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Abstract

For n ≥ 1, the nth Ramanujan prime is defined as the smallest
positive integer Rn such that for all x ≥ Rn, the interval (x2 , x] has
at least n primes. We show that for every ε > 0, there is a positive

integer N such that if α = 2n

(
1 +

log 2 + ε

log n+ j(n)

)
, then Rn < p[α] for

all n > N , where pi is the ith prime and j(n) > 0 is any function that
satisfies j(n)→∞ and nj′(n)→ 0.

1 Introduction

For n ≥ 1, the nth Ramanujan prime is defined as the smallest positive
integer Rn, such that for all x ≥ Rn, the interval (x

2
, x] has at least n primes.

Note that by the minimality condition, Rn is prime and the interval (Rn
2
, Rn]

contains exactly n primes. Let Rn = ps, where pi denotes the ith prime.
Sondow [7] showed that p2n < Rn < p4n for all n, and conjectured that
Rn < p3n for all n. This conjecture was proved by Laishram [4], and the upper
bound p3n improved by various authors ([1], [8]). Subsequently, Srinivasan
[9] and Axler [1] improved these bounds by showing that for every ε > 0,
there exists an integer N such that

Rn < p[2n(1+ε)] for all n > N.
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Using the method in [9] (outlined below), a further improvement was pre-
sented by Srinivasan and Nicholson, who proved that

s < 2n

(
1 +

3

log n+ log(log n)− 4

)
for all n > 241. The above result follows from a special case of our main
theorem given below. Yang and Togbe [11], also used the method in [9], to
give tight upper and lower bounds for Rn for large n (greater than 10300).
For some interesting generalizations of Ramanujan primes the reader may
refer to [2], [5] and [6].

The main idea in [9] is to define a function F (x) that is decreasing for
x ≥ 2n and that satisfies F (s) > 0. Then, an α > 2n is found such that
F (α) < 0 for n > N , which would imply that s < α for n > N given the
decreasing nature of F . We employ a variation of this method, where we
first show that F (α) is a decreasing function for n > N . Then we find an
integer greater than N for which F (α) < 0, which leads us to the desired
result. Our main result is the following.
Theorem 1.1. Let Rn = ps and ε > 0. Let j(n) > 0 be a function such that
j(n)→∞ and nj′(n)→ 0 as n→∞ and let

g(n) =
log n+ j(n)

log 2 + ε
.

Then there exists a positive integer N such that for all n > N , we have s < α,

where α = 2n
(

1 + 1
g(n)

)
.

Let log2 x denote log log x. In the following corollary we record a bound
obtained with ε = 0.5, where j(n) is chosen so as to minimize the number of
calculations. Similar results can be given for smaller values of ε (with different
j(n)) where the determination of N depends solely on computational power.

Corollary 1.1. Let Rn = ps. Then for n > 43 we have s < 2n
(

1 + 1
g(n)

)
,

where

g(n) =
log n+ log2 n− log 2− 0.5

log 2 + 0.5
.

2 The basic functions and lemmas

We will use the following bounds for the kth prime given by Dusart.
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Lemma 2.1. The following hold for the kth prime pk.

1. pk > k
(

log k + log2 k − 1 + log2 k−2.1
log k

)
for all k ≥ 3.

2. pk < k
(

log k + log2 k − 1 + log2 k−2
log k

)
for all k ≥ 688383.

Proof. See [3]

Let

U(k) = k

(
log k + log2 k − 1 +

log2 k − 2

log k

)
and

L(k) = k

(
log k + log2 k − 1 +

log2 k − 2.1

log k

)
.

Note that U(x) = L(x) + f(x) where f(x) =
0.1x

log x
. We define

F (x, n) = U(x)− 2L(x− n) = U(x)− 2U(x− n) + 2f(x− n)

and
G(n) = F (α, n),

where α = 2n
(

1 + 1
g(n)

)
and g(n) is a function that satisfies g(n) ≥ 1 and

g(n)→∞ as n→∞.

Lemma 2.2. Let Rn = ps. Then the following hold.

1. ps−n <
1
2
ps.

2. 2n < s < 2.4n for all n > 43.

3. F (x, n) is a decreasing function for all x ≥ 2n and F (s, n) > 0 for
n ≥ 688383.

Proof. For parts 1 and 2 see [9, Lemma 2.1] and [9, Remark 2.1] respectively.
For part 3 see [11].

The following lemma contains useful results that include an expression
for the derivative G′(n) in terms of the function U(x).

Lemma 2.3. Let A = U ′(α)− U ′(α− n). Then the following hold.
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1. A = A(n)→ log 2 as n→∞.

2. 1
2
G′(n) = A+ f ′(α− n) +

(
n
g(n)

)′
(A− U ′(α− n) + 2f ′(α− n)).

3. L′(x) > log x+ log2 x for x > 20.

4. A+ f ′(α− n)− log 2 < log
(

logα
log(α−n)

)
+ log2 α

logα
+ 1.1

log(α−n) + log2(α−n)
log2(α−n) .

Proof. We have

U ′(x) = log x+ log2 x−
1

log x
+

3

log2 x
− log2 x

log2 x
+

log2 x

log x
(1)

and hence

A = log

(
α

α− n

)
+ log

(
log(α)

log(α− n)

)
+ t(n),

where t(n) → 0 as n → ∞. As α = 2n
(

1 + 1
g(n)

)
and g(n) → ∞, we have

A→ log 2.
For the second part of the lemma, G(n) = U(α)−2U(α−n) + 2f(α−n),

which gives G′(n) = U ′(α)α′ − 2U ′(α − n)(α′ − 1) + 2f ′(α − n)(α′ − 1). As

α′ = 2 + 2
(

n
g(n)

)′
, we have

1

2
G′(n) = U ′(α)

(
1 +

(
n

g

)′)
+

(
1 + 2

(
n

g

)′)
(f ′(α− n)− U ′(α− n))

and the result follows by the definition of A.
For part 3 we have

L′(x) = log x+ log2 x+
log2 x

log x
− log2 x

log2 x
− 1.1

log x
+

3.1

log2 x

from which the claim follows as for n > 20 we have log2 x
log x
− log2 x

log2 x
− 1.1

log x
> 0.

For the last part, we have

A− log 2 + f ′(α− n)

= log

(
logα

log(α− n)

)
+

log2 α

logα
+

1.1

log(α− n)
+

log2(α− n)

log2(α− n)
+ T,

where

T = log

(
1 + 1

g(n)

1 + 2
g(n)

)
− log2(α− n)

log(α− n)
− 1

logα
− log2 α

log2 α
+

3

log2 α
− 3.1

log2(α− n)
< 0

as 3
log2 α

− 3.1
log2(α−n) < 0.
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3 Proofs of main results

The following lemma shows that G′(n) is a decreasing function for large n,
which is crucial in the proof of Theorem 1.1.

Lemma 3.1. Let ε > 0 and

g(n) =
log n+ j(n)

log 2 + ε
,

where j(n) > 0 is a function that satisfies j(n) → ∞ and nj′(n) → 0 as
n→∞. Then G′(n)→ −2ε.

Proof. We have
(

n
g(n)

)′
= (log 2+ε)(logn+j(n)−1−nj′(n))

(logn+j(n))2
and therefore

(
n
g(n)

)′
→ 0

as n→∞. By our assumption on j(n) it follows (using L’Hôpital’s rule) that
j(n)
logn
→ 0 which gives

(
n
g(n)

)′
log(α−n)→ log 2+ε (as log(α−n)

logn
→ 1). It is easy

to see that
(

n
g(n)

)′
log2(α−n)→ 0. It follows that

(
n
g(n)

)′
U ′(α−n)→ log 2+ε

(see equation (1)). Lastly note that f ′(x)→ 0 as x→∞. The result follows
now on using all the above and the fact that A→ log 2 (Lemma 2.3 part 1)
in part 2 of Lemma 2.3.

Proof of Theorem 1.1 We will first show that there exists a positive
integer N , such that G(n) < 0 for n > N . We have G′(n) → −2ε by the
lemma above, which means that if 0 < δ < 2ε, then there exists an integer
M , such that for all n > M we have |G′(n) + 2ε|< δ, that is

−2ε− δ < G′(n) < −2ε+ δ,

for all n > M . Let a and b be two integers such that M < a < b. Then
G(b)−G(a) =

∫ b
a
G′(n)dn < (b−a)(−2ε+δ) < 0. If a is fixed, it follows that

G(b) < G(a)+(b−a)(−2ε+δ) < 0 for large b. Therefore there exists a positive
integer N > M , such that for all n > N , we have G(n) = F (α, n) < 0.

We may assume that N > 688383 so that from Lemma 2.2, part 3 we have
F (s, n) > 0. Moreover, from the same lemma we have F (x, n) is decreasing
for x ≥ 2n. As s and α are both bigger than 2n, we have s < α for n > N
and the result follows.

Proof of Corollary 1.1
Let ε = ε1 + ε2 = 0.5. We will first show that for n > 688383 we have

G′(n) < 0.
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Let ε1 = 0.1. It is easy to verify that for n > 688383 we have

1 + log n

log n(log n+ log2 n− log 2− ε)
<

ε1
log 2 + ε

.

It follows that for all n > 688383

ng(n)′

g(n)2
=

(log 2 + ε)(1 + log n)

log n(log n+ log2 n− log 2− ε)2
<

ε1
log n+ log2 n− log 2− ε

. (2)

Next, we will show that A+ f ′(α− n)− log 2 < ε2.
Using Lemma 2.3, part 4 and Lemma 2.2 part 2, we have

A+f ′(α−n)−log 2 < log

(
log(2.4n)

log n

)
+

log2(2.4n)

log(2n)
+

1.1

log n
+

log2(1.4n)

log2 n
. (3)

Observe that for n > 36734

log

(
log(2.4n)

log n

)
<
ε2
5

(4)

as log
(

log(2.4n)
logn

)
< ε2

5
holds if log(2.4n)

logn
< e

ε2
5 , that is if 2.4n < ne

ε2
5 . The above

holds if 2.4 < ne
ε2
5 −1

or n > 36734.
Computation yields that for n > 688383

log2(2.4n)

log(2n)
+

1.1

log n
+

log2(1.4n)

log2 n
<

4ε2
5
. (5)

From equations (3)-(5) we have A+ f ′(α−n)− log 2 < ε2. From Lemma
2.3 part 3, L′(α− n) = U ′(α− n)− f ′(α− n) > log(α− n) + log2(α− n) >
log n+ log2 n and hence for n > 688383 we have

A+ f ′(α− n)

−A+ U ′(α− n)− 2f ′(α− n)
<

log 2 + ε2
log n+ log2 n− log 2− ε2

. (6)

As ε1 + ε2 = ε, equations (2) and (6) give

A+ f ′(α− n)

−A+ U ′(α− n)− 2f ′(α− n)
+
ng(n)′

g(n)2
<

log 2 + ε1 + ε2
log n+ log2 n− log 2− ε

=
1

g(n)
.

(7)
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From Lemma 2.3, part 2, noting that
(

n
g(n)

)′
= 1

g(n)
− ng(n)′

g(n)2
, we have

G′(n) < 0 for all n > 688383. Also, G(688383) < 0 and hence we conclude
that G(n) < 0 for n > 688383.

From Lemma 2.2, part 3 we have F (s, n) > 0 and F (x, n) is decreasing
for x ≥ 2n. As s and α are both bigger than 2n, it follows that s < α
for n > 688383. That the result holds for 43 < n ≤ 688383 is a simple
calculation.

Remark 3.1. Similar results for lower bounds for Rn can be given using
G(x, n) = L(x)− 2U(x− n+ 1) instead of F (x, n).
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