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Abstract: This paper presents a novel grid-to-vehicle modeling framework that leverages probabilistic
methods and neural networks to accurately forecast electric vehicle (EV) charging demand and
overall energy consumption. The proposed methodology, tailored to the specific context of Medellin,
Colombia, provides valuable insights for optimizing charging infrastructure and grid operations.
Based on collected local data, mathematical models are developed and coded to accurately reflect the
characteristics of EV charging. Through a rigorous analysis of criteria, indices, and mathematical
relationships, the most suitable model for the city is selected. By combining probabilistic modeling
with neural networks, this study offers a comprehensive approach to predicting future energy demand
as EV penetration increases. The EV charging model effectively captures the charging behavior of
various EV types, while the neural network accurately forecasts energy demand. The findings can
inform decision-making regarding charging infrastructure planning, investment strategies, and policy
development to support the sustainable integration of electric vehicles into the power grid.

Keywords: electric vehicle charging; forecasting; neural networks; probabilistic approach

1. Introduction
1.1. Motivation

The integration of electric vehicles (EVs) into the power grid is a crucial strategy
for addressing global warming and enhancing the efficiency of the power system. By
reducing dependence on fossil fuels, EVs can significantly lower greenhouse gas emissions.
Additionally, their adoption supports cleaner and more sustainable energy consumption [1].
However, this transition comes with its own set of challenges. For the successful and
sustainable implementation of EVs, it is essential to address issues such as developing
adequate charging infrastructure, advancing battery technology, and integrating renewable
energy sources into the grid [2].

In this context, one challenge is the increased electricity consumption resulting from
the introduction of EVs into the grid [3]. Charging these vehicles adds additional demand
to the electricity system, which can have significant implications, particularly during peak
demand periods. Moreover, the variability in EV charging—depending on when, where,
and at what speed the vehicles are charged—can cause fluctuations in the electrical load
and affect grid stability [4].

The impacts of the introduction of EVs extend beyond the energy sector. Effects have
been identified in industries such as transportation, manufacturing, and the economy, in
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general. These impacts can be related to changes in energy demand, charging infrastructure,
EV supply chain, and job creation. For example, in [5], the authors present an assessment
of the technical impacts of EV penetration in distribution networks. To address the issues
arising from the mass adoption of EVs, it is essential to implement strategies for their
intelligent management [6]. This involves the efficient coordination of charging, considering
factors such as usage patterns, the availability of renewable energy, and the capacity of the
electrical grid. The implementation of smart charging technologies, along with policies
that encourage off-peak charging, can help mitigate the negative impacts on the electrical
grid [7].

Additionally, the careful planning of charging infrastructure, the promotion of electric
mobility in specific areas, and the integration of renewable energy are crucial aspects
to maximize the benefits of EVs and minimize their adverse impacts. In summary, the
transition to electric vehicles requires a comprehensive approach that addresses the energy
challenges and the economic and social aspects associated with this transformation [1].

The aforementioned aspects require the development of more accurate EV charg-
ing models to better assess their impact on the electrical grid. Various approaches have
been proposed to model EV charging [8]. These include deterministic techniques for
EV charging modeling [9], Monte Carlo simulation (MCS) approaches [10], fuzzy meth-
ods [11], hybrid Fuzzy-MCS methods [12], linear programming approaches [13], and other
techniques [14,15]. Accurate EV charging models can also significantly impact the demand
forecasts of electrical grids.

Integrating demand forecasts with accurate EV charging models is essential for man-
aging the challenges of EV introduction to the electrical grid. This approach enables the
adjustment of EV charging strategies based on energy demand variations, optimizing
infrastructure use and preventing congestion. Analyzing demand forecasts helps identify
daily, weekly, and seasonal energy patterns [16]. It is essential to assess the impact of EVs
on demand, understanding how their charging coincides with or differs from periods of
high forecast demand and whether there are correlations between energy demand and
charging patterns.

Using forecasts to model scenarios with higher EV penetration helps anticipate impacts
on grid capacity and efficiency, enabling better infrastructure planning and smart charging
strategies. Integrating demand forecasts with EV charging models provides a detailed
view of future energy demand, facilitating effective planning and strategies for sustainable
electric mobility. Furthermore, to the best of our knowledge, there are no existing studies in
the technical literature that provide demand forecasts specifically for the city of Medellin,
considering the factors addressed in this paper.

1.2. Literature Review

Several approaches have been suggested to model electric vehicle (EV) charging,
which can be categorized into three main groups: deterministic, data-driven, and uncer-
tainty/variability models, as outlined by [6].

In deterministic models, EV parameters like arrival and departure times, available
charging period, and travel distance are predefined by the grid operator, treating EVs as
stationary energy storage systems [8]. Other studies use measurement-based approaches
to model EV fast-charging stations by minimizing the difference between real load mea-
surements and simulated loads, as seen in [17]. A modified backward–forward sweep
method was implemented in [9] to assess the impact of EV charging models on the grid
using constant current and voltage-dependent loads. These deterministic models are also
referred to as traditional methods.

Data-driven models, on the other hand, use large datasets to capture EV charging
patterns more accurately than deterministic approaches, which struggle with real-time
driving data [3]. These models rely on historical data to reflect driver behavior, which affects
EV energy consumption. Data mining techniques like clustering, correlation analysis, and
time series clustering are commonly applied to analyze driving data [8,18]. For example,
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time series clustering was used to analyze hybrid EV driving cycles in [18], while [3]
applied a two-level clustering model to identify driving patterns that influence the daily
load curve. These data-driven methods offer flexibility and scalability but can perform
poorly with low-dimensional real-time data.

Several data-driven approaches have been suggested to characterize EV charging
behaviors and analyze driving data. Techniques like clustering [8], correlation analysis [19],
stochastic prediction [20], and time series clustering [18] are commonly used. For instance,
ref. [18] developed a time series clustering method with variable weights to study hybrid
EV driving cycles. The authors in [8] utilized historical residential charging data to create
probability density functions for modeling charging durations and applied k-nearest neigh-
bors clustering for decision-making. The authors in [3] proposed a two-level clustering
model to identify EV driving patterns, revealing five daily and four multifaceted driving
patterns impacting the daily load curve, though they did not consider weather conditions.
The authors in [21] introduced a probabilistic model using K-means clustering for EV load
control, identifying three distinct vehicle usage modes in the UK, with the number of
clusters being a model parameter.

Data-driven methods hold significant promise for predicting non-linear systems,
allowing for the calculation of EV load based on varying household numbers and charging
rates [8]. However, these methods often struggle with real-time driving data in low
dimensions. While many studies highlight the distinctions between data-driven techniques
and machine learning methods, both can be encompassed within data-driven approaches.
Several methods incorporate machine learning theories or concepts to model EV charging,
behaviors, or driving patterns [14,22,23]. Specifically, ref. [22] modeled the EV consumption
profile using gross power measurements, identifying five types of EV plugs and batteries to
determine power drawn from the grid and battery capacity via the random forest algorithm.
The authors in [23] used a Gaussian Mixture Model (GMM) to model the probability of
EV charging, effectively capturing charging profiles by considering factors like battery
capacity, consumption, charging infrastructure, day of the week, and settlement structure.
The authors in [15] proposed a data-driven regression model to predict EV charging
demand from a large historical dataset of charging processes. The authors in [24] presented
a forecasting model for estimating EV charging demand using big data technologies,
employing clustering analysis to classify traffic patterns, relational analysis to identify
influencing factors, and a decision tree to establish criteria for determining EV charging
speed and power.

In uncertainty and variability approaches, probabilistic, possibilistic, and stochastic
methods are utilized to model EV charging demand, addressing both uncertainty and vari-
ability. Probabilistic methods often use individual probability distributions to model EV
charging demand, employing Gaussian distributions [25], Weibull [10], lognormal [26], ex-
ponential [26], mixed probability distributions (e.g., mixtures of Gaussian distributions) [27],
or non-parametric methods [28,29]. The most common technique is Monte Carlo simulation
(MCS), which generates a large number of samples using probability density functions
of various input variables [10,30]. These variables can include arrival/departure times,
daily distance traveled, initial State of Charge (SoC) of the EV battery, type of EV, battery
capacity, and EV recharge probability [30].

Numerous applications of MCS are found in the literature. For instance, ref. [7] ana-
lyzed the impact of EV charging demand on the temperature of hot spots in distribution
transformers and the loss of useful life using a thermal model for both uncontrolled and
controlled charging scenarios. Similarly, ref. [31] evaluated the effects of EVs on distri-
bution networks, using MCS and Weibull probability distribution to model EV charging
demand and assuming correlated loads in the network. Under different conditions, ref. [32]
employed MCS to develop an EV charging pattern model considering vehicle class, battery
capacity, SoC, driving habits/needs, connection time, mileage, daily recharge frequency,
charging rate, and dynamic charging price. The authors in [33] proposed a probabilistic
approach to model EV charging demand, considering factors like arrival time, departure
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time, driving distance, non-linear characteristics of battery charging, and different vehi-
cle types, using historical data from the National Household Travel Survey to obtain the
probability distributions.

For possibilistic approaches, ref. [34] proposed an EV charging profile that incorporates
factors such as arrival time, departure time, daily distance traveled, and vehicle parameters
to develop a stochastic driving pattern model using fuzzy logic theory. The authors in [35]
introduced a fuzzy inference mechanism to determine suitable charging, discharging, or
retention decisions for EVs, taking into account the available power from the smart grid,
arrival time, departure time, State of Charge (SoC), and the required staying time of the EV.
They also proposed a hybrid Fuzzy-MCS method where parameters are modeled using
either probabilistic or possibilistic approaches.

In [36], the problem addressed is the need to evaluate the electrical power system,
considering the growing load that needs to be managed in the future. However, the avail-
ability of historical data, limited to the last five years, imposes restrictions on a thorough
analysis. To address this issue, a methodology is developed to assess the impact of these
loads on electrical networks. Electrical properties, user charging behaviors, geographic
locations, travel distances, and other relevant variables are modeled using empirical or
known probability distributions and evaluated in different scenarios using MCS and load
flow analysis. Although MCS introduces uncertainty, it provides flexibility to consider
various scenarios and estimate the variability of the results. Among the advantages of the
study is the representation of operational scenarios for a single hour over a week, based on
a projected charging demand for the year 2030. However, a drawback is the limited use of
EV data, including a mix of plug-in hybrids, non-plug-in hybrids, and pure EVs during
the study period from 2016 to 2020, which could lead to significant errors. In conclusion,
the utility of the Inverse Cumulative Distribution Function (ICDF) for generating random
values in Monte Carlo simulations is highlighted, offering an effective alternative when
limited data are available for modeling stochastic variables in EV simulations.

In [37], the challenges of optimizing electrical distribution networks with high penetra-
tion of EVs and distributed generation (DG) are addressed. It proposes a hierarchical and
distributed optimization method that considers the spatial and temporal characteristics of
EV charging, using a detailed predictive model that combines trip probabilities, vehicular
mobility, and traffic networks. The advantages of the study are improved computational
efficiency and more flexible control through distributed optimization, as well as better
integration of distributed energy and energy storage. However, it faces disadvantages such
as implementation complexity, reliance on accurate data, and difficulties in modeling the
interaction between traffic networks and electrical distribution.

In [38], the impact of demand management strategies, such as time-of-use (ToU) rates
and smart charging, on the charging behavior of EV drivers in Australia is explored. Using
a multinomial choice model and an ordered bivariate model, the authors analyzed data
from a survey of 994 drivers, including 97 EV owners. The findings indicate that consumers
with more flexible schedules are more likely to adjust their charging times in response to
ToU rates, while those with greater time constraints prefer user-managed smart charging.
Testing with current EV owners may overestimate the acceptance of these strategies among
potential new adopters. ToU rates are effective in shifting charging to nighttime hours
but not to midday, suggesting the need for synergy between transportation and energy
demand strategies.

1.3. Contributions

This paper explores a grid-to-vehicle modeling approach based on probabilistic meth-
ods for EVs enhanced by neural networks. The proposed methodology addresses every
aspect of the process, from data collection and processing to model implementation and
validation, providing a comprehensive and robust solution. Using the collected local data,
mathematical models are developed and coded to accurately reflect the characteristics of
EV charging in Medellin, the second-largest city in Colombia. Through a rigorous analysis



World Electr. Veh. J. 2024, 15, 493 5 of 18

of criteria, indices, and mathematical relationships, the most suitable model for the city
is selected. Note that the scope of this research does not include the optimal location of
charging stations or the evaluation of the impact of EV charging on infrastructure.

The validation of the charging model through simulations in a controlled environment
before practical application offers several advantages. Different scenarios of EV penetration
can be simulated and their impact on the charging infrastructure evaluated, enabling
forecasting and planning for various future situations. This was achieved with the help
of a neural network, which provided demand forecasts. The simulation facilitates the
identification of critical points and opportunities for improvement in the charging system,
optimizing the placement and capacity of charging stations. To summarize, the main
features and contributions of this study are as follows:

• A grid-to-vehicle modeling approach that utilizes probabilistic methods for EVs en-
hanced by neural networks is proposed and tested.

• The proposed approach is applied to Medellin, the second-largest city in Colombia,
incorporating local data and models that accurately reflect the city’s reality. the
specific environment of Medellin is considered, including its road infrastructure and
mobility patterns, which allows the model to be adjusted to the city’s actual needs
and facilitates.

• The model is flexible and can adapted to other cities, as well as changes in EV penetra-
tion and public policies, facilitating long-term sustainable planning.

Finally, this project constitutes a valuable tool for planning and managing EV charging
infrastructure, ensuring its relevance and utility for local authorities and urban planners
through its detailed and locally adapted approach. It offers a solid foundation for mak-
ing informed decisions about the location and capacity of charging stations, optimizing
investment, and improving system efficiency.

2. EVs in the City of Medellin

Table 1 shows the data on EVs in Medellin, classified by technology type and broken
down by year from 2019 to 2022. The technology types included are HEV (Hybrid Electric
Vehicles), BEV (Battery Electric Vehicles), and PHEV (Plug-in Hybrid Electric Vehicles).
The primary focus of this analysis is on BEVs and PHEVs. For BEVs, the numbers show
a gradual increase from 2019 to 2022. PHEVs, although with variations, also show an
increase over these years. In contrast, HEVs have seen much more pronounced growth
but will not be the focus of this study. Overall, these data reflect a growing adoption
of electric vehicle technologies in Medellin, with particular attention to how BEVs and
PHEVs are contributing to this trend [39]. It is important to highlight that HEVs and
small-battery PHEVs offer similar greenhouse gas reductions at lower costs compared
with large-battery PHEVs or BEVs [40], making them valuable for long-term power system
planning across multiple areas, including reducing greenhouse gas emissions, optimizing
electric transportation systems, supporting manufacturing efficiency, and benefiting the
broader economy [3], even though they do not rely directly on grid electricity; for this
reason, they are mentioned in Table 1.

Table 1. EVs in Medellin.

Type of Tecnologie 2019 2020 2021 2022

HEV 871 1488 3044 4649
BEV 314 434 439 694

PHEV 295 204 339 415
TOTAL 1480 2126 3822 5758

Table 2 provides a more detailed and segmented view of the types of EVs in
Medellin [39]. A significant growth can be observed in the Automobile and Utility segments,
especially in 2022, where the number of utility vehicles reached 3780. Other segments,
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such as Passenger Commercial and Cargo Commercial, also show an increase, though less
pronounced. This breakdown helps to better understand the distribution and types of
vehicles being adopted in the city.

Table 2. EVs in Medellin by segment.

Segement 2019 2020 2021 2022

Automobile 693 1348 1451 1759
Utility Car 692 676 2218 3780

Passenger Commercial 64 4 0 1
Cargo Commercial −10.5T 17 84 118 203
Cargo Commercial +10.5T 0 0 0 1

Pick Up 0 8 16 4
Van 7 9 9 0
Taxi 7 0 0 10

TOTAL 1480 2126 3822 5758

3. Methodology

The methodology employed in this work, as depicted in Figure 1, begins with the EV
input data block. Here, variables such as battery capacity, electric vehicle types, charging
power, and full-range mileage are sampled from their respective probability distributions
to create a specific charging scenario for the electric vehicles [6]. Following this, a Monte
Carlo simulation (MCS) is utilized to propagate the defined random variables, enabling the
calculation of probability distributions related to the charging demand of electric vehicles
connected to the power network.

START

EV Input Data

J>N

Probability
Distributions 

Sampling Process

 Compute SOC ini

EVCP MODEL

J=J+1
No

Neural Network 

Demand Forecast 

No Adjust Neural
Network 

Yes

END

Yes

Compare
Data

Figure 1. Flowchart of the proposed methodology.
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Next, the initial State of Charge (SOC) of the electric vehicle batteries is determined
using the sampled data. This calculation is pivotal, as the initial SOC significantly influences
the charging and discharging patterns of the batteries. Subsequently, these sampled inputs
are fed into the MCS-based EV Charging Power (EVCP) model in the sampling block,
where the total power required by the electric vehicles is calculated. This procedure is
repeated 1000 times to generate statistical results and a comprehensive set of samples for
the total EV power demand. These simulations offer insights into how energy demands
fluctuate under various usage conditions and vehicle characteristics, using the historical
data of electric vehicles from the city of Medellin, which were obtained from [39].

As the iterations progress, probability distributions for the input data are established,
yielding annual results that reflect the maximum, minimum, average, and standard de-
viation of demands. The data derived from these annual simulations, along with actual
demand recorded by XM, the organization responsible for managing Colombia’s electrical
system [41], are subsequently fed into an artificial neural network. This neural network
processes the data to generate an initial demand forecast. To enhance accuracy, the forecast
undergoes refinement through multiple simulations covering the period from 2008 to 2021.
During this phase, adjustments are made to the neural network’s architecture, particularly
the number of layers, in order to minimize the mean squared error.

Once the optimal configuration of the neural network is determined, it is employed to
predict energy demand for future years, extending the projections up to 2030. To ensure the
model’s accuracy, the predicted demand for 2022 is compared with actual data provided by
XM [41]. If the forecast demand aligns closely with the actual data, the model is deemed
successful. However, in cases where discrepancies emerge, the neural network is fine-tuned,
and the simulation process is repeated. This iterative cycle is essential for confirming the
model’s reliability and ensuring that future demand predictions are as precise as possible.

With a well-calibrated and validated neural network in place, a comprehensive forecast
extending to the year 2030 is generated. This forecast, grounded in both historical data and
accurate simulations, provides a clear and well-informed projection of how energy demand
is likely to evolve in the coming years.

3.1. Electric Vehicle Charging Probabilistic (EVCP) Modeling

Electric Vehicle Charging Probabilistic (EVCP) modeling refers to the use of probabilis-
tic and statistical methods to model and predict the charging patterns of EVs, considering
the variability and uncertainty of user behavior. This approach allows for better planning of
charging infrastructure, optimizes energy demand management, and helps formulate effec-
tive policies for the sustainable development of electric mobility. Techniques such as Monte
Carlo models, stochastic processes, and machine learning are used to estimate and predict
future charging needs. Therefore, three electric vehicle charging models are presented.

3.1.1. EVCP Model 1

EVCP Model 1 is based on [30] and was shown in [6]. In this case, the authors assumed
that the daily travel distance (d) and the connection time (tp) of an EV are Gaussian and
lognormal, respectively. Also, the State of Charge SOCij after a daily travel distance (D) can
be calculated from Equation (1) using the battery energy efficiency (η) in driving cycles.

SOCij = 1 − d
Dη

(1)

For every EV (without regard to HEV), the charging duration (td) is calculated to
determine its total power (PEV) using Equations (2) and (3). In Equation (3), PC represents
the nominal charging power at time t. Here, j denotes the Monte Carlo simulation iteration,
and i indicates the type of EV within the predefined fleet, where (i = {1, 2, 3, 4, 5}). These
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types correspond to private electric vehicles, public utility electric vehicles, commercial
electric vehicles (taxis), electric freight trucks, and electric buses, respectively.

PEV =
5

∑
i=1

N

∑
j=1

PEVij (2)

PEVij =

{
Pc tp ≤ t ≤ td

0 other time
(3)

3.1.2. EVCP Model 2

Model 2, as described in [6], relies on the departure time from home (tl), the time the EV
user is away from home (ta), and the charging efficiency (η) of the EVs as random variables
to estimate the energy consumption of the EV. In this model, tl and ta are represented by
Gaussian distributions, while η is modeled using a uniform distribution. Additionally,
five types of EVs are considered, similar to EVCP Model 1. This model approximates the
minimum charging duration time (tmcd) as a function of the initial State of Charge (SOC):

The minimum charging duration time is approximated as a function of the initial SOC,
as shown in Equation (4), where Cap is the battery capacity. The connection time (tc) and
full charge time (t f c) are calculated as indicated in Equations (5) and (6). In all cases, the
upper index j indicates the Monte Carlo simulation iteration.

tj
mcd =

(η − SOCij)Cap

Pc
(4)

tj
c = tj

l + tj
a (5)

tj
f c = tj

c + tj
mcd (6)

By applying Equations (4)–(6), the total EV power is determined using Equations (2)
and (7).

PEVij =

{
Pc tp ≤ t ≤ tj

f c

0 other time
(7)

3.1.3. EVCP Model 3

The third model is a modified version of the one introduced in [33], which was utilized
in [6] and adapted to incorporate EVCP model 1. In this model, the arrival time at home
(ta), departure time (td), and distance traveled (d) are treated as Gaussian random variables,
while battery efficiency follows a uniform distribution. The initial SOC is computed using
Equation (1). The rated load power of Pc is represented as a non-linear function of the SOC,
which is updated recursively according to Equation (8).

SOCt = SOCt−1 +
100Pcη

Cap
(8)

In this case, η represents the efficiency of EV when driving. Taking into account the
previously mentioned random variables and Equation (8), the total EV power is deter-
mined using Equations (2) and (9). The full charge time (t f c) is calculated as outlined in
Equations (4)–(6).

PEVij =

{
Pc tp ≤ t ≤ tj

f c and SOCt ≤ 100

0 other time
(9)

In [6], a comprehensive review of the current state of electric vehicle modeling under
the Grid to Vehicle (G2V) approach was conducted. The review identified three main
categories: deterministic approaches, methods that address uncertainty and variability,
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and data-driven techniques. Moreover, an experimental comparison was performed using
three probabilistic models based on Monte Carlo simulation. Based on the comparison
made in [6], we found that the EVCP 3 model and the gamma distribution show strong
potential for accurately modeling the penetration of electric vehicles in probabilistic load
flow analyses. It also proves to be a suitable approach for stochastic planning studies in
active distribution networks, offering a reliable framework for capturing the variability
and uncertainty associated with electric vehicle integration.

3.2. Neural Network

An artificial neural network (ANN) is a computational model whose layered structure
resembles the interconnected arrangement of neurons in the brain. ANNs can learn from
data, enabling them to be trained to recognize patterns, classify data, and forecast future
events [42]. The fundamental unit of an ANN is the neuron, which connects with others
through input layers, intermediate or hidden layers, and output layers. The connections
between layers are determined by specific weights, which reflect the relative importance of
one neuron’s input on another neuron’s output.

In this work, a multilayer artificial neural network (ANN) is trained using error
backpropagation, with a single neuron in the output layer. To estimate multiple periods,
the forecast for the first period is obtained, and then the process iterates by using the
forecast data from each period as input for the next, continuing until all desired periods
are forecast. This type of ANN and iterative procedure have been widely used for time
series forecasting in various fields, including battery State of Charge estimation [43] energy
demand forecasting [44–46], renewable generation [47], etc. The input data for the ANN
consist of the number of vehicles and statistics representing the probability distributions
of electric vehicle demand, obtained using the EVCP 3 model and historical demand data
from the Department of Antioquia from 2008 to 2021. The trained neural network is then
tested and fine-tuned using data from 2022, with the number of hidden layers defined as
part of the model optimization. Figure 2 shows a schematic of the neural network.

Once the neural network is trained or loaded, it is used to make demand predictions
based on new statistical data. This new input dataset represents the statistics for the year
to be forecast. The ANN processes these data and generates a prediction of the expected
demand. The output data represent monthly power demands over several years.

Figure 2. Artificial neural network.

4. Tests and Results

The process begins with a comprehensive search for energy demand data for the city
under study (Medellin), sourced from the XM website [41]. The data were carefully collected
to ensure both accuracy and relevance. After collection, the data were organized on a
monthly basis, encompassing each day of every month from 2018 to 2022. This organization
enabled the analysis of both daily and monthly variations in energy consumption.
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Once the data were organized monthly, averages for each month were calculated to
smooth out daily fluctuations and provide a clearer, more structured view of monthly en-
ergy consumption. This approach allows for easy comparison and analysis of consumption
trends across different months and years. The monthly arrangement helps identify seasonal
patterns, demand peaks, and other significant trends in energy consumption. Additionally,
further calculations were conducted to determine the maximum, minimum, and average
values, as well as the standard deviation of energy demand.

With the electric vehicle data, a forecast was made, incorporating both historical data
and future projections. Different projection models were presented to refine the data used
for training Model 3. This projection involved an exponential adjustment to model the
growth in EV adoption based on data from previous years.

4.1. Input Data

To forecast future energy demand, the process begins with collecting detailed data
on EVs. Key information such as battery capacity, range, vehicle type, charging speed
(fast or slow), number of charges per day, charging periods throughout the day, and total
time the vehicles are connected is recorded. These data provide a solid foundation for
understanding how EVs perform under various conditions and are essential for subsequent
calculations.

Figure 3 shows the behavior of the data based on the information in Table 3. It is worth
mentioning that there are no official records of the actual number of EVs in Medellin for the
years 2008 to 2018; nonetheless, this number can be forecast based on Equation (10). Since
there is official information from 2019 to 2022, the number of actual and forecast EVs was
compared to obtain the absolute error that ranged between 7.4% to 0.81% for 2020 and 2022,
respectively. From Figure 3, it can be seen that the adoption of EVs in the city of Medellin
presents an exponential behavior.

y = 899.31 · e(0.4662·x) (10)

In this case, y represents the projected number of vehicles, and x is the year, while
899.31 and 0.4662 are parameters fitted by the regression methods. The value 0.9944 indi-
cates a fit coefficient out of R2 that improves the accuracy of the model. From Equation (10),
the number of EVs in Medellin was forecast from 2023 to 2030 (there are no official records
for the year 2023). The results are shown in Table 4.

Table 3. Number of EVs in Medellin 2008–2022.

Year Actual Number
of EVs

Forecast
Number of EVs Absolute Error Relative Error

2008 - 9 - -
2009 - 14 - -
2010 - 22 - -
2011 - 34 - -
2012 - 55 - -
2013 - 87 - -
2014 - 139 - -
2015 - 222 - -
2016 - 354 - -
2017 - 564 - -
2018 - 899 - -
2019 1480 1433 47 3.2%
2020 2126 2284 157 7.4%
2021 3822 3642 180 4.7%
2022 5758 5805 47 0.81%
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Figure 3. Number of EVs in Medellin.

Table 4. Forecast of the number EVs in Medellin 2023–2030.

Year Number of EVs

2023 9252
2024 14,747
2025 23,506
2026 37,467
2027 59,720
2028 95,190
2029 151,725
2030 241,839

The number of charges per day, the charging period, the probability of charging, and
the distributions of both the State of Charge (SOC) and the connected time are defined.
Additionally, several types of EVs are defined, each with their specific battery capacities and
corresponding charging rates. These EV types range from private vehicles to utility vehicles,
commercial vehicles, goods trucks, and buses. Detailed information on battery capacity and
charging rates (slow and fast) is compiled to provide a complete set of data on the various
EVs, reflecting their diverse characteristics and energy needs. This information is used
to feed Model 3 (EVCP 3), which simulates the energy demand of EVs in a probabilistic
environment. The model considers the characteristics and charging habits of each type of
vehicle, allowing an accurate assessment of the charging behavior and its impact on the
power grid. Tables 5 and 6 show the characteristics of the input information, which is used
in the EVCP 3 model; this information is obtained from [30].

The demand statistics are obtained with the data shown in the Tables 5 and 6.

Table 5. Charging parameters of five types of EV models [30].

EV Types Model Battery (kWh)
Charging Power (kW)

Full Endurance Mileage (km)
Slow Charging Fast Charging

Private vehicle Nissan Leaf 24/40 6.6 11 150/250
Utility vehicle Nissan Leaf 40 6.6 11 250
Commercial vehicle Nissan Leaf 40 – 11 250
Goods truck EMS 18 series 240 – 80 250
Bus AUT-BUS 202 – 50 200
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Table 6. Characteristic EV charging parameters for probabilistic modeling [30].

Daily Charging Times Charging Period (Tp, Td) Charging Mode MC Probability

Electric private vehicle 1 9:00–17:00 Slow 10%
18:00–07:00 Slow 80%
09:00–17:00 Fast 10%

Electric utility vehicles 2 9:00–17:00 Fast 30%
18:00–07:00 Slow 70%

Electric commercial vehicles 2 00:00–09:00 Fast 90%
09:00–16:00 Fast 60%
16:00–24:00 Fast 50%

Electric goods trucks 2 00:00–09:00 Fast 80%
09:00–24:00 Fast 120%

Electric bus 1 22:00–07:00 Fast 100%

4.2. Results of EVCP 3

With the EVCP 3 model, probability distributions of EVs were obtained from 2008 to
2030. The probability distributions from 2008 to 2022 are calculated based on Table 3. The
distributions from 2023 to 2030 were calculated using the data presented in Table 4. The
results of the probability distributions calculated with the EVCP 3 model for the years 2023
and 2030 are shown in Table 7 and in Figures 4 and 5.

Table 7. Forecast of the EV load statistics for 2023 and 2030.

Statistics 2023 Statistics 2030

MAX [MW] 2.854 7.166

MIN [MW] 2.406 6.956

PROM [MW] 2.617 7.054

STD 0.060 0.030

Figure 4. Frequency of statistics (2023).
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Figure 5. Frequency of statistics (2030) .

The probability distributions obtained with the EVCP model are used to generate
demand forecasts with the neural network. This model simulated several possible scenarios
to produce a series of values from which key statistics were extracted: the maximum value
(MAX), minimum value (MIN), average (AVG), and standard deviation (STD). These
statistics summarize the expected behavior of EV charging based on various variables and
market conditions. The results of these calculations were used to train the neural network,
which was designed to predict energy demand up to the year 2030.

4.3. Demand Forecast Results

The neural network was used to forecast energy demand in Medellin for the years
2023 to 2030, considering the integration of EVs. The input data for the neural network
consisted of the probability distributions of EV charging obtained using the EVCP 3 model.
The network was trained using demand data from 2008 to 2021.

To optimize the energy demand prediction up to 2030 using neural networks, an
exhaustive exploration of various configurations of hidden layers and neurons was con-
ducted. Table 8 shows the Root Mean Square Error (RMSE), where the best simulation was
performed with 25 layers. Each configuration was evaluated using historical data up to
2021, and the prediction accuracy for 2022 was compared with actual values by calculating
the RMSE, as shown in Table 9. The goal was to identify the configuration that minimized
the RMSE, thereby indicating the best architecture for the neural network. Figure 6 shows
the behavior and similarity of the data.

Table 8. Number of Layers and Root Mean Square Error.

Layers Root Mean Square Error

5 4,295,158
10 14,889,360
15 5,248,382
20 8,892,628
25 4,176,252
30 12,750,712
35 6,177,012
40 23,758,554
45 23,557,122
50 32,971,744
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Table 9. Real Demand vs Forecast Demand.

Month Real Demand
2022 (MWh)

Demand
Forecast 2022

(MWh)
Absolute Error Relative Error

January 26,405 29,160 2.755 10.4%
February 27,993 32,222 4.229 15.1%

March 27,471 25,208 2.263 8.2%
April 26,479 28,543 2.064 7.79%
May 27,037 28,019 0.982 3.63%
June 26,664 28,143 1.479 5.54%
July 26,440 25,047 1.393 5.26%

August 26,637 28,571 1.934 7.26%
September 26,969 28,143 1.174 4.35%

October 26,467 27,015 0.548 2.07%
November 26,551 25,921 0.630 2.4%
December 26,244 24,156 2.088 7.95%

Figure 6. Real demand vs demand forecast.

Considering the forecast for the year 2022, a simulation was conducted using a neural
network configured with 25 layers. This neural network model was initially trained with
data up to 2022 and was then used to add input data year by year. By incorporating
additional data for each subsequent year, the model’s accuracy is enhanced, continuously
adjusting it to the updated reality and ensuring that the predictions more faithfully reflect
emerging trends and patterns in energy consumption.

Once the optimal configuration (25 layers) is selected, the energy demand is projected
year by year up to 2030, as shown in Table 10. This process involves periodically retraining
the neural network, adjusting it as new real data become available. This ensures that
the predictions remain accurate and adapt to seasonal variations and long-term trends
in energy consumption in Medellin. Continuously updating the model allows it to more
accurately reflect emerging changes and patterns in energy usage, thereby increasing the
reliability of the projections.

The continuous optimization of the model ensures more effective energy planning
and more efficient resource management in the city. This facilitates informed and strategic
decision-making, promoting long-term sustainable energy development. By anticipating
future needs and adjusting strategies accordingly, Medellin can enhance its ability to
respond to changes in energy demand, ensuring a consistent and sustainable supply for its
residents. This approach allows more accurate forecasting of energy demand for subsequent
years, from 2023 to 2030. By periodically updating the neural network with new input
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data, it ensures that the model can adapt to unforeseen changes and seasonal variations.
This technique not only provides more reliable long-term projections but also facilitates
the efficient planning and management of energy resources, allowing decision-makers in
Medellin to implement effective strategies for sustainable energy development.

Table 10. General demand forecast for the city of Medellin.

2023 2024 2025 2026 2027 2028 2029 2030

33,940 34,586 35,604 36,282 36,972 37,675 38,392 39,123
34,546 35,203 36,240 36,929 37,632 38,347 39,077 39,820
35,306 35,978 37,037 37,742 38,460 39,192 39,937 40,697
33,314 33,948 34,948 35,612 36,290 36,980 37,684 38,401
22,617 23,047 23,726 24,177 24,637 25,106 25,583 26,070
32,658 33,279 34,259 34,911 35,575 36,252 36,941 37,644
33,226 33,858 34,855 35,518 36,194 36,882 37,584 38,299
25,219 25,699 26,456 26,959 27,472 27,995 28,527 29,070
27,113 27,629 28,443 28,984 29,535 30,097 30,670 31,253
36,279 36,969 38,058 38,782 39,519 40,271 41,037 41,818
24,773 25,244 25,987 26,482 26,986 27,499 28,022 28,555
31,857 32,463 33,419 34,055 34,703 35,363 36,035 36,721

Table 10 illustrates the energy demand in MWh each month from 2023 to 2030. There
is a clear upward trend in energy production over the years, with each year showing an
increase in the amount of energy produced. This suggests a sustained growth in energy
demand, which can be partly attributed to the rising adoption of EVs. It is important to
highlight that the results presented in Table 10 show the general demand forecast for the city
of Medellin. In this case, not only is the demand for EVs considered, but also the electricity
demand from other sectors of the city. It is also important to note that the historical demand
pattern shows a similar trend to the results found in this article. This is expected, as the
neural network, in addition to using information from EVs, also incorporated the city’s
historical demand forecasts. Therefore, the trend in the results demonstrates appropriate
behavior, although the forecasted values may be influenced by various social, industrial,
and other factors.

5. Conclusions

This research presented a comprehensive approach to grid-to-vehicle modeling, in-
corporating probabilistic methods for electric vehicles and neural networks for electric
demand forecasting. The methodology, applied to the city of Medellin, Colombia, offers a
valuable tool for planning and managing EV charging infrastructure.

By combining probabilistic modeling and neural networks, the proposed approach
provides a robust and accurate framework for predicting future energy demand in the
presence of increasing EV penetration. From the results, it is highlighted that the EV
charging model, EVCP 3, accurately captures the charging behavior of various EV types,
considering their specific characteristics and usage patterns. The neural network, trained
on historical data and EV charging probability distributions, effectively forecasts energy
demand up to 2030.

The results of this study highlight the importance of integrating EV charging models
with demand forecasting to anticipate future energy needs and optimize grid management.
The findings can inform decision-making regarding charging infrastructure planning,
investment strategies, and policy development.
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