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Abstract 

The Bivariate Latent Change Score (BLCS) model is a popular framework for the study 

of dynamics in longitudinal research. Despite its popularity, there is little evidence of the 

ability of this model to recover latent dynamics when the latent trajectories are affected 

by stochastic innovations (i.e., dynamic error). The deterministic specification of the 

BLCS model does not account for the effect of these innovations in the system. In 

contrast, the stochastic specification of the BLCS model includes parameters that capture 

the effect of such innovations at the latent level. Through Monte Carlo simulation, we 

generated two developmental processes and examined the recovery of the parameters in 

the deterministic and stochastic BLCS models under a broad range of empirically relevant 

conditions. Based on our findings, we provide specific guidelines and recommendations 

for the application of BLCS models in developmental research.  

Keywords: latent change score model; stochastic dynamical systems; stochastic 

innovations; structural equation models; longitudinal data analysis 
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Effectiveness of the Deterministic and Stochastic Bivariate Latent Change 

Score Models for Longitudinal Research 

Latent Change Score (LCS) models (Hamagami & McArdle, 2001; McArdle, 2001, 

2009) are a useful and popular approach to the study of dynamics in longitudinal data. 

In particular, the bivariate version of these models (BLCS) allows to examine the 

interrelations between two variables that unfold over time (McArdle, 2001), allowing 

for a better understanding of the dynamic and multivariate nature of developmental 

processes. 

BLCS models are characterized by their ability to simultaneously describe latent 

trajectories and time-lagged (i.e., auto-regressive) relations between latent variables 

over time. The key feature of these models is that they represent the processes of 

interest as dynamical systems in which the changes, instead of the levels, are the focus 

and are modeled as latent variables. Specifically, these models include, at every time 

point t, and for each process under study, one latent variable that captures the changes 

between t and t−1. BLCS models are particularly useful for the study of processes in 

which the average scores are expected to grow or decline over time (i.e., the mean 

structure is non-stationary), such as the development of cognitive abilities over the life 

span (e.g., McArdle et al., 2002). As such, they have been used to study change in 

numerous empirical constructs, including depressive symptoms and perceptual speed in 

aging (Bielak et al., 2011), biometric genetic influences in fluid intelligence in twins 

(Finkel et al., 2013), or the interplay between reading and writing skills in children 

(Ahmed et al., 2014), among many others. 

Despite the popularity of BLCS models, there is little evidence on their ability to 

recover the dynamics of bivariate systems when the latent trajectories are affected by 
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stochastic innovations. From a substantive point of view, innovations represent events 

that impact the change at the latent level, and whose influence lingers on later states of 

the system (see Schuurman et al., 2015). Consider, for example, the developmental 

trajectories of reading and arithmetic abilities from childhood to early adulthood. The 

learning and development of these skills can be affected, either positively or negatively, 

by multiple events, such as an interpersonal conflict, changing school, or attending 

support classes, among many others. The impact of these events is constant during 

development, and they can affect each individual differently, leading to deviations in 

their developmental trajectories that may be relevant for the phenomenon under study. 

In longitudinal research, such events are typically modelled as random shocks or 

stochastic innovations, representing deviations from the expected latent trajectories with 

a lingering influence on the system. 

The specification of BLCS models that includes innovation parameters is 

typically referred to as the stochastic BLCS model (Ji & Chow, 2019). However, the 

vast majority of specifications of this model in the Psychology literature are 

deterministic (i.e., they do not account for stochastic innovations). Thus, they assume 

that the changes in a system are perfectly predicted by the latent states at the previous 

occasion. Given the frequency with which we are exposed to random shocks such as 

those described above, the deterministic assumption seems unlikely in the empirical 

practice. If individuals in a sample are affected by stochastic innovations during their 

development, the stochastic model is more theoretically plausible than its deterministic 

counterpart, which will be misspecified. In practice, however, the choice of one model 

specification over the other is not obvious. Is the deterministic model incapable of 

recovering bivariate dynamics in the presence of stochastic innovations? If the 

unaccounted deviations in the latent trajectories were captured as measurement errors, 
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the misspecification would not be particularly harmful. In contrast, if the parameters 

capturing latent dynamics were affected by the random shocks, the deterministic model 

would lead to potentially incorrect conclusions regarding latent dynamics and 

interrelations between processes. And more importantly, how common are stochastic 

innovations in the context of developmental research? Due to the scarcity of empirical 

applications of stochastic BLCS models, there is little evidence on the extent to which 

developmental trajectories are affected by innovations. In the context of child 

development, Ferrer and colleagues (Ferrer et al., 2007, 2010) studied the development 

of reading abilities using a stochastic BLCS model, and found that individual 

differences in the trajectories due to innovations represented around 5 to 15% of the 

variance of the initial latent scores. In empirical constructs other than reading abilities, 

however, the proportion of between-individual variance due to innovations may be 

above that range. One of the main goals of this manuscript is to evaluate the ability of 

the deterministic and stochastic BLCS models to capture latent dynamics in the 

presence of stochastic innovations similar to those found in the empirical literature.  

Another relevant issue in the application of BLCS models concerns sampling 

requirements. In fact, several recent studies have expressed the need for comprehensive 

simulation studies to evaluate the quality of the estimates under different combinations 

of sample size and number of repeated measures (e.g., Ji & Chow, 2019; Kievit et al., 

2018). Research designs with relatively large samples and few repeated measures are 

the most frequent in developmental studies, in which BLCS models are typically used 

(e.g., Ahmed et al., 2014; Bielak et al., 2011; Finkel et al., 2016; Gerstorf et al., 2007; 

Ghisletta et al., 2006; King et al., 2006; Liao et al., 2018; Quinn et al., 2015; Snitz et al., 

2015; Ziegler et al., 2015). In this type of research, collecting large samples can be 

challenging, and using many repeated measures may not be feasible due to time, 
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logistic, and financial constraints. It is therefore of great interest to examine the 

performance of both the deterministic and stochastic BLCS model under different 

sampling conditions, especially those more accessible to most empirical researchers: 

few repeated measures and varying sample sizes.  

The aim of the present study is two-fold. First, we aim to examine the extent to 

which a deterministic BLCS model (i.e., with no parameters to capture stochastic 

innovations) yields reliable estimates when the trajectories are affected by stochastic 

innovations. Second, we aim to conduct a comprehensive evaluation of the ability of the 

deterministic and stochastic BLCS models to capture the dynamics of a bivariate system 

under a broad range of sampling conditions. In the following section, we provide a 

detailed description of the BLCS model, and elaborate on the interpretation of stochastic 

innovations. Next, we analyze the results of a Monte Carlo study and evaluate the 

performance of the deterministic and stochastic specifications of the BLCS model under 

multiple conditions of variance due to innovations, sample size, and number of repeated 

measures. We conclude the article offering several recommendations on the use of 

BLCS models and the design of longitudinal studies for developmental research. 

The deterministic Bivariate Latent Change Score model 

In the standard specification of BLCS models, the observed variables are decomposed 

into latent true scores and measurement error. Thus, observed scores for variables X and 

Y at any given time t are given by: 

 [ ] [ ] [ ]

[ ] [ ] [ ]

t t x t

t t y t

X x e
Y y e

= +

= +
 (1) 
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where ex and ey are measurement errors, and x and y are the corresponding latent variables. 

These errors are stationary, normally distributed with mean zero, variances σex2 and σey2, 

and covariance σex,ey at any given time point. In this specification, no further covariances 

are allowed between the errors and other elements in the system (McArdle & Hamagami, 

2001, 2004). 

BLCS models represent a bivariate dynamic process in which the state of the 

system at each time point is dependent on previous states. Therefore, it requires the 

specification of the state of the system at the first measurement occasion (sometimes 

called “latent intercept”), and also the specification of the time-lagged effects defining 

the trajectories’ change over time. Initial conditions are defined by: (a) the latent initial 

scores (x0 and y0), representing the state of the latent processes at the first measurement 

occasion; and (b) the latent additive components (xa and ya), representing a constant 

amount of change added at each measurement occasion. This latent structure follows a 

multivariate normal distribution with mean vector and covariance matrix: 
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 (2) 

Once the initial state of the system is specified, two latent variables are defined to 

capture changes between true scores at adjacent time points. Thus, scores for each process 

at time t are a function of the respective true scores at time t – 1 plus the latent changes: 

 [ ] [ ] [ 1]

[ ] [ ] [ 1]

t t t

t t t

x x x
y y y

−

−

∆ = −

∆ = −
 (3) 
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In the deterministic BLCS model, each of these latent change scores Δx[t] and Δy[t] 

are typically modelled, at any time t, as a function of three components: (a) the additive 

components (either xa or ya), representing an additive linear effect on the system; (b) a 

self-feedback parameter β, representing the influence of the same variable at the previous 

occasion, t – 1; and (c) a coupling parameter γ, representing the influence of the other 

variable at t – 1. Therefore, the equations for change at time t are expressed as: 

 [ ] [ 1] [ 1]

[ ] [ 1] [ 1]

t x a x t y t

t y a y t x t

x x x y
y y y x

− −

− −

∆ = α × +β × + γ ×

∆ = α × +β × + γ ×
 (4) 

where xa and ya influence the system through the coefficients αx and αy. The latter two 

coefficients can be freely estimated to express different amounts of additive change at 

each time point (McArdle & Nesselroade, 2014), although this is infrequent. Following 

common practice, they are fixed to 1 in this study (e.g., McArdle, 2009).  

BLCS models are used to describe processes of exponential growth (or decay). 

Consider, for example, the exponential trajectories typically found in the development of 

intellectual abilities from childhood to early adulthood (e.g., Figure 1). Most cognitive 

abilities show a rapid growth during the first years of life followed by a progressive 

deceleration, until they reach a peak between 20 and 30 years of age—the exact age 

depends on the specific ability and the individual (McArdle et al., 2002). In BLCS 

models, this maximum level towards which the trajectory tends is modeled as an 

asymptote. Importantly, the means (µx,asym and µy,asym) and variances (σ2x,asym and σ2y,asym) 

of the trajectories in the asymptotes are not directly estimated, but can be obtained as a 

function of the self-feedbacks, couplings, and additive components: 
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 (5) 

 The mathematical relations in Equation 5 imply that the means of the additive 

components provide information about the position of the asymptotes with respect to the 

initial states. In the context of cognitive development, larger means for the additive 

components indicate a larger growth from one time point to the next, which results in a 

greater distance between the initial latent level and the asymptotes—that is, in higher 

values for the maximum levels towards which the mean trajectories tend. Likewise, the 

variances of the additive components contain information about inter-individual 

variability in the asymptotes. Larger variances for the additive components indicate larger 

inter-individual differences in the asymptotes or maximum levels of the trajectories. For 

a detailed account of the relations between LCS model parameters and their 

interpretation, see Cáncer et al. (2021).  

Incorporating innovations: The stochastic BLCS model 

The specification of latent changes in the previous section represents a 

deterministic system (Hamagami & McArdle, 2001; Ji & Chow, 2019), which is by far 

the most frequent specification in substantive applications of the BLCS model. It assumes 

that, once the initial conditions are known, individual changes can be perfectly predicted 

at any given point in time, and all the observed deviations from the change equations are 

exclusively due to measurement error. However, this is a rather unrealistic assumption in 

developmental research. Consider, for example, yearly measurements of cognitive 

abilities and academic performance from childhood to early adulthood (Peng & Kievit, 
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2020). Longitudinal changes in both variables could be captured by a BLCS model in 

which, at any given time point, the yearly changes are a function of the three elements 

described in equation 4. However, time-specific innovations (i.e., random shocks) may 

affect the system and deviate the yearly change from the deterministic trajectory, either 

positively or negatively. For example, a child could lose an academic year due to an 

illness, or a subset of the sample may have a substitute teacher affecting their academic 

achievement. If the researcher expects time-specific shocks due to known factors 

affecting all the individuals in the sample, such factors can be measured and included in 

the model as an exogenous time-specific variable. However, in many scenarios, there may 

be innovations in the system that cannot be accounted for by a specific variable. 

These innovations are very different from measurement errors (see Schuurman et 

al., 2015). Measurement errors are disturbances in the observed scores caused by 

unobserved events or circumstances that are specific of the measurement occasion, such 

as a misunderstanding of the instructions, distraction, or fatigue. They are time-specific 

and inherent to the observed scores, and thus do not affect future states of the latent 

process. In contrast, innovations account for unobserved events with an impact on the 

latent process, which are carried over to later states of the system through the time-lagged 

parameters. They can be thought of as individual-specific “shocks” whose impact in the 

developing system is modeled. This carry-over effect causes past innovations to have a 

lingering influence on the system, potentially leading to long-run deviations from the 

deterministic latent trajectories. Figure 1 depicts 20 individual trajectories for two 

observed processes without innovations/disturbances (left panels), with measurement 

errors only (middle panels), and with dynamic innovations only (right panels). Note that, 

in Figure 1, measurement errors act as time-specific white noise, leading to up and down 

fluctuations around the expected latent trajectories. Innovations, however, have an 
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accumulative effect over time that modifies the development of the individual trajectories, 

affecting later time points, and eventually deviating the trajectories from their expected 

deterministic course. 

[FIGURE 1] 

Innovations are usually modeled as process random noises, and often termed 

dynamic fluctuations, dynamic errors, impulses, or prediction errors (Oud & Delsing, 

2010; Schuurman et al., 2015; Voelkle et al., 2018; Voelkle & Oud, 2015; Zyphur et al., 

2020). It is possible to expand equation 4 to account for them by adding a stochastic 

residual term to the equations for change: 

 [ ] [ 1] [ 1] [ ]

[ ] [ 1] [ 1] [ ]

t x a x t y t x t

t y a y t x t y t

x x x y d
y y y x d

− −

− −

∆ = α × +β × + γ × +

∆ = α × +β × + γ × +
 (6) 

Where dx[t] and dy[t] are random variables normally distributed with time-invariant 

mean 0, variances σdx2 and σdy2, and covariance σdx,dy. In the standard stochastic BLCS 

specification, the innovations in both latent processes can be correlated at any given time 

point (σdx,dy), and no further covariances are allowed between the errors and other 

elements in the system. In a bivariate system, these covariances are interpreted as the 

linear relation between the “shocks” affecting each of the latent processes over time. 

Typically, the parameters regarding dynamic errors are assumed to be equal across 

occasion (i.e., time invariant). Figure 2 depicts the full stochastic BLCS model, which is 

specified by 24 parameters: 4 means, 8 variances, 8 covariances, and 4 time-lagged 

effects. 

Importantly, innovations are dynamic in nature because a) they capture external 

shocks that are unaccounted for by previous states and b) their effects on the system are 
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carried over to future states. Note that, in Figure 2, the innovation variance introduced in 

Δx[t−1] goes directly into the latent level x[t−1] through a regression weight of 1.  Then, the 

variance of x[t−1] (which includes all the innovation variance entered in the system up to 

that moment) is propagated through three regression paths. The first path goes into the 

latent level x[t] through a regression weight of 1, and the other two paths predict the latent 

changes in Δx[t] and Δy[t] (through βx and γx, respectively). Therefore, the impact of the 

external shocks on each occasion is “passed along” to later states of the system, leading 

to the lingering deviations depicted in Figure 1 (right-side column). 

[FIGURE 2] 

Stochastic BLCS models are very rare in the developmental literature. Some 

exceptions include the study of the interrelations between cognition and reading in 

dyslexic readers (Ferrer et al., 2010), and the developmental dynamics between reading 

and cognition during childhood (Ferrer et al., 2007). One possible reason for this scarcity 

may be that they include a large number of parameters, which may lead to estimation 

problems. In this regard, Usami et al., (2019) pointed out that the inclusion of both 

measurement errors and innovations may lead to convergence errors and improper 

solutions (i.e., solutions with non-available or unreasonable large parameters or standard 

errors). In a simulation study, Ji & Chow, (2019) observed that measurement and dynamic 

errors could not be reliably distinguished under certain conditions. However, these 

authors examined only a restricted set of scenarios, and their focus was on the effect of 

misspecification of the initial conditions. Moreover, and to the best of our knowledge, no 

previous studies have systematically examined the consequences of estimating a 

deterministic BLCS model when the latent trajectories are affected by random shocks or 

innovations. 
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The present study 

In sum, developmental systems are often impacted by random shocks that affect 

individuals differently, shaping their trajectories and altering their patterns of change. 

Deterministic BLCS models, in which the changes are assumed to be fully determined by 

time-lagged effects and initial conditions, are not able to capture these influences. In 

contrast, stochastic BLCS models include innovation parameters that account for these 

influences and model their effect on the system. 

In the present work, we conducted an extensive Monte Carlo simulation to 

evaluate the recovery of population parameters in a bivariate system under a broad set of 

empirically relevant conditions. As described previously, most BLCS specifications in 

the empirical literature do not include stochasticity in the latent changes. Therefore, the 

goals of this manuscript are: a) to examine the consequences of not accounting for 

stochastic innovations when they are affecting the latent trajectories (i.e., how robust  the 

deterministic model is when fitted to data with varying levels of stochastic innovations), 

and b) to evaluate the effectiveness of the deterministic and stochastic BLCS models to 

recover dynamic features of two developmental processes under different conditions 

affecting the sampling and the populational trajectories. 

Method 

We generated repeated measures for two processes x and y that unfold over time. The 

processes were generated according to the stochastic BLCS model described in Equation 

6. The generating parameters were chosen to represent trajectories that are typical of the 

development of cognitive abilities from childhood to early adulthood (e.g., Kail & Ferrer, 

2007; Schmitt et al., 2017; van der Maas et al., 2006), and were based on previous 
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empirical studies (Ferrer et al., 2007, 2010; Shaywitz et al., 1990). They are reported in 

table 1. 

[TABLE 1] 

Based on the parameters in Table 1, we simulated three hundred data sets for each 

of the 80 conditions created by the combination of the following four factors: 

• Proportion of variance due to stochasticity in the innovations (Ps): four 

conditions (Ps = {.0, .05, .15, .25}) 

• Sample size: four conditions (N = {50, 100, 200, 500}) 

• Number of repeated measures: five conditions (T = {3, 4, 5, 7, 10}) 

Proportion of variance in the process due to stochasticity in the innovations (Ps) 

The specification of the stochastic BLCS model (i.e., with 24 parameters) has been rarely 

applied in substantive research. Therefore, there is little evidence on the extent to which 

the evolution of developmental variables is affected by random innovations that 

accumulate over time. Ferrer and colleagues studied the development of reading abilities 

during childhood and obtained variances for the innovations that represented around 5 to 

15% of the variance of the latent initial scores (Ferrer et al., 2007, 2010).  

In order to cover a broad range of scenarios, we used four values for the 

Proportion of latent variance due to the stochasticity of the innovations, Ps = (.0, .05, .15, 

.25). We computed it based on the total amount of latent variance in t=2. Ps quantifies 

the proportion of such variance that is due to the innovations’ variance. For example, for 

the latent process x, 
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2

2 2
[ 2]

dx
x

x t dx

Ps
=

σ
=
σ +σ

 (7)             

A value of Ps = .15 implies that, from the total latent variance in the process x at t=2 

(excluding the measurement error variance), 15% is introduced by the variance of the 

innovations at t=2, while the remaining 85% is due to the latent variances of x and y at 

t=1, plus influence of the corresponding latent additive component. In other words, if the 

variance of the latent process x in t=2 took a value of 10, proportions of stochasticity of 

.0, .05, .15, and .25 would lead to variance due to innovation variances of 0, .5, 1.5, and 

2.5, respectively. The covariance between innovations was set according to a correlation 

of 0.2 across all conditions. Note that a high correlation between “shocks” would imply 

that the stochastic deviations have a common cause across time points and individuals. 

This is very unlikely, as these “shocks” represent the impact of multiple individual-

specific events over time. Since this correlation is likely to be low and to not vary widely 

across applications, we do not expect it to have a meaningful impact in the performance 

of the BLCS model.  

Figure 3 depicts a set of trajectories generated with the parameters from Table 1 

using different Ps values. The proportion of variance due to stochastic innovations can be 

thought of as the extent to which the states of the process are influenced by external 

shocks or disturbances. In other words, it represents the amount of “randomness” or 

unpredictability in a system. If the proportion of variance due to innovations is high, the 

values of the process will be more influenced by external shocks and will be more 

unpredictable. This would result in a lower degree of autocorrelation, as the current state 

of the process would be less related to its past states. As illustrated in Figure 3, conditions 

with more stochasticity due to innovations simulate shocks with a greater impact on the 

system. These shocks are then propagated through the self-feedbacks and couplings to 
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subsequent states, ultimately resulting in larger and more persistent deviations from the 

deterministic trajectories. Note that the deterministic BLCS model is a correct 

specification when Ps = 0, whereas the stochastic specification is needed to adequately 

account for the innovation variance in the rest of Ps conditions. The condition of Ps = 0 

was included to evaluate: a) the performance of the deterministic model when it is 

correctly specified, and b) whether the stochastic model captures innovations as null when 

they are zero in the population.  

[FIGURE 3] 

Number of measurement occasions 

One of our goals was to explore how many measurement occasions are needed to 

adequately capture the features of longitudinal bivariate processes. To this end, the 

number of time points chosen were 3, 4, 5, 7, 10. We focused on time points under 10 

because they are more frequent in developmental studies (e.g., Ahmed et al., 2014; 

Estrada et al., 2019; Finkel et al., 2013, 2016; Gerstorf et al., 2007; Ghisletta & 

Lindenberger, 2003; Liao et al., 2018; Small et al., 2012), and because longer studies 

are often not feasible in developmental research. 

Sample size 

BLCS models have been applied to data sets containing hundreds of participants (e.g., 

Estrada et al., 2019; Ferrer et al., 2007; Finkel et al., 2016; Ghisletta et al., 2006; 

Lövdén et al., 2005, 2007; Malone et al., 2004; Quinn et al., 2015; Small et al., 2012; 

Ziegler et al., 2015), or even thousands (e.g., Bielak et al., 2011; Grimm, 2007; Infurna 

& Gerstorf, 2013; Liao et al., 2018; McArdle & Prindle, 2008; Sargent-Cox et al., 2012; 

Snitz et al., 2015). Due to the complexity and number of parameters of the BLCS 
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model, such large samples are likely to be necessary. However, most developmental 

researchers face economic and other constraints that usually make it difficult to gather 

very large samples, particularly when repeated measures are required. In order to 

explore the minimal requirements to adequately estimate the models, we included the 

following four sample sizes: 50, 100, 200, and 500 individuals per sample. 

Estimation and data analysis 

Our main goal was to examine the ability of the deterministic and stochastic 

specifications of the BLCS model to recover developmental trajectories, especially 

when they are affected by stochastic innovations at the latent level. For each sample in 

each condition, we estimated: a) one deterministic BLCS model, which does not 

account for potential innovations in the trajectories and has 21 free parameters 

(Equation 4), and b) one stochastic BLCS model, which includes two dynamic error 

variances and one covariance to capture the effects of stochastic innovations in the 

system, resulting in a total of 24 free parameters (Equation 6). For the specification and 

estimation of the models, we used OpenMx in R (RAM parameterization estimated with 

maximum likelihood; cf., Ghisletta & McArdle, 2012; Neale et al., 2016). The 

estimation was performed through the OpenMx functions mxModel and mxRefModels 

(Boker et al., 2018). The R code for generating the data sets and estimating the BLCS 

models is available at: https://github.com/PFernandez-Cancer/stochasticBLCS. 

Results 

 In this section we evaluate, across all simulation conditions: 1) the rates of 

improper solutions, 2) the bias of the parameter estimates, 3) the variability of the 

parameter estimates, and 4) the bias of the standard errors. In BLCS applications, the 

focus is usually on the time-lagged dynamics (i.e., self-feedbacks and cross-lagged 

https://github.com/PFernandez-Cancer/stochasticBLCS
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effects). Because of this, and given that innovations’ variances have been mostly 

unexplored before, here we focus on how self-feedbacks and couplings are recovered 

when the trajectories are affected by these innovations. Results for the means and 

variances are also described, but due to space constraints, only the self-feedbacks and 

couplings are depicted in Figures 5-7. Results regarding the covariances, additional 

figures, and extended numerical results are available in the supplemental materials.  

Improper solutions 

First, we examined the solutions that included invalid parameter estimates, leading to 

uninterpretable results. Solutions were considered improper, and removed from 

subsequent analysis, when they contained at least one of the following: (a) not available 

(NA) parameter or standard error estimates; and (b) unreasonably large parameter or 

standard error estimates with absolute value above |10|. Figure 4 shows the percentage 

of improper solutions for the stochastic BLCS model. 

[FIGURE 4] 

 The incidence of improper solutions was very low for both specifications of the 

BLCS model. For the deterministic model, improper solutions ranged from 0 to 10% in 

conditions with three repeated measures, and from 0 to 1.7% in the remaining 

conditions. Improper solutions for the deterministic model were not included in Figure 4 

due to this low incidence. For the stochastic model, improper solutions ranged from 0 to 

28%, and were also more frequent in conditions with three repeated measures. As 

expected, increasing the number of repeated measures and the sample size reduced the 

rates of improper solutions. In contrast, the proportion of stochasticity in the 

innovations had a much smaller impact on the performance of the stochastic model, 

with increasing proportions of stochasticity generally resulting in slightly lower 
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percentages of improper solutions. We discuss strategies for dealing with improper 

solutions in the Discussion section.  

Bias of the estimates 

We examined the accuracy of the estimates as the bias of each parameter in each 

condition: estbias = θ −θ , where θ is the true value and estθ  is the average estimate 

across all replications in a given condition1. 

Self-feedbacks and couplings 

Figure 5 depicts the bias for self-feedback and coupling parameters across all 

conditions. When the trajectories were not affected by stochastic innovations (Ps = 0), 

both the deterministic and the stochastic models required a minimum of four repeated 

measures and 100 individuals, or five repeated measures and 50 individuals, to produce 

unbiased estimates (bias range from −.04 to .04). As expected, increasing the proportion 

of stochasticity led to more biased estimates for the deterministic model, probably 

because it also increased the degree of misspecification. Interestingly, this also occurred 

with the stochastic model, although to a lesser extent. That is, although the stochastic 

model included parameters to capture innovations, the time-lagged dynamics were 

slightly more biased when such innovations were large. When the number of repeated 

measures was increased to seven, this effect was barely noticeable in the stochastic 

 

1 We did not use the relative bias because, when the trajectories are not affected by innovations, 

the dynamic error variances and covariances equal zero. Thus, computing the relative bias in 

these conditions would imply dividing by zero. 
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model (range −.04 to .05), although it persisted in the deterministic model (range to 

−.10 to .08). 

[FIGURE 5] 

Latent means and variances 

 Due to space constraints, the complete numerical results and corresponding 

figures are included in the supplemental materials. Here we discuss the most relevant 

findings. When the number of repeated measures was three or four, the means and 

variances of the additive components were substantially biased, regardless of the model 

specification and the proportion of variance due to innovations (ranges −.48 to 0.18 for 

the means, and −.01 to 1.03 for variances). Note that the overestimation of the additive 

component variances implies an overestimation of the inter-individual differences in the 

asymptotes of the trajectories (i.e., the maximum level towards which each individual 

tends as time increases). In the stochastic model, all the latent means and variances of 

the model were accurately recovered with five or more repeated measures (range −.06 

to .07), regardless of the amount of stochasticity due to innovations. In the deterministic 

model, however, medium and large proportions of stochasticity (Ps = .15 and Ps = .25) 

led to overestimations of the measurement error variances.  

Variability of the estimates 

We evaluated the variability (i.e., precision) of the parameter estimates by computing 

their empirical standard deviation as  2

1
( ) /

K

k est
k

SD K
=

= θ − θ∑ , where θk is the 

estimated value in a replication k, estθ  is the average estimate across K replications, and 

K is the number of replications in a given condition. 
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Self-feedbacks and couplings 

 Figure 6 depicts the variability for the self-feedback and coupling estimates 

across all conditions. Overall, conditions with three repeated measures led to highly 

varying estimates for the time-lagged parameters (with standard deviations ranging 

from .18 to 1.49). In the remaining conditions, both model specifications displayed a 

similar performance. As expected, the most relevant factor for the variability of the 

parameter estimations was the number of repeated measures, followed by the sample 

size. Increasing proportions of stochasticity due to innovations led to slightly more 

variability in the estimates of the stochastic model. However, this effect was small and 

mostly limited to conditions with three and four repeated measures. 

[FIGURE 6] 

Latent means and variances 

Due to space constraints, the complete numerical results and corresponding 

figures are included in the supplemental materials. Here we discuss the most relevant 

findings regarding estimate variability. The latent means and variances displayed a 

pattern of variability similar to the time-lagged parameters: the variability was lower 

with increasing number of repeated measures and sample size, but mostly unaffected by 

the amount of stochasticity due to innovations. In conditions with three and four 

repeated measures, the additive component means and variances showed high 

variability (range .05 to .72 for the means and .05 to 1.48 for the variances), especially 

with low sample sizes. Overall, increasing the proportion of stochasticity due to 

innovations did not lead to a higher variability of the measurement error variance 

estimates. 
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Bias of the standard errors 

 We examined the accuracy of the standard errors for each parameter in each 

condition as: estbias SE SD= − , where SEest is the estimated standard error and SD is the 

standard deviation across all replications in a given condition. 

Self-feedbacks and couplings 

 Figure 7 depicts the bias of the standard errors for the self-feedback and 

coupling parameters across all conditions. In conditions with four or more repeated 

measures, the proportion of stochasticity due to innovations had little impact on the 

recovery of the standard errors. Only in the deterministic model, increasing proportions 

of stochasticity led to more biased standard errors, although this bias became negligible 

with increasing sample size. In the stochastic model, standard errors were accurately 

recovered with five repeated measures and 200 individuals, or seven repeated measures 

and 100 individuals (range −.04 to −.001). In the deterministic model, similar sampling 

conditions were required to produce standard errors, except when the impact of 

innovations was large (Ps = .25). In such conditions, the deterministic model required 

larger samples than its stochastic counterpart to achieve similar levels of accuracy. 

[FIGURE 7] 

Importantly, when the standard errors were not accurately recovered, they were 

always underestimated. This means that, in such conditions, the confidence intervals 

built with the standard errors were narrower than they should be, thus incorrectly 

inflating the degree of precision around the point estimate. 

Latent means and variances 
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Due to space constraints, the complete numerical results and corresponding 

figures are included in the supplemental materials. Here we discuss the most relevant 

findings. Both the deterministic and the stochastic models led to similar results 

regarding the standard errors of the latent means and variances. Overall, the means and 

variances of the additive components had negatively biased standard errors, especially 

with three and four repeated measures. In conditions with three repeated measures, this 

bias did not decrease with increasing sample size. This result, together with the low 

accuracy and large variability of the parameter estimates, suggests that the deterministic 

and stochastic BLCS models may not be tenable with only three repeated measures and 

the sample sizes examined in the present study. 

 Discussion 

Summary of findings 

In this study, we evaluated the ability of the deterministic and stochastic specifications of 

the Bivariate Latent Change Score model (BLCS) to recover the characteristics of two 

processes that unfold over time. We examined the performance of the models when the 

latent trajectories were impacted by varying degrees of stochasticity in the innovations. 

We also studied this performance across various combinations of sample size and number 

of repeated measures. 

Regarding sampling conditions, the number of repeated measures was the most 

relevant factor for adequate parameter recovery. In general, including additional 

measurement occasions had a much larger effect on the quality of the parameter estimates 

than increasing the sample size. One of the most relevant findings is that both the 

deterministic and stochastic BLCS models were not tenable with three repeated measures. 

In this condition, most estimates were substantially biased. Even in conditions with 500 
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individuals, the parameter estimates were very sensitive to sampling fluctuations―that 

is, they varied widely across replications. This indicates that samples of such size may 

not be suitable for the BLCS models presented in this manuscript if only three repeated 

measures are used.  

Another relevant finding is that, in general, the deterministic BLCS model did not 

always provide adequate estimates when the latent trajectories were affected by stochastic 

innovations similar to those found in the empirical literature. As expected, some of the 

deviations in the trajectories produced by innovations were captured as measurement 

errors, inflating their variance. However, they also led to substantial bias in the self-

feedbacks, couplings, and additive component means and variances of the deterministic 

model. Only when the impact of innovations was null or very small, the deterministic 

model provided adequate estimates, but it required at least five or more repeated measures 

and 200 participants. 

In contrast, the stochastic BLCS model was capable of: 1) recovering innovation 

variances as null when they were zero in the population, and 2) capturing innovation 

variances of different size from small to large. When the proportion of variance in the 

latent processes due to innovations was null or very small, the sampling requirements for 

adequate parameter recovery were similar to those of the deterministic model (i.e., 200 

participants and at least five repeated measures). However, when this source of variance 

was larger (Ps = .15 and Ps = .25), the time-lagged dynamics and the additive component 

means and variances were slightly more biased. In such conditions, the stochastic model 

required at least seven repeated measures to achieve an accurate and reliable recovery of 

the parameters. 
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  Finally, both the deterministic and stochastic BLCS model tended to 

underestimate standard errors. This could be problematic because: 1) it falsely inflates 

the degree of precision around the point estimate and 2) it may lead to confidence intervals 

that are too narrow to cover the true parameter value. Fortunately, this bias was mostly 

limited to scenarios with few repeated measures and small sample sizes. In conditions 

with five repeated measures and 200 individuals, or seven repeated measures and 50 

individuals, the standard errors were acceptably accurate. 

Theoretical and methodological considerations 

Several authors have pointed out that LCS models are susceptible to improper solutions 

and convergence errors, especially when measurement and dynamic errors are 

simultaneously estimated (e.g., McArdle et al., 2004; Usami et al., 2015; Usami et al., 

2019). In this study, we did not find substantial amounts of improper solutions, although 

they were slightly more frequent in the stochastic model. Improper solutions may appear 

simply due to sampling fluctuations, and certain combinations of generating parameters 

may be more prone to improper solutions than others. There are several strategies for 

dealing with this problem in BLCS models. First, it is usually advisable to standardize 

the variables of interest with respect to the first measurement occasion (i.e., for all 

repeated measures, subtract the mean of the first occasion and divide by the standard 

deviation of the first occasion), because the maximum likelihood algorithm estimates the 

parameters more easily when they are in similar scales. A second (and compatible) option 

is using plausible sets of starting values for the parameters. For example, it may be 

reasonable to fit two univariate LCS models first, and use the resulting parameter 

estimates as starting values for the BLCS model. Also, researchers can aid the estimation 

by setting boundaries to restrict the range of possible values that a parameter estimate can 

take (e.g., setting the lower bound of a variance to 0 to prevent negative estimates). 
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Several recent studies have expressed the need for comprehensive simulation 

studies to evaluate the quality of the estimates under different combinations of sample 

size and number of repeated measures (e.g., Ji & Chow, 2019; Kievit et al., 2018). Our 

work provides guidelines on the appropriateness of the deterministic and stochastic BLCS 

model under a broad range of common sampling conditions. From the standpoint of 

model identifiability, two variables measured three times provide 27 degrees of freedom 

(15 covariances, 6 variances, and 6 means). The deterministic and stochastic BLCS 

models include 21 and 24 parameters respectively, therefore both specifications are 

identified with three repeated measures. However, our findings suggest that the estimates 

provided by the BLCS model may not be an accurate representation of the underlying 

process in such conditions, and therefore they should be interpreted with caution.  

Importantly, we found that the sampling requirements of the BLCS model differed 

depending on the amount of stochasticity in the latent processes due to innovations. Based 

on such findings, we provide the following indications. If the researcher does not expect 

the processes under study to be affected by innovations, or their expected impact is very 

small, they can safely use the deterministic model with four repeated measures and 500 

individuals, or five repeated measures and 200 individuals. However, it may be more cost 

efficient to increase the number of repeated measures to seven and recruit only 100 

individuals. If measuring ten times is possible, then a sample size of 50 individuals would 

yield similar results to the previously mentioned conditions. On the other hand, if 15% or 

more of the individual differences in the latent trajectories are expected to be due to the 

impact of innovations, the deterministic model will lead to biased estimates. In such 

scenarios, the stochastic model is more adequate, but it requires larger samples. In order 

to achieve highly reliable and accurate estimates, the stochastic model may require 500 

individuals and five repeated measures, 200 individuals and seven repeated measures, or 
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50 individuals and ten repeated measures. However, to the best of our knowledge, very 

few empirical studies have used stochastic models to examine developmental constructs. 

Moreover, it is very unusual to have a prior expectation of the extent to which any latent 

construct might be affected by stochastic innovations. In such situations of uncertainty, 

using the stochastic model with the sampling conditions described above is the safest 

choice.  

It is important to note that the minimum sampling requirements proposed in this 

manuscript were based on complete versions of the BLCS model including 21 and 24 

parameters (for the deterministic and stochastic specifications, respectively). 

Nevertheless, other specifications are possible depending on the hypothesis of change. 

For example, in certain empirical scenarios, it may be theoretically plausible to fix some 

parameters to zero, such as the couplings or the additive component variances. 

Specifications with fewer parameters may require less demanding sampling conditions to 

provide adequate estimates, and they may be easier to estimate with three repeated 

measures. A strategy to choose between different specifications is to sequentially fit 

nested versions of the BLCS model, starting from a basic restricted version (for example, 

fixed effects in the additive components), and progressing towards more complex and 

unconstrained versions. Through sequential comparison of nested models by means of 

likelihood ratio tests (or other alternative strategies, see Usami et al., 2016), it is possible 

to check hypothesis about the presence of specific effects and sources of variance. This 

procedure has been used with deterministic BLCS models applied to a single data set 

(e.g., Estrada et al., 2019). 
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Limitations and future directions 

In this study, we estimated the stochastic BLCS model as a structural equation model 

(SEM) with Maximum Likelihood estimation because it is a familiar and accessible 

approach for empirical researchers. However, BLCS models can be estimated in other 

frameworks such as state-space models (SSM; Hunter, 2018; Ji & Chow, 2019; Oud & 

Jansen, 2000), continuous-time modelling (see Voelkle et al., 2012), or using other 

estimation methods such as Bayesian estimation. SSMs provide an efficient approach to 

the analysis of intensive longitudinal data, where individuals are measured many times 

and the computational burden becomes costly for a SEM specification. In developmental 

settings, however, where individuals are typically measured few times, SSMs should 

present a performance similar to SEMs. On the other hand, treating time as a continuous 

variable may provide more accurate estimates if the intervals between occasions are 

unevenly spaced, which is frequent in longitudinal studies. Finally, Bayesian estimation 

has been shown to reduce improper solutions and improve the estimation in other 

dynamic models, such as the STARTS model (Lüdtke et al., 2018), n=1 autoregressive 

models (Schuurman et al., 2015), and ARMA models (Asparouhov & Muthén, 2020). 

Future research could extend this work by examining the performance of the BLCS model 

from the SSM, continuous-time, or Bayesian frameworks. 

 As described previously, the deterministic and stochastic BLCS models were 

untenable under conditions with three repeated measures. In our simulation design, 

conditions with more repeated measures covered a larger portion of the developmental 

trajectory. Previous research has indicated that the developmental trajectories of certain 

cognitive abilities may be better estimated when the information provided by the sample 

is as complete as possible at the region with greatest curvature (Mistler & Enders, 2012; 

Rhemtulla & Hancock, 2016). One of the reasons of the poor performance of the BLCS 
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model may be that the curvature of the trajectories is not sufficiently well captured with 

three repeated measures. An alternative would be to divide the complete time range of 

the study into three occasions. For example, if we are studying two processes from the 

ages 11 to 20, measurements could be taken at ages 11, 15.5 and 20, instead of 11, 12, 

and 13. Future research should examine the performance of the BLCS model under such 

sampling designs, and investigate whether using three repeated measures is feasible in 

such scenarios.   

Another aspect that requires further research is the inclusion of additional 

predictors or covariates in the stochastic BLCS. For example, it is possible to include 

time-invariant predictors affecting the initial conditions (e.g., sex, education, or socio–

economic status). Likewise, time-specific influences can be included to (at least partially) 

account for innovations that we have modelled here as innovation variances (e.g., 

increases or decreases in anxiety, or physical activity). There are several examples of the 

use of time-invariant and time-varying predictors in the LCS literature (e.g. Bodenmann 

et al., 2014; Ghisletta & Lindenberger, 2003; Hertzog et al., 2003; Snitz et al., 2015). In 

the presence of this type of predictors, the sampling conditions may become different 

from the ones reported in this study. 

As a final note, we evaluated the performance of the stochastic BLCS model with 

evenly spaced time intervals and without missing data. In this regard, we worked with 

optimal conditions that are not always found in applied research. For these reasons, we 

recommend a conservative interpretation of our findings and encourage researchers to use 

sampling conditions above the minimum requirements recommended in the present work. 
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Conclusion 

Individuals are often exposed to random events (i.e., random shocks) that influence their 

development over time, resulting in deviations from their expected trajectories. The 

deterministic BLCS model, which is widely used in developmental research, is not always 

capable of capturing the dynamics of the latent processes when the trajectories are 

affected by such random shocks. In contrast, the stochastic Bivariate Latent Change Score 

model includes innovations at the latent level to account for the impact of these shocks 

on the system, providing a more accurate representation of developmental processes. Our 

results suggest that, under the right sampling conditions, the stochastic BLCS model is 

able to detect latent innovations, distinguish them from other sources of variance, and 

provide reliable information about the latent dynamics. Based on our findings, researchers 

should note that: 

(1) The complete versions of deterministic and the stochastic specifications of the 

BLCS model are not tenable with 3 repeated measures if 500 participants or less 

are recruited. 

(2) When the latent trajectories are not affected by random shocks or innovations 

(or their impact is very small), both the deterministic and stochastic BLCS 

model require similar sampling conditions to recover the latent dynamics. When 

the impact of random shocks in the latent trajectories is medium or large, the 

stochastic model requires larger sample sizes.  

(3) We recommend using the deterministic BLCS model only when the researcher 

expects no (or little) impact of innovations in the latent processes, and the 

following minimum sampling requirements are met: 4 repeated measures and 

500 participants, 5 repeated measures and 200 participants, 7 repeated measures 

and 100 participants, or 10 repeated measures and 50 participants. 
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(4) If the researcher suspects that the trajectories are substantially affected by 

innovations, we recommend estimating the stochastic BLCS model with the 

following minimum sampling conditions: 5 repeated measures and 500 

participants, 7 repeated measures and 200 participants, or 10 repeated measures 

and 50 participants. 

We have shown that, under the right sampling conditions, both the deterministic 

and stochastic BLCS model are accurate and reliable tools for the recovery of dynamics 

in developmental data. Based on these findings, we encourage researchers to include 

stochastic innovations in their BLCS specification if they expect innovations to have an 

impact in the latent construct under study. We hope the findings in this study will help 

researchers on the design of future longitudinal studies, and will provide insight about 

the risks of using BLCS models under adverse sampling conditions. 

  



Deterministic and stochastic BLCS  -  32 

References 

Ahmed, Y., Wagner, R. K., & Lopez, D. (2014). Developmental relations between 

reading and writing at the word, sentence, and text levels: A latent change score 

analysis. Journal of Educational Psychology, 106(2), 419–434. 

https://doi.org/10.1037/a0035692 

Asparouhov, T., & Muthén, B. (2020). Comparison of Models for the Analysis of 

Intensive Longitudinal Data. Structural Equation Modeling: A Multidisciplinary 

Journal, 27(2), 275–297. https://doi.org/10.1080/10705511.2019.1626733 

Bielak, A. A. M., Gerstorf, D., Kiely, K. M., Anstey, K. J., & Luszcz, M. (2011). 

Depressive Symptoms Predict Decline in Perceptual Speed in Older Adulthood. 

Psychology and Aging, 26(3), 576–583. https://doi.org/10.1037/a0023313 

Bodenmann, G., Hilpert, P., Nussbeck, F. W., & Bradbury, T. N. (2014). Enhancement 

of couples’ communication and dyadic coping by a self-directed approach: A 

randomized controlled trial. Journal of Consulting and Clinical Psychology, 

82(4), 580–591. https://doi.org/10.1037/a0036356 

Boker, S. M., Neale, M. C., Maes, H. H., Wilde, M. J., Spiegel, M., Brick, T. R., 

Estabrook, R., Bates, T. C., & Mehta, P. (2018). OpenMx user guide. Retrieved 

from: https://openmx.ssri.psu.edu/documentation  

Cáncer, P. F., Estrada, E., Ollero, M. J., & Ferrer, E. (2021). Dynamical Properties and 

Conceptual Interpretation of Latent Change Score Models. Frontiers in 

Psychology, 12. https://doi.org/10.3389/fpsyg.2021.696419 

Estrada, E., Ferrer, E., Karama, S., Román, F. J., & Colom, R. (2019). Time-Lagged 

Associations Between Cognitive and Cortical Development From Childhood to 

Early Adulthood. 55(6), 1338–1352. http://dx.doi.org/10.1037/dev0000716 



Deterministic and stochastic BLCS  -  33 

Ferrer, E., McArdle, J. J., Shaywitz, B. A., Holahan, J. M., Marchione, K., & Shaywitz, 

S. E. (2007). Longitudinal models of developmental dynamics between reading 

and cognition from childhood to adolescence. Developmental Psychology, 43(6), 

1460–1473. https://doi.org/10.1037/0012-1649.43.6.1460 

Ferrer, E., Shaywitz, B. A., Holahan, J. M., Marchione, K., & Shaywitz, S. E. (2010). 

Uncoupling of Reading and IQ Over Time: Empirical Evidence for a Definition 

of Dyslexia. Psychological Science, 21(1), 93–101. 

https://doi.org/10.1177/0956797609354084 

Finkel, D., Ernsth-Bravell, M., & Pedersen, N. L. (2016). Temporal Dynamics of Motor 

Functioning and Cognitive Aging. The Journals of Gerontology Series A: 

Biological Sciences and Medical Sciences, 71(1), 109–116. 

https://doi.org/10.1093/gerona/glv110 

Finkel, D., Reynolds, C. A., Emery, C. F., & Pedersen, N. L. (2013). Genetic and 

environmental variation in lung function drives subsequent variation in aging of 

fluid intelligence. Behavior genetics, 43(4), 274-285. 

https://doi.org/10.1007/s10519-013-9600-3 

Gerstorf, D., Lövdén, M., Röcke, C., Smith, J., & Lindenberger, U. (2007). Well-being 

affects changes in perceptual speed in advanced old age: Longitudinal evidence 

for a dynamic link. Developmental Psychology, 43(3), 705–718. 

https://doi.org/10.1037/0012-1649.43.3.705 

Ghisletta, P., Bickel, J.-F., & Lovden, M. (2006). Does Activity Engagement Protect 

Against Cognitive Decline in Old Age? Methodological and Analytical 

Considerations. The Journals of Gerontology Series B: Psychological Sciences 

and Social Sciences, 61(5), P253–P261. 

https://doi.org/10.1093/geronb/61.5.P253 



Deterministic and stochastic BLCS  -  34 

Ghisletta, P., & Lindenberger, U. (2003). Age-Based Structural Dynamics Between 

Perceptual Speed and Knowledge in the Berlin Aging Study: Direct Evidence 

for Ability Dedifferentiation in Old Age. Psychology and Aging, 18(4), 696–

713. https://doi.org/10.1037/0882-7974.18.4.696 

Ghisletta, P., & McArdle, J. J. (2012). Latent Curve Models and Latent Change Score 

Models Estimated in R. Structural Equation Modeling: A Multidisciplinary 

Journal, 19(4), 651–682. https://doi.org/10.1080/10705511.2012.713275 

Grimm, K. J. (2007). Multivariate longitudinal methods for studying developmental 

relationships between depression and academic achievement. International 

Journal of Behavioral Development, 31(4), 328–339. 

https://doi.org/10.1177/0165025407077754 

Hamagami, F., & McArdle, J. J. (2001). Advanced studies of individual differences 

linear dynamic models for longitudinal data analysis. In G. A. Marcoulides & R. 

E. Schumacker, New Developments and Techniques in Structural Equation 

Modeling (pp. 203–246). Erlbaum Publishers. 

Hertzog, C., Dixon, R. A., Hultsch, D. F., & MacDonald, S. W. S. (2003). Latent 

Change Models of Adult Cognition: Are Changes in Processing Speed and 

Working Memory Associated With Changes in Episodic Memory? Psychology 

and Aging, 18(4), 755–769. https://doi.org/10.1037/0882-7974.18.4.755 

Hunter, M. D. (2018). State Space Modeling in an Open Source, Modular, Structural 

Equation Modeling Environment. Structural Equation Modeling: A 

Multidisciplinary Journal, 25(2), 307–324. 

https://doi.org/10.1080/10705511.2017.1369354 



Deterministic and stochastic BLCS  -  35 

Infurna, F. J., & Gerstorf, D. (2013). Linking perceived control, physical activity, and 

biological health to memory change. Psychology and Aging, 28(4), 1147–1163. 

https://doi.org/10.1037/a0033327 

Ji, L., & Chow, S.-M. (2019). Methodological Issues and Extensions to the Latent 

Difference Score Framework 1. In E. Ferrer, S. M. Boker, & K. J. Grimm (Eds.), 

Longitudinal Multivariate Psychology (pp. 9–37). Routledge. 

https://doi.org/10.4324/9781315160542-2 

Kail, R. V., & Ferrer, E. (2007). Processing Speed in Childhood and Adolescence: 

Longitudinal Models for Examining Developmental Change. Child 

Development, 78(6), 1760–1770. https://doi.org/10.1111/j.1467-

8624.2007.01088.x 

Kenny, D. A., & Zautra, A. (2001). Trait–state models for longitudinal data. In L. M. 

Collins & A. G. Sayer (Eds.), New methods for the analysis of change (pp. 243–

263). American Psychological Association. https://doi.org/10.1037/10409-008 

Kievit, R. A., Brandmaier, A. M., Ziegler, G., van Harmelen, A.-L., de Mooij, S. M. M., 

Moutoussis, M., Goodyer, I. M., Bullmore, E., Jones, P. B., Fonagy, P., 

Lindenberger, U., & Dolan, R. J. (2018). Developmental cognitive neuroscience 

using latent change score models: A tutorial and applications. Developmental 

Cognitive Neuroscience, 33, 99–117. https://doi.org/10.1016/j.dcn.2017.11.007 

King, L. A., King, D. W., McArdle, J. J., Saxe, G. N., Doron‐LaMarca, S., & Orazem, 

R. J. (2006). Latent difference score approach to longitudinal trauma research. 

Journal of Traumatic Stress, 19(6), 771–785. https://doi.org/10.1002/jts.20188 

Liao, J., Muniz-Terrera, G., Head, J., & Brunner, E. J. (2018). Dynamic Longitudinal 

Associations Between Social Support and Cognitive Function: A Prospective 

Investigation of the Directionality of Associations. The Journals of 



Deterministic and stochastic BLCS  -  36 

Gerontology: Series B, 73(7), 1233–1243. 

https://doi.org/10.1093/geronb/gbw135 

Lövdén, M., Ghisletta, P., & Lindenberger, U. (2005). Social Participation Attenuates 

Decline in Perceptual Speed in Old and Very Old Age. Psychology and Aging, 

20(3), 423–434. https://doi.org/10.1037/0882-7974.20.3.423 

Lövdén, M., Li, S.-C., Shing, Y. L., & Lindenberger, U. (2007). Within-person trial-to-

trial variability precedes and predicts cognitive decline in old and very old age: 

Longitudinal data from the Berlin Aging Study. Neuropsychologia, 45(12), 

2827–2838. https://doi.org/10.1016/j.neuropsychologia.2007.05.005 

Lüdtke, O., Robitzsch, A., & Wagner, J. (2018). More stable estimation of the STARTS 

model: A Bayesian approach using Markov chain Monte Carlo techniques. 

Psychological Methods, 23(3), 570–593. https://doi.org/10.1037/met0000155 

Malone, P. S., Lansford, J. E., Castellino, D. R., Berlin, L. J., Dodge, K. A., Bates, J. E., 

& Pettit, G. S. (2004). Divorce and Child Behavior Problems: Applying Latent 

Change Score Models to Life Event Data. Structural Equation Modeling: A 

Multidisciplinary Journal, 11(3), 401–423. 

https://doi.org/10.1207/s15328007sem1103_6 

McArdle, J. J. (2001). A latent difference score approach to longitudinal dynamic 

structural analysis. In R. Cudeck, S. du Toit, & D. Sörbom, Structural equation 

modeling, present and future: A Festschrift in honor of Karl Jöreskog (pp. 7–

46). Scientific Software International. 

McArdle, J. J. (2009). Latent Variable Modeling of Differences and Changes with 

Longitudinal Data. Annual Review of Psychology, 60(1), 577–605. 

https://doi.org/10.1146/annurev.psych.60.110707.163612 



Deterministic and stochastic BLCS  -  37 

McArdle, J. J., Ferrer-Caja, E., Hamagami, F., & Woodcock, R. W. (2002). 

Comparative longitudinal structural analyses of the growth and decline of 

multiple intellectual abilities over the life span. Developmental Psychology, 

38(1), 115–142. https://doi.org/10.1037/0012-1649.38.1.115 

McArdle, J. J., & Hamagami, F. (2001). Latent difference score structural models for 

linear dynamic analyses with incomplete longitudinal data. In L. M. Collins & 

A. G. Sayer (Eds.), New methods for the analysis of change. (pp. 139–175). 

American Psychological Association. https://doi.org/10.1037/10409-005 

McArdle, J. J., & Hamagami, F. (2004). Methods for dynamic change hypotheses. In K. 

van Montfort, J. Oud, & A. Satorra (Eds.), Recent Developments on Structural 

Equation Models (Vol. 19, pp. 295–335). Springer Netherlands. 

https://doi.org/10.1007/978-1-4020-1958-6 

McArdle, J. J., Hamagami, F., Jones, K., Jolesz, F., Kikinis, R., Spiro, A., & Albert, M. 

S. (2004). Structural Modeling of Dynamic Changes in Memory and Brain 

Structure Using Longitudinal Data From the Normative Aging Study. The 

Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 

59(6), 294–304. https://doi.org/10.1093/geronb/59.6.P294 

McArdle, J. J., & Nesselroade, J. R. (2014). Longitudinal data analysis using structural 

equation models. American Psychological Association. 

https://doi.org/10.1037/14440-000 

McArdle, J. J., & Prindle, J. J. (2008). A latent change score analysis of a randomized 

clinical trial in reasoning training. Psychology and Aging, 23(4), 702–719. 

https://doi.org/10.1037/a0014349 



Deterministic and stochastic BLCS  -  38 

Mistler, S. A., & Enders, C. K. (2012). Planned missing data designs for developmental 

research. In B. Laursen, T. D. Little, & N. A. Card (Eds.), Handbook of 

developmental research methods (pp. 742–754). The Guilford Press.  

Neale, M. C., Hunter, M. D., Pritikin, J. N., Zahery, M., Brick, T. R., Kirkpatrick, R. 

M., Estabrook, R., Bates, T. C., Maes, H. H., & Boker, S. M. (2016). OpenMx 

2.0: Extended Structural Equation and Statistical Modeling. Psychometrika, 

81(2), 535–549. https://doi.org/10.1007/s11336-014-9435-8 

Oud, J. H. L., & Delsing, M. J. M. H. (2010). Continuous Time Modeling of Panel Data 

by means of SEM. In K. van Montfort, J. H. L. Oud, & A. Satorra (Eds.), 

Longitudinal Research with Latent Variables (pp. 201–244). Springer Berlin 

Heidelberg. https://doi.org/10.1007/978-3-642-11760-2_7 

Oud, J. H. L., & Jansen, R. A. R. G. (2000). Continuous time state space modeling of 

panel data by means of sem. Psychometrika, 65(2), 199–215. 

https://doi.org/10.1007/BF02294374 

Peng, P., & Kievit, R. A. (2020). The Development of Academic Achievement and 

Cognitive Abilities: A Bidirectional Perspective. Child Development 

Perspectives, 14(1), 15–20. https://doi.org/10.1111/cdep.12352 

Quinn, J. M., Wagner, R. K., Petscher, Y., & Lopez, D. (2015). Developmental 

Relations Between Vocabulary Knowledge and Reading Comprehension: A 

Latent Change Score Modeling Study. Child Development, 86(1), 159–175. 

https://doi.org/10.1111/cdev.12292 

Rhemtulla, M., & Hancock, G. R. (2016). Planned missing data designs in educational 

psychology research. Educational Psychologist, 51, 305–316. 

http://dx.doi.org/10.1080/00461520.2016.1208094 



Deterministic and stochastic BLCS  -  39 

Sargent-Cox, K. A., Anstey, K. J., & Luszcz, M. A. (2012). The relationship between 

change in self-perceptions of aging and physical functioning in older adults. 

Psychology and Aging, 27(3). https://doi.org/10.1037/a0027578 

Schmitt, S. A., Geldhof, G. J., Purpura, D. J., Duncan, R., & McClelland, M. M. (2017). 

Examining the relations between executive function, math, and literacy during 

the transition to kindergarten: A multi-analytic approach. Journal of Educational 

Psychology, 109(8), 1120–1140. https://doi.org/10.1037/edu0000193 

Schuurman, N. K., Houtveen, J. H., & Hamaker, E. L. (2015). Incorporating 

measurement error in n = 1 psychological autoregressive modeling. Frontiers in 

Psychology, 6. https://doi.org/10.3389/fpsyg.2015.01038 

Shaywitz, S. E., Shaywitz, B. A., Fletcher, J. M., & Escobar, M. D. (1990). Prevalence 

of Reading Disability in Boys and Girls: Results of the Connecticut 

Longitudinal Study. JAMA, 264(8), 998–1002. 

https://doi.org/10.1001/jama.1990.03450080084036 

Small, B. J., Dixon, R. A., McArdle, J. J., & Grimm, K. J. (2012). Do changes in 

lifestyle engagement moderate cognitive decline in normal aging? Evidence 

from the Victoria Longitudinal Study. Neuropsychology, 26(2), 144–155. 

https://doi.org/10.1037/a0026579 

Snitz, B. E., Small, B. J., Wang, T., Chang, C.-C. H., Hughes, T. F., & Ganguli, M. 

(2015). Do Subjective Memory Complaints Lead or Follow Objective Cognitive 

Change? A Five-Year Population Study of Temporal Influence. Journal of the 

International Neuropsychological Society, 21(9), 732–742. 

https://doi.org/10.1017/S1355617715000922 

Usami, S., Hayes, T., & McArdle, J. J. (2015). On the Mathematical Relationship 

Between Latent Change Score and Autoregressive Cross-Lagged Factor 



Deterministic and stochastic BLCS  -  40 

Approaches: Cautions for Inferring Causal Relationship Between Variables. 

Multivariate Behavioral Research, 50(6), 676–687. 

https://doi.org/10.1080/00273171.2015.1079696 

Usami, S., Hayes, T., & McArdle, J. J. (2016). Inferring longitudinal relationships 

between variables: Model selection between the latent change score and 

autoregressive cross-lagged factor models. Structural Equation Modeling: A 

Multidisciplinary Journal, 23(3), 331-342. 

https://doi.org/10.1080/10705511.2015.1066680 

Usami, S., Murayama, K., & Hamaker, E. L. (2019). A unified framework of 

longitudinal models to examine reciprocal relations. Psychological Methods, 

24(5), 637–657. https://doi.org/10.1037/met0000210 

van Der Maas, H. L. J., Dolan, C. V., Grasman, R. P. P. P., Wicherts, J. M., Huizenga, 

H. M., & Raijmakers, M. E. J. (2006). A dynamical model of general 

intelligence: The positive manifold of intelligence by mutualism. Psychological 

Review, 113(4), 842–861. https://doi.org/10.1037/0033-295X.113.4.842 

Voelkle, M. C., Gische, C., Driver, C. C., & Lindenberger, U. (2018). The Role of Time 

in the Quest for Understanding Psychological Mechanisms. Multivariate 

Behavioral Research, 53(6), 782–805. 

https://doi.org/10.1080/00273171.2018.1496813 

Voelkle, M. C., & Oud, J. H. L. (2015). Relating Latent Change Score and Continuous 

Time Models. Structural Equation Modeling: A Multidisciplinary Journal, 

22(3), 366–381. https://doi.org/10.1080/10705511.2014.935918 

Voelkle, M. C., Oud, J. H., Davidov, E., & Schmidt, P. (2012). An SEM approach to 

continuous time modeling of panel data: relating authoritarianism and anomia. 

Psychological methods, 17(2), 176. https://doi.org/10.1037/a0027543 



Deterministic and stochastic BLCS  -  41 

Ziegler, M., Cengia, A., Mussel, P., & Gerstorf, D. (2015). Openness as a buffer against 

cognitive decline: The Openness-Fluid-Crystallized-Intelligence (OFCI) model 

applied to late adulthood. Psychology and Aging, 30(3), 573–588. 

https://doi.org/10.1037/a0039493 

Zyphur, M. J., Allison, P. D., Tay, L., Voelkle, M. C., Preacher, K. J., Zhang, Z., 

Hamaker, E. L., Shamsollahi, A., Pierides, D. C., Koval, P., & Diener, E. 

(2020). From Data to Causes I: Building A General Cross-Lagged Panel Model 

(GCLM). Organizational Research Methods, 23(4), 651–687. 

https://doi.org/10.1177/1094428119847278 

 

  



Deterministic and stochastic BLCS  -  42 

Captions 

Table 1. Generating parameters. 

Figure 1. Expected trajectories (left panel), with measurement error only (middle panel), 

and with innovations only (right panel). 

Figure 2. Path diagram of a stochastic BLCS model. The parameters capturing dynamic 

error’s variances and covariance are highlighted in bold and red. 

Figure 3. Latent trajectories with proportions of variance due to innovations at t=2 of 0, 

.05, .15 and .25. 

Figure 4. Percentage of improper solutions across all conditions for the stochastic BLCS 

model.  

Figure 5. Bias of the self-feedbacks and couplings across all conditions. The population 

parameter values are βx = −.35, βy = −.25, γx = .1, and γy = .2. 

Figure 6. Standard deviation of the self-feedbacks and couplings across all conditions. 

The population parameter values are βx = −.35, βy = −.25, γx = .1, and γy = .2. 

Figure 7. Bias of the standard errors of self-feedbacks and couplings across all 

conditions. 
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