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Given any irreducible smooth complex projective curve X , of genus at least 2, consider the 
moduli stack of vector bundles on X of fixed rank and determinant. It is proved that the 
isomorphism class of the stack uniquely determines the isomorphism class of the curve X
and the rank of the vector bundles. The case of trivial determinant, rank 2 and genus 2 is 
specially interesting: the curve can be recovered from the moduli stack, but not from the 
moduli space (since this moduli space is P 3 thus independently of the curve).
We also prove a Torelli theorem for moduli stacks of principal G-bundles on a curve of 
genus at least 3, where G is any non-abelian reductive group.

© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Let X be a smooth complex projective curve of genus g , with g ≥ 2. The classical Torelli theorem states that the iso-
morphism class of the canonically polarized Jacobian variety J (X) determines uniquely the isomorphism class of the curve. 
Natural generalizations of this problem to moduli spaces of vector bundles of higher rank have been studied extensively, 
addressing the question whether the geometry of the curve X can be recovered from the isomorphism class of a certain 
moduli space of rank r vector bundles on X .

Fix a line bundle ξ on the curve X , and let Mss-vb(X, r, ξ) denote the moduli space of semistable vector bundles E of 
rank r on X such that det(E) ∼= ξ .

Mumford and Newstead [21] and Tyurin [28] proved that if X and X ′ have genus at least 2 and the degree of the 
determinant is odd, then Mss-vb(X, 2, ξ) ∼= Mss-vb(X, 2, ξ) implies that X ∼= X ′ . This Torelli type result was then extended 
to moduli spaces of vector bundles of rank r when the degree of the determinant is coprime with r by Tyurin [29] and by 
Narasimhan and Ramanan [23].

* Corresponding author.
E-mail addresses: dalfaya@comillas.edu (D. Alfaya), indranil.biswas@snu.edu.in, indranil29@gmail.com (I. Biswas), tomas.gomez@icmat.es (T.L. Gómez), 

swarnava@math.tifr.res.in (S. Mukhopadhyay).
https://doi.org/10.1016/j.geomphys.2024.105350
0393-0440/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

https://doi.org/10.1016/j.geomphys.2024.105350
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/geomphys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.geomphys.2024.105350&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:dalfaya@comillas.edu
mailto:indranil.biswas@snu.edu.in
mailto:indranil29@gmail.com
mailto:tomas.gomez@icmat.es
mailto:swarnava@math.tifr.res.in
https://doi.org/10.1016/j.geomphys.2024.105350
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


D. Alfaya, I. Biswas, T.L. Gómez et al. Journal of Geometry and Physics 207 (2025) 105350
Kouvidakis and Pantev [20] obtained a Torelli theorem for genus at least three and any rank r ≥ 2 that did not need the 
coprimality condition on rank and degree; they proved that Mss-vb(X, r, ξ) ∼= Mss-vb(X ′, r, ξ ′) implies that X ∼= X ′ . Other 
proofs for this Torelli theorem for genus at least 4 have been given with different techniques by Hwang and Ramanan [19], 
by Sun [27] and by Biswas, Gómez and Muñoz [7].

Using the techniques in [7], a 2-birational version of the Torelli was found in [1] for curves of genus at least 4; it was 
shown there that both the pair (r, ± deg(ξ) (mod r)) and the curve can be recovered from the geometry of the moduli 
scheme. Another Torelli type theorem for moduli spaces of rank three vector bundles with trivial determinant over genus 2 
curves was found by Nguyen [24]. On the other hand, a Torelli theorem for the moduli spaces of principal G-bundles over 
curves of genus at least 3, where G is a complex reductive group, was also proven by Biswas and Hoffmann [9].

In this work we study the moduli stack M(X, r, ξ) of vector bundles over X of rank r with fixed determinant ξ , in 
particular, we prove a Torelli type theorem for this moduli stack. The objects of this moduli stack are pairs (E, ϕ) where E
is a vector bundle of rank r on X and ϕ : det E −→ ξ is an isomorphism. An isomorphism between two objects (E, ϕ) and 
(E ′, ϕ′) is an isomorphism α between E and E ′ with ϕ = ϕ′ ◦ detα. In particular, the automorphism group of (E, ϕ) is the 
finite group of Z/rZ when E is a simple vector bundle.

Theorem 1.1 (Theorem 5.2). Let r, r′ ≥ 2. If X and X ′ are curves of genus g, g′ ≥ 2 and M(X, r, ξ) ∼= M(X ′, r′, ξ ′), then X ∼= X ′
and r = r′ .

This theorem applies to all instances where the rank and genus are both at least 2 without any additional coprimality 
conditions. Interestingly, this includes a case where the Torelli theorem for the moduli scheme fails. Narasimhan and Ra-
manan [22] proved that the moduli scheme Mss-vb(X, 2, OX ) is isomorphic to P 3 for every genus 2 curve X . We show that 
that X can be recovered from the complete moduli stack M(X, 2, OX ) and even from the substack Mss-vb(X, r, OX ) of 
semistable vector bundles (see Theorem 4.2 and Remark 4.3). In the case of the moduli scheme, in Remark 5.3 we see that 
the case (g, r) = (2, 2) is the only exception to the Torelli theorem.

Theorem 1.1 has been composed combining three different Torelli theorems for stacks which have been proven through 
three different strategies and using different techniques. Each of these theorems is valid for certain combinations of the 
genus of the curve and the rank of the bundle which do not cover the entire set of possibilities considered by Theorem 1.1. 
An additional argument has been made based on computations of the dimension and the Brauer class of the moduli space 
which allows us to apply selectively the appropriate version of the Torelli in each case and to combine them to obtain the 
global result summarized by Theorem 1.1 (see Theorem 5.2).

The first proof is based on studying the cotangent bundle to the substack of simple points and identifying it with a 
moduli stack of Higgs bundles. Working analogously to [7], it is proven that the Hitchin map can be recovered from the 
geometry of this substack, and the Torelli theorem follows from a study of the geometry of the discriminant locus inside 
the Hitchin base. Due to a constraint on the codimension of a certain subvariety, the result works for all pairs of genus and 
rank (g, r) such that g ≥ 2 and r ≥ 2 except for the three cases (2, 2), (2, 3) and (3, 2) (which correspond to the moduli 
schemes of the lowest dimensions 3, 8 and 6 respectively). The details are presented in Section 2.

The second proof uses “beyond GIT” techniques based on the work of Alper, Halpern-Leistner and Heinloth [2,17,16,4] to 
recover the moduli space of semistable vector bundles from the moduli stack and then reduces the problem to the study of 
the Torelli theorem for the corresponding moduli space. The limitation of this technique is that it can only be used in cases 
where the Torelli theorem is known for the corresponding moduli scheme. Combined with the results in [1], we use it to 
obtain a Torelli theorem for curves of genus g ≥ 4 in which we recover the pair (r, ± deg(ξ) (mod r)) in addition to the 
curve (see Theorem 3.6). We can also use it to prove a Torelli theorem in genus g = 3, but it is limited to certain cases in 
g = 2. This is studied in Section 3.

This technique also allows us to prove a Torelli theorem for moduli stacks of G-bundles, where G is any algebraic 
connected reductive complex group. Given a curve X , let Md

G(X) denote the component of the moduli stack of principal 
G-bundles on X corresponding to a fixed d ∈ π1(G). We prove the following.

Theorem 1.2 (Corollary 3.8). Let X and X ′ be smooth projective complex curves of genus at least 3, and let G and G ′ be algebraic 
connected reductive complex groups. If a moduli stack Md

G(X) of principal G-bundles over X is isomorphic to a stack Md′
G ′(X ′) of 

principal G ′-bundles over X ′ , then X ∼= X ′ .

In Section 4, a proof for the Torelli theorem for stacks of rank 2 vector bundles with trivial determinant is obtained 
by showing that the projection of the substack of simple semistable bundles onto the moduli space of semistable vector 
bundles coincides with the quotient of the Jacobian of X by the involution L 	−→ L−1. This is used in studying the earlier 
mentioned special case of rank 2 vector bundles with trivial determinant over a genus 2 curve.

Finally, all these results are combined in Section 5 to prove Theorem 1.1.

2. A Torelli theorem using the Hitchin map

Let X be an irreducible smooth complex projective curve of genus g , with g ≥ 2. Fix a line bundle ξ on X . Let M =
M(X, r, ξ) be the moduli stack parametrizing the vector bundles E on X of rank r equipped with an isomorphism
2
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det(E) := ∧r E
∼=−→ ξ.

Let Msimp(X, r, ξ) ⊂ M be the substack of simple points in M, i.e., the locus of vector bundles E with isomorphism 
det(E) 

∼=−→ ξ whose automorphism group is the group of r-th roots of 1 ∈ C.
Recall that a vector bundle E is said to be stable (respectively, semistable) if for any proper subbundle 0 �= F � E

deg(F )

rk(F )
<

deg(E)

rk(E)
( respectively, ≤)

Let Ms-vb(X, r, ξ) ⊂ M(X, r, ξ) be the substack of stable vector bundles with fixed determinant ξ , and denote by 
Ms-vb(X, r, ξ) the corresponding moduli scheme of rank r stable vector bundles on X with fixed determinant ξ . Clearly, 
we have a quotient map

Ms-vb(X, r, ξ) −→ Ms-vb(X, r, ξ).

The zero part of the cotangent complex of Msimp(X, r, ξ) over a vector bundle E is isomorphic, through Serre duality, to 
H0(X, End0(E) ⊗ K X ), where K X is the canonical line bundle of X and End0(E) ⊂ End(E) is the subbundle of corank one 
defined by the sheaf of endomorphisms of trace zero. Thus, we can interpret the total space of that sheaf as the moduli 
stack N simp(X, r, ξ) of pairs (E, ϕ), where

ϕ ∈ H0(X, End0(E) ⊗ K X )

and E is equipped with an isomorphism det(E) 
∼=−→ ξ , such that E is simple. Such a pair (E, ϕ) is called a Higgs bundle, and 

ϕ is called its Higgs field on E . Denote by N s-vb(X, r, ξ) the substack of pairs (E, ϕ) with E being a stable vector bundle. 
Then we have a natural morphism

N s-vb(X, r, ξ) −→ T ∗Ms-vb(X, r, ξ). (2.1)

A Higgs bundle (E, ϕ) is said to be semistable (respectively, stable) if for any proper subbundle 0 �= F � E , such that 
ϕ(F ) ⊆ F ⊗ K X , we have

deg(F )

rk(F )
≤ deg(E)

rk(E)
( respectively, <).

Let N(X, r, ξ) (respectively, Ns(X, r, ξ)) denote the moduli space of semistable (respectively, stable) Higgs bundles on X . 
We will use the following lemma which is a consequence of the proof of [13, Theorem II.6.(iii)] or [6, Proposition 5.4].

Lemma 2.1. Let X be a curve of genus g ≥ 2, and suppose that r ≥ 2. Then the codimension of N(X, r, ξ)\T ∗Ms-vb(X, r, ξ) in 
N(X, r, ξ) is at least (g − 1)(r − 1). In particular, if

(g, r) �∈ {(2, 2), (2, 3), (3, 2)},
then this codimension is at least 3.

Given a stack X , let �(X ) denote the algebra of complex algebraic functions on X , i.e., we have �(X ) =
Hom(Stacks)(X , C) = H0(X , OX ).

Lemma 2.2. The equality

�(N s-vb(X, r, ξ)) = �(T ∗Ms-vb(X, r, ξ))

holds.

Proof. It follows immediately from the fact that the morphism (2.1) is a good moduli space (in the sense of J. Alper [2]) 
and hence the global functions are the same.

We prove that the morphism (2.1) is a good moduli space space as follows. The morphism Ms-vb(X, r, d) −→
Ms-vb(X, r, d) from the moduli stack of stable vector bundles to its moduli space is a BGm-gerbe, meaning that it is lo-
cally a product U × BGm where U is an étale covering of Ms(X, r, d). Using this and the following Cartesian diagram 
(where P ic(X) is the algebraic stack parametrizing line bundles)

Ms-vb(X, r, ξ) Ms-vb(X, r,d)

SpecC
ξ P ic(X)
3
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it is easy to see that Ms-vb(X, r, ξ) −→ Ms-vb(X, r, ξ) is a Z/rZ-gerbe. The moduli space Ns-vb(X, r, ξ) of Higgs bundles 
whose underlying vector bundle is stable is actually a vector bundle over Ms-vb(X, r, ξ). Therefore, this Cartesian diagram

N s-vb(X, r, ξ) Ns-vb(X, r, ξ)

Ms-vb(X, r, ξ) Ms-vb(X, r, ξ)

shows that

N s-vb(X, r, ξ) −→ Ns-vb(X, r, ξ) = T ∗Ms-vb(X, r, ξ)

is a Z/rZ-gerbe, and therefore it is a good moduli space. �
Denote the Hitchin base as W := ⊕r

k=2 H0(X, K ⊗k
X ), and write Wk = H0(X, K ⊗k

X ) for k = 2, · · · , r. Let

H : N(X, r, ξ) −→ W

be the Hitchin map. We also define the Hitchin map for the moduli stack

H : N simp(X, r, ξ) −→ W

sending a family (E, �) over X × T to the map

r∑
k=2

(−1)k tr(∧k�) : T −→ W .

For each s = (s2, . . . , sr) ∈ W = ⊕r
k=2 H0(X, K k

X ), the equation

tr +
r∑

k=2

sktk = 0

defines a spectral curve Xs in the total space of the line bundle T ∗
X .

Lemma 2.3. If (g, r) �= (2, 2), then the equality

�(N simp(X, r, ξ)) = �(T ∗Ms-vb(X, r, ξ))

holds.

Proof. We will show that the restriction of global functions from N simp(X, r, ξ) to N s-vb(X, r, ξ) is an isomorphism when 
(g, r) �= (2, 2), and then the result follows from Lemma 2.2.

The first step is to show that any global function on N s-vb(X, r, ξ) can be extended to N simp(X, r, ξ). By Lemma 2.1, 
the codimension of the complement of T ∗Ms-vb(X, r, ξ) in N(X, r, ξ) is at least 2, so Hartogs’ Theorem implies that 
�(T ∗Ms-vb(X, r, ξ)) = �(N(X, r, ξ)). The algebra of functions �(N(X, r, ξ)) is generated by the components of the Hitchin 
map [18], so the algebra of functions on T ∗Ms-vb(X, r, ξ) is also generated by the components of the Hitchin map. Using 
Lemma 2.2 we conclude that the algebra of global functions on N s-vb(X, r, ξ) is generated by the components of the Hitchin 
map. These functions are clearly well defined over arbitrary families of Higgs fields over vector bundles on X , so they extend 
to algebraic functions on N simp(X, r, ξ).

Finally, the extensions are unique because N simp(X, r, ξ) is integral. Indeed, it is a vector bundle over Ms-vb(X, r, ξ), 
which is integral because it is actually an open substack of the integral stack M(X, r, ξ). �
Corollary 2.4. There exists an algebraic isomorphism

Spec(�(N simp(X, r, ξ)))
∼=−→ W

such that the composition of maps

N simp(X, r, ξ) −→ Spec(�(N simp(X, r, ξ)))
∼=−→ W

coincides with the Hitchin map H : N simp(X, r, ξ) −→ W .
4
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Let D ⊂ W denote the discriminant locus, i.e., the locus of all s = (si) ∈ W such that the corresponding spectral curve 
Xs ⊂ Tot(T ∗

X ) is singular.

Lemma 2.5. Let (E, ϕ) be a Higgs bundle whose spectral curve is integral. Then (E, ϕ) does not have any nontrivial invariant subbun-
dle and, in particular, it is a stable Higgs bundle.

Proof. Let Xs be the spectral curve associated to (E, ϕ). Then (E, ϕ) is the pushforward of a rank 1 torsion-free sheaf L
on Xs . Assume that F is a nonzero subbundle preserved by ϕ . Since F is invariant, the characteristic polynomial of the 
restriction ϕ|F : F −→ F ⊗ K X divides the characteristic polynomial of ϕ . Consequently, the spectral curve associated to 
(F , ϕ|F ) is a closed subscheme of Xs . Since Xs is integral, the spectral curve for (F , ϕ|F ) must be the entire Xs . But this 
implies that rk(F ) = rk(E) and, thus, we have F = E . �
Lemma 2.6. Let γ : P 1 −→ N simp(X, r, ξ) be a map whose image contains at least two non-isomorphic points. Then the image of 
H ◦ γ is a point in the discriminant locus D.

Proof. First of all, as H ◦ γ : P 1 −→ W is a map from P 1 to an affine space, its image must be a point s ∈ W . Suppose 
that

s /∈ D.

Then the curve Xs is smooth. By Lemma 2.5, the map γ factors though the substack N ′ ↪→ N simp(X, r, ξ) of Higgs bundles 
(E, ϕ) such that (E, ϕ) is stable and E is simple. Furthermore, the composition H ◦ γ factors through the moduli scheme of 
stable Higgs bundles:

P 1 γ−→ N ′ −→ Ns(X, r, ξ) −→ W .

The preimage of s ∈ W in Ns(X, r, ξ) is isomorphic to the Prym variety of line bundles over Xs whose pushforward has 
determinant ξ , so it is an abelian variety. Since there is no nonconstant map from P 1 to an abelian variety, the image of γ
in the moduli space Ns(X, r, ξ) is a single point. Thus, all the points in the image of γ in the stack N ′ must be isomorphic. 
This contradicts the hypothesis that its image contains at least two non-isomorphic points. This completes the proof of the 
lemma. �
Lemma 2.7. Assume that g, r ≥ 2, and (g, r) �∈ {(2, 2), (2, 3), (3, 2)}. For a general point s ∈ D there exists a non-constant mor-
phism (given explicitly in the proof below)

γ ′ : P 1 −→ T ∗Ms-vb(X, r, ξ)

such that Im(H ◦ γ ′) = s.

Proof. We can follow the same proof as in [7, Proposition 3.1], incorporating the codimension bound given by Lemma 2.1. 
By [20, Remark 1.7], there exists a Zariski open subset D0 ⊂ D such that each point s ∈ D0 corresponds to a spectral curve 
Xs which is an irreducible nodal curve with a single node. Moreover, as a consequence of [7, Proposition 3.2], the Hitchin 
discriminant D is irreducible, so the open subset D0 is actually dense. Let

H : N(X, r, ξ) −→ W

denote the Hitchin map for the moduli space of semistable Higgs bundles.
Let π : Xs −→ X be the projection from the spectral curve. The fiber H−1(s) parametrizes torsion free sheaves L on Xs

such that π∗L is a vector bundle on X of determinant ξ . Torsion free sheaves of rank 1 on nodal curves have been studied 
by Usha Bhosle, using the notion of generalized parabolic bundles. We will now recall the results that we will need (for 
details, see the proof of [11, Proposition 2.2]). The results of Bhosle show that the fiber H−1(s) is a fibration over a closed 
subscheme of the Jacobian J ( X̃s) of the normalization p : X̃s −→ Xs with fiber isomorphic to a rational curve with one 
node. To see this, we first consider a line bundle on Xs . It can be described by a line bundle ̃L ∈ J ( X̃s) and an isomorphism 
between the fibers over the two points x1, x2 ∈ X̃s mapping to the node of Xs . This isomorphism can be given by its graph 
� ⊂ L̃x1 ⊕ L̃x2 . The corresponding line bundle L on Xs fits in a short exact sequence

0 −→ L� −→ p∗̃L −→ (̃Lx1 ⊕ L̃x2)/� −→ 0.

Note that � is a line in L̃x1 ⊕ L̃x2 which projects isomorphically to both L̃x1 and L̃x2 . If we allow � to become L̃x1 or L̃x2 , 
then L� is no longer a line bundle, but it is torsion free.

We thus obtain, for each s ∈ D0 and line bundle L̃ on X̃s , a family of torsion free sheaves on Xs parametrized by 
P 1 =P (̃Lx1 ⊕ L̃x2 )
5
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0 −→ L −→ p∗
Xs

p∗̃L −→ Ox0×P1(1) −→ 0,

where p Xs is the projection of Xs × P 1 to the first factor. As we vary over all possible line bundles on X̃s and points 
in P (̃Lx1 ⊕ L̃x2 ) we obtain all possible torsion free sheaves on Xs . The condition that the vector bundle π∗L on X has 
determinant ξ picks a closed subset of J ( X̃s). Different points in P (̃Lx1 ⊕ L̃x2 ) will give different isomorphic classes of 
torsion free sheaves except that the points corresponding to the two lines ̃Lx1 and ̃Lx2 give isomorphic torsion free sheaves. 
This is the reason why H−1(s) is a fibration with fibers equal to nodal rational curves. Taking the pushforward of the 
previous sequence, the family L of torsion free sheaves becomes a family of Higgs bundles (E, �) on X with E given by

0 −→ E = (π × IdP1)∗L −→ (π × IdP1)∗p∗
Xs

p∗̃L −→ Oπ(x0)×P1(1) −→ 0 (2.2)

Furthermore, it follows from this sequence that det(E) ∼= p∗
Xξ .

Lemma 2.1 implies that the codimension of the complement of T ∗Ms-vb(X, r, ξ) in N(X, r, ξ) is at least 3, so, intersecting 
it with the divisor H−1(D), we obtain that the codimension of the complement of H−1(D) ∩ T ∗Ms-vb(X, r, ξ) inside H−1(D)

must be at least 2. Since the curves in D0 are all integral, by Lemma 2.5 we have H−1(s) ⊂ Ns(X, r, ξ) for all s in the 
dense subset D0 ⊂ D. By [13, Theorem II.5], the restriction of the Hitchin map to Ns(X, r, ξ) is equidimensional. Thus, for 
a general s ∈ D0, the codimension of the complement of H−1(s) ∩ T ∗Ms-vb(X, r, ξ) inside H−1(s) is at least 2.

As it was mentioned above, H−1(s) is a fibration by nodal rational curves (dimension 1), therefore, there exist complete
rational curves γ ′ : P 1 −→ H−1(s) ∩ T ∗Ms-vb(X, r, ξ). �
Lemma 2.8. The morphism given in Lemma 2.7 can be lifted to the moduli stack, i.e., to a morphism

γ : P 1 −→ N simp(X, r, ξ)

such that the image of the composition H ◦ γ is the point s, and the image of γ contains at least two non-isomorphic points.

Proof. The morphism in Lemma 2.7 is given by the explicit family (E, �) given in (2.2). There is an isomorphism det(E) ∼=
p∗

Xξ , and hence a morphism γ to the moduli stack.
By construction, the map γ ′ is nonconstant, so the above morphism γ has at least two non-isomorphic points in its 

image. �
Corollary 2.9. Let X be an irreducible smooth complex projective curve of genus g ≥ 2. Suppose that r ≥ 2 and (g, r) �∈
{(2, 2), (2, 3), (3, 2)}. Let � be the space of all maps

γ : P 1 −→ N simp(X, r, ξ)

whose image contains at least two non-isomorphic points. Then the Hitchin discriminant D is the algebraic closure of the subset

D� = {Im(H ◦ γ )
∣∣ γ ∈ �} ⊂ W .

Proof. By Lemma 2.6 we have D� ⊆ D. Moreover, Lemma 2.8 implies that D� contains a dense open subset of D. There-
fore, the closure of D� in W is the entire discriminant D. �
Theorem 2.10. Let X and X ′ be two irreducible smooth complex projective curves of genus g and g′ respectively, with g, g′ ≥ 2. Let 
r, r′ ≥ 2 such that (g, r), (g′, r′) �∈ {(2, 2), (2, 3), (3, 2)}. Fix line bundles ξ and ξ ′ on X and X ′ respectively. Let


 : M(X, r, ξ) −→ M(X ′, r′, ξ ′)
be an isomorphism between the corresponding moduli stacks of vector bundles with fixed determinant. Then r = r′ and X ∼= X ′ .

Proof. Let 
 : M(X, r, ξ) −→ M(X ′, r′, ξ ′) be an isomorphism of stacks. Then it preserves the locus of objects with zero-
dimensional stabilizers. Any vector bundle of rank r with fixed determinant admits a natural action of the group of r-th roots 
of unity by dilation. Thus, the size of the stabilizer of any object in the moduli stack M(X, r, ξ) with a zero-dimensional 
stabilizer is at least r, and objects whose stabilizer has the minimum possible size r are simple. Since these exist (for 
instance, stable objects are simple), we can characterize the locus Msimp(X, r, ξ) inside M(X, r, ξ) as the locus of objects 
with minimal stabilizer. As this property is preserved through the isomorphism 
, the map 
 restricts to an isomorphism


simp : Msimp(X, r, ξ) −→ Msimp(X ′, r′, ξ ′)

between the corresponding loci of simple objects. This map 
simp induces an isomorphism between the corresponding 
cotangent complexes. As the moduli stack of bundles is smooth, both complexes are concentrated in orders 0 and 1 and 
there is an isomorphism
6
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d1((
simp)−1) : N simp(X, r, ξ) −→ N simp(X ′, r′, ξ ′).

Let

W =
r⊕

k=2

H0(X, K ⊗k
X ), W ′ =

r′⊕
k=2

H0(X ′, K ⊗k
X ′ ).

By Corollary 2.4, there exists an isomorphism f : W
∼=−→ W ′ such that the following diagram is commutative:

N simp(X, r, ξ)
d1((
simp)−1)

H

N simp(X ′, r′, ξ ′)

H′

W
f

W ′

(2.3)

As the map d1((
simp)−1) is C-linear, the map f in (2.3) is C∗-equivariant for the C∗ actions on W and W ′ making the 
Hitchin maps C∗-equivariant; more precisely, the C∗ action is the diagonal weighted action

λ · (s2, · · · , sr) = (λ2s2, · · · , λr sr).

In particular, f preserves the filtrations of subspaces of W and W ′ in terms of the asymptotic decay of the corresponding 
C∗-actions:

W = W≥2 � W≥3 � · · · � W≥r � 0,

W ′ = W ′≥2 � W ′≥3 � · · · � W ′
≥r′ � 0,

where W≥k = ⊕r
j=k H0(X, K k

X ) = ⊕r
j=k Wk and W ′

≥k = ⊕r′
j=k H0(X ′, K k

X ′ ) = ⊕r′
j=k W ′

k .
Observe that the length of the filtrations of W and W ′ are r − 1 and r′ − 1 respectively, and so we conclude that r = r′ . 

Moreover, f sends Wr ⊂ W to W ′
r′ = W ′

r ⊂ W ′ and, as the C∗-action is homogeneous of degree r in Wr and W ′
r , and f

is C∗-equivariant, we conclude that f restricts to a linear map fr : Wr −→ W ′
r .

On the other hand, as d1((
simp)−1) is an isomorphism, it induces a bijection between the set � of maps P 1 −→
N simp(X, r, ξ) whose image contains non-isomorphic points and the set �′ of maps P 1 −→ N simp(X ′, r′, ξ ′) whose image 
contains non-isomorphic points. By Corollary 2.9, this implies that the map f : W −→ W ′ sends the Hitchin discriminant 
D ⊂ W to the Hitchin discriminant D′ ⊂ W ′ .

As f (D) = D′ and f (Wr) = W ′
r , we have f (D ∩ Wr) = D′ ∩ W ′

r . Let

C = P (D ∩ Wr) ⊂ P (Wr) and C′ = P (D′ ∩ W ′
r) ⊂ P (W ′

r).

Since fr : Wr −→ W ′
r is linear and fr(D ∩ Wr) = D′ ∩ W ′

r , we conclude that fr induces an isomorphism between P (Wr)

and P (W ′
r) sending C to C′ . Then, it induces an isomorphism between the corresponding dual varieties C∨ ⊂ P (W ∨

r ) and 
(C′)∨ ⊂ P ((W ′

r)
∨). By [7, Proposition 4.2], we have C∨ ∼= X ⊂ P (W ∨

r ) and (C′)∨ ∼= X ′ ⊂ P ((W ′
r)

∨). This completes the 
proof. �
3. “Beyond GIT” techniques

As before, let Mss-vb(X, r, ξ) ⊂ M(X, r, ξ) be the substack of semistable vector bundles with fixed determinant ξ , and 
denote by Mss-vb(X, r, ξ) the corresponding projective moduli scheme of rank r semistable vector bundles on X with fixed 
determinant ξ . As mentioned in the introduction, there exist multiple Torelli type theorems for the moduli scheme of vector 
bundles of rank r ≥ 2 [21,28,29,23,19,27,7,1,9,24] showing that if Mss-vb(X, r, ξ) is isomorphic to Mss-vb(X ′, r′, ξ ′) for some 
irreducible, smooth projective curve X ′ and a line bundle ξ ′ on X ′ , then X is isomorphic to X ′ .

Thus if we want to show that the moduli stack M(X, r, ξ) uniquely determines X , it is enough to recover the projective 
moduli scheme Mss-vb(X, r, ξ) from the stack M(X, r, ξ) (provided Mss-vb(X, r, ξ) uniquely determines X).

One way to recover the moduli substack of semistable bundles is to use ideas from “beyond GIT”, the theory developed 
by Alper, Halpern-Leistner and Heinloth [2,17,16,4]. See [3] for an exposition in the case of vector bundles.

In this theory, the notion of L-stability on a stack M is defined, where L is a line bundle on M. For this, we first need 
to introduce the quotient stack � = [Spec(C[t])/Gm], with the standard action of Gm on the line SpecC[t]. There are two 
orbits: t = 0 and t �= 0 and therefore the stack � has two points which we call t = 0 (with automorphism group Gm) and 
t = 1 (with trivial automorphism group).

A filtration of a point x ∈ M is a morphism f : � −→ M together with an isomorphism f (1) ∼= x. We note that the 
name “filtration” comes from the fact that, if M is the moduli stack of coherent sheaves then, by the Rees construction, 
giving such a morphism is equivalent to giving a Z-indexed filtration of the sheaf f (1), and the point f (0) corresponds to 
the associated graded sheaf.
7
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The line bundle f ∗L on � can be thought of as a Gm-equivariant line bundle on SpecC[t]. Let wt( f ∗L|0) be the weight 
of this equivariant line bundle on the fiber over t = 0.

Definition 3.1 (L-semistability [17, Definition 1.2 and Remark 1.3], [16]). A point x ∈ M in an algebraic stack M is called 
L-semistable if for all filtrations f : � −→ M of x, we have

wt( f ∗L|0) ≤ 0.

Remark 3.2. Note that the weight wt( f ∗L|0) is given by the group homomorphism

f ∗(·)|0 : Pic(M) −→ Pic(BGm) ∼= Z.

This implies the following:

• The notion of L-semistability depends only on the class of L modulo torsion.
• The notion of L-stability only depends on the class of L in the quotient Pic(M)/ Pic0(M), where Pic0(M) is the 

connected component of the identity element.
• Note that wt( f ∗La|0) = a wt( f ∗L|0) and then, if a > 0, a point is L-semistable if and only if it is La semistable.
• Therefore, we can define L-semistability for any rational line bundle L ∈ PicM ⊗Q, and it depends only on the line 
Q>0L.

• If we precompose f : � −→ M with the map � [n]−→ � defined by t 	−→ tn , then the weight wt( f ∗L|0) gets multi-
plied by n, so its sign does not change.

Let Ldet be the determinant line bundle on the moduli stack of vector bundles M(X, r, ξ) whose fiber over a vector 
bundle E is det(H0(E))−1 ⊗ det(H1(E)). More precisely, for any f : T −→ M(X, r, ξ) corresponding to a vector bundle E
on X × T , we have f ∗Ldet = det(RpT ∗E)−1.

Recall that Pic(M(X, r, ξ)) ⊗ Q ∼= Q with Ldet being a generator. This was proved for the moduli functor and the 
moduli scheme in [12]. For a detailed proof in the case of the moduli stack, valid for any genus, see [8, Proposition 4.2.3 
and Theorem 4.2.1] (see also [10, Lemma 7.8 and Remark 7.11], [14] and [15]).

Proposition 3.3.

• If a < 0 is an integer, then all points x ∈ M(X, r, ξ) are La
det-unstable.

• If a = 0, then all points x ∈ M(X, r, ξ) are La
det-semistable.

• If a > 0 is an integer, then x ∈ M(X, r, ξ) is La
det-semistable if and only if the vector bundle E corresponding to x is semistable 

in the usual sense.

Proof. Giving a morphism � = [Spec(C[t])/Gm] −→ M(X, r, ξ) is equivalent to giving a Gm-equivariant morphism 
Spec(C[t]) −→ M(X, r, ξ), and this is equivalent to giving a vector bundle E on Spec(C[t]) × X together with a lift of 
the Gm action on Spec(C[t]). By the Rees construction, this is equivalent to giving a Z-indexed filtration E• of a vector 
bundle E on X , with

Ei ⊇ Ei+1

for all i such that Ei = 0 for i � 0 and Ei = E for i � 0. Indeed, given such a filtration, we define an OX×Spec(C[t])-module 
as E := ⊕

i∈Z Eit−i . Then the restriction of E to the slice X × {t} is isomorphic to E if t �= 0 and it is isomorphic to the 
associated graded object gr E• if t = 0 (see [17, Lemma 1.10] for more details).

A calculation shows the following (see [17, § 1.E.c]):

wt( f ∗La
det) = 2a

∑(
rk(E)deg(El) − rk(El)deg(E)

)
and the proposition follows. �

Therefore, the substack Mss-vb(X, r, ξ) of semistable vector bundles can be intrinsically recovered from M(X, r, ξ). More 
precisely, we have:

Corollary 3.4. Let X be a smooth projective curve of any genus. Let L be a line bundle on M = M(X, r, ξ) such that the substack of 
L-semistable points satisfies the condition ∅ � ML−ss � M. Let L′ be another such line bundle. Then ML−ss = ML′−ss, and this 
is the substack Mss-vb(X, r, ξ) of semistable vector bundles in the usual sense.

Proof. This follows immediately from Proposition 3.3. �

8
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Alternatively, the substack of semistable vector bundles can also be recovered using a result of Faltings [13, Theorem 
I.3] (see also [25, Proposition 1.6.2] and [26, Theorem 6.2 and Lemma 8.3 by Nori]) which identifies the complement of 
Mss-vb(X, r, ξ) in M(X, r, ξ) as the substack of k-points on which all sections of powers of the generator of the determinant 
of the cohomology line bundle vanish. See also recent works of Weissmann-Zhang for another approach [30].

Once we recover the substack parametrizing the semistable locus, we can apply [3, Theorem 3.12] to construct a good 
moduli space (in the sense of J. Alper [2]) Mss-vb(X, r, ξ) of Mss-vb(X, r, ξ) and a map

Mss-vb(X, r, ξ) −→ Mss-vb(X, r, ξ),

which coincides with the usual moduli space of semistable vector bundles.

Proposition 3.5. Let X and X ′ be smooth complex projective curves of any genus and r, r′ > 1. If M(X, r, ξ) ∼= M(X ′, r′, ξ ′), then 
Mss-vb(X, r, ξ) ∼= Mss-vb(X ′, r′, ξ ′).

Proof. Assume that we have an isomorphism


 : M(X, r, ξ) −→ M(X ′, r′, ξ ′).

Let L′ = L′
det be the determinant line bundle on M(X ′, r′, ξ ′), and let L = 
∗L′ . Using the definition of L-semistability, it 

is easy to check that 
 restricts to an isomorphism between ML−ss(X, r, ξ) and ML′−ss(X ′, r′, ξ ′) = Mss-vb(X ′, r′, ξ ′). By 
Corollary 3.4 we obtain that ML−ss(X, r, ξ) = Mss-vb(X, r, ξ). Therefore, � restricts to an isomorphism


ss-vb : Mss-vb(X, r, ξ) −→ Mss-vb(X ′, r′, ξ ′) .

Let π and π ′ be the projections from each of these moduli stacks of semistable bundles to the respective moduli schemes. 
Consider the composition of maps

π ′ ◦ 
ss-vb : Mss-vb(X, r, ξ) −→ Mss-vb(X ′, r′, ξ ′) .

By [2, Theorem 6.6], the good quotient Mss-vb(X, r, ξ) corepresents the moduli stack Mss-vb(X, r, ξ). Thus, the map π ′ ◦

ss-vb factors through the moduli scheme Mss-vb(X, r, ξ):

Mss-vb(X, r, ξ)

ss-vb

π

Mss-vb(X ′, r, ξ ′)

π ′

Mss-vb(X, r, ξ)
ψ

Mss-vb(X ′, r′, ξ ′)

As the inverse of 
ss-vb also descends, the above map ψ is an isomorphism. �
From Proposition 3.5 we can obtain the Torelli theorem for the moduli stacks applying any of the existing Torelli theo-

rems for the moduli schemes. For instance, the following theorem results by applying [1, Corollary 2.12].

Theorem 3.6. Let X and X ′ be smooth complex projective curves of genus at least 4. Suppose that r, r′ ≥ 2. Let ξ and ξ ′ be line bundles 
on X and X ′ respectively. Then M(X, r, ξ) ∼= M(X ′, r′, ξ ′) if and only if X ∼= X ′ , r = r′ and deg(ξ) ∼= ± deg(ξ ′) (mod r).

Proof. If M(X, r, ξ) ∼= M(X ′, r′, ξ ′), then Proposition 3.5 implies that

Mss-vb(X, r, ξ) ∼= Mss-vb(X ′, r′, ξ ′)

and the theorem follows from [1, Corollary 2.12]. �
Observe that the same argument can also be applied to prove a Torelli theorem for the moduli stack of rank r bundles 

of fixed degree, invoking the appropriate Torelli theorem for moduli spaces.
Similarly, we can consider principal G-bundles for any complex reductive group G . Let Md

G (X) be the connected com-
ponent of moduli stack of principal G-bundles on X corresponding to d ∈ π1(G) (the connected components of the moduli 
stack are parametrized by π1(G)).

Recall that a principal G-bundle EG is semistable in the sense of Ramanathan if for any reduction P Q ⊂ EG to a parabolic 
subgroup Q ⊂ G and for any dominant character χ of Q , the degree of the associated line bundle P Q (χ) satisfies the 
inequality deg(P Q (χ)) ≤ 0.
9
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Lemma 3.7. Let X be a smooth complex projective curve of any genus. Take a (rational) line bundle L ∈ Pic(Md
G(X)) ⊗Q, and let

UL = Md
G(X)L−ss ⊂ Md

G(X)

be the substack of L-semistable principal G-bundles on X. Let U be the intersections of all UL which are nonempty. Then U is the 
substack of semistable principal G-bundles in the sense of Ramanathan.

Furthermore, there exists a (rational) line bundle L such that U = UL .

Proof. Since the curve X is fixed during this proof, we will drop it entirely from the notation, denoting the moduli stack by 
just Md

G . Let Z ′ be the center of [G, G]. It is a finite group. A principal G-bundle is semistable in the sense of Ramanathan 
if and only if its extension of structure group to a principal G/Z ′-bundle is semistable. We are going to see that the same 
holds for L-semistability in the sense of Definition 3.1.

Consider the morphism

p : Md
G −→ Md′

G/Z ′

which sends a principal G-bundle on X to the associated G/Z ′-bundle. Let P be a principal G-bundle on X mapping to a 
principal G/Z ′-bundle P ′ .

We claim that a morphism f ′ : � −→ Md′
G/Z ′ (with f ′(1) = P ′) can be lifted to

f : � −→ Md
G

(with f (1) = P ) after passing to a ramified cover � [n]−→ � given by t 	−→ tn . Indeed, in [17, 1.F.b] it is proved that there is 
a bijection between morphisms f : � −→ MG and equivalence classes of pairs (λ : Gm → G, Pλ ⊂ P ) consisting of a one 
parameter subgroup λ : Gm −→ G and a reduction of structure group Pλ ⊂ P of a principal G-bundle P to the parabolic 
subgroup

{g ∈ G
∣∣ lim

t→0
λ(t)gλ(t−1) exists} ⊂ G.

Two pairs are equivalent if λ is conjugate by an element of the parabolic subgroup. In this bijection, if the morphism f (t) is 
replaced by f (tn), then the one-parameter subgroup λ(t) is replaced by λ(tn), and the parabolic subgroup and reduction stay 
the same. Therefore a morphism f : � −→ Md′

G/Z ′ produces a one-parameter subgroup λ′ : Gm −→ G/Z ′ and a reduction 
of structure group of the principal G/Z ′-bundle P ′ to the parabolic subgroup associated to λ′ . The parabolic subgroups 
of G are the same as the parabolic subgroups of G/Z ′ , and a reduction of structure group of a principal G-bundle P to a 
parabolic subgroup of G induces a reduction, to the corresponding parabolic subgroup of G/Z ′ , of the principal G/Z ′-bundle 
corresponding to P . On the other hand, since Z ′ is a finite abelian group, we have a Cartesian diagram

Gm
λ

q

G

Gm
λ′

G/Z ′

where q is just the cover t 	−→ tn for some n. Therefore, λ′ can be lifted to G after passing to a cover of order n. This 
implies that f can be lifted to Md

G as claimed.

By [8, Def 5.2.1 and Thm 5.3.1] the morphism p induces an isomorphism p∗ : Pic(Md′
G/Z ′) ⊗Q −→ Pic(Md

G) ⊗Q.

Therefore, a point in Md
G is L-semistable if and only if its image in Md′

G/Z ′ is L′-semistable, where p∗(L′) ∼= L.
Let Z be the center of G . Note that G/Z ′ = G/[G, G] × G/Z . Therefore, we have

Md′
G/Z ′ = Md1

G/[G, G] ×Md2
G/Z . (3.1)

The group G/[G, G] is a torus (isomorphic to Gr
m), and the group G/Z is semisimple and of adjoint type. The global 

functions on Md′
G/G ′ are just the constant scalars C, and Pic(Md2

G/Z ) is discrete (by [8, Theorem 5.3.1]), so [8, Lemma 2.1.4]
gives:

Pic(Md′
G/Z ′) = Pic(Md1

G/[G, G]) ⊕ Pic(Md2
G/Z ) .

Therefore, a line bundle L on Md′
G/Z ′ is of the form L1 � L2, and a point x in Md′

G/Z ′ is L-semistable if and only if both 

the projections x1 ∈ Md1
G/[G, G] and x2 ∈ Md2

G/Z are, respectively, L1-semistable and L2-semistable. In other words,

Md′L−ss = Md1 L1−ss ×Md2 L2−ss .
G G/[G, G] G/Z

10
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The torus G/[G, G] is the product Gs
m . Then

Md1
G/[G, G] ∼= B(Gm

×s) × J×s

where J is the Jacobian scheme of the curve. The scheme J×r is projective, so the global functions are just the scalars C, 
and Pic(B(Gm

×r) = Zr is discrete, so applying [8, Lemma 2.1.4] again we get that

Pic(Md1
G/[G, G]) ∼= Zr ⊕ Pic( J×r)

and then a line bundle on Md1
G/[G, G] is of the form L1 = L1,1 �L1,2, where L1,1 ∈ Pic B(Gm

×r) = Zr and L1,2 ∈ Pic( J×r), 
and the point x1 is L1-semistable if and only if both x1,1 and x1,2 are respectively L1,1-semistable and L1,2-semistable. The 
point x1,2 ∈ J×s is automatically L1,2-semistable, because J×s is a scheme, and hence any morphism from � into it is 
trivial.

A line bundle on BGm is the same thing as a one dimensional vector space with an action of Gm . Therefore, Pic(BGm) =
Z. Let La be a line bundle on BGm . The morphisms from � to BGm are classified by Z, because such a morphism is 
equivalent to an equivariant line bundle on A1, and these are classified by the weight of the action on the fiber over zero. 
Let fb : � → BGm be the morphism corresponding to b ∈ Z. Then wt( f ∗

b La|0) = ab. Therefore (Definition 3.1), the point in 
BGm is La-semistable if and only a is zero.

It follows that any point x1,1 ∈ B(Gm
×r) is L1,2-semistable if and only if all the coordinates of L1,2 ∈ Zr are zero. 

Therefore, to prove this lemma we may assume that all these coordinates are zero.
Hence, a point x in the stack (3.1) is L-semistable if and only if the projection to MG/Z is L2-semistable. The same 

holds for semistability in the sense of Ramanathan.
Therefore, we may assume that Z is trivial and G is a product of simple groups of adjoint type: G = G1 ×· · ·× Gs . Using 

[8, Definition 5.2.1, Remark 4.3.3 and Theorem 5.3.1], Pic(MG1×···×Gs ) ⊗Q ∼= Qs , where s is the number of simple factors, 
and the generators of this group come from pullbacks of line bundles on each factor MGi . In other words, a line bundle L
in Pic(MG/Z ) ⊗Q is of the form L1 � · · ·�Ls , where Li is a (rational) line bundle on MGi . It is easy to check that a point 
x in MG1×···×Gs is L-semistable if and only if all projections xi ∈ MGi are Li-semistable:

ML−ss
G1×···×Gs

= ML1−ss
G1

× · · · ×MLs−ss
Gs

and, again, the same holds for semistability in the sense of Ramanathan.
By [8, Theorem 5.3.1], Pic(MGi ) ⊗Q ∼= Q and the determinant line bundle Ldet, whose fiber over P is (det H1(ad(P ))) ⊗

(det H0(ad(P )))−1, is a generator. As in the case of vector bundles, it follows from Remark 3.2, that it is enough to consider 
three cases: If Li is a positive multiple of the determinant bundle, then Li -semistability is equivalent to the usual notion of 
semistability defined by Ramanathan (see [17, § 1.F]). If Li is a negative multiple of the determinant, then the substack of 
Li -semistable points is empty, and if Li is trivial, then the substack of Li -semistable points is the whole moduli stack.

Therefore, ML−ss
G is smallest and non-empty when Li is a positive multiple of the determinant bundle on MGi for all i. 

Furthermore, for such Li , a point x ∈ MG is L = L1 � · · · �Ls-semistable if and only if it is semistable in the usual sense 
of Ramanathan. �
Corollary 3.8. Let X and X ′ be smooth projective complex curves with genera g(X), g(X ′) ≥ 3 respectively. Let G and G ′ be algebraic 
connected reductive complex groups. If the moduli stacks Md

G(X) and Md′
G ′ (X ′) are isomorphic as stacks, then the curves X and X ′

are also isomorphic.

Proof. Arguing as done for Proposition 3.5 we obtain that the corresponding moduli schemes of principal bundles are 
isomorphic, and then we apply [9, Theorem 0.1]. �
4. Torelli for moduli stack of rank 2 vector bundles

In this section we prove a Torelli theorem for the moduli stack of rank 2 vector bundles with trivial determinant. Notice 
that for genus 2 curves the moduli space of rank 2 vector bundles with trivial determinant is isomorphic to P 3, irrespective 
of the curve. Nevertheless, we will show that the geometry of the moduli stack, contrary to the scheme, does indeed encode 
the geometry of the curve effectively.

Throughout this section, Ms-vb(X, 2, OX ) ⊂ Mss-vb(X, 2, OX ) denotes the subset of stable bundles and S(X, 2, OX ) :=
Mss-vb(X, 2, OX )\Ms-vb(X, 2, OX ) is the subset of strictly semistable vector bundles.

Lemma 4.1. The image of the set of non-simple points in Mss-vb(X, 2, OX ) under the quotient map Mss-vb(X, 2, OX ) −→
Mss-vb(X, 2, OX ) coincides with the set of strictly semistable vector bundles S(X, 2, OX) := Mss-vb(X, 2, OX )\Ms-vb(X, 2, OX ).

Proof. Since the preimage of Ms-vb(X, 2, OX ) under the quotient map is the substack of stable vector bundles, and all stable 
vector bundles are simple, the image of each non-simple vector bundle in Mss-vb(X, 2, OX ) must be a strictly semistable 
vector bundle. Let us prove that the non-simple vector bundles surject onto the strictly semistable ones.
11
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For each strictly semistable vector bundle E in S(X, 2, OX ) there exists a polystable vector bundle Ẽ = L ⊕ L−1 which is 
S-equivalent to E . The map(

λ 0
0 −λ

)
: L ⊕ L−1 −→ L ⊕ L−1

is a nontrivial traceless endomorphism of Ẽ , so Ẽ represents a non-simple point in Mss-vb(X, 2, OX ) which projects to 
E . �
Theorem 4.2. Let X and X ′ be two irreducible smooth complex projective curves of genus g and g′ respectively with g, g′ ≥ 2. If 
M(X, 2, OX ) ∼= M(X ′, 2, OX ′ ), then X ∼= X ′ .

Proof. Repeating the argument in the previous section we know that the isomorphism M(X, 2, OX ) ∼= M(X ′, 2, OX ′ )
restricts to an isomorphism of the semistable locus Mss-vb(X, 2, OX ) ∼= Mss-vb(X ′, 2, OX ′ ) and that this map descends to 
an isomorphism

Mss-vb(X,2,OX )

π

Mss-vb(X ′,2,OX ′)

π ′

Mss-vb(X,2,OX )
ψ

Mss-vb(X ′,2,OX ′)

such that ψ(S(X, 2, OX )) = S(X ′, 2, OX ′ ). Let K (X) = J (X)/{±1} denote the quotient of J (X) by the inversion map i
defined by L 	−→ L−1. In particular, if the genus of X is two, then K (X) is the Kummer surface associated to the Jacobian. 
Each S-equivalence class of a bundle E in S(X, 2, OX ) has a unique representative of the form E = L ⊕ L−1, so there 
exists a correspondence between the points of S(X, 2, OX ) and the points of K (X). By [22, Theorem 2], the moduli space 
Mss-vb(X, 2, OX ) is isomorphic to P (H0( J (X), L2

θ )), where Lθ is the canonical polarization of the Jacobian induced by the 
natural embedding of X in J (X). Now Proposition 6.3 and the construction from Theorem 2 of [22] prove that the map 
from K (X) to P (H0( J (X), L2

θ )) ∼= Mss-vb(X, 2, OX ), which sends the class of L to the S-equivalence class of L ⊕ L−1, gives 
an embedding K (X) ↪→ Mss-vb(X, 2, OX ) whose image is the subvariety S(X, 2, OX ) preserved by ψ .

From the geometry of K (X) we can reconstruct the map J (X) −→ K (X) canonically as follows. First, remove the singular 
points of K (X). Let K sm(X) be the smooth part. The fundamental group π1(K sm(X)) has a unique maximal torsion free 
subgroup. This subgroup coincides with the subgroup π1( J (X)\ J (X)[2]), where J (X)[2] denotes the 2-torsion part of the 
Jacobian, and the quotient group is Z/2Z. The corresponding double covering is then J (X)\ J (X)[2] −→ K sm(X). Now J (X)

is the unique abelian compactification of J (X)\ J (X)[2], and the map J (X) −→ K (X) is the unique possible extension to 
J (X) for the double cover J (X)\ J (X)[2] −→ K sm(X). Thus, the isomorphism ψ induces an isomorphism J (X) ∼= J (X ′).

Now, consider the compositions of maps

j X : J (X) −→ K (X) ↪→ Mss-vb(X,2,OX ) ,

j X ′ : J (X ′) −→ K (X ′) ↪→ Mss-vb(X ′,2,OX ′) .

Let L be the ample generator of Mss-vb(X, 2, OX ). By construction [22], it follows that j∗L is a multiple of the canonical 
polarization of J (X). Since Pic(Mss-vb(X, 2, OX ) ∼= Pic(Mss-vb(X ′, 2, OX ′ ) = Z by [12], L′ := (ψ−1)∗L is a multiple of the 
ample generator of Mss-vb(X ′, 2, OX ′ ), so j∗X ′ (L′) is also a multiple of the canonical polarization. Thus, the isomorphism 
J (X) ∼= J (X ′) induced by ψ is an isomorphism of canonically polarized Jacobians. By the classical Torelli Theorem, X ∼=
X ′ . �
Remark 4.3. The above proof also shows that the Torelli theorem holds for the substack of semistable vector bundles. If 
Mss-vb(X, 2, OX ) ∼= Mss-vb(X ′, 2, OX ′ ), then X ∼= X ′ . Thus, the isomorphism class of the curve X cannot be recovered 
from the moduli scheme Mss-vb(X, 2, OX ), when g = 2, but it can be recovered from the geometry of the moduli stack 
Mss-vb(X, 2, OX ).

5. Proof of the Torelli theorem

In this section we will combine the previous cases to obtain a Torelli theorem for the moduli stack of vector bundles for 
curves of any rank r ≥ 2 and any genus g ≥ 2. Let us start with a basic dimensional computation, which will allow us to 
apply the appropriate Torelli theorems selectively.

Lemma 5.1. Let M be some variety which is isomorphic to a moduli space of semistable vector bundles of rank r ≥ 2 and determinant 
ξ over a smooth complex projective curve X of genus g ≥ 2. Then, either
12
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(1) dim(M) = 3, in which case g = 2 and r = 2,
(2) dim(M) = 6, in which case g = 3 and r = 3,
(3) dim(M) = 8, in which case g = 2 and r = 3,
(4) dim(M) ≥ 9, in which case either

• g ≥ 4, or
• g = 3 and r ≥ 3, or
• g = 2 and r ≥ 4.

Proof. The dimension of a moduli space of a curve of genus g ≥ 2 and rank r ≥ 2 is dg,r = (r2 − 1)(g − 1). Clearly the 
dimensions

d2,2 = 3, d2,3 = 8, and d3,2 = 6

are distinct and less than 9. Thus, if we prove that the dimension of any other moduli space with (g, r) �∈ {(2, 2), (2, 3),

(3, 2)} is greater or equal to 9, there will exist a unique option for the previous given dimensions and the lemma will 
follow. Clearly dg,r is increasing in r and g . Thus, if g ≥ 4 then as r ≥ 2, we have

dg,r = (r2 − 1)(g − 1) ≥ (22 − 1)(3 − 1) = 9

and, if r ≥ 4, then as, g ≥ 2, we have

dg,r = (r2 − 1)(g − 1) ≥ (42 − 1)(2 − 1) = 15 > 9.

Finally, d3,3 = 16 > 9 and we obtain the following table for the values of dg,r which proves the result:

g\r 2 3 ≥ 4
2 3 8 ≥ 15
3 6 16 ≥ 30

≥ 4 ≥ 9 ≥ 24 ≥ 45

This completes the proof. �
Theorem 5.2. Let X and X ′ be two irreducible smooth complex projective curves of genus g and g′ respectively, with g, g′ ≥ 2. Let 
r, r′ ≥ 2, and fix line bundles ξ and ξ ′ on X and X ′ respectively. Let


 : M(X, r, ξ) −→ M(X ′, r′, ξ ′)
be an isomorphism between the corresponding moduli stacks of vector bundles with fixed determinant. Then r = r′ and X ∼= X ′ .

Proof. Repeating the argument from Section 3 and applying Proposition 3.5, the above map 
 induces an isomorphism 
Mss-vb(X, r, ξ) ∼= Mss-vb(X ′, r′, ξ ′) between the moduli spaces. By Lemma 5.1, the dimension of this moduli space is either 
3, 6, 8 or at least 9. Let us consider each case individually.

Dimension 3:
By Lemma 5.1, g = g′ = 2 and r = r′ = 2. By [22], there are two possible different geometries for these moduli spaces. 

Either the moduli spaces are both isomorphic to P 3, in which case deg(ξ) and deg(ξ ′) are even, or both the moduli spaces 
are isomorphic to an intersection of quadrics in P 5, in which case deg(ξ) and deg(ξ ′) are odd.

If deg(ξ) and deg(ξ ′) are both odd then we can apply the Torelli Theorems for rank 2 bundles with fixed determinant 
with odd degree by Mumford and Newstead [21, Corollary p.1201] or by Tyurin [28, Theorem 1].

Otherwise, if deg(ξ) and deg(ξ ′) are both even, then there exist line bundles L and L′ on X and X ′ respectively 
such that L2 = ξ and (L′)2 = ξ ′ . In that case, the maps E 	−→ E ⊗ L−1 and E ′ 	−→ E ′ ⊗ L−1 induce isomorphisms of 
stacks M(X, 2, ξ) ∼= M(X, 2, OX ) and M(X ′, 2, ξ ′) ∼= M(X ′, 2, OX ′ ) respectively. Thus, we have an isomorphism of stacks 
M(X, 2, OX ) ∼= M(X ′, 2, OX ′ ) and now we can apply Theorem 4.2 to conclude that X ∼= X ′ .

Dimension 6:
By Lemma 5.1, g = 3 = g′ and r = 2 = r′ . So we can apply the Torelli Theorem by Kouvidakis and Pantev for curves of 

genus g ≥ 3 of the same rank [20, Theorem E] to conclude that X ∼= X ′ .
Dimension 8:
By Lemma 5.1 we have g = 2 = g′ and r = 3 = r′ . By [5, Theorem 1.8], the cohomological Brauer group of the moduli 

space Mss-vb(X, 3, ξ) is

Br
(

Mss-vb(X,3, ξ)
)

:= H2
(

Mss-vb(X,3, ξ)et ,Gm

) ∼= Z/(g. c.d(r,deg(ξ)))Z

so it is either 0 (when deg(ξ) is coprime to 3) or it is Z/3Z (when deg(ξ) is a multiple of 3). As Br(Mss-vb(X, 3, ξ) ∼=
Br(Mss-vb(X ′, 3, ξ ′), either deg(ξ) and deg(ξ ′) are both coprime to 3 or they are both multiples of 3.
13
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If deg(ξ) and deg(ξ ′) are both coprime to 3, then we can apply the Torelli theorems by Tyurin [29, Theorem 1] or 
Narasimhan-Ramanan [23, Theorem 3].

If deg(ξ) and deg(ξ ′) are both multiples of 3, then, as before, there exist line bundles L and L′ over X and X ′ respectively 
such that L3 = ξ and (L′)3 = ξ ′ . The maps E 	−→ E ⊗ L−1 and E ′ 	−→ E ′ ⊗ L−1 induce isomorphisms of moduli schemes 
Mss-vb(X, 3, ξ) ∼= Mss-vb(X, 3, OX ) and Mss-vb(X ′, 3, ξ ′) ∼= Mss-vb(X ′, 3, OX ′) respectively. Thus, we have an isomorphism of 
moduli schemes Mss-vb(X, 3, OX ) ∼= Mss-vb(X ′, 3, OX ′ ). Now we can apply the Torelli theorem for genus 2 curves and rank 
3 bundles with trivial determinant by Nguyen [24, Corollary 3.4.4] to obtain that X ∼= X ′ .

Dimension at least 9:
By Lemma 5.1, both (g, r) and (g′, r′) satisfy the conditions on the ranks and genera in Theorem 2.10, and hence we 

obtain that X ∼= X ′ . �
Remark 5.3. Using Lemma 2.7 — instead of Lemma 2.8 — in the proof of Corollary 2.9 we can show that the discriminant 
D is the closure of the image under H of the set of rational curves in T ∗Mss-vb(X, r, ξ) for any curve X of genus g ≥ 2 and 
any rank r ≥ 2 such that (g, r) �∈ {(2, 2), (2, 3), (3, 2)}.

Using this intrinsic characterization of D, the proof of the Torelli Theorem for the moduli scheme of vector bun-
dles by Biswas, Gómez and Muñoz [7, Theorem 4.3] extends to curves of genus g ≥ 2 and r ≥ 2 where (g, r) �∈
{(2, 2), (2, 3), (3, 2)}.

Then, the argument of Theorem 5.2 can also be used to prove the following Torelli Theorem for the moduli scheme of 
vector bundles. Let X and X ′ be smooth complex projective curves of genus at least 2, and let r, r′ ≥ 2. If Mss-vb(X, r, ξ) ∼=
Mss-vb(X ′, r′, ξ ′), then r = r′ and either

• X ∼= X ′ , or
• X and X ′ are any pair of curves of genus 2 with r = r′ = 2 and deg(ξ) and deg(ξ ′) being even; in this case we have 

Mss-vb(X, 2, ξ) ∼= Mss-vb(X ′, 2, ξ ′) ∼= P 3.

As a consequence, the unique case for genus and rank at least 2 where the moduli scheme of vector bundles does not 
admit a Torelli theorem is when the genus is 2, the rank is 2 and the degree of the determinant is even.
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