components. Even the tools used to design IC may be vulnerable to 

tampering, leaving design firms oblivious to the actual end result of their product. The 

problem grows when considering the manufacturers themselves, as economically the 

most logical solution for a lot of teams is to outsource production, due to the high cost of 

having an in-house manufacturing solution, even if the manufacturing partner operates in 

an insecure facility. This globalization has forced the design firms to let go of the control 

they once had over the security measures they require, having to trust their partners to 

enforce them fully. The many steps involved in modern IC design and manufacturing all 

pose an opportunity for attack, seeing as each different partner involved in the overall 

process can be a possible adversary. 

 

Figure 2 : Global semiconductor supply chain [6] 
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In recent times Hardware Trojan attacks have been discovered, with a wide range of 

impacts. In 2012 a hidden back-door was discovered in military systems and aircraft such 

as the Boeing 787 [7] , allowing the adversary to take control of the flight remotely 

through the internet. Or in 2007, Israeli forces managed to destroy a nuclear reactor, due 

to the Syrian air defense system not responding in time, this was speculated to have been 

caused by a built-in kill-switch on the system [3]. No system is completely secure for 

hardware tampering, meaning that potentially every circuit in the wild today is susceptible 

to a Hardware trojan attack. 

Modern verification techniques should be capable of detecting these unwanted and 

hazardous modifications. But the modern nature of IC design has complicated the 

issue[8], mainly due to the lack of a golden model [9], a reference model of the entire 

built circuit. Licensed IP cores from third parties may not be tested and simulated 

properly, leading to not being able to recreate a golden model. Exhaustive verification 

would be the way to go, but on most modern IC it is not feasible to test, as the possibilities 

far exceed any reasonable time limits for simulation [10]. Once the IC leave the 

production run, they could be tested, either via reverse engineering, tested against a 

reference model, or via side-channel analysis, but these options prove to be very costly, 

either due to the tools necessary for said tests, or may be ineffective due to the fact that 

not all of the IC manufactured could have been affected by the Hardware Trojan attack, 

and if the sample size tested is not sufficiently large, due to cost or time constraints, the 

attack may go unnoticed. 

1.1 MOTIVATION 

The very present danger Hardware Trojans pose to our everyday lives highlight the 

pressing need to gain a deeper understanding of the entire lifecycle of hardware trojans, 

ranging from their design to their insertion. The more we comprehend how these trojans 

operate and how they manage to remain undetected, the better equipped we become to 

mitigate the risks they pose. It is crucial to acknowledge that hardware trojans extend 

beyond targeting large, centralized computer systems. Their true potential for damage lies 
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in compromising consumer devices, where they can illicitly acquire sensitive information 

for malicious purposes or disrupt interconnected networks on a significant scale. 

The primary objective of this project is to foster comprehension. By thoroughly studying 

the intricacies involved in designing and implementing a hardware trojan, we can 

effectively develop defensive strategies and explore detection methods. Essentially, by 

adopting an adversarial mindset and analyzing the various stages of an attack, we can 

enhance our ability to protect against such threats. 

1.2 OBJECTIVES 

The project will aim to develop the following: 

1) Design a simple cryptographic circuit: this circuit will be a very simple VHDL 

implementation of a cryptographic circuit, using XOR encryption and Caesar 

cipher as a base, as cryptography is not the focus of the project, and it needs to be 

in scale of the FPGA board available. 

2) Design and implement a Hardware trojan: based on the circuit previously 

developed, a set of hardware trojans will be designed and inserted into the circuit, 

trying to explore different avenues for attacks and exploit the structural 

weaknesses of the circuits. It is in this point where the methodology behind 

Hardware Trojan attacks will be studied and applied, hopefully leading to a better 

understanding of the process. 

3) Test the hardware trojan: simulation and verification of the Trojans inserted in the 

cryptographic circuits. 

4) Exploring possible methods of defense for the trojan implementations: for the 

previously designed trojans approaches for defense or detection of the trojans will 

be explored and developed, and their effectiveness will be studied. 
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Figure 3 : Project objectives 

1.3 METHODOLOGY 

The project will be based on a feedback loop of progress. To start with, a simple prototype 

cryptographic circuit will be designed. This circuit will then be subjected to a Hardware 

Trojan attack, since we have participated in both the design and the attack, the inner 

workings of the circuit will be well-known to us, with its weak points being known from 

the get-go. This intimate knowledge of the circuit will allow us to tailor the hardware 

trojan to the circuit, trying to affect its main functionality, and do so in a stealthy manner. 

From then, a more comprehensive study will be conducted on how the Trojan has affected 

the circuit, allowing us to devise a coherent defense structure for the existing design, 

finalizing in a new circuit. This process will then be repeated on a more complex circuit, 

with different characteristics.  
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Figure 4 : project methodology 

With this process, the nature of Hardware Trojan attacks will be better understood, and 

with the knowledge gained from posing as the attacker, the exploration of defense 

mechanisms will be more effective, and lead to a more structured process to better defend 

against hardware Trojans. Doing this process twice will create a feedback loop of 

knowledge, when designing the second more complex circuit, the lessons learned from 

the prototype can be applied, allowing for a comprehensive study on the nature of these 

attacks. During each step simulations to verify and test both the circuits and the Trojans 

will be done. 
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CHAPTER 2: DESCRIPTION OF 

TECHNOLOGIES 

The project will have a focus on the study of Hardware Trojans on an FPGA environment; 

therefore, the choice of tools and platforms must be adequate for FPGA development and 

implementation. 

2.1 CHOICE OF PLATFORM: FPGA 

A Field-Programmable Gate Array chip is a reprogrammable integrated circuit that allows 

users to design and implement digital logic circuits [11] - [12]. FPGA boards provide a 

platform for designing, prototyping, and deploying digital circuits and systems. They 

offer flexibility and configurability, allowing users to define the desired functionality of 

the FPGA chip by programming it using hardware description languages like VHDL or 

Verilog. With various I/O interfaces, clock management resources, and on-board 

components, FPGA boards enable the development of custom digital circuits tailored to 

specific applications and can be used in diverse fields such as embedded systems, digital 

signal processing, communication systems, and more. 

 

Figure 5 : Xilinx Spartan 6 FPGA chip [13] 

The specific FPGA used for the project is a Xilinx Spartan 6 board. It is a low-cost, high-

capacity FPGA, balancing power consumption, performance and cost [13]. The Spartan 
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6 series uses dual-register, 6-input LUTs, and one Series of built-in system-level modules, 

which include an SDRAM memory interface, PCIe interface, 18Kb Block Ram, and a 

robust hybrid clock management module. 

2.2 VHDL 

The project will be based on an FPGA platform; therefore, a hardware description 

language will be used. In our case, the main hardware description language of choice will 

be VHDL, as it offers intuitive and easy solutions for both the design of the cryptographic 

circuits and their respective trojans, and the later simulation and verification of the 

implementations developed via a VHDL testbench. 

VHDL (Very High-Speed Integrated Circuit Hardware Description Language) is a 

hardware description language used to model and simulate digital systems. It is a 

standardized language that enables designers to describe the structure and functionality 

of electronic systems, such as integrated circuits, programmable logic devices, and 

system-on-chip designs [14] - [15]. 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

 

entity AND is 

    Port ( A : in  STD_LOGIC_VECTOR (7 downto 0); 

           B : in  STD_LOGIC_VECTOR (7 downto 0); 

           Y : out  STD_LOGIC_VECTOR (7 downto 0)); 

end AND; 

architecture Behavioral of AND is 

 

begin 

    Y = A and B; 

     

end Behavioral; 

 

VHDL was created in a United States Department of Defense program, Very High-Speed 

Integrated Circuits Program (VHSIC) [15]. The program aimed to develop a new HDL 

for use in integrated circuit development, which resulted in VHDL version 7,2, released 

in 1985, with IEEE standardization efforts beginning in the following year. 
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VHDL allows designers to specify the functionality of a digital system using a 

combination of concurrent and sequential statements. It supports the representation of 

complex digital circuits and systems by providing a hierarchical structure for modular 

design, based on the behavioral model design, which is normally used to describe the 

functionality of an inner module of the circuit, with the modules that group many of these 

smaller modules being the structural model design. This allows designers to create 

reusable components and easily integrate them into larger designs, translating to a more 

structured way to describe and define their circuits, separating different functional blocks 

which allow easier handling of highly complex structures. 

After the circuit is designed and compiled, its functionality can be tested via what is 

known as a testbench. A VHDL testbench is a separate VHDL script in which the designer 

generates a set of stimuli to feed into the circuits inputs and sets controls over the outputs 

in order to check the designed circuit is working as intended. 

Once the VHDL design is simulated and verified, it can be synthesized into a target 

hardware technology, such as an FPGA (Field-Programmable Gate Array) or an ASIC 

(Application-Specific Integrated Circuit). Synthesis tools map the VHDL code to the 

specific gates and flip-flops available in the target technology, optimizing for factors like 

area, power, and performance. 

VHDL serves as a useful tool for describing and simulating digital systems. Its modular 

nature allows for efficient design and development, making it the perfect choice for this 

project. 
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2.3 DEVELOPMENT PLATFORM 

 

Figure 6 : Xilinx ISE logo [16] 

The choice of board of the project is a Xilinx Spartan 6 FPGA board, specifically model 

xc6slx45, with speed setting -3. The VHDL development environment must then be 

compatible with the board of choice. This leads us to Xilinx ISE, a native Xilinx platform 

software which supports the Spartan 6 board. It is not as modern or as efficient as the new 

Xilinx software, Vivado, but seeing as that software does not support the choice of board 

there is no option other than ISE.  

 

Figure 7 : Xilinx ISE main screen 
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ISE will be used to code and compile the VHDL implementation code and testbench script 

for verification. For the actual simulation of the circuit an integrated simulation 

environment in ISE, ISim, will be used. 

 

Figure 8 : Modelsim simulation screen 

2.4 CRYPTOGRAPHIC CIRCUIT ELEMENTS 

As the focus of the project will be on Hardware trojan development on FPGA boards, the 

encryption algorithms must not be too complex, as the FPGA boards may not have 

sufficient overhead to support the algorithms themselves, let alone additional structures. 

This is the reason why popular encryption algorithms such as AES and RSA are not 

present in the circuits developed, the FPGA board of choice, the Spartan 6, does not have 

sufficient hardware overhead to support the VHDL implementations of said algorithms. 

Even if the encryption algorithms are not very complex, the project can still be successful, 

the methodology behind hardware trojan design and integration depends on the whole 

architecture of the circuits designed, not only on the encryption base. 
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2.4.1 Caesar Cipher: 

The Caesar cipher is a simple and widely known encryption technique. Originally used 

by Julius Caesar in his private correspondence, it is a substitution cipher where each letter 

in the plaintext is shifted a certain number of positions down the alphabet [17] – [18]. It 

requires two elements, the plaintext, and the shift amount. To decrypt a Caesar cipher the 

process is very simple, with the same shift amount, shift each letter of the ciphertext a up 

the alphabet, restoring the original text. 

The encryption and decryption processes are represented by the following equations [18]: 

𝐸𝑛(𝑥) = (𝑥 + 𝑛) 𝑚𝑜𝑑 26  

𝐷𝑛(𝑥) = (𝑥 − 𝑛) 𝑚𝑜𝑑 26 

Where n is the shift amount, and mod is the modulo operation. 

A graphical representation would be as follows, two aligned alphabets, in this case, a shift 

amount of 3 is represented, A is shifter three letters down the alphabet to turn into D. 

Plaintext A B C D E F 

Cipher D E F G H I 

Table 1 : Caesar Cipher example 

2.4.2 XOR cipher: 

The XOR cipher is a simple symmetric encryption algorithm that works on binary data. 

It is based on the exclusive or (XOR) operation, which outputs binary 1 if both of the 

elements being compared are different. 

Y = A XOR B 

A B Y 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

Table 2 : XOR truth table 
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Figure 9 : XOR encryption block schematic 

The XOR cipher requires a key to function, which will be a binary sequence of digits. 

This key should be equal or greater in length compared to the plaintext to encrypt. The 

XOR operation is then applied between the plaintext and the key, resulting in the 

ciphertext. For decryption purposes the same key is applied, and the same XOR operation 

is applied to the ciphertext. 

It is important to recognize that both encryption methods are not very strong, and are very 

easy to break, but that is not the focus of the project. These algorithms have been chosen 

for ease of implementation in VHDL, and for the little overhead they need in order to be 

implemented, seeing as more complex encryption algorithms such as RSA or AES need 

greater hardware requirements than what are available in the board used as a basis for the 

project. However, from these simple examples more complex trojans for heavier 

algorithms could be devised, as the rationality behind the process would be the same. 
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CHAPTER 3: STATE OF AFFAIRS 

Hardware trojans might seem like a shadowy force of which little is known about, but 

that could not be farther from the truth. Several aspects of their nature have been 

established to form a scheme to classify them depending on when, where, and how the 

hardware trojans are implemented. These studies have also allowed for a rough outline 

behind the way these types of attacks are introduced in IC. This chapter will go over this 

public knowledge, as well as discuss the various defense methods that have been proposed 

to combat and properly prevent hardware trojan attacks. All the methods and techniques 

mentioned in this chapter will aid in the planification of an attack on two host circuits, as 

well as devising defense strategies for them to prevent said attacks. 

3.1 Modern Integrated Circuit design and fabrication 

The process behind modern IC design and fabrication involves many different steps. It 

typically starts with the design phase, where engineers use hardware description 

languages, such as VHDL or Verilog to define the behavior of a circuit, also establishing 

in the process the architecture and interconnections present in the circuit design. This 

design is then verified and validated through simulations using testbenches, scripts of 

code that simulate the behavior of the circuit under certain inputs chosen by the designers. 

Once the design has been finalized and properly tested, it undergoes photolithography, a 

process where the design is transferred onto a silicon wafer. Photolithography involves 

depositing and etching layers of materials onto the wafer to create the structural base for 

the circuit. Specialized software is usually involved in this process, transforming the HDL 

description into a physical circuit, whose properties are then usually refined by the 

engineer in order to meet the optimal specifications for the design. 

This physical structure is then subjected to various processes such as doping, oxidation 

and deposition to reach the desired electrical properties, creating transistors, 

interconnects, and other components necessary for the design. 
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Figure 10 : Modern IC production process 

After the fabrication process, the wafers are inspected and tested to identify defective 

properties or deviations from the original design, discarding the ones that deviate from 

the desired specifications. The wafers are then sent to packaging, which involve 

encapsulating the individual chips present in the wafers in protective casings, which 

provide electrical connections and protect them from environmental factors. Another 

round of testing is conducted on the packaged chips to ensure correct functionality. Once 

they pass the last round of verification, the chips are ready for whatever purpose they 

were designed for, integrating them in smartphones, computers, or other electronic 

devices [19] – [21]. 

3.2 Trojan Taxonomy 
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Hardware Trojans can be separated and classified based on a variety of different factors, 

such as insertion phase, (when the Trojan will be implemented), the abstraction level of 

the trojan design, its trigger mechanism, the effect it has on the host circuit, the location 

where it is inserted and its physical characteristics.  

 

Figure 11 : Trojan Taxonomy [22] 

During the insertion phase, a trojan can be inserted by modifying the design specification, 

like the operating temperature of an IC, to degrade its performance and dependability. 

During its design and fabrication stages, as mentioned before, it can be subjected to 

tampering by undesirable parties. When a trojan reaches the testing stage, the adversary 

can maneuver around the usual testing methods, ensuring it cannot be traced.  

The abstraction level of a Trojan design determines how involved the trojan is in the 

circuit’s characteristics. The higher the abstraction level the less control the designed has 

over the Trojans implementation. At the system level the adversary can only define the 

Trojan based on the modules that conform the host circuit, only being able to tamper with 

the interfaces and their interconnections. The lower the level goes, the more options open 

for the adversary, from being able to take advantage of hardware description languages 

or other software tools, to even modifying the physical characteristics of the transistors 

that form the circuit. 
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The activation mechanism of the Trojan is very important, as it is one of the main factors 

to take into account when considering detectability of the implementation. A trojan may 

always be active, or it may be conditionally activated due to external or internal factors. 

An adversary may decide to set the trojan to activate with a specific input sequence or let 

the trojan activate itself when certain conditions are met, such as a timer or when a certain 

temperature is reached. 

A Trojans effect depends on the target circuits characteristics. If a cryptographic circuit 

is the subject of an attack, the trojan may leak the encryption key, or the original plaintext. 

In the case of a modern processor, from performance degradation to functionality changes 

are possible. The extent of the effect is up to the imagination of the attacker, and the 

options available to it offered by the original circuit’s design.  

The last two methods to differentiate Trojans are the most logical, based on the Trojans 

location, such as a processor’s memory controller, or the physical characteristics of the 

Trojan implementation itself. 

Even though there are many ways to distinguish between Hardware Trojans, this study 

will focus on two categories, activation mechanisms and effect. The Activation 

mechanism of trojans greatly affects the implementation and design, as too easy a trigger 

will be cause for early detection, and therefore not a good implementation of a trojan.  

When studying the trojans in terms of their effect on the circuit, the most generic 

distinctions are changing functionality or degrading performance. In the case of 

cryptographic circuits, this can be concreted into two cases: denial of service or 

information leakage, which will render any cryptographic circuit useless. 

3.3 Hardware Trojan methodology 

Trojans are divided into many different groups and are usually categorized according to 

a functionality or behavioral pattern. Trojan taxonomy shows the many possibilities 

trojans have for approaching an attack, from the abstraction level to the way the trojan is 

activated. Although these infinite possibilities would infer that there is not a standard 
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method for Hardware Trojan design and Implementation, that is not the case, there is a 

pattern in the approach [2], [23]: 

1. Design: In this phase, the attacker identifies the target system and analyzes its 

architecture and design. The attacker then identifies the potential insertion points 

for the Trojan and selects a suitable Trojan design that will meet their objectives 

while remaining undetected. 

2. Implementation: The attacker modifies the design of the hardware component by 

inserting the Trojan circuitry. The attacker typically uses a hardware description 

language such as VHDL or Verilog to make the modifications. The Trojan 

circuitry may be inserted directly into the original design, or it may be added as a 

separate module that is connected to the original design. 

3. Testing: The hardware component is then tested to ensure that the Trojan circuitry 

is functioning as intended and that it is not causing any unintended effects. The 

attacker may also perform testing to ensure that the Trojan is difficult to detect by 

security measures such as side-channel analysis or functional testing. 

4. Deployment: The Trojan-infected hardware component is deployed to the target 

system.  

 

Figure 12 : Hardware trojan insertion process 
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The methodology behind a hardware trojan is very simple, and in a similar manner to 

other type of hardware attacks, it is all based on an intimate knowledge of the architecture 

of the target circuit. Once the adversary is familiar with the circuit, the hosts’ weaknesses 

are then exploited and the hardware trojan is successfully inserted into the host circuit. 

3.4 Trojan defense and detection 

Perhaps the most damaging aspect of the hardware trojan is its secretive nature. The 

adversary will design and try to insert the trojan in a way that evades all detection. A host 

may be suffering an attack by a trojan, and not even be aware of it, as the process of 

detecting a hardware trojan is highly complicated. This is mainly due to the small 

overhead a Hardware Trojan has on the overall circuit [23], not considering that Trojans 

can be designed with complicated triggers in mind, passing any functional tests the 

circuits may be subjected to. Not only that, but due to the iterative nature of circuit 

manufacturing and design nowadays, leftover unused blocks may be kept from previous 

designs, acting as shelters for the Trojans. 

There exist some general common techniques for Hardware Trojan defense, which can 

be done on the prevention stage: 

1. Design for security (DFS): aims to prevent hardware Trojan prevention by making 

it difficult for attackers to understand the function and behavior of a hardware 

component, this can be done with encryption, circuit obfuscation or 

authentication. 

2. Trustworthy manufacturing: to prevent Trojan insertion during the manufacturing 

process it is important to use trusted foundries, suppliers, and distributors. This is 

attained by implementing supply chain security measures, such as tamper-evident 

packaging, or by directly manufacturing in house, not outsourcing the process. 

3. Testing and verification: comprehensive testing and verification of the circuits can 

detect and prevent less complex Hardware Trojans. 

4. Side-Channel analysis: Side-channel attacks involve exploiting information 

leaked by a device during its operation, such as power consumption, 
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electromagnetic radiation, or thermal emissions. By analyzing these side-channel 

signals, attackers can gain information about the internal workings of the device, 

including the presence of hardware Trojans. To prevent such attacks, designers 

can implement countermeasures such as differential power analysis (DPA) and 

electromagnetic interference (EMI) shielding. 

5. Reverse engineering: by breaking down the manufactured circuits and comparing 

to the golden or reference model of the circuit, any Trojans present could be 

detected. 

6. Trusted Execution Environments (TEE): TEEs are isolated environments that 

provide secure storage and execution of sensitive code and data. By running 

critical functions within a TEE, designers can prevent hardware Trojans from 

compromising sensitive information or critical operations. 

A lot of these techniques can be combined and implemented in a comprehensive security 

strategy to ensure the highest level of security available. 

However, not all these techniques are effective in a general manner or cheap to 

implement. A lot of them are usually not feasible on actual production circuits, as they 

require what is known as the golden model, a reference design used to compare 

characteristics, which, due to the outsourcing nature of modern production schemes, is 

not realistically available. 

Reverse engineering approaches are not very effective as they are expensive, having to 

break down the circuit, and the fact that the Hardware Trojan may only be inserted into a 

small selection of circuits in the whole production batch, proving the samples tested 

useless.  

Logic Testing is not usually viable due to the large number of test patterns [2], especially 

in more complex and intricate circuits, and the specific and complex nature of Trojan 

trigger design. Side Channel Analysis is highly effective, but the great cost of the 

measuring tools and large noise signals received during the process and measurement 

render it less effective than desired.  
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To make matters worse, a lot of the techniques previously outlined are not effective on 

FPGA design, as they require a specific circuit board, not a multipurpose circuit board 

like an FPGA. Specifically for FPGA design, without taking into consideration Side 

Channel Analysis, two important avenues for study of defense have risen: Design for 

Security (DFS), and MERO testbench design. 

3.4.1 Design for security 

Design for security, specifically Circuit obfuscation, aims to prevent hardware Trojan 

prevention by making it difficult for attackers to understand the function and behavior of 

a hardware component. Circuit obfuscation will increase complexity and randomness of 

the hardware design, by various methods:  

1. Logic locking: adding an extra layer of security by encrypting/locking the 

design using a secret key. It functions like a traditional lock, hiding 

functionality behind a key. It can be applied to the circuit as a whole, in a 

similar manner to how a computer password works, or it can be applied in a 

way that modifies the output of the design if the incorrect key is inserted. 

 

Figure 13 : Logic locking 

2. Randomization: involves implementing random elements to hardware design, 

such as interconnects or random gate placements.  
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3. Polymorphism: using multiple versions of the same circuit that have different 

functions, making the attacker have a harder time identifying the true circuit 

functionality. This can have a high hardware cost due to requirements needed to 

properly hide the functionality, as the other implementations need to have a 

similar complexity for the effort to be effective. This additional hardware cost can 

be softened by implementing other desired designs into the circuit, not wasting 

the resources used. 

 

Figure 14 : Polymorphism 

4. Obfuscation: involves hiding the function and behavior of the circuit behind 

code obfuscation or encryption. 

These techniques can be combined to offer a more robust defense, however, it is important 

to note that these techniques can also greatly increase the cost of the hardware design, as 

well as add unexpected new vulnerabilities due to the higher complexity of the design.  

3.4.2 MERO testbench 

The other main pillar to take into consideration is MERO testbench design. Although it 

is important to design an effective testbench in general for hardware verification, MERO 

differs from standard testbench design by testing for unexpected circuit behavior, instead 

of testing for the usual functionality [24]. 
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MERO starts with establishing normal circuit behavior, and from then enters a recursive 

loop, generating excitation patterns, analyzing the circuit response, and in the case of a 

rare pattern or unexpected output, the testbench is refined to explore the root causes of 

the rare pattern, by exploring similar inputs. In depth explanations of the steps are as 

follows: 

1. Establish normal behavior: establish normal circuit behavior by simulating its 

response to a variety of input conditions. This is done to determine the expected 

output under normal conditions. 

2. Generate excitation patterns: once the normal behavior is set, a special set of input 

patters are generated, these patterns are designed to trigger any hardware Trojans 

present in the circuit. 

3. Apply patterns: The patterns are inserted into the circuit and the response is 

measured. 

4. Analyze response: after measuring the circuit response to the pattern, it is 

compared to the normal behavior to see if any unexpected or rare patterns occur. 

5. Identify potential Trojans: If any rare patterns are detected, it may indicate the 

presence of a Hardware Trojan, thus the pattern that triggered the response is 

analyzed, and other, similar patterns are generated, repeating the process. 
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Figure 15 : MERO testbench design 

Once sufficient tests are made, potential trojans are identified, if the detection of rare 

patterns is successful. Overall, MERO has proven to be highly effective for detecting 

hardware trojans that may be missed with traditional testing methods. 

3.4.3 Potential strategies for defense 

With the previous methods and techniques an initial defense strategy could be developed. 

The options displayed show that in the prevention stage, for FPGA development, a 

combination of robust verification, that is via exhaustive verification if feasible, or the 

development of a MERO testbench, and a strong, resilient design that applies the core 
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ideas of DFS, be it circuit obfuscation or logic locking, will prove to be a good 

combination for a starting point in hardware trojan defense. 

An expansive analysis of the host circuits will be conducted, and from then on their 

potential weaknesses will be remedied with DFS techniques if applicable, with other 

avenues of attack being covered with the testbench design. 
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CHAPTER 4: HARDWARE TROJAN 

IMPLEMENTATION 

With all the strategies and methods laid out, they will now be exercised to instigate a 

hardware trojan attack. A set of host circuits will be developed, with each of them being 

subjected to an attack that exploits their internal structure and functionality. 

4.1 Implementation details 

The Hardware trojan design and implementation has been done in two main stages, one 

with a prototype circuit and another with a more complex circuit built on top of the 

original, expanding the Trojan insertion possibilities. The cryptographic circuits are based 

on a combination of a Caesar cipher and an XOR cipher, which are described in chapter 

2. The Trojan design will follow the standard procedure outlined in chapter 3: an in-depth 

study of the circuit’s functionality and its characteristics will grant avenues for attack, 

these will then be exploited, and a Trojan will be inserted into the existing design, aiming 

for a stealth approach, and changing the original circuit’s purpose. 

4.2 Prototype circuit 

The original prototype circuit will consist of a direct VHDL implementation of an XOR 

cipher followed by a Caesar cipher. 
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Figure 16 : Initial encryption circuit 

xor_cypher <= plaintext XOR key; 

cae_cypher <= std_logic_vector(unsigned(xor_cypher) + shift_amount); 

 

The circuit will have a plaintext input and a ciphertext output (in this case being the 

cae_cypher signal). The key and shift amount are predetermined in the circuit as internal 

signals defined in VHDL. The circuit will then encrypt the plaintext with the XOR 

encryption, and that ciphertext will be encrypted again with the binary Caesar encryption 

algorithm, this last ciphertext being the output of the main circuit. 

4.2.1 Hardware Trojan implementation: externally triggered 

trojan 

A quick study of the circuit shows that it does not offer many possibilities for creative 

Trojan design. Internally, the functionality consists of two simple lines of VHDL code. If 

one where to modify said lines, the trojan would be always activated, and the functionality 

always modified, thus being easily detectable, and not resulting in an effective approach. 

The next logical step would be to explore other avenues of activation: external and 

internal triggers. Seeing as the internal structure is not very complex, an external trigger 

looks to be the best option for this circuit design.  

The next step is to decide what the actual trojan will be, and how that relates to the trigger 

mechanism. The circuit under attack has cryptographic purposes, so the main goal will be 
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to deny said encryption efforts, and, by the nature of the circuit, one of the better options 

would be to leak the encryption key used in the XOR cipher. Leaking the shift amount 

could also be done, but seeing as the Caesar cipher is easily breakable (there are very few 

options for the shift amount), the option to leak the XOR key seemed best. The XOR key 

is then leaked through the regular ciphertext output.  

 

Figure 17 : Prototype circuit with HW trojan 

To activate the trojan an arbitrary plaintext binary sequence is chosen, and whenever that 

sequence is used as input to the circuit, the trojan will activate and leak the encryption 

key through the circuit output. 

xor_cypher <= plaintext XOR key; 

cae_cypher <= std_logic_vector(unsigned(xor_cypher) + shift_amount); 

     

    --TROJAN 

    trojan: process(plaintext, key, cae_cypher) 

    begin 

        if plaintext = "10011001" then 

            cypher<=key; 

        else 

            cypher<=cae_cypher; 

        end if; 

    end process trojan; 
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Figure 18 : prototype circuit trojan functionality 

This original circuit, although it offered an initial look at the process behind Trojan design 

and implementation, it proved to be too simple to offer any real insight into the 

development process behind Trojans. For this reason, a more complex encryption circuit 

needs to be developed, leading to the second design of this study. 

4.3 Second circuit design: state machine circuit 

The second circuit design parted from the original prototype circuit of a simple XOR and 

Caesar cipher implementations. The need for greater complexity to allow for a more 

comprehensive trojan implementation led to the decision to add a state-machine to the 

circuit. The state machine will control the encryption process and introduce a more 

complex internal structure to the original circuit design. The design then has four different 

states: Idle, Listen XOR and CAESAR. The following states do as follow: 

- Idle: the circuit waits for an activation signal start in order to start the encryption 

process. 

- Listen: in this second state the circuit will receive the input plaintext and stores it 

in a bus, which will then be used in the next encryption process. 
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- XOR: applies the XOR encryption and feeds it to the next stage. 

- CAESAR: applies the Caesar cipher to the XOR ciphertext and outputs the 

ciphertext directly to the circuit output. 

 

Figure 19 : Second design state machine 

After CAESAR the circuit returns to the idle state, where the output from the previous 

cycle stays until the next encryption process is activated by the start signal. The state 

transitions are dictated by a rising clock edge, meaning that each state will last for one 

clock cycle, and all actions will be synchronized to a clock cycle. 

    --state machine transition 

    StateTransition : process (start, act_state, reset_n) 

    begin 

        nxt_state <= act_state; 

        case act_state is 

            when Reset => 

                if reset_n = '1' then 

                    nxt_state <= Idle; 

                end if; 

            when Idle => 

                if start='1' then 

                    nxt_state <= Listen; 

                end if; 

            when Listen => 

                    nxt_state <= xor_st; 

            when xor_st => 

                    nxt_state <= cae_st; 

            when cae_st => 

                    nxt_state <= Idle; 

            when others=> 
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                nxt_state <= Idle; 

        end case; 

    end process StateTransition; 

 

 

Figure 20 : Second circuit design 

4.3.1 Second design Trojan implementation: internally triggered 

trojan 

After verifying and testing the second circuit design, the Hardware Trojan 

implementation process begins. A similar approach to the previous example was done. 

First, a study of the circuit is done. There are two major components in the circuit 

structure, the state machine, and the encryption process. For this second Trojan design, 

both characteristics of the circuit will be attacked and manipulated, for a more complex 

Trojan implementation. 

4.3.2 Triggering mechanism 

Seeing as the internal structure of the circuit is governed by the state machine, it would 

make most sense to take advantage of said internal structure to trigger the trojan 

mechanism, and so an internally triggered trojan design was chosen as a basis. One option 

would be to count clock cycles and activate the trojan after an arbitrary number of clock 
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cycles has passed. Another option, and the approach that was chosen, was to count 

encryption iterations. A counter would be set up, and, depending on the number of 

encryptions, a different Trojan payload would be delivered. This approach makes sense, 

as it utilizes the internal structure of the circuit to its advantage, and the more integrated 

the trojan is to the original structure of the circuit, the less overhead it presents and thus 

much less noticeable. 

 

trojan : process(reset_n, act_state) 

    begin 

        if reset_n = '0' then 

            troj_counter <= (others=>'0'); 

            troj_counter_state <= (others=>'0'); 

            troj_en <= "00"; 

            troj_en_state <= '0'; 

        elsif act_state = Listen then 

            troj_counter <= troj_counter + 1; 

            troj_counter_state <= troj_counter_state + 1; 

                 

                --counter for key leak/ DoS 

            if troj_counter = "001" then 

                troj_en <= "01"; 

            elsif troj_counter = "100" then 

                troj_counter <= (others=>'0'); 

                troj_en <= "10"; 

            else  

                troj_en <= "00"; 

            end if; 

             

                --counter for state machine freeze 

            if troj_counter_state = "110" then 

                troj_en_state <= '1'; 

                troj_counter_state <= (others=>'0'); 

            end if; 

        end if; 

    end process trojan; 

 

4.3.3 Payloads 

The Hardware Trojan design aimed to target the two main characteristics of the circuit, 

the state machine, and the encryption process, and so the payloads were chosen to affect 

those areas and disrupt their functionality. 

For the encryption efforts of the circuit, the original concept trojan idea of key leakage 

was reused, but this time internally triggered. However, an additional payload was added 



 

UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN 

 

 

 

 
40 

 

to the design. This second payload was intended to deny service to any encryption effort, 

so the Trojan would erase all encryption processes done before and output binary zero on 

the circuit output, eliminating the ciphertext. 

When looking to affect the state machine, many options were considered, such as skipping 

a state, but seeing as they also touched on the encryption process, they seemed a bit 

redundant, and having too many payloads would result in easier detectability. The third 

and final payload of the Trojan consists of the trojan freezing the state machine 

indefinitely, halting all processes and forcing a restart on the system. This option also 

showed an aspect of trojan payloads that were not considered on the other payloads: 

stealth. The payloads that affected the encryption process are easier to detect, seeing as if 

they happen too frequently or are too obvious the designer will look to the internal 

structure and revise it, maybe finding the trojan if it was inserted in the original design 

process by the malicious agent. However, the state machine freeze could be attributed to 

a simple hardware malfunction, and a reset would fix the problem. If the trigger is set to 

activate once a very high amount of encryption cycles have passed, there is a minuscule 

chance of discovery, with the trojan never being addressed. 
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Figure 21 : Second design with HW trojan 

--STATE MACHINE 

        --state machine variation 

    StateVar : process (clk,reset_n) 

    begin 

        if reset_n='0' then 

            act_state<= Reset; 

        elsif clk'event and clk='1' then 

            if troj_en_state = '0' then 

                act_state <= nxt_state; 

            else  

                act_state <= act_state; 

            end if; 

        end if; 

    end process StateVar; 
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caesar: process (enable_cae, reset_n, xor_cypher) 

    begin 

        if reset_n='0' then 

            cae_cypher <= (others=>'0'); 

        elsif enable_cae='1' then 

            if troj_en <= "00" then 

                cae_cypher <= std_logic_vector(unsigned(xor_cypher) + 

shift_amount); 

            elsif troj_en <= "01" then 

                cae_cypher <= key; 

            elsif troj_en <= "10" then 

                cae_cypher <= (others=>'0'); 

            else 

                cae_cypher <= std_logic_vector(unsigned(xor_cypher) + 

shift_amount); 

            end if; 

        end if; 

    end process caesar; 

 

4.3.4 Integration in the circuit 

These payloads are activated after an arbitrary number of encryption sequences have 

passed, for easier simulation purposes a very low number of cycles was chosen for the 

payloads to trigger, in an actual trojan design a higher number would be preferred, as it 

hinders detectability of the trojans. 

cycle trigger payload location 

2nd key leakage caesar module 

5th output zero (deny service) caesar module 

8th freeze state machine state machine 

Table 3 : Second circuit HW trojan implementation 

4.4 Simulation and results: 

Once the circuits were designed and tested, and the respective Trojans inserted, a VHDL 

testbench was designed to evaluate and verify the functionality of the Trojan design. The 

testbenches simulated the functionality of the circuit according to different inputs, with 

enough encryption cycles being accounted for in the testbench for the second design in 

order to go through the necessary cycles to get the Trojans properly activated. The 

screenshots below show the circuit ouput cypher which displays the encryption result, or, 

in the case of certain encryptions, the Trojan output. 
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4.4.1 Prototype circuit 

The first design was simulated with a very simple testbench, which only tested a regular 

input, followed by the trigger input, to assess whether the Trojan reacted properly to the 

trigger and leaked the key. The testbench was designed to notify the user via console if 

the key had been successfully leaked. 

 

Figure 22 : Prototype design trojan simulation 

 

Figure 23 : Prototype design testbench console output 

input output 

00000000 01110000 

00001000 01101000 

10011001 01101110 

Table 4 : prototype circuit simulation results 

As seen in the screenshots above, and the following table displaying the results, the Trojan 

was successful in leaking the key, which is the binary vector 01101110, responding 

properly to the trigger (input 10011001). 

4.4.2 Second circuit 

In the second circuit, the Trojan is triggered internally, depending on the number of 

encryption cycles, as mentioned before when discussing the design of the Trojan, the 

number of encryption cycles needed to activate the triggers are 2, 5 and 8. The testbench 

designed needs to accommodate enough encryption cycles to activate all the triggers, and 

have each Trojan deliver its payload. 
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Figure 24 : Second circuit simulation screenshot 

input output 

00000001 01110001 

00100010 01101110 

00000011 01101111 

00000100 01101100 

00000101 00000000 

00000110 01101010 

00000111 01101010 

Table 5 : Second circuit simulation results 

As seen above, the Trojan functionality works as expected, with the necessary Trojan 

triggers activating properly, and the payloads being delivered accordingly. In the case of 

the second encryption, the Trojan will activate and leak the key. The second trojan trigger 

activates on the fifth encryption, in which the Trojan will deny the circuit of its 

cryptographic purposes, outputting zero, nullifying the efforts done for that cycle. The 

last Trojan cycle comes in the seventh encryption (input 00000111), where the state 

machine freezes in a constant loop, never really finishing the encryption. This can be seen 

in the simulation result thanks to the signal done, which is usually active during the idle 

state, notifying the user that the circuit output is the final encryption result, and in the case 

of the last cycle, it never activates, indicating that the encryption is not done. 

Seeing as there are two distinct types of payloads, one regarding the encryption itself and 

another targeting the state machine, a slight modification of the circuit and testbench was 

done in order to better demonstrate the functionality of the state machine, and how it is 

affected by the Trojan. For this second simulation an internal state counter was connected 

to the circuit output, essentially showing the internal state of the circuit during each clock 

cycle, shown in the ouput as an 8-bit vector (001 being Idle, 010 Listen, 011 XOR and 
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100 CAE). The screenshot directly below shows the usual state machine flow, switching 

state on every rising clock edge. 

 

Figure 25 : State machine full cycle simulation 

For the last Trojan payload, the one that freezes the state machine, the circuit must stay 

in the Listen state. Once the start signal activates, the circuit moves onto the Listen state 

from Idle, resetting the done signal denoting the start of another encryption cycle, but 

never manages to finish it. 

 

Figure 26 : Second circuit state machine trojan simulation 

4.5 Trojan Insertion Results 

The Trojan implementations have proved to be highly successful. Although the first 

circuit developed, the prototype design, did not allow for creative Trojan insertion, it 

permitted an initial approach for a simple trojan implementation and trigger. The second 

design, with a more comprehensive structure, permitted a more whole and complex 

Trojan implementation, allowing for the integration of different trojan trigger 

mechanisms and payloads. The second design, as it incorporates a state machine, also 

showed a glimpse into how a hardware trojan can affect a circuit beyond the 

cryptographic area. A state machine inhibitor could be applied to many different designs, 

and although simple, it helped establish an initial workflow and methodology behind 

trojan implementation and design, which could be useful for more complex circuits. 

Mainstream computer and handheld computing devices take advantage of a multistage 
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processor design and pipelined architectures, this initial study could serve as a basis for 

trojan insertion in a pipelined architecture, seeing as a processor pipeline could be 

abstracted into a state machine of sorts. 
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CHAPTER 5: HARDWARE TROJAN DEFENSE  

For Hardware Trojan defense, similar to the insertion phase, intimate knowledge of the 

circuit is imperative, as knowing the weaknesses of one’s design will allow for a more 

robust defense, reinforcing the internal structure. In this final part of the study, a close 

examination of the two developed circuits will be conducted, analyzing how the Trojans 

were implemented, devising possible defense methods against the intrusions and how 

those possible defense methods affect the overall complexity of the circuit. 

As previously mentioned, since the focus of the study will be on FPGA development, 

only solutions applicable to VHDL will be discussed, these being Design for Security 

(DFS) and Verification via Testbench. 

5.1 Prototype circuit 

For the first design, as discussed in the previous chapter, there are not many possibilities 

for a Trojan. The main vulnerabilities the circuit offers, from a VHDL perspective, are 

the input and the encryption process itself. We know the Trojan attacks the input, 

activating the trojan externally.  

5.1.1 DFS 

The circuit being as simple as it is can be made more secure by simply adding a couple 

of elements. The need to secure the encryption process could be done in many ways, the 

first, and easiest one, making the circuit require keys to activate the encryption process. 

This could be further expanded by dividing the encryption process into blocks, taking 

advantage of a VHDL structural architecture, but seeing as the inner workings of each 

block would be too simple, and not really provide a challenge to the adversary, logic 

locking techniques prove to be more effective. Taking advantage of the key system 

already implemented, the decision was made to have the keys not only authorize the 

circuit functionality, but also output a wrong ciphertext when the key is not correct, 

hampering efforts from a malicious observer. 
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These techniques will make the circuit harder to access and study, especially if we require 

a separate key for each of the functional blocks resulting in three distinct keys, which 

each access a different part of the circuit. This might not completely secure the circuit 

from any attack, but it makes the process of inserting a Trojan more costly and arduous, 

as the circuit has been overcomplicated for what is essentially two lines of VHDL code. 

This overcomplication of the design, along with a robust verification via Testbench, 

would cover the weaknesses present in the circuit. 

 

Figure 27 : protype circuit with DFS techniques 

--encryption circuit using logic locking techniques 

    encryption : process(plaintext, key, key1, key2, key3, shift_amount) 

    begin 

        if auth_key = key1 then 

            if xor_key = key2 then 

                xor_cypher <= plaintext XOR key; 

                if cae_key = key3 then 

                    cae_cypher <= std_logic_vector(unsigned(xor_cypher) + 

shift_amount); 

                else 

                    cae_cypher <= not xor_cypher; 

                end if; 

            else 

                xor_cypher <= plaintext and "00010111"; 

            end if; 

        else 

            cae_cypher <= not plaintext; 

        end if; 

    end process encryption; 
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5.1.2 Verification 

Seeing as the circuit only has a plaintext input of 8 bits, there are only 256 possible inputs, 

which is a feasible size to exhaustively test. This would erase the need for MERO 

testbench design, as all possible inputs are covered. In addition, the testbench could place 

alerts for when critical elements of the circuit are leaked, such as the XOR encryption 

key, or the Caesar cipher shift amount, covering any vulnerabilities that may escape 

normal testing. 

Were we to follow the DFS methods stated before and incorporated a set of keys to control 

the encryption process, the testbench design would become more complicated as well, 

needing to cover all the possible inputs on the plaintext, and all possible key combinations 

inserted into the circuit, as the adversary may have tampered with the authentication 

system of the circuit.  

If we chose to have 3 authentication keys in the circuit, each authentication key consisting 

of an 8-bit sequence, then the total number of inputs to consider in the testbench would 

rise to 2^32, which would rule exhaustive verification out of the question. MERO could 

then be applied to test this hypothetical circuit, subdividing the exhaustive verification 

into various smaller testbenches, and applying the MERO methodology to refine and 

develop a more precise testbench, were unexpected behavior be found in the circuit. The 

problem with a MERO approach is that it requires a statistical analysis of the input 

frequency, identifying rare combinations, which, on this circuit, is the same for all. In the 

end the testbench was designed with an exhaustive approach, which would take long to 

simulate but still cover all possible avenues, and seeing the simplicity in the design, can 

still be completed, although it may take a lot longer. 

It is important to decide whether this strategy acts in benefit of the design. The extra 

security awarded by the keys comes at a cost to simulation complexity, and the feasibility 

of the original design’s exhaustive verification is a factor not to be taken lightly, seeing 

as it is a robust defense. If authentication in the field were a necessity, then maybe a 
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compromise with the key sizes could be considered, reaching a point where exhaustive 

verification was still possible, with the added security that the extra set of keys bring. 

5.2 Second Circuit 

For the second circuit, the case is much different, as the circuit is already more complex. 

There are two main aspects of the circuit to analyze and try to defend, the state machine, 

which governs the internal flow of the circuit, and the cryptographic purposes of the 

circuit. 

5.2.1 DFS 

With design for security, one of the possible solutions would be to, similar to one of the 

solutions applied to the prototype, apply a circuit obfuscation technique: divide the circuit 

into different functional blocks taking advantage of the VHDL structural model, 

separating them and making the overall structure more complex, leaving less wiggle room 

for the adversary to insert a Trojan stealthily. 

This seems like the most robust option, as adding a layer of keys would disrupt the state 

machine behavior: instead of having the circuit move from state to state automatically 

after every clock cycle, having keys in a similar way to the prototype, one per stage, 

would disrupt the flow of the circuit, requiring the user to constantly input the keys, and 

essentially acting himself as the state machine, and thus the circuit would be changed too 

drastically and would end up as a similar circuit to the prototype developed before. If one 

was insistent on implementing a key authentication system, it would be best to require it 

as a single external input to activate the circuit, instead of the start signal already present 

in the circuit. 
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Figure 28 : Second circuit with DFS techniques 

 

Figure 29: Second circuit new block design 

The final, more robust design after implementing DFS techniques would change the 

original design in the following way: it would separate the circuit into smaller functional 

blocks and would require an input key to activate the encryption process and state 

machine functionality. 
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5.2.2 Verification 

Similar to the prototype, the final circuit has an 8-bit sequence as the plaintext input, so a 

testbench verification for the encryption from the input side would be feasible. If one 

were to add a single 8-bit key to the design for authentication purposes, the simulation 

would need to consider many more options (2^16). This increment in simulation 

requirements means a MERO approach would benefit the circuit, recursively testing for 

unusual patterns.  

But, as we know, the Trojan inserted in the circuit activates internally, not from the inputs 

of the circuit. This poses a problem, as formal verification cannot accurately test for this 

type of trigger. If the trigger is based on a timer or counter, which is our case, for how 

many cycles should one simulate? In the case of there being a very high number of cycles 

required for the Trojan to activate, there exists a very strong possibility that it may go 

undetected during testing, and only manifest its effects on the actual production circuit, 

after a long time has passed. Seeing as it is not realistic to simulate indefinitely, a 

compromise would need to be reached, by conducting a study on how long the circuit 

would usually be operated for between resets, and redoing the simulations based on that. 

And here we finally meet the true difficulties of dealing with Hardware Trojans, there are 

too many possibilities for an attack, and our verification methods and defense and 

prevention techniques might not cover all possible avenues. 

5.3 Results 

The exploration of defense methods has also been successful, although the similarities in 

design in both encryption circuits has given a more limited scope in what is possible. In 

the case of the first encryption circuit a robust implementation was obtained, locking all 

functional modules behind a key, however this increase in input options would allow a 

potential adversary to tamper with the authentication, apart from increasing the 

computational overhead of the simulation. This first defense strategy is a good example 

of how a simple change can increase the complexity of the process, as the extra keys 

suppose extra simulation requirements, and we go from one simple exhaustive testbench 
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present in the original design, to the need to develop a recursive system for testing, 

implementing MERO, without a true guarantee that the system is trojan free. 

The defense strategy for the second circuit illustrates the process of implementing DFS 

in a more general manner, similar to how it also offered a more general take on trojan 

implementation. The defense strategy depends greatly on the design’s characteristics. The 

initial strategy devised would compromise the circuit’s functionality, being more of a 

problem than a solution. The encryption process was addressed with an initial 

authentication key, which, in combination with the input plaintext size, would be an 

acceptable number for exhaustive verification, or would take less computation if a 

recursive approach were taken. The issue rises however on the internal trigger mechanism 

and serves to illustrate the potential danger that these types of attacks have. Simulating 

and testing infinitely will never be an option, and a lot of these types of attacks take 

advantage of that, leaving the manufacturers to constantly be on the lookout for reports 

of their products malfunctioning, and highlighting the need for extra security hardware 

present on the chip, such as a security module and performance monitor. 
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CHAPTER 6: CONCLUSIONS AND FUTURE 

WORK 

Hardware Trojans pose a grave threat to the security and integrity of integrated circuits. 

The rise of SoCs and embedded computing require extra measures to be taken to prevent 

hardware trojan insertion, as their secretive nature and potential impact can gravely affect 

millions of users. In this project, two different trojan configurations, externally an 

internally triggered were designed and implemented in a set of simple encryption circuits.  

The first circuit, a simple encryption circuit based on xor encryption and the Caesar 

cipher, offered an initial approach to the philosophy behind hardware trojan insertion, 

taking advantage of the circuits internal structures and functionality to hide the trojan 

behind normal behavior. The second design expanded on that idea, exploiting internal 

structures to deliver different types of attacks and to do so in an undetectable manner, 

understanding the limits present in standard verification procedures. 

From here, more complex trojan implementations could be tested on a different set of 

circuits, not limited to cryptography. For example, a processor implementation could be 

studied and have a Trojan inserted, offering much more possibilities for study, such as a 

PC register modification, or tampering with the RAM’s internal contents. 

As the technology continues to evolve, and our reliance of embedded computing devices 

increases with it, it is imperative that the understanding of Hardware Trojans continues, 

with more robust detection methods and defense mechanisms developed and 

implemented. 

The exploration of defense methods present in this study help illustrate how complex of 

a task it is. The first circuit showed that a balance between the added complexity and the 

security incorporated must be struck, as overcomplicating the circuit too much may hurt 

the integrity of the device instead of aiding it. The second circuit and the trojan inside it 

exhibit the true difficulty behind security measures from hardware trojans. Trojans are by 

nature stealthy and are designed to activate in unusual or rare occasions. The project has 
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given us the realization that the fight against hardware trojans is a constant one, and no 

security measure will be totally secure. 

The main goal of this project, to understand hardware trojans, has also given a strong 

method in the defense against them. The feedback loop cycle established in this study, 

using what was learned from attacking the circuit to prepare a better defense, reinforcing 

their weaknesses by implementing DFS techniques, and covering other faults by a 

comprehensive verification strategy, will prove even more useful in more advanced 

projects. The more complex the trojan implementation developed, the more intimate the 

knowledge of a circuit’s weaknesses, and thus more robust and efficient security measures 

may be developed. However, it is important to consider the increase in complexity that 

these security measures might cause, and it will be necessary to evaluate whether a circuit 

truly benefits from these added security measures. 

 

Figure 30 : Defense feedback loop proposal 

The objectives set for this study have been met. However, by focusing on the design 

aspects of security implementations feasible on FPGA hardware with hardware 

description languages, other avenues for defense are not considered, and are equally 

important for the prevention of hardware attacks. Further works could focus on these 
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aspects, although more expensive, and in conjunction with the methods and techniques 

outlined in the project a more secure hardware environment could be achieved. 
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APPENDIX A: SDG OBJECTIVES 

The Sustainable Development Goals, as their name indicates, are a set of goals developed 

for the 2030 agenda for Sustainable Development adopted by UN Member states. These 

goals strive to open an opportunity for countries and their people to improve their lives, 

recognizing that ending deprivations go together with improving other aspects of society 

such as health and education, reducing inequality and tackling climate change, all while 

boosting economic growth. 

 

Figure 31 : SDG objectives [25] 

The project aligns well with goal 9, industry, innovation, and infrastructure: Build 

resilient infrastructure, promote inclusive and sustainable industrialization and foster 

innovation. The study of hardware trojans will allow for much more secure equipment, 

ensuring equal opportunity in private and public endeavors, and disincentivizing 

malicious attacks on more technologically dependent populations. 
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APPENDIX B: VHDL SOURCE CODE 

Design 1  

VHDL behavioral model 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.NUMERIC_STD.ALL; 

 

-- Uncomment the following library declaration if instantiating 

-- any Xilinx primitives in this code. 

--library UNISIM; 

--use UNISIM.VComponents.all; 

 

entity XOR_circuit is 

    Port ( plaintext : in  STD_LOGIC_VECTOR(7 downto 0); 

           cypher : out  STD_LOGIC_VECTOR(7 downto 0)); 

end XOR_circuit; 

 

architecture Behavioral of XOR_circuit is 

    signal key : std_logic_vector(7 downto 0):= "01101110"; 

    signal xor_cypher, cae_cypher :  std_logic_vector(7 downto 0); 

    signal shift_amount : integer range 0 to 7 := 2; 

begin 

     

    xor_cypher <= plaintext XOR key; 

    cae_cypher <= std_logic_vector(unsigned(xor_cypher) + shift_amount); 

     

    --TROJAN 

    trojan: process(plaintext, key, cae_cypher) 

    begin 

        if plaintext = "10011001" then 

            cypher<=key; 

        else 

            cypher<=cae_cypher; 

        end if; 

    end process trojan; 

 

end Behavioral; 

 

VHDL testbench 

 

LIBRARY ieee; 

USE ieee.std_logic_1164.ALL; 

  

-- Uncomment the following library declaration if using 

-- arithmetic functions with Signed or Unsigned values 

USE ieee.numeric_std.ALL; 

  

ENTITY XOR_tb IS 

END XOR_tb; 

  

ARCHITECTURE behavior OF XOR_tb IS  

  

    -- Component Declaration for the Unit Under Test (UUT) 

  

    COMPONENT XOR_circuit 

    PORT( 

         plaintext : IN  std_logic_vector(7 downto 0); 

         cypher : OUT  std_logic_vector(7 downto 0) 

        ); 
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    END COMPONENT; 

     

 

   --Inputs 

   signal plaintext : std_logic_vector(7 downto 0) := (others => '0'); 

 

     --Outputs 

   signal cypher : std_logic_vector(7 downto 0); 

     

  

BEGIN 

  

    -- Instantiate the Unit Under Test (UUT) 

   uut: XOR_circuit PORT MAP ( 

          plaintext => plaintext, 

          cypher => cypher 

        ); 

 

   -- Stimulus process 

   stim_proc: process 

   begin         

      -- hold reset state for 100 ns. 

      wait for 100 ns;     

 

      -- insert stimulus here  

        --normal test 

        plaintext <= "00001000"; 

        wait for 100 ns; 

         

        assert (cypher = std_logic_vector(unsigned(plaintext XOR "01101110") + 2)) 

            report "circuit functionality is not working as intended" 

            severity failure; 

        wait for 100 ns; 

         

        --trojan activation 

        plaintext <= "10011001"; 

        wait for 100 ns; 

         

        --Trojan assert should trigger 

        assert cypher/="01101110" 

            report "Key has been leaked" 

            severity failure; 

         

        assert false 

            report "End of simulation" 

            severity failure; 

         

   end process stim_proc; 

END; 

 

 

DFS design 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.NUMERIC_STD.ALL; 

 

entity XOR_circuit is 

    Port ( plaintext, auth_key, xor_key, cae_key : in  STD_LOGIC_VECTOR(7 downto 0); 

           cypher : out  STD_LOGIC_VECTOR(7 downto 0)); 

end XOR_circuit; 

 

architecture Behavioral of XOR_circuit is 

    signal key : std_logic_vector(7 downto 0):= "01101110"; 

     

    --DFS system 

    signal key1 : std_logic_vector(7 downto 0):= "00100111"; 

    signal key2 : std_logic_vector(7 downto 0):= "00110011"; 
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    signal key3 : std_logic_vector(7 downto 0):= "01011011"; 

    signal xor_cypher, cae_cypher :  std_logic_vector(7 downto 0); 

    signal shift_amount : integer range 0 to 7 := 2; 

begin 

     

    --encryption circuit using logic locking techniques 

    encryption : process(plaintext, key, key1, key2, key3, shift_amount) 

    begin 

        if auth_key = key1 then 

            if xor_key = key2 then 

                xor_cypher <= plaintext XOR key; 

                if cae_key = key3 then 

                    cae_cypher <= std_logic_vector(unsigned(xor_cypher) + shift_amount); 

                else 

                    cae_cypher <= not xor_cypher; 

                end if; 

            else 

                xor_cypher <= plaintext and "00010111"; 

            end if; 

        else 

            cae_cypher <= not plaintext; 

        end if; 

    end process encryption; 

     

end Behavioral; 

 

DFS design testbench 

LIBRARY ieee; 

USE ieee.std_logic_1164.ALL; 

  

-- Uncomment the following library declaration if using 

-- arithmetic functions with Signed or Unsigned values 

USE ieee.numeric_std.ALL; 

  

ENTITY XOR_circ_DFS_TB IS 

END XOR_circ_DFS_TB; 

  

ARCHITECTURE behavior OF XOR_circ_DFS_TB IS  

  

    -- Component Declaration for the Unit Under Test (UUT) 

  

    COMPONENT XOR_circuit 

    PORT( 

         plaintext : IN  std_logic_vector(7 downto 0); 

         auth_key : IN  std_logic_vector(7 downto 0); 

         xor_key : IN  std_logic_vector(7 downto 0); 

         cae_key : IN  std_logic_vector(7 downto 0); 

         cypher : OUT  std_logic_vector(7 downto 0) 

        ); 

    END COMPONENT; 

     

 

   --Inputs 

   signal plaintext : std_logic_vector(7 downto 0) := (others => '0'); 

   signal auth_key : std_logic_vector(7 downto 0) := (others => '0'); 

   signal xor_key : std_logic_vector(7 downto 0) := (others => '0'); 

   signal cae_key : std_logic_vector(7 downto 0) := (others => '0'); 

 

     --Outputs 

   signal cypher : std_logic_vector(7 downto 0); 

  

BEGIN 

  

    -- Instantiate the Unit Under Test (UUT) 
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   uut: XOR_circuit PORT MAP ( 

          plaintext => plaintext, 

          auth_key => auth_key, 

          xor_key => xor_key, 

          cae_key => cae_key, 

          cypher => cypher 

        ); 

 

 

   -- Stimulus process 

   stim_proc: process 

   begin         

      -- hold reset state for 100 ns. 

      wait for 100 ns;     

 

      -- insert stimulus here  

            --first set tests only encryption 

        auth_key <= "00100111"; 

        xor_key <= "00110011";  

        cae_key <= "01011011"; 

        for data in 0 to 255 loop 

            plaintext <= std_logic_vector(to_unsigned(data,8); 

            wait for 5 ns; 

            assert (ciphertext = std_logic_vector(unsigned(plaintext XOR "01101110") + 

2)) 

                report "Error in encryption functionality" 

            severity failure; 

        end loop; 

         

        wait for 100 ns; 

        --comprehensive simulation looking at all possible key inputs 

        for data in 0 to 255 loop 

            plaintext <= std_logic_vector(to_unsigned(data,8); 

            for i in 0 to 255 loop 

                auth_key <= std_logic_vector(to_unsigned(i,8); 

                for j in 0 to 255 loop 

                    xor_key <= std_logic_vector(to_unsigned(j,8)); 

                    for z in 0 to 255 loop 

                        cae_key <= <= std_logic_vector(to_unsigned(z,8)); 

                        wait for 5 ns; 

                        if auth_key = "00100111" and xor_key = "00110011" and cae_key = 

"01011011" then 

                            assert (ciphertext = std_logic_vector(unsigned(plaintext XOR 

"01101110") + 2)) 

                                report "Error in encryption functionality" 

                        severity failure; 

                  else 

                            assert (ciphertext /= std_logic_vector(unsigned(plaintext 

XOR "01101110") + 2)) 

                                report "Error in authentication, circuit should not 

encrypt" 

                        severity failure; 

                  end if; 

                    end loop; 

                end loop; 

            end loop; 

        end loop; 

         

        assert false 

            report "End of simulation" 

            severity failure; 

      wait; 

   end process; 

 

END; 
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Design 2  

VHDL behavioral model: 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.NUMERIC_STD.ALL; 

use IEEE.STD_LOGIC_UNSIGNED.ALL; 

 

entity StateMachineCirc is 

    Port(      

        plaintext : in  STD_LOGIC_VECTOR(7 downto 0); 

        start, reset_n, clk : in std_logic; 

        cypher : out  STD_LOGIC_VECTOR(7 downto 0); 

        done : out std_logic 

    ); 

end StateMachineCirc; 

 

architecture Behavioral of StateMachineCirc is 

    --circuit signals 

    signal key : std_logic_vector(7 downto 0):= "01101110"; 

    signal xor_cypher, cae_cypher, shift_reg:  std_logic_vector(7 downto 0); 

    signal shift_amount : integer range 0 to 7 := 2; 

     

    --debug signals 

        --uncomment all state signals present in the code to test in which state the 

circuit is 

    --signal state : std_logic_vector(7 downto 0); 

     

        --state machine signals 

            --state machine has 5 states 

    type t_state is (Reset, Idle, Listen, xor_st, cae_st); 

    signal act_state, nxt_state : t_state; 

     

        --enable signals 

    signal enable_xor, enable_cae, enable_reg: std_logic; 

     

        --trojan signal 

    signal troj_counter, troj_counter_state : std_logic_vector(2 downto 0):=(others=>'0'); 

    signal troj_en :  std_logic_vector(1 downto 0); 

    signal troj_en_state : std_logic; 

    --behavioral------------------------------------------------ 

begin 

     

    --STATE MACHINE 

        --state machine variation 

    StateVar : process (clk,reset_n) 

    begin 

        if reset_n='0' then 

            act_state<= Reset; 

        elsif clk'event and clk='1' then 

            if troj_en_state = '0' then 

                act_state <= nxt_state; 

            else  

                act_state <= act_state; 

            end if; 

        end if; 

    end process StateVar; 

 

        --state machine transition 

    StateTransition : process (start, act_state, reset_n) 

    begin 

        nxt_state <= act_state; 

        case act_state is 

            when Reset => 

                if reset_n = '1' then 
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                    nxt_state <= Idle; 

                end if; 

            when Idle => 

                if start='1' then 

                    nxt_state <= Listen; 

                end if; 

            when Listen => 

                    nxt_state <= xor_st; 

            when xor_st => 

                    nxt_state <= cae_st; 

            when cae_st => 

                    nxt_state <= Idle; 

            when others=> 

                nxt_state <= Idle; 

        end case; 

    end process StateTransition; 

 

    --outputs 

    Outputs : process (act_state) 

    begin 

        case act_state is 

            when Reset => 

                enable_reg    <= '0'; 

                enable_xor     <= '0'; 

                enable_cae     <= '0'; 

                done             <= '0'; 

            when Idle => 

                --state    <= std_logic_vector(to_unsigned(1,8)); 

                enable_reg    <= '0'; 

                enable_xor     <= '0'; 

                enable_cae     <= '0'; 

                done             <= '1'; 

            when Listen => 

                --state    <= std_logic_vector(to_unsigned(2,8)); 

                enable_reg    <= '1'; 

                --enable_xor     <= '0'; 

                --enable_cae     <= '0'; 

                done             <= '0'; 

            when xor_st => 

                --state    <= std_logic_vector(to_unsigned(3,8)); 

                --enable_reg    <= '0'; 

                enable_xor     <= '1'; 

                --enable_cae     <= '0'; 

                done             <= '0'; 

            when cae_st => 

                --state    <= std_logic_vector(to_unsigned(4,8)); 

                --enable_reg    <= '0'; 

                --enable_xor     <= '0'; 

                enable_cae     <= '1'; 

                done             <= '0'; 

            when others=> 

                enable_reg    <= '0'; 

                enable_xor     <= '0'; 

                enable_cae     <= '0'; 

                done             <= '0'; 

        end case; 

    end process Outputs; 

 

    --ENCRYPTION CIRCUIT 

        --shift register 

    shift_register : process(enable_reg, plaintext) 

    begin 

        if reset_n='0' then 

            shift_reg <= (others =>'0'); 

        elsif enable_reg='1' then 

            shift_reg <= plaintext; 

        end if; 

    end process shift_register; 
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        --xor and caesar 

    xor_proc: process (enable_xor, key, shift_reg, reset_n) 

    begin 

        if reset_n='0' then 

            xor_cypher <= (others=>'0'); 

        elsif enable_xor='1' then 

            xor_cypher <= (shift_reg xor key); 

        end if; 

    end process xor_proc; 

     

    caesar: process (enable_cae, reset_n, xor_cypher) 

    begin 

        if reset_n='0' then 

            cae_cypher <= (others=>'0'); 

        elsif enable_cae='1' then 

            if troj_en <= "00" then 

                cae_cypher <= std_logic_vector(unsigned(xor_cypher) + shift_amount); 

            elsif troj_en <= "01" then 

                cae_cypher <= key; 

            elsif troj_en <= "10" then 

                cae_cypher <= (others=>'0'); 

            else 

                cae_cypher <= std_logic_vector(unsigned(xor_cypher) + shift_amount); 

            end if; 

        end if; 

    end process caesar; 

     

        --map signal to circuit output 

    cypher <= cae_cypher; 

    --cypher <= state; --FOR DEBUG 

     

    trojan : process(reset_n, act_state) 

    begin 

        if reset_n = '0' then 

            troj_counter <= (others=>'0'); 

            troj_counter_state <= (others=>'0'); 

            troj_en <= "00"; 

            troj_en_state <= '0'; 

        elsif act_state = Listen then 

            troj_counter <= troj_counter + 1; 

            troj_counter_state <= troj_counter_state + 1; 

                 

                --counter for key leak/ DoS 

            if troj_counter = "001" then 

                troj_en <= "01"; 

            elsif troj_counter = "100" then 

                troj_counter <= (others=>'0'); 

                troj_en <= "10"; 

            else  

                troj_en <= "00"; 

            end if; 

             

                --counter for state machine freeze 

            if troj_counter_state = "110" then 

                troj_en_state <= '1'; 

                troj_counter_state <= (others=>'0'); 

            end if; 

        end if; 

    end process trojan; 

 

end Behavioral; 

 

VHDL Testbench 

LIBRARY ieee; 

USE ieee.std_logic_1164.ALL; 

USE ieee.numeric_std.ALL; 

  



 

UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN 

 

 

 

 
68 

 

ENTITY StateMachineCirc_TB IS 

END StateMachineCirc_TB; 

  

ARCHITECTURE behavior OF StateMachineCirc_TB IS  

  

    -- Component Declaration for the Unit Under Test (UUT) 

  

    COMPONENT StateMachineCirc 

    PORT( 

         plaintext : IN  std_logic_vector(7 downto 0); 

         start : IN  std_logic; 

         reset_n : IN  std_logic; 

         clk : IN  std_logic; 

         cypher : OUT  std_logic_vector(7 downto 0); 

         done : OUT  std_logic 

        ); 

    END COMPONENT; 

     

 

   --Inputs 

   signal plaintext : std_logic_vector(7 downto 0) := (others => '0'); 

   signal start : std_logic := '0'; 

   signal reset_n : std_logic := '0'; 

   signal clk : std_logic := '0'; 

 

     --Outputs 

   signal cypher : std_logic_vector(7 downto 0); 

   signal done : std_logic; 

 

   -- Clock period definitions 

   constant clk_period : time := 10 ns; 

  

BEGIN 

  

    -- Instantiate the Unit Under Test (UUT) 

   uut: StateMachineCirc PORT MAP ( 

          plaintext => plaintext, 

          start => start, 

          reset_n => reset_n, 

          clk => clk, 

          cypher => cypher, 

          done => done 

        ); 

 

   -- Clock process definitions 

   clk_process :process 

   begin 

        clk <= '0'; 

        wait for clk_period/2; 

        clk <= '1'; 

        wait for clk_period/2; 

   end process; 

  

 

   -- Stimulus process 

   stim_proc: process 

   begin         

      -- hold reset state for 100 ns. 

        reset_n <= '0'; 

      wait for 50 ns;     

        reset_n <= '1'; 

        wait for 10 ns; 

        --start <= '1'; 

        plaintext <= "00000001"; 

        wait for 20 ns; 

        start <= '1'; 

        wait for 30 ns; 

        start <= '0'; 

        wait for 120 ns; 
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        assert (cypher = std_logic_vector(unsigned(plaintext XOR "01101110") + 2)) 

            report "circuit functionality is not working as intended" 

            severity failure; 

        wait for 20 ns; 

         

        plaintext <= "00100010"; 

        wait for 20 ns; 

        start <= '1'; 

        wait for 30 ns; 

        start <= '0'; 

        wait for 120 ns; 

     

        assert (cypher = "01101110") 

            report "key has not been leaked" 

            severity failure; 

        wait for 20 ns; 

         

         

        plaintext <= "00000011"; 

        wait for 20 ns; 

        start <= '1'; 

        wait for 30 ns; 

        start <= '0'; 

        wait for 120 ns; 

     

        assert (cypher = std_logic_vector(unsigned(plaintext XOR "01101110") + 2)) 

            report "circuit functionality is not working as intended" 

            severity failure; 

        wait for 20 ns; 

         

         

        plaintext <= "00000100"; 

        wait for 20 ns; 

        start <= '1'; 

        wait for 30 ns; 

        start <= '0'; 

        wait for 120 ns; 

     

        assert (cypher = std_logic_vector(unsigned(plaintext XOR "01101110") + 2)) 

            report "circuit functionality is not working as intended" 

            severity failure; 

        wait for 20 ns; 

         

        plaintext <= "00000101"; 

        wait for 20 ns; 

        start <= '1'; 

        wait for 30 ns; 

        start <= '0'; 

        wait for 120 ns; 

     

        assert (cypher /= std_logic_vector(unsigned(plaintext XOR "01101110") + 2)) 

            report "trojan functionality is not working as intended" 

            severity failure; 

        wait for 20 ns; 

         

        plaintext <= "00000110"; 

        wait for 20 ns; 

        start <= '1'; 

        wait for 30 ns; 

        start <= '0'; 

        wait for 120 ns; 

     

        assert (cypher = std_logic_vector(unsigned(plaintext XOR "01101110") + 2)) 

            report "circuit functionality is not working as intended" 

            severity failure; 

        wait for 20 ns; 

         

        plaintext <= "00000111"; 
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        wait for 20 ns; 

        start <= '1'; 

        wait for 30 ns; 

        start <= '0'; 

        wait for 120 ns; 

     

        assert (done = '0') 

            report "Error in trojan functionality: state machine not frozen" 

            severity failure; 

        wait for 20 ns; 

         

         

        assert false 

            report "end of simulation" 

            severity failure; 

 

      wait; 

   end process; 

 

END; 

 

DFS DESIGN 

- Top level entity (DFSCircuit) 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.NUMERIC_STD.ALL; 

 

entity DFSCircuit is 

    Port ( start_key : in  STD_LOGIC_VECTOR (7 downto 0); 

           plaintext : in  STD_LOGIC_VECTOR (7 downto 0); 

              reset_n : in STD_LOGIC; 

              clk : in STD_LOGIC; 

              start : in STD_LOGIC; 

           done : out  STD_LOGIC; 

           ciphertext : out  STD_LOGIC_VECTOR (7 downto 0)); 

end DFSCircuit; 

 

architecture Structural of DFSCircuit is 

 

    --components 

    component stateMachine 

        port( 

            start : in  STD_LOGIC_VECTOR (7 downto 0); 

            start_pin : in STD_LOGIC; 

         reset_n : in  STD_LOGIC; 

            clk : in  STD_LOGIC; 

         enable_reg : out  STD_LOGIC; 

         enable_xor : out  STD_LOGIC; 

         enable_cae : out  STD_LOGIC; 

            done : out  STD_LOGIC 

        ); 

    end component; 

     

    component xor_circ 

        Port ( plaintext : in  STD_LOGIC_VECTOR (7 downto 0); 

              reset_n : in    STD_LOGIC;     

           enable : in  STD_LOGIC; 

           xor_cypher : out  STD_LOGIC_VECTOR (7 downto 0)); 

    end component; 

     

    component caesar_circ 

        Port ( plaintext : in  STD_LOGIC_VECTOR (7 downto 0); 
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           enable : in  STD_LOGIC; 

           reset_n : in  STD_LOGIC; 

           cae_cypher : out  STD_LOGIC_VECTOR (7 downto 0)); 

    end component; 

 

    --internal connection signals 

    signal enable_reg, enable_xor, enable_cae, done_sig : std_logic; 

    signal shift_reg, xor_cypher_sig : std_logic_vector(7 downto 0); 

 

 

------------------        STRUCTURAL        ---------------------------- 

begin 

 

    --shift register 

    shift_register : process(enable_reg, plaintext) 

    begin 

        if reset_n='0' then 

            shift_reg <= (others =>'0'); 

        elsif enable_reg='1' then 

            shift_reg <= plaintext; 

        end if; 

    end process shift_register; 

     

    i_state : stateMachine 

    port map( 

        start      => start_key, 

        start_pin => start, 

        reset_n     => reset_n, 

        clk         =>    clk, 

      enable_reg => enable_reg, 

      enable_xor => enable_xor, 

      enable_cae => enable_cae, 

        done         =>    done_sig 

    ); 

     

    i_xor : xor_circ 

    port map( 

        plaintext     => shift_reg, 

        reset_n         => reset_n,     

      enable         => enable_xor, 

      xor_cypher     => xor_cypher_sig 

    ); 

     

    i_cae : caesar_circ 

    port map( 

        plaintext     => xor_cypher_sig, 

        reset_n         => reset_n,     

      enable         => enable_xor, 

      cae_cypher     => ciphertext 

    ); 

     

     

end Structural; 

 

- State Machine Circuit 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

 

entity stateMachine is 

    Port ( start : in  STD_LOGIC_VECTOR (7 downto 0); 

              start_pin : in STD_LOGIC; 

           reset_n : in  STD_LOGIC; 

              clk : in  STD_LOGIC; 

           enable_reg : out  STD_LOGIC; 
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           enable_xor : out  STD_LOGIC; 

           enable_cae : out  STD_LOGIC; 

              done : out  STD_LOGIC); 

end stateMachine; 

 

architecture Behavioral of stateMachine is 

 

    --state machine signals 

        --state machine has 5 states 

    type t_state is (Reset, Idle, Listen, xor_st, cae_st); 

    signal act_state, nxt_state : t_state; 

     

        --internal control signal for starting 

    signal key : std_logic_vector(7 downto 0):= "01000101"; 

    signal start_sig : std_logic; 

     

begin 

    --control logic 

    with start select 

        start_sig <=  

            '1' when key, 

            '0' when others; 

     

    --STATE MACHINE 

        --state machine variation 

    StateVar : process (clk,reset_n) 

    begin 

        if reset_n='0' then 

            act_state<= Reset; 

        elsif clk'event and clk='1' then 

            act_state <= nxt_state; 

        end if; 

    end process StateVar; 

     

    --state machine transition 

    StateTransition : process (start, act_state, reset_n) 

    begin 

        nxt_state <= act_state; 

        case act_state is 

            when Reset => 

                if reset_n = '1' then 

                    nxt_state <= Idle; 

                end if; 

            when Idle => 

                if (start_sig='1' and start_pin='1')then 

                    nxt_state <= Listen; 

                end if; 

            when Listen => 

                    nxt_state <= xor_st; 

            when xor_st => 

                    nxt_state <= cae_st; 

            when cae_st => 

                    nxt_state <= Idle; 

            when others=> 

                nxt_state <= Idle; 

        end case; 

    end process StateTransition; 

     

    --outputs 

    Outputs : process (act_state) 

    begin 

        case act_state is 

            when Reset => 

                enable_reg    <= '0'; 

                enable_xor     <= '0'; 

                enable_cae     <= '0'; 

                done             <= '0'; 

            when Idle => 

                enable_reg    <= '0'; 
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                enable_xor     <= '0'; 

                enable_cae     <= '0'; 

                done             <= '1'; 

            when Listen => 

                enable_reg    <= '1'; 

                done             <= '0'; 

            when xor_st => 

                enable_xor     <= '1'; 

                done             <= '0'; 

            when cae_st => 

                enable_cae     <= '1'; 

                done             <= '0'; 

            when others=> 

                enable_reg    <= '0'; 

                enable_xor     <= '0'; 

                enable_cae     <= '0'; 

                done             <= '0'; 

        end case; 

    end process Outputs; 

 

 

end Behavioral; 

 

- XOR encryption circuit 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

 

entity xor_circ is 

    Port ( plaintext : in  STD_LOGIC_VECTOR (7 downto 0); 

              reset_n : in    STD_LOGIC;     

           enable : in  STD_LOGIC; 

           xor_cypher : out  STD_LOGIC_VECTOR (7 downto 0)); 

end xor_circ; 

 

architecture Behavioral of xor_circ is 

    signal key : std_logic_vector(7 downto 0):= "01101110"; 

     

begin 

     

    process --xor encryption 

        begin 

            if reset_n='0' then 

                xor_cypher <= (others=>'0'); 

            elsif enable='1' then 

                xor_cypher <= (plaintext xor key); 

            end if; 

    end process; 

     

end Behavioral; 

 

- Caesar cipher encryption circuit 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.NUMERIC_STD.ALL; 

 

entity caesar_circ is 

    Port ( plaintext : in  STD_LOGIC_VECTOR (7 downto 0); 

           enable : in  STD_LOGIC; 

           reset_n : in  STD_LOGIC; 

           cae_cypher : out  STD_LOGIC_VECTOR (7 downto 0)); 

end caesar_circ; 
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architecture Behavioral of caesar_circ is 

 

    signal shift_amount : integer range 0 to 7 := 2; 

 

begin 

    process 

        begin 

            if reset_n = '0' then 

                cae_cypher <= (others => '0'); 

            elsif enable = '1' then 

                cae_cypher <= std_logic_vector(unsigned(plaintext) + shift_amount); 

            end if; 

    end process; 

     

end Behavioral; 

DFS design testbench 

LIBRARY ieee; 

  USE ieee.std_logic_1164.ALL; 

  USE ieee.numeric_std.ALL; 

 

  ENTITY testbench IS 

  END testbench; 

 

  ARCHITECTURE behavior OF testbench IS  

 

  -- Component Declaration 

          COMPONENT DFSCircuit 

          PORT( 

                  start_key : in  STD_LOGIC_VECTOR (7 downto 0); 

                        plaintext : in  STD_LOGIC_VECTOR (7 downto 0); 

                        reset_n : in STD_LOGIC; 

                        clk : in STD_LOGIC; 

                        start : in STD_LOGIC; 

                        done : out  STD_LOGIC; 

                        ciphertext : out  STD_LOGIC_VECTOR (7 downto 0) 

                  ); 

          END COMPONENT; 

 

          SIGNAL reset_n, clk, start, done:  std_logic := '0'; 

          SIGNAL start_key, plaintext, ciphertext :  std_logic_vector(7 downto 0) := 

(others=>'0'); 

              

             constant clk_period : time := 10 ns; 

           

 

  BEGIN 

 

  -- Component Instantiation 

          uut: DFSCircuit PORT MAP( 

                    start_key => start_key, 

                    plaintext => plaintext, 

                    reset_n => reset_n, 

                    clk => clk, 

                    start => start, 

                    done => done, 

                    ciphertext => ciphertext 

          ); 

     

    -- Clock process definitions 

   clk_process :process 

   begin 

        clk <= '0'; 

        wait for clk_period/2; 

        clk <= '1'; 

        wait for clk_period/2; 

   end process; 
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  --  Test Bench Statements 

     tb : PROCESS 

     BEGIN 

 

          reset_n <= '0' 

        wait for 100 ns; -- wait until global set/reset completes 

          reset_n <= '1'; 

 

        -- Add user defined stimulus here 

          --first loop will be done with the correct key, just to test the plaintext and 

encryption functions 

          start_key <= "01000101"; 

          for i in 0 to 255 loop 

                plaintext <= std_logic_vector(to_unsigned(i,8); 

                wait for 5 ns; 

                start <= '1'; 

                wait for 10 ns; 

                start <= '0'; 

                wait for 50 ns; 

                assert done = '1' 

                    report "Error in finish flag system" 

                    severity failure; 

                assert (ciphertext = std_logic_vector(unsigned(plaintext XOR "01101110") 

+ 2)) 

                    report "Error in encryption functionality" 

                    severity failure; 

                wait for 10 ns; 

            end loop; 

             

            --now that encryption functionality has been tested, all key inputs will be 

tested 

            for i in 0 to 255 loop 

                for j in 0 to 255 loop 

                    start_key <= std_logic_vector(to_unsigned(j,8)); 

                    plaintext <= std_logic_vector(to_unsigned(i,8); 

                    wait for 5 ns; 

                    start <= '1'; 

                    wait for 10 ns; 

                    start <= '0'; 

                    wait for 50 ns; 

                    assert done = '1' 

                        report "Error in finish flag system" 

                        severity failure; 

                    if start_key = "01000101" then 

                        assert (ciphertext = std_logic_vector(unsigned(plaintext XOR 

"01101110") + 2)) 

                            report "Error in encryption functionality" 

                            severity failure; 

                    else 

                        assert (ciphertext /= std_logic_vector(unsigned(plaintext XOR 

"01101110") + 2)) 

                            report "Error in authentication, circuit should not encrypt" 

                            severity failure; 

                    end if; 

                    wait for 10 ns; 

                end loop; 

            end loop; 

                 

 

        assert false 

                report "End of simulation" 

                severity failure; 

     END PROCESS tb; 

  --  End Test Bench  

 

  END; 


