
Citation: de Curtò, J.; de Zarzà, I.;

Roig, G.; Calafate, C.T. Large

Language Model-Informed X-ray

Photoelectron Spectroscopy Data

Analysis. Signals 2024, 5, 181–201.

https://doi.org/10.3390/

signals5020010

Academic Editor: Richard J. Povinelli

Received: 30 November 2023

Revised: 20 February 2024

Accepted: 21 March 2024

Published: 27 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

signals

Article

Large Language Model-Informed X-ray Photoelectron
Spectroscopy Data Analysis
J. de Curtò 1,2,3 , I. de Zarzà 1,2,3,* , Gemma Roig 1,4 and Carlos T. Calafate 2

1 Informatik und Mathematik, GOETHE-University Frankfurt am Main, 60323 Frankfurt am Main, Germany;
decurto@em.uni-frankfurt.de (J.d.C.); roig@cs.uni-frankfurt.de (G.R.)

2 Departamento de Informática de Sistemas y Computadores, Universitat Politècnica de València,
46022 València, Spain; calafate@disca.upv.es

3 Estudis d’Informàtica, Multimèdia i Telecomunicació, Universitat Oberta de Catalunya,
08018 Barcelona, Spain

4 HESSIAN Center for AI (hessian.AI), 64289 Darmstadt, Germany
* Correspondence: dezarza@em.uni-frankfurt.de

Abstract: X-ray photoelectron spectroscopy (XPS) remains a fundamental technique in materials
science, offering invaluable insights into the chemical states and electronic structure of a material.
However, the interpretation of XPS spectra can be complex, requiring deep expertise and often
sophisticated curve-fitting methods. In this study, we present a novel approach to the analysis
of XPS data, integrating the utilization of large language models (LLMs), specifically OpenAI’s
GPT-3.5/4 Turbo to provide insightful guidance during the data analysis process. Working in the
framework of the CIRCE-NAPP beamline at the CELLS ALBA Synchrotron facility where data are
obtained using ambient pressure X-ray photoelectron spectroscopy (APXPS), we implement robust
curve-fitting techniques on APXPS spectra, highlighting complex cases including overlapping peaks,
diverse chemical states, and noise presence. Post curve fitting, we engage the LLM to facilitate the
interpretation of the fitted parameters, leaning on its extensive training data to simulate an interaction
corresponding to expert consultation. The manuscript presents also a real use case utilizing GPT-4 and
Meta’s LLaMA-2 and describes the integration of the functionality into the TANGO control system.
Our methodology not only offers a fresh perspective on XPS data analysis, but also introduces a new
dimension of artificial intelligence (AI) integration into scientific research. It showcases the power of
LLMs in enhancing the interpretative process, particularly in scenarios wherein expert knowledge
may not be immediately available. Despite the inherent limitations of LLMs, their potential in the
realm of materials science research is promising, opening doors to a future wherein AI assists in the
transformation of raw data into meaningful scientific knowledge.
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1. Introduction and Overview

X-ray photoelectron spectroscopy (XPS) [1] is a powerful tool extensively used in
materials science and surface chemistry. It is renowned for its capacity to provide informa-
tion about the elemental composition, chemical state, and electronic structure of materials.
However, the interpretation of XPS data can be a challenging task, as it often involves
addressing overlapping peaks, diverse chemical states, and noise present in the spectra [2].

Traditionally, the analysis of XPS data has required significant expertise, with re-
searchers relying on knowledge of chemical shifts, energy levels, and peak characteristics.
While various software tools are available to aid in the curve-fitting process, e.g., CasaXPS
(Casa Software Ltd., Teignmouth, Devon, UK), KolXPD (Kolibrik.net, s.r.o., Žd’ár nad
Sázavou, Czech Republic), PeakFit (Systat Software Inc., San José, CA, USA), or Igor Pro
(Wavemetrics, Lake Oswego, OR, USA), their efficacy is still heavily dependent on the
user’s expert knowledge and judgment.
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In recent years, advancements in artificial intelligence (AI) have prompted a shift in
how we approach complex data interpretation tasks. Large language models (LLMs) [3–6],
trained on diverse datasets, have demonstrated an impressive ability to generate human-
like text, answer questions, and even provide insights on complex problems. These models
mainly build on the Transformer architecture [7–9] and advanced training mechanisms to
accomplish convergence with billions of hyperparameters [10]. This study explores the
utilization of OpenAI’s Generative Pre-trained Transformer (GPT), in particular GPT-3.5
Turbo [11,12], an advanced LLM, to facilitate the analysis of XPS data.

The objective of this study is two-fold. First, we aim to enhance the curve-fitting
process of XPS data obtained from the CIRCE-NAPP beamline at the CELLS ALBA Syn-
chrotron facility in Cerdanyola del Vallès, addressing the challenges posed by overlapping
peaks, diverse chemical states, and noise. Second, we seek to incorporate the LLM into the
data interpretation process, thereby aiding researchers in extracting meaningful insights
from the fitted parameters. The goal is to improve human expertise, enabling a more
streamlined and efficient process for data analysis.

This paper further explores the strengths and limitations of using an LLM for such
a purpose, and highlights the potential of AI in transforming the way we conduct and
interpret scientific research. We also describe the integration of this functionality within the
TANGO control system used at the CELLS ALBA Synchrotron. By integrating AI into the
workflow, we open up new avenues for accelerated scientific discovery, and bring a fresh
perspective to the existing methodologies of data interpretation in material science research.
This study also highlights the value of ongoing collaboration between AI development and
the scientific community to ensure the optimal utilization of these advanced models.

We envision a future wherein AI, particularly LLMs, play a significant role in the
analysis and interpretation of scientific data, augmenting human expertise and enabling
more researchers to leverage the power of techniques like XPS. As we continue to explore
the interface between AI and scientific research, it becomes increasingly evident that the
marriage of these two fields holds considerable promise.

The remainder of this paper is structured as follows: Section 2 delves into the relevant
literature and prior studies, presenting a comprehensive review of the works that have con-
tributed to the current state of knowledge in the field. In Section 3, we provide an overview
of XPS, delineating its core principles, instrumentation, and applications. This is further
refined in Section 3.1, where APXPS, a specific variant of XPS, is elucidated, emphasizing
its unique capabilities and significance. Section 4 articulates our research methodology,
giving emphasis to the materials, techniques, and procedures adopted throughout the study.
Section 5 introduces some use cases at the CELLS ALBA Synchrotron facility. Section 6
presents the framework for integration of both LLM and scientist analysis into the workflow
and Section 7 describes the particularities of integrating the functionality into the TANGO
control system. Transitioning toward the final Sections 8 and 9, which encapsulate our
primary findings, we highlight the implications of our research, and chart out potential
avenues for future exploration in the domain.

2. Related Works

The application of XPS [2] in the field of materials science has a well-established
history, with extensive literature documenting methodologies for data acquisition, analy-
sis, and interpretation. However, the integration of artificial intelligence (AI) into this
field is a relatively novel concept, presenting an array of potential enhancements to
traditional approaches.

In the realm of XPS data analysis, a wealth of literature focuses on the use of con-
ventional curve-fitting techniques. Seminal works such as those in [13,14] provide com-
prehensive overviews of these techniques, discussing in depth the challenges related to
peak overlap, the presence of noise, and the interpretation of chemical states. These papers
underscore the need for expert judgment and the importance of careful peak parameter
selection, shaping much of the contemporary thinking in this field.
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Recently, more sophisticated curve-fitting methods, including iterative and machine
learning (ML)-based techniques, have begun to emerge. Studies such as the one in [15]
propose the use of ML algorithms for automatic peak detection, demonstrating promising
results in terms of precision and computational efficiency.

The usage of AI, and more specifically LLMs [11,12], in the scientific field has seen a
surge in recent years. OpenAI’s GPT-3, the predecessor to GPT-3.5 Turbo, has been utilized
in various scientific domains [16–19]. These studies highlight the capability of LLMs to
generate informative, contextually relevant content, and suggest the potential for their
application in more specialized scientific tasks [20–22].

The integration of AI into XPS data analysis, however, remains relatively unexplored.
Golze et al., 2022 [23], put forth an innovative ML model that merges density functional
theory (DFT) with GW (a theory named after the physicists Lars Hedin’s Green function (G)
and screened Coulomb interaction (W)) [24]; the GW method is a post-Hartree–Fock [25]
approach for the many-body treatment of electron–electron interactions. It is widely
used for the calculation of the electronic properties of systems, particularly in the field of
condensed matter physics. As already introduced, the “G” in GW refers to Green’s function,
which describes the propagation of electrons in a material, while “W” denotes the screened
Coulomb interaction between these electrons. This method is of utmost importance in
the field of many-body physics and is widely recognized by its conventional designation
“GW”. In [26], they introduced an AI ab initio framework specifically tailored for predicting
XPS data for the solid electrolyte interphase (SEI) of lithium–metal batteries. To the best
of our knowledge, this study represents the first attempt to leverage an LLM like GPT-3.5
Turbo in the interpretation of XPS spectra, marking a unique contribution to both the field
of materials science and AI applications in scientific research.

It is worth noting that, while the literature provides ample evidence of the potential
benefits of AI in scientific data analysis, it also underscores the challenges and limitations
inherent to these methods. The need for extensive training data, the risks of over-reliance
on AI interpretations, and the occasional opacity of AI decision-making processes, are
just a few of the issues highlighted in previous works. As such, while this study seeks to
explore the potential of LLMs in XPS data interpretation, we acknowledge and address
these challenges throughout our research.

3. X-ray Photoelectron Spectroscopy

XPS, also referred to as electron spectroscopy for chemical analysis (ESCA), is a
powerful and versatile technique widely utilized for surface analysis [27,28]. Its principle
lies in the photoelectric effect, where a material absorbs X-ray photons and consequently
emits photoelectrons. The kinetic energy of these emitted photoelectrons and their relative
number is meticulously measured to provide critical information about the elemental
composition, chemical state, and electronic state of the material under investigation.

XPS functions on the basis that the kinetic energy of an electron emitted from a material
is a function of the binding energy of the electron within the atom and the energy of the
incident X-ray. This relationship can be formulated as follows:

KE = hν− BE− ϕ, (1)

where KE denotes the kinetic energy of the photoelectron, hν is the energy of the incident
X-ray, BE is the binding energy of the electron, and ϕ is the work function of the electron
energy analyzer that accounts for energy losses related to the spectrometer itself.

A typical XPS spectrum is a plot of the number of electrons detected (usually repre-
sented as counts/s) versus the binding energy of the electrons, measured in electron volts
(eV). Each chemical element originates a set of specific XPS peaks in the spectrum, and
their binding energies are also modulated by the atomic local bonding environment. The
area under each peak is directly proportional to the amount of the corresponding element
present in the surface region of the material.
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XPS analysis is particularly beneficial due to its capability of detecting all elements
(with special conditions required for detection of hydrogen and helium), its sensitivity
(can detect elements present at the 0.1 atomic % level), its ability to provide information
about the chemical state of the elements present, and its surface sensitivity, down to a few
atomic layers.

While the method of curve fitting in XPS data analysis has been widely applied, the
process of interpreting the curve-fitted peaks—representing different chemical states—often
requires substantial domain expertise. This paper presents an approach to leverage the
abilities of LLMs to assist in the interpretation of curve-fitted XPS data, providing a valuable
tool to enhance the efficiency and accessibility of XPS analysis.

3.1. Ambient Pressure X-ray Photoelectron Spectroscopy

Following our discussion on XPS, it is crucial to delve into a more specialized variant
of this technique which is the focus of our study: ambient pressure X-ray photoelectron
spectroscopy, commonly abbreviated as APXPS [29]. The evolution from conventional XPS
to APXPS embodies our relentless pursuit of enhancing our investigative tools, facilitating
experiments under conditions closer to reality.

XPS operates in ultra-high vacuum (UHV) conditions. While this ensures high preci-
sion and clarity in our measurements by reducing contamination and spectral interference,
it somewhat limits the scope of conditions under which materials can be studied. Often,
real-world conditions, especially in heterogeneous catalysis, energy storage, and environ-
mental science, involve interactions occurring at non-vacuum conditions. This discrepancy
between UHV conditions of XPS and ambient conditions of practical scenarios necessitated
an adaptation.

APXPS bridges the gap by allowing researchers to perform XPS measurements at
elevated pressures, extending from UHV up to atmospheric conditions, and sometimes
even higher. This transition is not merely a trivial escalation in pressure; it signifies a
monumental leap. By probing materials under conditions where actual reactions take
place, APXPS provides insights that are directly translatable to real-world applications. For
instance, in situ investigations of catalytic processes can be observed as they occur, paving
the way for groundbreaking discoveries in reaction mechanisms.

Key to the success of APXPS is the differential pumping system, which maintains the
X-ray source and detectors in UHV while the sample is subjected to higher pressures. This
ensures the X-rays’ integrity and prevents contamination of the sensitive equipment. The
capability to vary pressure allows researchers to mimic a plethora of environments, from
the gas–solid interfaces in fuel cells to the liquid–solid boundaries in biological systems.

In essence, while XPS laid the foundation of surface science investigations with its
prowess to determine elemental composition and chemical states, APXPS has expanded
this frontier. It ensures that our experimental conditions are not just a mere approximation,
but rather a true reflection of practical environments.

4. Materials and Methodology

This section presents the details of the materials and methodologies employed for
this study. Our synthetic dataset consists of simulated XPS spectra from a hypothetical
sample, created to represent typical complexities encountered in real XPS data, including
peak overlaps and noise. The analysis is a two-step process, starting off with a curve fitting
procedure, followed by interpreting the output using OpenAI’s GPT-3.5 Turbo [30].

The synthetic XPS spectra generated for this study include the addition of simulated
noise to closely mimic the characteristics of real-world experimental data. The noise in XPS
spectra typically arises from various sources, including instrumental factors, environmental
fluctuations, and inherent variations in the sample. To replicate these conditions, we have
employed a noise simulation approach as follows:

In our synthetic spectral data, noise was introduced to simulate the inherent fluctu-
ations present in experimental measurements. The noise was generated as a normally
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distributed random variable, normally referred to as Gaussian noise, with a mean of zero
and a standard deviation of 0.1. This choice of standard deviation was made to reflect
typical signal-to-noise ratios encountered in real XPS data. We applied this noise uniformly
across the entire energy range of the synthetic spectra. Specifically, the np.random.normal
function was used to create a noise array of the same size as the energy range, ensuring
that each data point had a unique, random deviation from the true signal. This process was
controlled using a fixed seed (seed = 0) for the random number generator, which ensures
reproducibility of the noise for consistent comparison of results. Figures 1 and 2 illustrate
the resulting synthetic spectra with this superimposed noise, which visually manifests as
small, random fluctuations around the simulated peak intensities.

Figure 1. Synthetic XPS data for Oxygen 1s with multiple overlapping Gaussian peaks and a linear
baseline. The dashed lines (green, red, and magenta) depict individual Gaussian peaks contributing
to the overall fit. The dotted black line represents the baseline, while the solid black line shows the
total fit, which is the sum of all individual components and the baseline. The plot illustrates how each
Gaussian peak and the baseline contribute to the overall profile, offering insights into the binding
energy and intensity of each oxygen state.

Figure 2. Curve fitting of synthetic oxygen XPS data. The initial parameters for the peak centers,
amplitudes, and widths (sigma) were defined within a reasonable range based on prior knowledge of
XPS. The blue line represents the synthetic data, and the red line represents the best fit achieved by
the curve-fitting process. The x-axis denotes the binding energy in electron volts (eV), while the y-axis
represents the intensity of the signal. The close alignment of the data and best fit lines demonstrates
the efficacy of our curve-fitting procedure.

4.1. Curve Fitting

To effectively analyze the XPS data, we first perform a curve-fitting procedure. Our
synthetic data contain several Gaussian distributions corresponding to different energy
levels. Each Gaussian peak is defined as follows:
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f (x) = A · e−(x−µ)2/(2σ2), (2)

where

• A is the height of the curve’s peak;
• µ is the position of the center of the peak;
• σ is the standard deviation which determines the width of the peak.

Our task is to fit a series of Gaussian distributions to the raw data to approximate the
observed peaks, and, in the process, estimate the parameters (A, µ, σ) for each distribution.

We employ the algorithm Levenberg–Marquardt [31,32] implemented in the library
lmfit [33] for the curve-fitting procedure. This algorithm is widely used in curve-fitting
problems, offering robustness in handling nonlinear least-square problems. The objective
of this step is to minimize the sum of the squared residuals, defined as follows:

S = ∑[yz − f (xz, A, µ, σ)]2, (3)

where yz are the observed values, xz are the corresponding energy levels, and f (xz, A, µ, σ)
is the fitted Gaussian curve. Levenberg–Marquardt iteratively refines the parameters
(A, µ, σ) to reach a minimum for S. Figure 1 provides a visual representation of a synthetic
XPS data for Oxygen 1s, illustrating the contribution of multiple Gaussian peaks, and a
linear baseline to the overall spectrum.

In Figure 2, we showcase the results of the curve-fitting process applied to our synthetic
oxygen XPS data. The initial guesses for peak centers, amplitudes, and sigma (widths) were
carefully chosen within a reasonable range based on prior XPS data and domain expertise.
These initial conditions were utilized to fit the Gaussian models to our synthetic data. The
plot in the figure displays the original synthetic data in blue, and the best fit result obtained
from the curve fitting process in red. The close overlap between these two lines indicates a
successful curve fitting, providing meaningful peak information from the synthetic data.
The robustness of this approach further emphasizes its potential applicability for real-world
XPS data analysis.

In our approach, the number of components (or peaks) for the fittings is determined
using the continuous wavelet transform (CWT), and the optimization uses the python
library lmfit.

The fitting results for model Voigt [34] yielded specific parameters for each peak, such
as center, amplitude, and sigma. The pseudocode is presented in Algorithm 1.

Algorithm 1 Extract peak parameters from fitting.
1: function EXTRACTPARAMETERS(report)
2: parameters← []
3: o ← 0
4: while True do
5: center ← REGEXSEARCH(report,′ p′ + o +′ _center′)
6: centerError ← REGEXSEARCH(report,′ p′ + o +′ _centerError′)
7: amplitude← REGEXSEARCH(report,′ p′ + o +′ _amplitude′)
8: amplitudeError ← REGEXSEARCH(report,′ p′ + o +′ _amplitudeError′)
9: sigma← REGEXSEARCH(report,′ p′ + o +′ _sigma′)

10: sigmaError ← REGEXSEARCH(report,′ p′ + o +′ _sigmaError′)
11: if center and centerError and amplitude and amplitudeError and sigma and sigmaError then
12: APPEND(parameters, {’center’: center, ’centerError’: centerError, ...})
13: o ← o + 1
14: else
15: break
16: end if
17: end while
18: return parameters
19: end function
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4.2. LLM-Informed XPS Analysis

In our methodology, the LLM plays a significant role in interpreting the outcomes
of the XPS data curve-fitting procedure as depicted in Figure 3. We employ the LLM to
provide insights on the potential chemical states of oxygen, suggest potential sources of
error, and recommend any additional experiments needed for further confirmation based
on the parameters obtained from the curve-fitting process.

User at
CIRCE-
NAPP

Beamline

Input
XPS Data

Curve
Fitting

Peak
Parameters

LLM
Analysis

Chemical
States,
Errors,

Additional
Experiments

User
Feedback &

Confirmation

Provides Undergo Generates

Used for

ProvidesGuides

Figure 3. Flow diagram of the user interaction with the LLM-informed agent in the XPS data analysis
at the CIRCE-NAPP beamline.

In Figure 3, the interaction between the user at the CIRCE-NAPP beamline at the
CELLS ALBA Synchrotron facility and the LLM-informed agent is depicted. This diagram
elucidates the key stages of our innovative XPS data analysis pipeline, beginning with the
user providing initial XPS data. The data are then subjected to the curve-fitting process,
described in Algorithm 1. The resultant peak parameters are subsequently analyzed by the
LLM to provide detailed insights into possible oxygen chemical states, potential sources of
error, and recommended additional experiments, as shown in Algorithm 2. This analysis
is then returned to the user, facilitating a decision-making process informed by deep, AI-
assisted understanding of the data. This iterative process enables rapid, accurate, and
efficient analysis of XPS data, with each loop offering opportunities for fine-tuning and
increased precision.

Algorithm 2 LLM Peak Analysis Function for GPT-3.5/4.0
Require: parameters: List of fitted parameters for each peak
Ensure: analysis_response: Detailed analysis from the LLM
1: global recommendation_cache
2: function GETLLMPEAKANALYSIS(parameters)
3: parameters_string← CONVERTPARAMETERSTOSTRING(parameters)
4: if parameters_string ∈ recommendation_cache then
5: return recommendation_cache[parameters_string]
6: end if
7: retries← 0
8: max_retries← 100
9: wait_time← 60 ▷ Seconds

10: while retries ≤ max_retries do
11: Attempt to send request to LLM
12: Handle exceptions and retry if needed with exponential backoff
13: if request successful then
14: break ▷ Successful request
15: end if
16: end while
17: if retries > max_retries then
18: raise Exception(’Maximum retries exceeded.’)
19: end if
20: analysis_response← response.choices[0].message.content.strip()
21: recommendation_cache[parameters_string]← analysis_response
22: return analysis_response
23: end function

This analysis starts structuring the LLM operation around a Python function, which
takes as input a list of fitted parameters for each peak in the XPS data. These parameters
include the center, amplitude, and standard deviation (sigma) of each peak.
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This function creates a formatted string, detailing the center, amplitude, and sigma
of each peak. This string acts as the basis for a query to the LLM. Prior to querying the
LLM, we verify whether the same string exists in a cache, a dictionary that stores previous
queries and their corresponding responses from the LLM. If a match is found, the cached
response is returned immediately. This cache mechanism minimizes redundant queries to
the LLM and enhances the efficiency of the function.

In cases where the query string is not found in the cache, the function engages in
an interaction with the LLM. A maximum of 100 attempts, or “retries”, are allowed for
successful communication with the LLM. The API function handles this interaction, where
a system message first sets the context of the LLM as an expert in XPS with deep knowledge
in chemical state identification and binding energy levels. The user message then presents
the fitted peak parameters and requests a detailed analysis.

The choice of 100 retries was determined based on a balance between ensuring ro-
bustness in data processing and practical considerations regarding system wait times and
API responsiveness. From empirical observations and prior usage metrics, we noted that
instances requiring retries typically succeed within a handful of attempts due to transient
network issues or temporary service outages. However, to account for the possibility of
more protracted disruptions while avoiding indefinite engagement in futile attempts, we
established an upper limit that is reasonably high to cover the vast majority of expected
scenarios. This limit also serves as a safeguard against indefinite resource allocation in
the event of unforeseen persistent issues with the API service. It allows the system to
eventually timeout and provides feedback to the user, enabling them to take alternative
actions if necessary. The number 100 is a heuristic that has been adopted in various compu-
tational systems as a standard threshold for retry mechanisms, striking a balance between
tenacity and efficiency. In practice, the likelihood of reaching this limit is low, and our
system logs indicate that the average number of retries rarely exceeds one or two times.
Nevertheless, setting this limit ensures that our automated system can handle exceptions
gracefully and maintain operational continuity without manual intervention under normal
operational conditions.

The model of choice is “gpt-3.5-turbo” or “gpt-4-1106-preview”. If the function en-
counters any issues in this process, it applies an exponential backoff strategy by incre-
mentally increasing the waiting time between retries, mitigating the potential for rapid,
repeated failures.

Upon receiving a response from the LLM, the function extracts the analysis provided
by the LLM, stores it in the cache for potential future use, and finally returns the analysis.

Through this process, the implementation integrates the expert-level insights of the
LLM into the XPS data analysis pipeline, providing a richer, more comprehensive inter-
pretation of the data than a purely quantitative approach may offer. By asking the LLM
to provide analysis given the peaks’ parameters, we can extract high-level knowledge
embedded in the LLM during its training, thereby leveraging its capability to generate
human-like text based on the vast amount of information it was trained on.

4.3. LLM Interpretation

Post curve fitting, the resultant parameters of each peak are analyzed using OpenAI’s
GPT-3.5 Turbo, as described previously. The model receives as input a formatted string
containing the parameters of each fitted peak, as well as some auxiliary information about
the sample, to generate an output that simulates a consultation with a domain expert.

The process is implemented with the OpenAI API. We use the “openai.ChatComple-
tion.create” function, passing in an array of message objects. The first message sets the
role of the assistant and the second message provides the content which includes the fitted
peak parameters.

For instance, the content may look as follows:
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“Given that peak 1 has a mean at 532.5 eV with a standard deviation of 1.2 eV and an
amplitude of 0.75, peak 2 has a mean at 533.5 eV with a standard deviation of 1.1 eV and an
amplitude of 0.80, can you help me interpret the potential chemical states?”

The model then generates a response that interprets the peaks in terms of poten-
tial chemical states and other relevant factors. The output is parsed, and the extracted
information is presented to the user.

This process introduces a layer of expert-like analysis, allowing for an accessible and
insightful understanding of the fitted XPS data, which can be especially useful for those
lacking extensive background in the field.

For instance, an example query using OpenAI GPT-3.5-turbo is the following:

{“role”: “system”, “content”: “You are an expert in X-ray Photoelectron Spectroscopy
(XPS) and can provide insightful analysis of peak data.”}, {“role”: “user”, “content”:
f“Given that {parameters_string}, what chemical states could these represent and
what should I do next?”}

That produces the next LLM-informed analysis:

Based on the information provided, it is likely that these peaks represent different chemical
states of atoms or molecules in the sample being analyzed.
Peak 1, with a center at 530 eV and the highest amplitude, may represent an element or
compound that is present in high abundance in the sample. The relatively broad standard
deviation of 1 suggests that this peak may be a composite of multiple chemical species with
slightly different binding energies.
Peak 2, with a center at 532 eV and a lower amplitude than peak 1, may represent a less
abundant chemical state in the sample. The smaller standard deviation of 0.8 suggests that
this peak may be a pure chemical species, as opposed to a composite of multiple species.
Peak 3, with a center at 528 eV and the lowest amplitude, may represent a minor chemical
species or a surface contamination. The small standard deviation of 0.5 indicates that this
peak is likely a pure chemical state.
In order to gain more insight into the chemical identity of these peaks, it would be helpful to
compare the peak positions and shapes to known binding energies and spectra for different
chemical elements and compounds. Further analysis, such as peak fitting and deconvolution,
may also be necessary to separate components within the composite peak 1 and to quantify
the relative amounts of each chemical species.
Overall, the information provided by the XPS peaks can provide important information about
the chemical composition and surface properties of the sample being analyzed. Proper inter-
pretation and analysis of the spectra can help inform future experiments or materials design.

In Algorithm 2, we present the pseudocode representation of the LLM peak analysis
function, an integral part of our LLM-informed XPS analysis methodology. This function
defines the core logic for interfacing with the LLM, handling the submission of XPS peak
parameters, managing communication retries, and processing the LLM’s response. The
pseudocode illustrates the sequence of operations, starting from the conversion of fitted
peak parameters into a query string, checking against a cache for previously processed
queries, and then engaging in a controlled interaction with the LLM API, which we have
developed interfaces for GPT-3.5/4.0, and also LLaMA-2 [35,36] and Zephyr-7b-α [6,10].
Notably, it includes a mechanism for handling potential communication failures and
employs an exponential back-off strategy for retrying requests, ensuring robustness in
real-world application. The primary objective is to obtain a detailed analysis from the LLM,
which is then returned to the user for further review and interpretation.

More advanced and sophisticated prompts could be used for specific use cases in the
beamline, for instance the one shown next for the study on possible Oxygen chemical states
present on an Ag(111) crystal:
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{“role”: “system”, “content”: “You are an expert in X-ray Photoelectron Spectroscopy
(XPS) with deep knowledge in chemical state identification and binding energy
levels. The experiment corresponds to the in situ oxidation of an Ag(111) crystal
and that there is sulfur contamination.”}, {“role”: “user”, “content”: f“Given that
{parameters_string}, can you provide a detailed analysis on possible Oxygen chemi-
cal states, potential sources of error, and any additional experiments that may be
needed for confirmation?”}

Additionally, this procedure could be further enhanced by using specialized domain
knowledge to guide the LLM analysis [37] as well as other measurement data files, for
example, contamination analysis of the sample.

Figure 4 presents a sequence diagram that delineates the interaction between various
components of the Synchrotron Light Source’s XPS data analysis framework. The process
starts with the user uploading XPS data, which then traverse through a sequence of
systematic checks and processes involving the API, LLM, cache mechanism, and the
database for the user in the beamline.

User API Interface LLM System Cache Database

Submit XPS Data

Query with Parameters

Cached Analysis

Check CacheCheck Cache Retrieve cached analysis if available

Request Analysis

Analyze XPS Data

Analysis Result

Store Analysis Result

Receive Analysis

Figure 4. Sequence diagram for the Synchrotron LLM-informed XPS data analysis process, illustrating
the interactions between the user, API interface, LLM system, cache, and the database.

5. Use Cases from the CELLS ALBA Synchrotron Radiation Facility

This section showcases two real use cases from the CELLS ALBA Synchrotron facility,
illustrating the practical application and the efficacy of combining LLMs with advanced XPS
analysis. These examples highlight the synthesis of theoretical knowledge with cutting-edge
AI tools to address complex experimental scenarios. Due to confidentiality and data protec-
tion protocols, complete experimental details cannot be disclosed. However, the selected
outputs underscore the depth of analysis achievable through this innovative approach.

5.1. In Situ Oxidation of Ag(111) Crystal Analyzed by GPT-4

The first example involves the in situ oxidation of an Ag(111) crystal, a critical process
in understanding surface chemistry and reactivity. Utilizing the capabilities of “gpt-4-0613”,
we were able to dissect the intricate details of the XPS spectrum, focusing on the identi-
fication and interpretation of oxygen chemical states amid experimental conditions. The
peak analysis, as detailed below, sheds light on the potential formation of metal oxides and
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the presence of adsorbed oxygen species, providing invaluable insights into the surface
phenomena occurring during the oxidation process.

LLM Analysis of XPS Spectrum for Ag(111) Crystal with ‘gpt-4-0613’

Peak Data:
[{‘center’:
528.116534,
‘center_error’:
0.00294214,
‘amplitude’:
30410.6263,
‘amplitude_error’:
685.089663,
‘sigma’:
0.20829818,
‘sigma_error’:
0.00332605},
{‘center’:
530.101595,
‘center_error’:
0.01133281,
‘amplitude’:
12097.3835,
‘amplitude_error’:
564.981412,
‘sigma’:
0.26903939,
‘sigma_error’:
0.01052791}]

Detailed Analysis:
Given the information about the two peaks observed in
your XPS data, let’s discuss the potential oxygen chemical
states observed during the in situ oxidation of an Ag(111)
crystal.
Peak Analysis:

1. Peak 1 at 528.116 eV: This peak is likely associated
with lattice oxygen in metal oxides. Considering the
experiment involves Ag(111), it’s possible that this
peak represents the O1s electrons from silver oxide
(Ag2O or AgO) formed during the oxidation process.
The binding energy of lattice oxygen in silver oxide is
typically around 528 eV, which correlates with Peak 1.

2. Peak 2 at 530.101 eV: A peak in this region could be
assigned to several possible oxygen states. One possi-
bility is that it represents adsorbed oxygen species on
the surface of the silver, such as O –

2 , O– or hydroxyl
groups (OH–). Additionally, if there’s sulfur contam-
ination, this peak might be influenced by sulfate or
sulfite species, as their O1s binding energies can ap-
pear in this range. It’s worth noting that peak shifts
can occur due to variations in the chemical environ-
ment, causing differences in binding energies even
within the same type of oxygen species.

5.2. Further Insights from LLaMA-2 on Ag(111) Crystal Oxidation

Continuing our exploration, a subsequent analysis was performed using “llama-
2-13b-chat-hf” to further dissect the XPS spectrum of the same Ag(111) crystal under
similar experimental conditions. This examination aimed to validate and expand upon
the findings from the GPT-4 analysis, leveraging the understanding of chemical states that
LLMs provide. The detailed peak data and analysis accentuate the robustness of LLMs in
deciphering complex XPS data, highlighting their potential to enhance scientific discovery
and interpretation significantly.

5.3. Scientific Assessment of the LLM Analyses

The identification of peaks around 528 eV and 530 eV and their association with lattice
oxygen in metal oxides and adsorbed oxygen species or contamination effects is consistent
with known XPS analysis phenomena. These binding energy values are within the expected
range for oxygen species on metal surfaces, reflecting the versatility of XPS in detecting
surface chemical states.

The consideration of sulfur contamination affecting peak interpretation is a realistic
concern in XPS studies. Sulfur species can indeed contribute to the complexity of the
spectrum, necessitating careful analysis to differentiate between overlapping peaks and
chemical states.

The detailed analysis capturing the potential for the formation of silver oxide (Ag2O
or AgO) during the oxidation process is a plausible outcome expected in such experi-
ments. The discussion around various oxygen species, including adsorbed oxygen and
hydroxyl groups, aligns with the surface chemistry changes one would anticipate during
the oxidation of silver surfaces.
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LLM Analysis of XPS Spectrum for Ag(111) Crystal with ‘llama-2-13b-chat-hf’

Peak Data:
[{‘center’:
528.191635,
‘center_error’:
0.00376508,
‘amplitude’:
40197.5847,
‘amplitude_error’:
2167.22172,
‘sigma’:
0.26438503,
‘sigma_error’:
0.00617199},
{‘center’:
529.319778,
‘center_error’:
0.80330537,
‘amplitude’:
10102478.6,
‘amplitude_error’:
9.8815, ‘sigma’:
0.90157524,
‘sigma_error’:
0.88482466}]

Detailed Analysis:
As an expert in X-ray Photoelectron Spectroscopy (XPS),
I can provide a detailed analysis of the peaks observed
in the XPS spectrum of the Ag(111) crystal with sulfur
contamination.
Peak 1:
- Center energy: 528.191635 eV (error: 0.00376508 eV)
- Amplitude: 40197.5847 (error: 2167.22172)
- Standard deviation: 0.26438503 (error: 0.00617199)
This peak is likely due to the Ag 4f core level, which is
located at 528.19 eV. The center energy and amplitude of
the peak are in good agreement with the expected values for
Ag 4f, and the standard deviation is reasonable considering
the resolution of the spectrometer.
Peak 2:
- Center energy: 529.319778 eV (error: 0.80330537 eV)
- Amplitude: 10102478.6 (error: 9.8815)
- Standard deviation: 0.90157524 (error: 0.88482466)
This peak is likely due to the Oxygen 1s core level, which
is located at 529.32 eV. The center energy and amplitude of
the peak are in good agreement with the expected values
for Oxygen 1s, and the standard deviation is reasonable
considering the resolution of the spectrometer.

6. Scientist Analysis with Domain Knowledge

Following the innovative approach of combining traditional curve fitting with LLM-
assisted interpretation for XPS data analysis, it becomes crucial to integrate expert scientist
analysis into the workflow. This section emphasizes the importance of domain expertise in
validating and contextualizing the findings obtained from the LLM.

The involvement of expert scientists serves several critical functions in the data
analysis process:

• Validation of LLM Interpretations:While LLMs provide a high-level interpretation of
XPS data, the validation of these interpretations requires expert judgment. Experts
in material science and surface chemistry can ascertain the accuracy of the LLM’s
analysis, ensuring that it aligns with established scientific knowledge and principles.

• Expert Review: This interpretation is then reviewed by the expert scientists, who assess
its validity and relevance in the context of the specific material system under study.

• Refinement and Contextualization: The expert may refine the interpretation, adding
contextual details or highlighting aspects that the LLM may have overlooked
or misinterpreted.

• Formulation of Conclusions: The final step involves formulating the conclusions and
recommendations for further research. This step is a collaborative effort, leveraging
the strengths of both the LLM’s broad knowledge base and the expert’s deep domain-
specific understanding.

6.1. Integration with LLM-Assisted Workflow

The integration of expert analysis with the LLM-assisted workflow follows a
collaborative approach:

1. Initial Interpretation: The LLM provides an initial interpretation of the XPS data based
on the parameters obtained from the curve-fitting procedure.
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2. Expert Review: This interpretation is then reviewed by the expert scientists, who as-
sess its validity and relevance in the context of the specific material system under study.

3. Refinement and Contextualization: The expert may refine the interpretation, adding
contextual details or highlighting aspects that the LLM may have overlooked
or misinterpreted.

4. Formulation of Conclusions: The final step involves formulating the conclusions and
recommendations for further research. This step is a collaborative effort, leveraging
the strengths of both the LLM’s broad knowledge base and the expert’s deep domain-
specific understanding.

To illustrate the value of expert scientist analysis in this workflow, a series of case
studies can be considered. These may include scenarios wherein the LLM’s interpretation
required significant refinement or where the expert’s insight led to a reevaluation of the
initial conclusions. For instance, in a study involving a novel alloy surface, the LLM may
identify the predominant chemical states, but the expert’s analysis could reveal subtler
interactions or phase transformations not immediately apparent from the XPS data. Table 1
summarizes the framework.

Table 1. Integration of scientist analysis with LLM-assisted XPS data workflow.

Step LLM’s Role Scientist’s Role

Initial Interpretation
Provides a preliminary analysis of the
XPS data based on the curve-fitting pa-
rameters.

N/A

Expert Review N/A
Reviews the LLM’s interpretation for
accuracy and relevance to the specific
material system.

Refinement and Contextual-
ization

May provide further clarification or ad-
ditional details upon request.

Refines the LLM’s interpretation,
adding in-depth contextual un-
derstanding and highlighting any
overlooked aspects.

Formulation of Conclusions
Assists in drafting initial conclusions
and recommendations based on the
analysis.

Collaborates with the LLM in finalizing
the conclusions and recommendations,
ensuring they are grounded in domain-
specific knowledge and practical con-
siderations.

6.2. Fine-Tuning of LLM Responses and Feedback Integration

The fine-tuning of the LLM’s responses involves a multi-step process, building on the
pipeline introduced in [38]:

1. Initial LLM Analysis:As depicted in Figure 3, the LLM first provides a preliminary
analysis based on the XPS data’s curve-fitting parameters. This analysis includes
potential chemical states, errors, and recommendations for additional experiments.

2. Expert Review and Feedback: The initial LLM analysis is then reviewed by domain
experts at the CELLS ALBA Synchrotron. These experts, equipped with extensive
knowledge in material science and surface chemistry, evaluate the LLM’s interpreta-
tions for their accuracy and relevance to the specific material system under study.

3. Refinement and Feedback Integration: Based on their assessment, experts may refine
the LLM’s interpretations. This refinement could involve correcting inaccuracies,
providing additional contextual information, or suggesting alternative interpreta-
tions. This refined information is documented and systematically categorized for
future reference.

4. Feedback Incorporation into LLM: The collected feedback and refined interpretations
can be then used to further train the LLM. This training involves using the corrected
interpretations and additional context as new training data, allowing the LLM to learn
from the expert’s input and improve its future analyses.



Signals 2024, 5 194

5. Iterative Process: This process of analysis, review, refinement, and retraining forms an
iterative loop. With each iteration, the LLM’s ability to accurately interpret XPS data
is enhanced, leading to more reliable and precise analyses in subsequent uses.

Integrating expert feedback into the LLM involves several key mechanisms:

• Data Annotation: Expert modifications and annotations are systematically recorded.
These annotations include not only corrections but also contextual information and
reasoning behind each adjustment.

• Updating Training Data: The annotated data can be then added to the LLM’s training
dataset. This dataset serves as the foundation for retraining the LLM, ensuring that it
incorporates the expert knowledge imparted through the feedback.

• Model Retraining: Periodically, the LLM can undergo retraining sessions where it is
exposed to the updated dataset. This retraining should be conducted in a controlled
environment to ensure that the model’s fundamental capabilities are preserved while
it adapts to the new information.

• Performance Monitoring: Post-retraining, the LLM’s performance should be closely
monitored to assess improvements and identify areas where further refinement is
needed. This monitoring is crucial to ensure that the model continues to align with
the high standards of accuracy required in scientific data analysis.

The described fine-tuning process exemplifies a continual learning approach, where
the LLM dynamically evolves based on ongoing expert input. This approach ensures that
the LLM remains up-to-date with the latest scientific understanding and adapts to the
nuanced needs of XPS data analysis.

• Adaptive Learning: The LLM’s learning mechanism is designed to adapt to new
information and feedback continuously, allowing it to stay relevant and accurate
over time.

• Expert Involvement: Regular involvement of domain experts ensures that the LLM’s
learning trajectory aligns with real-world scientific knowledge and practices.

7. Integrating LLM-Informed Strategy with TANGO Control System at CELLS
ALBA Synchrotron

The CELLS ALBA Synchrotron employs the TANGO (7.2.x/8.1.x/9.2.x/9.3.3) control
system, a software framework for controlling and monitoring scientific and industrial
hardware. Integrating the LLM-informed XPS data analysis strategy within this framework
can significantly enhance the capabilities of the system, enabling more sophisticated and
efficient processing and interpretation of XPS data. This section outlines the proposed
integration approach.

TANGO Control System is an object-oriented distributed control system using CORBA
(Common Object Request Broker Architecture). It provides a framework for device interfac-
ing and management, offering tools for configuring and operating a wide range of devices
and instruments. At CELLS ALBA Synchrotron, TANGO plays a critical role in managing
beamline operations, including data acquisition systems.

The integration of the LLM-informed XPS analysis strategy into the TANGO system
involves several key components and steps:

1. Data Acquisition and Preprocessing: The XPS data acquired from experiments at the
beamline are first pre-processed to align with the input requirements of the LLM. This
involves noise reduction, normalization, and any other relevant data conditioning.

2. Enhancing TANGO Device Servers: TANGO device servers, which control various
hardware components, will be enhanced to include an interface to the LLM analysis
module. This interface will handle the sending of processed XPS data to the LLM and
receiving the interpreted results.

3. LLM Integration: A new device server or an extension to an existing server will be
developed to incorporate the LLM. This server will manage the communication with
the LLM API, sending the pre-processed XPS data and receiving the analysis results.
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4. Automated Analysis Workflow: The TANGO system will automate the workflow
where the XPS data, once acquired and pre-processed, are automatically sent to the
LLM server for analysis. The interpreted results are then fed back into the TANGO
system for user review or further automated processing.

5. User Interface and Visualization: The existing user interface of the TANGO system
will be updated to include features for visualizing and interacting with the results
provided by the LLM. This may include graphical representations of the XPS spectra
with annotated peaks and interpretations, as well as tools for manual review or
modification of the analysis.

6. Data Storage and Retrieval: Integration with TANGO’s database system for storing
both the raw XPS data and the interpreted results. This ensures that all information is
readily available for future reference, comparison, or further analysis.

The integration of the LLM-informed strategy into the TANGO control system at
CELLS ALBA Synchrotron offers several benefits:

• Enhanced Data Interpretation: Leveraging LLM for XPS data interpretation brings a
higher level of accuracy and depth in analysis, aiding researchers in understanding
complex chemical states and materials properties.

• Increased Efficiency: Automating the data interpretation process reduces the time
and effort required by researchers, allowing them to focus on more critical aspects of
their experiments.

• Scalability: As the volume of data generated at the synchrotron grows, the LLM-
informed system can scale accordingly, providing consistent and reliable analysis.

• User Accessibility: The integration makes advanced data analysis accessible to a
broader range of users, including those who may not have deep expertise in XPS
data interpretation.

The integration of an LLM-informed strategy within the TANGO control system at
CELLS ALBA Synchrotron represents a significant advancement in the field of synchrotron
data analysis. It exemplifies the potential of AI and ML in enhancing scientific research
capabilities, paving the way for more accurate, efficient, and accessible scientific experi-
mentation and data analysis. The workflow is depicted in Figure 5.

User/Scientist TANGO System LLM Server Database

Initiate XPS Data Acquisition

Preprocess Data

Processed Data
Send Data for Analysis

Analyze Data

Analysis Results

Store Results

Access and Review Results

XPS Data AnalysisXPS Data Analysis Automated LLM-Informed Workflow

Figure 5. Sequence diagram illustrating the integration of the LLM-informed XPS data analysis
strategy with the TANGO control system at CELLS ALBA Synchrotron. The diagram demonstrates
the automated workflow from data acquisition to analysis and storage.
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7.1. Detailed Integration Mechanism

The integration of LLMs within the TANGO control system is accomplished through
the following specific mechanisms:

1. LLM Server Integration: The LLM server acts as a bridge between the TANGO control
system and the LLM’s analytical capabilities. This server is configured to interface
with the OpenAI API, enabling it to send pre-processed XPS data for analysis and
receive interpreted results.

2. Data Transmission Protocols: Within the TANGO system, data are transmitted
between different components using the CORBA protocol. The LLM server will
also utilize this protocol to ensure seamless data flow and integration within the
existing framework.

3. Customized Device Server for LLM: A specialized TANGO device server is created
specifically for the LLM integration. This server is responsible for handling all in-
teractions with the LLM, including data sending, receiving analysis results, and
error handling.

4. Trigger Mechanism for Analysis: The LLM server is programmed to automatically
trigger the analysis process once the XPS data are pre-processed and ready. This trigger
can be set manually by a user or programmed to activate upon certain conditions
being met within the data.

7.2. Workflow Explanation

• Initiation and Data Handling: When XPS data are acquired and pre-processed, the
TANGO system initiates the analysis workflow. This involves packaging the data into
a suitable format (e.g., JSON or XML) for transmission to the LLM server.

• Analysis and Feedback Loop: Upon receiving the data, the LLM server processes the
request and sends it to the OpenAI API. The results, once received, are then formatted
and sent back to the TANGO system. This feedback loop ensures that the analysis is
aligned with the system’s requirements and can be adjusted in real time based on user
input or automated parameters.

• Visualization and Interaction: The results from the LLM are integrated into TANGO’s
user interface, where scientists can interact with, visualize, and interpret the data. This
integration includes displaying annotated XPS spectra, highlighting key findings, and
allowing users to adjust parameters or inputs for re-analysis if needed.

7.3. Enhanced Functionalities in TANGO

• Real-time Analysis and Adaptation: The integration can allow for real-time analysis
of XPS data, with the LLM providing rapid interpretations. This capability enables
immediate adjustments to experiments based on the LLM’s feedback.

• Automated Data Flow and Processing: The entire process, from data acquisition
to analysis and storage, can be automated, ensuring a streamlined workflow. This
automation reduces manual intervention and speeds up the research process.

• Scalable and Updatable System: The integration framework can be designed to be
scalable, accommodating increases in data volume and complexity. The LLM server
can be updated or retrained as needed to keep up with advancements in AI and XPS
analysis techniques.

8. Discussion

The combination of synthetic XPS spectra data analysis using curve fitting and inter-
pretation with the LLM has been successfully demonstrated in this study. The approach
presents several implications and potential improvements which warrant discussion.

The application of LLM, in particular OpenAI’s GPT-3.5 Turbo or GPT-4.0, for the
interpretation of fitted XPS data adds a crucial layer of accessibility and comprehension for
users who may not possess extensive background knowledge in XPS or materials science.
By interpreting the peaks and their possible chemical states, users are guided toward a
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more precise understanding of their data, which can lead to more effective decision-making
in subsequent steps, such as material synthesis or characterization.

Furthermore, the approach adopted in this study is not limited to XPS data alone.
With suitable training or fine-tuning, the LLM can be adapted to interpret data from other
spectroscopic techniques or even beyond the realm of materials science.

While the LLM provides helpful interpretations, it should be noted that its conclu-
sions are based on the large corpus of information it was trained on, and it does not have
the ability to “think” or “understand” in the human sense. Therefore, any output gener-
ated by the LLM should be carefully considered and cross-verified with other sources or
expert opinions.

Moreover, the current methodology uses a XPS synthetic dataset which is a surro-
gate APXPS example use case data from the CIRCE-NAPP beamline at CELLS-ALBA
Synchrotron facility and also some particular real sample usage for empirical validation,
which may not encompass the full complexity of the comprehensive real-world XPS data.
As future work, the system could be tested and refined using additional real-world XPS
data to further validate its effectiveness. The incorporation of more advanced curve-fitting
methods or models capable of handling more complex cases would be beneficial.

Another potential improvement is the fine-tuning of the LLM to better adapt to XPS
data interpretation. With more specific training data, the LLM could potentially generate
more accurate and detailed interpretations, further enhancing its utility as a tool for XPS
data analysis.

In the rapidly evolving landscape of scientific research, particularly in nuanced disci-
plines such as APXPS, the continuous integration of emerging literature into analytic tools
presents a transformative opportunity. Actual-generation LLMs [39] are mainly constrained
by a fixed knowledge cutoff, which inherently limits their capability to offer insights con-
textualized within the latest advancements. Incorporating real-time literature into LLMs,
which has started to happen, could usher in a paradigm shift in research methodologies.
Such a system would not only bolster the relevance of data interpretation by grounding
it in the most contemporary theoretical frameworks, but also expedite the recognition of
novel findings by juxtaposing them against recent publications. Moreover, this integration
has the potential to streamline literature reviews and foster timely interdisciplinary collabo-
rations. Yet, this promising horizon is not without its challenges. Quality control, potential
biases from emergent literature, and the deliberation on incorporating non-peer-reviewed
preprints necessitate a comprehensive and judicious approach to implementing this mar-
riage of LLMs and live literature updates. Thus, as we stand on the cusp of this innovation,
it is imperative to balance the allure of cutting-edge technology with the rigorous standards
of scientific inquiry.

Open-source technologies have long fostered a spirit of collaborative innovation,
democratizing access to state-of-the-art resources while promoting transparency and
adaptability. Within the realm of LLMs, frameworks such as QLoRA [22], paired with
the power of models like Vicuna, LLaMA-1, Galactica, Alpaca, LlaMA-2, Mistral, or
Zephyr-7b [35,36,40–42], herald a new vision for research methodologies in fields like
APXPS. Instead of relying on proprietary solutions like OpenAI, adopting open-source
LLMs can empower research institutions to build bespoke, self-contained analytical sys-
tems tailored to their unique needs. This not only assures more control over the model’s
parameters and its updating mechanisms but also facilitates the seamless integration of
specialized datasets and domain-specific knowledge. Furthermore, by severing the process
from proprietary frameworks, researchers can ensure greater transparency, allowing for
more reproducible results and encouraging collaborative improvements to the system. Yet,
as with all technological shifts, transitioning to an open-source LLM ecosystem requires
an initial investment in training and understanding these tools. The promise, however, is
a system that evolves with the collective intelligence of the global scientific community,
ensuring that the insights drawn are both cutting-edge and deeply customized to the field’s
ever-evolving nuances.



Signals 2024, 5 198

In exploring strategies to complement and augment the capabilities of the actual
system implementation at the CELLS ALBA Synchrotron beamline and other synchrotron
radiation facilities, we propose the introduction of a dedicated GPT agent for each ex-
perimental section, leveraging the new OpenAI API. These agents can be distinctively
curated with the latest research papers, user manuals, and specifications derived from an
extensive repository of previous experiments. The intention behind this initiative is to
create up-to-date, intelligent assistants that provide on-demand, contextually relevant in-
formation and guidance to beamline users. Such a tool can not only streamline the research
process by offering instant access to a wealth of knowledge but can also facilitate a more
interactive and intuitive user experience that complements the techniques presented in the
article. Unlike the programmatic API, this approach caters to the diverse expertise levels
of the scientific users, potentially lowering the barrier to entry for those less familiar with
computational tools, as it can be used through the web interface, and also the system can
be updated in such a way. By ensuring that the GPT agent remains current with the latest
scientific literature and experimental insights, we anticipate a significant enhancement in
the efficiency and quality of experimental design and data interpretation at the beamline.
This marks a paradigm shift in how scientists engage with XPS data, transitioning from a
purely data-driven to a more knowledge-integrated research process.

In conclusion, the integration of LLM into XPS data analysis as demonstrated in this
study holds promising potential. It showcases an innovative approach to incorporate AI
into materials science, which could potentially be extended to a wider range of applications
in the future.

9. Conclusions and Further Work

This study presents a novel methodology that combines traditional curve-fitting tech-
niques with the advanced natural language processing capabilities of a large language
model (LLM) to analyze X-ray photoelectron spectroscopy (XPS) data. By utilizing syn-
thetic data simulating complex XPS spectra, we successfully demonstrated that this hybrid
approach could extract meaningful features from the data and provide expert-like interpre-
tation to facilitate understanding for a broad range of users.

The integration of an LLM into the data interpretation process significantly simplifies
the complex task of understanding XPS data. By translating raw data features into human-
understandable insights, the LLM acts as a bridge between quantitative data and qualitative
understanding. It democratises the process, allowing non-experts to benefit from the
insights typically reserved for domain specialists.

However, as with any model-based system, the quality of the outputs is contingent
upon the quality of the inputs. Thus, careful consideration and cross-validation with
domain experts should always accompany LLM interpretation. This is especially true as we
are dealing with synthetic data in this study and a particular use-case, and the translation
to a broad range of real-world XPS data may reveal additional complexities.

In terms of further work, refining this approach with more use cases derived from
XPS beamline experiments stands as a natural progression. Given the complexity of real
XPS data, the curve-fitting procedure may benefit from more sophisticated models capable
of handling intricate overlaps, broader peaks, and high levels of noise. Additionally, the
performance of the LLM could potentially be enhanced by fine-tuning it with a more
specific dataset focused on XPS data interpretation. Also, the use of these techniques could
find broader applicability in other similar domains; for instance, these approaches could
be adapted for use in X-ray absorption spectroscopy (XAS) and X-ray magnetic circular
dichroism (XMCD) studies.

This study opens up new avenues in the field of materials science data analysis.
Looking forward, we anticipate that this methodology could be adapted for other types
of spectroscopy or even extended to various data interpretation tasks beyond the field of
materials science. As LLMs continue to evolve, the opportunities for integrating AI-driven
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interpretations into data analysis processes will only expand, providing exciting prospects
for the future.
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