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A B S T R A C T   

The energy transition needs mathematical models to address the complexity of shifting towards sustainable 
energy sources. In addition to providing accurate solutions, these models must be explainable and available for 
discussion among stakeholders to facilitate informed decision-making and ensure a successful transition. This 
paper contributes to the explainability of power systems models by applying interpretable machine learning 
techniques to improve understanding of the solutions to the unit commitment problem. It applies them to a case 
study based on the IEEE 118N system. The developed methodology aims at describing the optimal commitment 
solutions as a function of the conditions of the system in a compact manner that is understandable by a human 
being. This type of information takes the form of ’which plants are needed under which conditions’ and is 
routinely learned by experience by system operators and other agents participating in the system. This experi
ential knowledge is realized in an approximate form that is simple enough to help make or justify decisions. By 
applying interpretable machine learning techniques, our methodology can automatically extract what was 
previously only available through human experience and reflection. Our approach involves model trees and node 
clustering to find a concise description of the different situations where the system can be found. Our results 
show that the methodology can explain these modes of operation for the 118N system in a sufficiently simple 
manner to be understood by a human unfamiliar with the system. This shows that interpretable machine learning 
can provide valuable insights into real solutions of the unit commitment and help improve decision-making in 
this area.   

1. Introduction 

The global energy landscape is undergoing a profound trans
formation, driven by the imperative to mitigate climate change and 
transition towards sustainable and renewable energy sources. As this 
energy transition gains momentum, there is an escalating demand for 
accurate, reliable, and comprehensive mathematical models to guide 
decision-making processes. These models play a pivotal role in assessing 
the complex interdependencies of various energy systems, optimizing 
resource allocation, and projecting future energy scenarios. However, 
merely providing mathematical solutions is no longer sufficient; it is 
equally crucial to ensure that these models are explainable and readily 
available for discussion among stakeholders. This paper explores the 
increasing need for explainability and stakeholder engagement in the 
context of mathematical modeling, highlighting their essential 

contributions to effective decision-making and the successful imple
mentation of sustainable energy solutions. 

The Unit Commitment (UC) problem aims to plan the scheduling of 
the system units over a given time horizon, minimizing the total oper
ating costs, respecting certain physical and temporal constraints from 
generators and transmission lines, and guaranteeing system security 
requirements [1]. Given its importance, the UC is one of the most 
studied problems in the electricity sector. One promising recent line of 
research in this context is the application of Machine Learning (ML) 
techniques to the UC problem, such as the prediction of electricity 
generation from non-dispatchable renewable sources, which allows for 
reducing the uncertainty of the problem and, thus, obtaining more 
efficient results [2,3]. The existing literature on the topic comprises a 
wide variety of approaches. The majority of these research papers 
address the UC problem as a supervised learning task, in which pre
computed solutions of the optimization problem are used to train an ML 
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model to replicate them and solve the problem faster. With few excep
tions attempting to develop strictly surrogate models [4], the general 
purpose of these works is not to create ML models that can be used as a 
solver themselves but rather to provide tools that can assist the opti
mization problem [5]. 

Most of the proposed methods rely on developing ML models trained 
to generate complete or partial solutions to the UC problem, which are 
then used as starting points for the optimization problem. The result in 
all the proposed approaches is a substantial reduction of the computa
tion without significantly moving away from the optimal solution. For 
instance, a genetic-based ANN model is developed in [6] to compute a 
set of preliminary solutions that are subsequently optimized to obtain 
the optimal generation planning for a thermal power system. In [7], 
ANNs are used to predict the commitment of generating units. If the 
outcome is not considered certain enough, dynamic programming is 
employed to narrow down the outcome. Similarly, an ANN is developed 
in [8] to predict the discrete variables of the problem, e.g., the 
commitment of the thermal generators, and an optimization approach is 
applied to obtain the continuous ones, e.g., the production of generating 
units. 

Alternative proposals not based on ANN appear in [9] and [10], 
which develop a multi-target random forest and a k-nearest neighbors 
regression to obtain warm-start solutions for the UC problem. The latter 
study also proposes an alternative approach, where another k-nearest 
neighbor algorithm is developed to predict the transmission constraints 
that should be included in the optimization problem, leaving out the 
non-critical ones. A similar method is explored in [5], extending it to a 
broader variety of constraints. 

Besides the supervised learning approach, different models have 
been developed addressing the UC problem from other perspectives. On 
the one hand, unsupervised learning can be used to reduce the dimen
sion of the problem and thus save execution time. For instance, the 
model proposed in [11] addresses the UC problem under uncertainty by 
clustering the given scenarios and applying the UC optimization model 
to these clusters. The result is an intermediate solution between sto
chastic and scenario-based unit commitment, which can significantly 
reduce the size of the problem. In [12], the clustering of decision vari
ables, such as the commitment of multiple units, is performed without 
significantly increasing the total cost of the generation planning 
compared to the base formulation. On the other hand, there are multiple 
studies, such as those developed in [13,14,15,16], that address the 
resolution of the UC using reinforcement learning algorithms, widely 

used in the field of optimization. Besides reducing execution time, the 
main advantage of these approaches is that they can generate feasible 
and efficient solutions without the need for a precise UC model defini
tion and, in any case, without having to develop the precomputed sce
narios that are necessary for other approaches [16]. 

Interpretable machine learning (IML) is a field of study that focuses 
on developing accurate and transparent models in how they compute 
their outcomes. IML aims to create models that humans can easily un
derstand and interpret, allowing them to gain insights into how the 
model produced its predictions. 

Traditional machine learning models, such as neural networks, are 
often called black-box models because it is difficult to understand how 
they arrive at their predictions. In contrast, interpretable machine 
learning models such as decision trees and rule-based models are 
transparent in the way they make decisions, making them easier for 
humans to understand [17]. 

Interpretable machine learning has become increasingly important 
in recent years as machine learning algorithms have become more 
widespread in various industries. In many cases, it is not enough for a 
model to make accurate predictions; it is also essential to understand 
how those predictions were made. This is particularly true in healthcare 
and finance, where decisions based on machine learning algorithms can 
have significant consequences. 

Despite the abundance of existing studies related to the unit 
commitment problem and, in particular, to the application of ML for its 
resolution, they have yet to target the development of models that can be 
used to explain the solutions generated by UC models. The ML models 
that replace or assist the UC model and the optimization problem are 
conceived as black boxes whose only purpose is to obtain the optimal 
generation schedules, regardless of their underlying behavior. Conse
quently, applying interpretable machine learning to this subject con
stitutes a virtually unexplored horizon so far. 

Despite the large amount of research related to the UC problem and, 
mainly, the application of machine learning to its resolution, no works 
are dedicated to developing models that can be used to understand the 
solutions generated by UC models. The interpretation of such results still 
requires a deep knowledge of the specific system since the optimization 
algorithm does not transparently explain how it obtained the solution 
found. This paper fills this gap and develops a methodology based on 
interpretable machine learning that can estimate the values of the var
iables and dual variables of the optimal solutions of the UC problem in a 
human-understandable way. 

Nomenclature 

Sets: 
n hours from 1 to N 
t thermal unit running from 1 to T 
t1(t) thermal units with TUt = 1 
i transmission node from 1 to I 
l transmission lines from 1 to L 
s scenarios from 1 to S 

Parameters: 
Dni Power demand [M.W.] 
DUni,DDni Up and down reserve requirements [M.W.] 
Pt ,Pt Maximum and minimum thermal output [M.W.] 
SUt, SDt Maximum start-up and shutdown capacities 
CFt Fixed cost [$/h] 
CVt Variable cost [$/MWh] 
CSUt ,CSDt Start-up and shutdown cost [$] 
CPNS cost of not satisfying part of the demand [$/MWh] 
RUt ,RDt Up and down ramp limits [MW/h] 

TSUt ,TSDt Start-up and shutdown time [h] 
TUt ,TDt Minimum up and down times [h] 
NCt thermal unit connection to node [-] 
Fl Maximum transmission flow capacity [M.W.] 
NFl Connection ’from node’ in line l [-] 
NTl Connection ’to node’ in line l [-] 
IGsni Intermitent generation production (i.e., renewable 

resources) [M.W.] 

Variables: 
ucnt Commitment decision {0,1} 
ũcnt Commitment decision in the state transition (S.T.) 

formulation {0,1} 
sunt , sdnt Start-up and shutdown decisions {0,1} 
pT

nt Total thermal output [M.W.] 
pnt Power output above minimum output [M.W.] 
runt, rdnt Up and down reserve of thermal units [M.W.] 
fnl transmission line flow [M.W.] 
ensni energy non served [M.W.]  
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These insights are usually learned by experience and reflection of the 
humans that participate in the operation of the system, and can be 
expressed in the structure of ’which plants are needed under which 
conditions’. Some examples, which guide the proposed methodology, 
can be found below: 

The insights obtained through this process can be verbalized in 
natural language with the following questions:  

– What are the variables in system operation that show variation 
across scenarios and are therefore worth studying? (Question 0)  

– What are the most important features of a scenario, i.e. the ones that 
have the largest impact on the variables of interest? (Question 1)  

– What are the specific dynamics of the variables of interest with 
respect to the important scenario features? (Question 2)  

– What are the intrinsic links among variables in the problem? 
(Question 3) 

This experiential knowledge is realized in an approximate form that 
is simple enough to be helpful in making or justifying decisions. By 
applying interpretable machine learning techniques, our methodology 
allows for the explicit extraction and articulation of operational insights 
typically gained through prolonged experience. The model adeptly 
identifies active generators under varying conditions and determines 
trigger levels of net demand that might necessitate costlier generation 
resources. This extracted knowledge is versatile and can be leveraged in 
several ways. Firstly, it can accelerate decision-making processes, 
particularly in unexpected scenarios, thereby enhancing adaptability. 
Furthermore, it serves as an invaluable tool for strategic planning. By 
acting as a reliable proxy for system operation, the model can inform 
expansion planning, assist generators in making informed investment 
decisions, and guide Transmission System Operators (TSOs) in the 
strategic expansion of transmission infrastructure. An additional sig
nificant application of this model is in regulatory oversight. By revealing 
operational patterns, the model can help regulators detect and investi
gate potential market abuses. This aspect of the model adds a layer of 
security and trust to market operations. We have incorporated a detailed 
description of these applications into the manuscript to clearly articulate 
the multifaceted uses and advantages of our proposed methodology, 
emphasizing its role in enhancing both the efficiency and transparency 
of power system management. This increase in transparency means that 
there are no potentially harmful implications of our model; on the 
contrary, it supports the ethical principle of transparency. 

2. Formulation 

The nomenclature used for the formulation of the paper is included 
below. 

The UC model we used in this paper is the same as in the base case in 
paper [18], by the same authors of this article, which is based on the 
Tight and Compact formulation. The optimization problem involves 
determining the optimal dispatch of power generation to meet a given 
demand while also satisfying reserve requirements and considering the 
technical limitations of generators, all at the lowest possible operational 
cost. The objective function in equation (1) minimizes the variable costs 
associated with system production, including start-up and shutdown 
costs. The UC problem must satisfy the following constraints: balance 
between generation and demand (equation (2), which can also account 
for intermittent generation for a given scenario ’s’), as well as up and 
down secondary reserve requirements (equations (3) and (4) and the 
technical limitations of generators, such as minimum and maximum 
production limits, start-up and shutdown limits, ramping constraints, 
and minimum up and down times. 

min
∑

nt
CFtucnt +

∑

nt
CVtpT

nt +
∑

nt
CSUtsunt +

∑

nt
CSDtsdnt + +

∑

ni
CPNSensni

(1) 

s.t. 
∑

t|NCt=i

pT
nt +

∑

l|NTl=i

fnl −
∑

l|NFl=i

fnl + ensni + IGni = Dni ∀n, i (2)  

∑

t|NCt=i

runt ≥ DUni ∀n, i (3)  

∑

t|NCt=i

rdnt ≥ DDni ∀n, i (4) 

Equations (5)-(7) place restrictions on the maximum capacity of 
thermal units. It is important to note that (6) and (7) only apply to a 
specific subset of thermal units, namely those with a minimum up-time 
of 1 t1(t), which is defined as the thermal units with minimum up-time 
TUt = 1. For thermal units with TUt ≥ 2, , both constraints are replaced 
by a more concise equation using (5). Equation (8) ensures that pro
duction above the minimum minus the down reserve is always positive. 
The minimum thermal output plus the production above the minimum 
output constitutes the total thermal output as stated in (9). Finally, 
equation (10) outlines thermal units’ commitment, startup, and shut
down logic. 

pnt + runt ≤ ucnt

(
Pt − Pt

)
− sdn+1,t(Pt − SDt) − sunt(Pt − SUt) ∀n, t ∕∈ t1

(5)  

pnt + runt ≤ ucnt

(
Pt − Pt

)
−

sdn+1,t(Pt − SDt)suntmax(SDt − SUt ,0) ∀n, t ∈ t1
(6)  

pnt + runt ≤ ucnt

(
Pt − Pt

)

− sdn+1,tmax(SUt − SDt , 0)sunt(Pt − SUt) ∀n, t ∈ t1
(7)  

pnt − rdnt ≥ 0 ∀n, t (8)  

pT
nt = pnt +Ptucnt ∀n, t (9)  

ucnt − ucn− 1,t = sunt − sdnt ∀n, t (10) 

The ramping constraints ensure that the unit operates within its 
ramp-rate limits. An essential representation of these ramping con
straints appears in [4], such as (11) and (12). Moreover, imposing more 
stringent ramping constraints is possible by utilizing the binary variables 
from the UC problem. A more comprehensive and robust ramping 
constraint appears in [11]. Equations (13) and (14) establish these 
restrictions. 

pnt − pn− 1,t + runt ≤ RUt ∀n, t (11)  

pnt − pn− 1,t − rdnt ≥ − RDt ∀n, t (12)  

pnt − pn− 1,t + runt ≤ RUtucnt +
(

SUt − Pt − RUt

)
sunt ∀n, t (13)  

pnt − pn− 1,t − rdnt ≥ − RDtucn− 1,t −

(

SDt − Pt − RDt

)

sdnt ∀n, t

(14) 

The minimum number of periods that the unit must be online and 
offline is imposed in (15) and (16): 

∑n

nʹ=n+1− TUt

sunʹt ≤ ucnt ∀n, t (15)  

∑n

nʹ=n+1− TDt

sdnʹt ≤ 1 − ucnt ∀n, t (16) 

Finally, equation (15) defines the power flow limit in the electrical 
lines of the system: 
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|fnl| ≤ Fl ∀n, l (17)  

3. Case study description 

The power system analyzed in this paper consists of a modified IEEE 
118-bus test system, which includes multiple wind plants to account for 
the effect of intermittent generation. This case study has been widely 
used in UC studies, for example, [19,20,21]. The primary data source 
used to model the power system is [22]. This modified IEEE 118-bus 
system comprises 118 buses, 186 transmission lines, 54 thermal units, 
91 loads, and three wind units (base case). All detailed parameters, such 
as generator characteristics, transmission network, load distribution 
profile, system-wide power demand, and wind power scenarios, are 
available at [23]. A single-node analysis is also included. 

Scheduling is carried out for a 24-hour horizon divided into 24 h. A 
typical load profile has been defined for all scenarios within this time 
horizon, with an average and maximum level of 3991 MW and 5592 
MW, respectively. This aggregate system demand is distributed among 
the 91 power system loads according to the load factor assigned to each 
node. Furthermore, it is worth noting that the cost of not satisfying part 
of the demand (CPNS) has been set to 10000 €/MWh. 

A total of 365 wind generation scenarios have been considered, using 
the hourly wind capacity factors for different Spanish regions, based on 
MERRA-2. These scenarios simulate the present-day fleet of wind farms, 
the near-term and long-term future fleets, as described in [24]. The 
differentiation between the case study’s scenarios lies in the generation 
profile of wind units. 

Consequently, the base case, in which three wind units are spread 
over the system, presents an aggregated average and maximum pro
duction of 584 MW and 1522 MW, respectively. In addition to this base 
case, a high wind penetration case with another 365 scenarios and ten 
units has been elaborated to analyze the impact of wind penetration on 
model performance. This alternative case’s aggregated average and 
maximum production are 1713 MW and 4848 MW, respectively. Wind 
production distributions are shown in Fig. 1. 

4. Methodology 

Our methodology involves several steps that extend across data 
processing, feature engineering, model selection and training, and 
model evaluation. The first step is data preparation. The original data 
used to train ML models often requires preprocessing to ensure an 

appropriate format. This stage is critical as it can significantly impact the 
performance of the models. The next step is feature engineering, which 
involves selecting and transforming the relevant features from the pre
processed data. This stage is crucial, as it helps to reduce noise and 
improve model accuracy. The third step is model selection, which in
volves choosing an appropriate interpretable machine-learning algo
rithm for solving the unit commitment problem. We propose using 
model trees and node clustering for enhanced transparency and inter
pretability. The final step is model evaluation, which involves testing the 
performance of the selected model on a separate test dataset. This stage 
helps ensure that the model performs well on new data and can be 
applied in practical settings. 

4.1. Data preparation 

The data preparation stage involved included normalization and 
feature extraction. From all the information employed by the model, e. 
g., intermittent generation, demand, thermal generators’ characteristics, 
and network parameters, only the inputs that vary across time periods 
and scenarios will provide helpful information to the model. Intermit
tent generation (IGsni) and demand (Dni) both satisfy this requirement 
and, thus, will be selected as the basis for our dataset. This means that 
the model will not be provided with information about the parameters of 
the network topology and its generators, even though they have a 
decisive influence on the resulting solutions. This implies that the model 
will be network-dependent, and its validity will be restricted to the 
original parameters employed to solve the scenarios from which the ML 
model will be trained. 

We will then use these variables to compute the net demand at each 
of the nodes where there is a wind generation unit (NDi), which con
stitutes a more suitable set of features for the model since it represents 
the energy that needs to be fulfilled by thermal generators (18). The 
total net demand of the system (NDT) will also be included in the input 
features (19) since this is likely to become a significant variable of the 
model due to its relevance in the solution of the UC problem when no 
network constraints are active. Moreover, this feature will be employed 
to build the input matrix for the single-node UC problem, as the nodal 
decomposition of the net demand is irrelevant for this task. 

NDi
sn = Dni − IGsni ∀s, n, i ∈ ΩIG (18)  

NDT
sn =

∑

i
Dni −

∑

i
IGsni ∀s, n (19) 

Fig. 1. Aggregate wind generation comparison between the low (base) and the high wind penetration cases.  
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Each resulting feature presents a different range of values, particu
larly the net system demand. This variety of feature scaling can nega
tively impact the performance of several machine learning algorithms 
and should be normalized [25]. In this case, only the scaling of the input 
features has been carried out by dividing by the maximum absolute 
value of the attribute since we are interested in preserving the sign of the 
original variable: 

ndi
sn =

NDi
sn

max
s’,n’

(⃒
⃒
⃒NDi

s’,n’

⃒
⃒
⃒

) ∀s, n, i ∈ {T,ΩIG} (20) 

It should be noted that, although max-value scaling is arguably the 
simplest, and is highly intuitive for variables such as power flows and 
generations, it is problematic in the presence of outliers, which do not 
happen in our case study but would all for more sophisticated scaling 
(such as z-score). 

With these scaled features, we build a simple input matrix to train 
our machine-learning model. However, the temporal interdependence 
between periods is one of the main challenges of UC problems, especially 
given the ramps and trajectory constraints. This is, in fact, the most 
significant difficulty faced by surrogate models that need to predict each 
hour separately as if they were not related to each other. 

To mitigate this problem, information from adjacent hours can be 
provided to the model to capture intertemporal relationships. More 
precisely, we will include the variation of the net demand at the three 
previous and three following periods relative to the net demand at the 
period for which the output will be predicted (21). This will be carried 
out for both wind generation nodes (ΔNDi,j) and the whole system 
(ΔNDT,j). The selection of three adjacent hours (rather than four, or 
five), was chosen because of interpretability and ease of computation, 
and was supported by the good results obtained by the model. If poor 
results had been observed, this definition would have been revised to 
include a larger number of lags. 

The problem with shifting the net demand features is that there is no 
information to perform these calculations for the first and last periods of 
the scheduling horizon. This is not an issue for some specific machine 
learning algorithms such as decision trees and other tree-based ensem
bles. Still, most algorithms cannot handle missing data, e.g., linear 
regression and logistic regression. 

Consequently, depending on the model used to predict the desired 
outcomes, we will follow different imputing strategies: if the model can 
deal with missing data, we will assign a NaN value, representing that the 
true value is missing. Please note that this does not mean any fault in the 
data, just that, if we want to include a variable that describes net de
mand the hour before, there is just no value for the first hour because 
there is no previous hour. Otherwise, we will impute 0 –this is equiva
lent to assuming that the net demand is kept equal to the corresponding 
first or last period in the periods outside the optimization horizon, which 
is the best assumption we could make. 

if(n+ j ≥ 1)and(n+ j ≤ 24) :

ΔNDi,j
s,n = NDi

s,n+j − NDi
s,n ∀i ∈ {T,ΩIG}

else :

ΔNDi,j
s,n = IMP ∀i ∈ {T,ΩIG}

∀s, n, j ∈ { ± 1,±2,±3} (21) 

After constructing these new features, we have built an input matrix 
(XNC) where rows are identified by the corresponding scenario and time 
period, and columns correspond to all the net demand features that have 
been created. Only system-wide features will be needed for the single- 
node problem to build the input matrix (XSN). 

XNC = concat
i∈{T,ΩIG}

[ΔNDi,− 3,ΔNDi,− 2,ΔNDi,− 1,

NDi,ΔNDi,1,ΔNDi,2, ΔNDi,3]

XSN =[
ΔNDT,− 3,ΔNDT,− 2,ΔNDT,− 1,NDT ,ΔNDT,1,ΔNDT,2,ΔNDT,3] (22) 

As a result, XSN will be composed of 7 variables, whereas the number 
of input features obtained for the network-constrained UC problem 
(XNC) will range from 28 in the low wind penetration scenarios (3 wind 
generation nodes) to 77 in the high wind penetration scenarios (10 wind 
generation nodes). To avoid the loss of interpretability of the IML model 
that this large number of features could imply, an initial feature selec
tion was included as part of the model to restrict its dimensionality. The 
insights obtained through this process can be verbalized as an answer to 
the question “What are the variables in system operation that show 
variation across scenarios and are therefore worth studying?” (Question 
0). 

4.2. Feature selection 

As mentioned above, the number of input features will range from 28 
to 77, which can substantially hamper the interpretability of the model. 
The goal of this step will be to reduce this number to only 15 to improve 
interpretability, as it is often understood that human cognitive pro
cessing capacity cannot go much more beyond than 9 variables 
approximately. To select these variables, we will use the feature 
importance of a random forest model, which is usually able to achieve 
robust results without the need to optimize its hyperparameters. We will 
train the random forest on the set of outputs we want to predict, intro
ducing all the available input variables. The algorithm will infer re
lationships between these inputs and the outputs, assigning importance 
values to each feature. 

We will choose the 15 most relevant features using these values and 
discard the others. Since this process is carried out for each type of 
output to be predicted, the resulting feature importances will differ, and 
a different input matrix for each model will be obtained. 

4.3. Model selection and training 

Since the UC problem consists of continuous and binary variables, it 
will be necessary to develop two different classes of models, one for 
regression and another for classification tasks. Both classes will be based 
on multi-output decision trees, and we will use them to predict each 
group of variables of the same type together. This joint prediction has a 
significant advantage from the interpretability point of view since it 
facilitates the representation and understanding of the results and allows 
us to respect, to a greater extent, the relationships between output 
variables. 

As we want to guarantee the interpretability of the models, we will 
not carry out the optimization of the hyperparameters globally. The only 
parameter that we fix, for the sake of interpretability, is tree depth. The 
branching of the decision tree can be based on any variable (continuous 
or discrete) or combinations of variables. Tree depth defers to the 
maximum number of branchings that can happen sequentially. The 
deeper the tree (the more nodes and branches) the more accurate it can 
be, but the more difficult it is to interpret. The depth chosen for the 
models presented in this paper was 5 and 6 for the regression and 
classification models, respectively. We subsequently improve inter
pretability by clustering the terminal nodes, so that the resulting tree is 
as compact as possible. 

As for regression models, we will train single-variable linear re
gressions on each terminal node. This will allow the tree to capture the 
linear relationships in the resulting partitions of the feature space, 
something that a simple decision tree cannot achieve. It should be noted 
that the elicitation of these linear relationships allows to understand 
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how any increase in demand will be covered by the units already 
committed and with available capacity. This results in the tree giving all 
the potentially interesting information about the UC problem: what 
units are on or off, and how will increases or decreases in demand be 
covered by the units. 

In addition, the variable chosen for these regressions will not be 
unique, but each node will use the one that yields the best results. This 
method is similar to the one known as a model tree (Fig. 2). Still, its 
implementation has been simplified due to the high computational 
burden that its full implementation would entail. 

A common problem with decision tree classifiers is the duplication of 
nodes and branches. Therefore, we will perform clustering (using the K- 
modes algorithm) of the terminal nodes to reduce the number of unique 
parameters of the model, substantially facilitating its interpretation. The 
nodes will be identified with labels corresponding to each cluster, and 
the outputs will be represented in an attached table. The exact process 
will be applied to the output variables since, in many cases, there is a 
high correlation between them. 

5. Results 

The interpretable machine learning models presented in the previous 
section were trained using the training set (80 % of the scenarios) and 
subsequently applied to predict the results corresponding to the test set 
(the remaining 20 % of scenarios). In this section, the resulting outcomes 
for some representative variables are pT

nt (vProduct1),ucnt (vCommit), fnl 
(vCirPF), and the dual variable of the demand equation (the marginal 
price, eBalance). First, we will analyze and compare the feature im
portances obtained with the random forests for these variables. 

Second, we will evaluate the validation performance of the regres
sion model relative to its depth to select an appropriate balance between 
interpretability and accuracy. Then, the resulting model will be 
compared to other approaches with different levels of interpretability, 
allowing us to assess how good the predicted outcomes are for each 
variable. Additionally, the model’s performance will be compared with 
the one obtained for the single-node and low-wind penetration scenarios 
to analyze the impact of these variations compared to the base case. The 
trained model will be represented together with specific terminal nodes 
to understand the model tree’s behavior. 

Finally, a similar process will be followed for the classification 
model. We will select a reasonable depth for an interpretable decision 
tree based on the validation performance. We will then analyze the 
impact of clustering terminal nodes and generators and represent the 
resulting models. 

The insights obtained through this process can be verbalized in 
natural language with the following questions:  

– What are the variables in system operation that show variation 
across scenarios and are therefore worth studying? (Question 0) 
Humans participating in system operation will know, for instance, if 
a given generator is always on, or off, or whether it is subject to 
changes depending on the situation. The first step in the methodol
ogy, data preparation, addresses this question.  

– What are the most important features of a scenario, i.e. the ones that 
have the largest impact on the variables of interest? (Question 1). 
This is addressed in the feature selection step.  

– What are the specific dynamics of the variables of interest concerning 
the important scenario features? (Question 2) This description 
should be simple enough to be understood by a human but still ac
curate enough to give useful information. This is addressed in model 
development (regression for continuous and classification for binary 
variables).  

– What are the intrinsinc links among variables in the problem? 
(Question 3) That is, are there joint dynamics for variable pairs or 
groups of variables? The node clustering step addresses this. 

5.1. Feature selection 

This step aims at the question “What are the most important features 
of a scenario, i.e. the ones that have the largest impact on the variables of 
interest? (Question 1)”. As explained above, the number of input fea
tures for the network-constrained cases is too large to be handled by 
interpretable machine learning. Therefore, we have selected the 15 most 
relevant variables based on the feature importances extracted from 
random forests fitted on the training set. The following figure presents 
the most important variables for a following results will present the 20 
most significant features of the high wind penetration scenarios for each 
studied variable. 

Fig. 3 shows that there is essentially one primary variable in the 
model, which is the total net demand of the corresponding period (Total 
ND [h]). This is a reasonable result because when any constraint does 
not limit generators’ output, it will directly depend on the total net 
demand of the system. Following the total net demand, the main fea
tures correspond to the increase of total net demand in adjacent periods, 
which provides helpful information for the model to account for the load 
gradient constraints of generators. We can also appreciate how the 
random forest algorithm considers node-related features. These will 
usually be related to areas of the network where power line congestion is 
likely to happen, which would constrain the generation of units located 
in those areas. However, the low relative importance of these variables 
makes it difficult to draw precise conclusions. 

5.2. Regression models 

After selecting the main features to be used by the model tree for 
each output, we must choose the combination of hyperparameters that 
allow us to obtain an optimal balance between accuracy and interpret
ability. For this purpose, the validation performance of the model tree 
has been analyzed as a function of the depth of the tree on which the 
algorithm is based. The performance of each variable in the regression 
models is evaluated using the root-mean-square error (RMSE), as it is 
one of the most common metrics to quantify the estimation error in 
continuous variables (23). Consequently, since each model has multiple 
outputs –as many as there are variables of each type–the global per
formance of each model will be analyzed by computing the mean RMSE 
obtained for each output. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1(ŷi − yi)
2

N

√

(23) 

Applying this metric to the variables corresponding to vProduct1, we 
obtain the results presented in Fig. 4. In addition, the figure includes the Fig. 2. Linear regression model tree.  
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mean RMSE obtained both by using a single decision tree that simulta
neously predicts all outputs and a decision tree for each of the outputs 
(in this case, one tree for each of the generator’s power production). 

The model tree significantly reduces the error compared to the case 
of a single decision tree, between 5 and 20 %, depending on the depth. 
As the maximum depth of the tree increases, this difference is progres
sively reduced. One of the main reasons for this effect is that the tree 
itself begins to capture some of the linear relationships in the data. This 
is one of the main disadvantages of training linear regression a posteriori 
rather than considering it during model training. If that were the case, 
better results could probably be achieved. Additionally, as the depth of 

the tree increases, the number of samples at the terminal nodes de
creases, which reduces the information available for training the linear 
regressions, and their accuracy may be negatively affected. This effect 
can be solved simply by using a larger number of instances to train the 
model (if they are available or can be generated). 

An interesting fact to note from this graph is that the model tree can 
obtain better results than a decision tree with a higher depth. This is 
important because, as indicated in section 5.2, training linear re
gressions with one feature and an intercept at the terminal nodes could 
double the number of model parameters at these nodes, which also oc
curs when the maximum depth of the tree is increased by one level. 

Fig. 3. Feature importance regarding optimization outputs.  
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However, the interpretability of both models is not necessarily compa
rable. On the one hand, in the case of the model tree, it is not required to 
split the node, thus avoiding the addition of a new condition at each 
branch, and the linear regression at a terminal node provides more 
relevant information than just the mean value of the leaves into which 
the node would be split. On the other hand, not all variables at each 
terminal node will have a linear relationship with the feature selected at 
that node. In these cases, the model tree will maintain the mean value of 
the previous decision tree, thus having no negative impact on the 
interpretability of the model. Considering the above, it can be concluded 
that the model tree can achieve a better balance between interpretability 
and accuracy than the decision tree itself. 

In addition, the performance obtained by the model tree is compa
rable to that achieved by training a decision tree with the same 
maximum depth for each output. This difference is initially below 6 % 
and is reduced as the depth increases, as the model tree has greater 
flexibility to capture the variability of the output. The comparison 
shown allows us to conclude that it would not be practical to train a 
decision tree for each variable (one model for each of the 54 generators) 
since this would imply an excessive and unmanageable complexity 
compared to the use of a single model tree with a greater level of depth, 
capable of obtaining results comparable to the previous ones, but with 
much lower complexity. 

Finally, using the results shown in Fig. 4, the maximum depths of the 
model tree that would achieve the best balance between accuracy and 
interpretability would be either 5 or 6. Of these options, the second one 
obviously yields better results, but its representation and interpretation 
would be relatively complicated, so the depth selected for the final 
model tree will be 5. 

Table 1 shows the set of hyperparameters selected for each of the 

regression models studied in this section. In all cases, the best results are 
obtained by training a fully-grown tree. On the contrary, the minimum 
samples per leaf and cost-complexity hyperparameters present a higher 
variability, depending on the generalization capacity needed in each 
case. 

Using these hyperparameters, we can train the model with the full 
training set and estimate the test outcomes. To properly evaluate the 
suitability of the obtained results, it is not enough to simply compute the 
error made by the model. This should be put in context. To do so, we will 
compare these results with those obtained through alternative ap
proaches. First, we will calculate the maximum error that we should 
expect in each of the tasks. This error is obtained by using the mean 
value observed in the training set as the prediction for each variable. If a 
model cannot improve this value (the worst case), then the model is 
considered completely useless. Secondly, we will compare the results 
with other interpretable models, which will allow us to address, from 
another perspective, the balance between interpretability and perfor
mance. In this case, the comparison models will be a linear regression 
and a decision tree with the same depth as the model tree. Finally, we 
will compute the performance in the test set of a gradient-boosting de
cision tree (GBDT). GBDTs are not interpretable, but they are algorithms 
that usually achieve good results in a wide variety of tasks. Therefore, 
we will use it as a reference of what could be the minimum possible error 
for the given task. These results are summarized in Table 2. 

As for vProduct1, the model tree yields the best result among the 
interpretable models, with a mean RMSE below the decision tree’s and 
substantially lower than the linear regression’s. Analyzing the results 
from a general perspective, we can observe that it achieves an error 
relatively close to that of the GBDT and almost three times lower than 
that of the worst case. Although the difference in performance relative to 
the GBDT is still notable, it is important to remember that this is a much 
more complex and non-interpretable model, so the result obtained by 
the model tree can be considered reasonably good. Therefore, this 
approach achieves an optimal balance between interpretability and 
performance. The case of eMinOutput is practically analogous to the 
previous one. The main difference is that both the decision tree and the 
model tree obtain results closer to the GBDT than with vProduct1, 
making this model even more appropriate. 

However, the results obtained for vCirPF are less promising. Even 

Fig. 4. Model tree and decision tree RMSE are relative to its maximum depth for vProduct1 in the network-constrained high wind penetration.  

Table 1 
Selected hyperparameters for the regression models in the network-constrained 
high wind penetration UC problem.  

Hyperparameter vProduct1 vCirPF eMinOutput 

Max. depth 5 5 5 
Max. leaf nodes 32 32 32 
Min. samples per leaf 10 21 12 
Cost-complexity param. 6⋅10–7 2⋅10–7 3.5⋅10–7  
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though the mean RMSE of the model tree is below the worst cases, it is 
far from that of the GBDT. The linear regression obtains a better result 
for this set of outputs. This fact may seem surprising, but we should 
remember that the linear regression model is fitted with the whole set of 
input features, while the model tree chooses a single variable for each 
terminal node. This characteristic is a major limitation of this model 
since the flow through the power lines is a much more complex variable 
than those associated with generators. The model tree does not have 
enough flexibility to capture all the existing relationships in the data. In 
any case, although linear regression achieves better performance, the 
size of the problem (15 features with their corresponding parameters 
and intercept for each of the 186 outputs) substantially complicates the 
interpretability of the model, so it would not necessarily be optimal. In 
addition, we can compare the above results with those obtained in the 
alternative UC problems defined above. As shown in Table 3, the mean 
RMSE obtained when the impact of the network is neglected is lower 
than in the base case. This is reasonable since, by eliminating the grid, 
the limitations that these may have on the operation of the generators 
are eliminated, and it will be easier to estimate these values. Similarly, 
reducing the penetration of wind generation reduces one of the main 
sources of variability in the problem, which can also lead to limitations 
on the generators, both due to the load ramp and their influence on grid 
constraints. Therefore, it is reasonable that the results also improve in 
this alternative case. 

Subsequently, we will represent the model tree developed for vPro
duct1, selecting some representative generators to illustrate its inter
pretability. In line with what we observed in the feature selection stage, 
most of the partitions of the input space are based on the total net de
mand features since they have the most influence on the output of the 
generators. The variables associated with specific nodes appear at the 
bottom of the tree, where the tree has been able to segment more local 
relationships, which only take place in particular partitions of the input 
space. 

Noteworthy in this figure is that not all outputs have a linear 
dependence on the variable associated with each terminal node. 
Consequently, the resulting model is relatively sparse, which facilitates 
its interpretation since the previous value of the decision tree is 
maintained. 

Additionally, one can observe the expression ord(h) > i, with i ∈ {1,
2,3}, as a criterion for tree partitioning. This is not because the period 

number is included as an input variable but because the model identifies 
that information is missing for certain variables and decides to segment 
the training samples when this occurs. Therefore, this logic is equivalent 
to that shown in the figure, with the cutoff time being dependent on the 
variable taken by the model. 

5.3. Classification models 

In the same way that we have carried out the selection of hyper
parameters for the regression model, we must repeat the process for the 
classification model. In this case, the metric used will be accuracy, which 
measures the proportion of samples that have been correctly classified. 
Therefore, we will evaluate the performance of the models by calcu
lating the average accuracy of the set of output variables. Fig. 5 shows 
the average accuracy of a single decision tree for all variables versus that 
obtained by training one model per variable. For lower depths, the 
performance of the single decision tree is significantly worse than that of 
the multiple decision trees since the latter have much greater flexibility. 
However, this difference is drastically reduced as the maximum depth of 
the trees increases. Again, it can be concluded that a single decision tree 
is more effective in terms of interpretability and accuracy than the use of 
one tree for each variable. Still, in this case, the depth required to ach
ieve comparable results is approximately two levels higher than that of 
the multiple trees. 

Analyzing the previous graph, a maximum depth of 6 has been 
chosen for the decision tree classifiers. Although the representation of a 
tree of these dimensions can be complicated, the clustering of terminal 
nodes will allow compacting the result in an easier way to analyze. 

The resulting hyperparameters for the models studied are shown in 
Table 4. The values obtained are equivalent to those corresponding to 
the regression model, although taking into account that, in this case, the 
depth has been increased by one level. One element to note is that, in 
this case, the maximum depths do not correspond to those of fully-grown 
trees. Instead, a smaller maximum number of terminal nodes has been 
selected. 

Employing the hyperparameters shown in the previous table, we will 
train a decision tree for each output type. In this case, we do not intend 
to develop a model tree but to cluster both the terminal nodes and the 
output variables themselves. Fig. 6 illustrates the average accuracy of 
the model as a function of the number of unique terminal node output 
combinations. As can be seen, from 44 unique nodes onwards, the ac
curacy remains constant. This implies that there are 12 terminal nodes 
whose output combinations are precisely the same as those of other 
leaves in the tree. This kind of redundancy, more typical in classification 
tasks, does have an essential impact on the model and makes it difficult 
to understand. 

Additionally, the number of unique terminal nodes can be further 
reduced without significantly affecting the model’s performance since 
the outputs in some of them are virtually identical. For vCommit, the 
number of unique terminal nodes chosen will be 39. Interestingly, even 
though the depth of the tree is 6, the number of different nodes will be 
close to the 32 that a fully-grown decision tree of depth five would have, 
which has great benefits from an interpretation point of view. 

Similarly, Fig. 7 shows the average model accuracy as a function of 
the number of generator clusters. From the beginning, it can be observed 

Table 2 
Performance of the developed model tree compared to other approaches for the network-constrained high wind penetration UC problem.   

vProduct1 vCirPF eMinOutput 

Variable mean RMSE std RMSE mean RMSE std RMSE mean RMSE std RMSE 

Worst case  0.1353  0.1588  0.1269  0.0887  0.0910  0.0091 
Linear regression  0.0720  0.0798  0.0645  0.0518  0.0628  0.0033 
Decision tree (5)  0.0541  0.0659  0.0928  0.0686  0.0364  0.0021 
Model tree (5)  0.0496  0.0641  0.0732  0.0587  0.0327  0.0017 
GBDT  0.0401  0.0508  0.0510  0.0385  0.0295  0.0022  

Table 3 
Performance of the developed model tree in the proposed UC problem 
alternatives.   

vProduct1 vCirPF eMinOutput 

Variable mean 
RMSE 

std 
RMSE 

mean 
RMSE 

std 
RMSE 

mean 
RMSE 

std 
RMSE 

Single node 
HWP  

0.0423  0.0567 ─ ─  0.0295  0.0013 

Network- 
const. 
HWP  

0.0496  0.0641 0.0732 0.0587  0.0327  0.0017 

Network- 
const. 
LWP  

0.0409  0.0495 0.0536 0.0469  0.0308  0.0016  
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that approximately 30 of these generators show a commitment behavior 
identical to that of other generators in the system. Most of these are 
generators that remain off in all the scenarios considered. In addition, 
we can find another five generators whose operation is very similar, so 
aggregating them will not imply a relevant loss of accuracy. Conse
quently, the number of generator clusters used for this model will be 19. 

Considering both factors, we have reduced the dimension of the 
decision tree from 56 terminal nodes with 54 generators to only 39 
unique terminal nodes with 19 generator clusters. This represents a 
reduction in the number of unique parameters at the terminal nodes of 

more than 75 % compared to the original case, with virtually no change 
in model performance (the mean accuracy has been reduced by an 
amount well below 1 %). 

Using this methodology, we can evaluate the accuracy of the model 
using the test set. Additionally, we will compare these results with those 
obtained using alternative approaches (Table 5), as we did with the 
model tree. 

The minimum expected mean accuracy for each task will be obtained 
by calculating the accuracy we would obtain by predicting the mode of 
each of the output variables in the training set. 

As alternative interpretable models, we will include logistic regres
sion, and the decision tree equivalent to the one elaborated, but without 
performing the clustering processes. Therefore, the latter results can be 
expected to be just slightly above those obtained by the proposed model 
since the impact of clustering is very small. Finally, as explained above, 
we will use a GBDT as a reference for the accuracy that could be ach
ieved using a model without any limitation in terms of complexity. 

Firstly, we can observe that the variability of vCommit is relatively 
low since the minimum expected accuracy is above 90 %. The three 
interpretable models presented achieve very similar performance and 

Fig. 5. Decision tree accuracy relative to its maximum depth for vCommit in the network-constrained high wind penetration UC problem.  

Table 4 
Selected hyperparameters for the classification models in the network- 
constrained high wind penetration UC problem.  

Hyperparameter vCommit eMinOutput 

Max. depth 6 6 
Max. leaf nodes 56 60 
Min. samples per leaf 12 6 
Cost-complexity param. 5⋅10^-7 1.5⋅10^-6  

Fig. 6. Mean validation accuracy of the vCommit decision tree classifier relative to the number of unique terminal node output combinations.  
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are satisfactorily close to that obtained by the GBDT, which validates all 
the approaches. However, the interpretation of the logistic regressions is 
much less evident than that of the linear regressions and certainly less 
than that of the decision trees, so their presented performance would not 
justify their use. As for the two decision tree classifiers, it is clear that the 
former will achieve a slightly superior result. However, it can be seen 
that the difference between both models is practically negligible, so it 
can be concluded that the clustered decision tree presents the best bal
ance between interpretability and accuracy. 

Second, we analyze the results obtained for estimating eMinOutput 
in its binary form, indicating whether the associated constraint is active 
or not. In this case, the variability is much higher since the minimum 
accuracy is considerably low. Once again, the clustered decision tree 
greatly improves this result and stands out as the optimal interpretable 
algorithm among those presented here. However, even though the 
resulting accuracy is not excessively far from that obtained by the GBDT 
in relative terms, it is a remarkable difference in absolute terms. 

Comparing the results obtained for the different cases studied, the 
conclusions drawn are analogous to those of the regression model. Either 
by omitting the impact of the network or by reducing the penetration of 
wind generation, the operation of generators is less limited by external 
constraints, which facilitates the modeling of their production. In 
particular, Table 6 seems to indicate that the constraints due to 
renewable generation in the base case have a greater impact or are more 
complicated to model than those of the power grid since reducing this 
factor improves the resulting accuracy to a greater extent than elimi
nating the network. 

Finally, we will represent the clustered decision tree elaborated for 
the set of vCommit outputs. The mapping of the reference generators 
that are shown in the previous table allows identifying the rest of the 
generators in the same cluster is found in Table 7. Analyzing the 

representation of the decision tree in Fig. 8, it can also be seen that the 
system-wide input features are the ones that dominate the initial parti
tions of the input space, with the features related to specific nodes 
appearing at the bottom of the tree, where they play an essential role in 
identifying sets of scenarios that present similar behavior. 

Another relevant observation involves the duplicity of terminal 
nodes, generally (but not exclusively) found in nearby branches ac
cording to the tree representation. This is one of the usual problems of 
decision tree classifiers, as mentioned above. While in certain contexts, 

Fig. 7. Mean validation accuracy of the vCommit decision tree classifier relative to the number of generator clusters.  

Table 5 
Performance of the developed decision tree classifier compared to other ap
proaches for the network-constrained high wind penetration UC problem.   

vCommit eMinOutput 

Variable mean 
accuracy 

std 
accuracy 

mean 
accuracy 

std 
accuracy 

Worst case  0.9102  0.1249  0.6376  0.0963 
Logistic 

regression  
0.9662  0.0549  0.8927  0.0434 

Decision tree (6)  0.9677  0.0470  0.9219  0.0227 
Clustered D.T. 

(6)  
0.9673  0.0481  0.9207  0.0242 

GBDT  0.9768  0.0334  0.9466  0.0176  

Table 6 
Performance of the developed decision tree classifier in the proposed UC prob
lem alternatives.   

vCommit eMinOutput 
Variable mean 

accuracy 
std 
accuracy 

mean 
accuracy 

std 
accuracy 

Single node HWP  0.9704  0.0493  0.9331  0.0245 
Network-const. 

HWP  
0.9673  0.0481  0.9207  0.0242 

Network-const. 
LWP  

0.9749  0.0437  0.9615  0.0261  

Table 7 
Mapping of the existing generators with their corresponding cluster reference 
generator.  

Reference 
generator 

Clustered generators 

1 1, 2, 3, 8, 9 
4 4 
5 5, 27, 28 
6 6, 30 
7 7, 12, 13, 16, 17, 18, 19, 22, 23, 25, 26, 31, 32, 33, 38, 41, 42, 46, 

47, 48, 49, 50, 51, 52, 53, 54 
10 10 
11 11, 21, 39 
14 14 
15 15 
20 20 
24 24 
29 29 
34 34 
35 35 
36 43 
37 37 
40 40 
44 44 
45 45  
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decision lists can overcome this problem by obtaining more interpret
able results than a decision tree itself, this problem still has many unique 
nodes. For that purpose, a set of conditions would have to be defined to 
replicate the space’s corresponding partitions. This would result in an 
excessive number of complex conditions that would negatively impact 
the interpretability of the model. In this case, the exclusivity and 
exhaustivity of the decision three partitions are important advantages. 

Finally, Table 7 allows us to understand how the generators have 
been grouped in each cluster. The most remarkable group is the one 
identified with generator 7, which gathers the set of generators that are 
not committed in any or practically none of the periods with which the 
model has been trained. Similarly, generator 5 represents the generators 
that will always be committed according to the decision tree classifier. 
The rest of the clusters correspond to either single generators or groups 
of generators that, due to their characteristics, present a very high cor
relation in their mode of operation. The clustering step addresses 
Question 3, “What are the intrinsic links among variables in the 
problem?”. 

6. Conclusions and discussion 

In this paper, interpretable machine learning models have been 
shown to explain in a human-understandable way how the unit 
commitment problem applied to a specific system generates the optimal 
solutions and independently predicts the decision variables and dual 
variables of the problem. An example expression of the insights about 
the UC solutions that can be obtained through the proposed methodol
ogy can be seen in the proposed questions:  

– What are the variables in system operation that show variation 
across scenarios and are therefore worth studying? (Question 0) 
Humans participating in system operation will know, for instance, if 
a given generator is always on or off or whether it is subject to 
changes depending on the situation. This question is addressed by 
the first step in the methodology, data preparation.  

– What are the most important features of a scenario, i.e., the ones that 
have the largest impact on the variables of interest? (Question 1). 
This is addressed in the feature selection step.  

– What are the specific dynamics of the variables of interest with 
respect to the important scenario features? (Question 2) This 
description should be simple enough to be understood by a human 
but still accurate enough to be able to give useful information. This is 
addressed in model development (regression for continuous and 
classification for binary variables).  

– What are the intrinsic links among variables in the problem? 
(Question 3) That is, are there joint dynamics for variable pairs or 
groups of variables? This is addressed by the node clustering step. 

Two models, a regression and a classification model, have been 
developed to estimate the continuous and binary variables of the UC, 
respectively. Both are based on multi-output decision trees since they 
offer the best balance between performance and interpretability among 
all intrinsically interpretable algorithms. On the one hand, the UC 
problem is complex and highly nonlinear, so decision trees have some 
advantage over other linear models in addressing the task. On the other 

hand, the possibility of jointly predicting variables of the same type 
makes interpreting the resulting model significantly easier than with any 
other approach. Training a single algorithm for each output would not 
be manageable; therefore, neither would they be properly interpretable. 
In addition, much of the interaction between the output variables would 
be lost. 

The UC problem presents numerous full- or stepwise linear re
lationships, which cannot be modeled by a decision tree, given that in a 
tree, nodes relate to specific values for the variables. A linear regression 
tree can capture the linear relationships that apply in a particular 
context of the variables. This approach enables capturing a large amount 
of information that would escape a standard decision tree without 
compromising its interpretability. 

Conversely, the problem faced by decision tree classifiers is related to 
the redundancy of sub-trees and terminal nodes, which repeat infor
mation unnecessarily. This hinders the interpretability of the model 
since it implies repeatedly representing the same parameters multiple 
times. Therefore, in this paper, we propose clustering these nodes, which 
will be compactly represented in an attached look-up table. In this way, 
nodes presenting an identical combination of outputs can be immedi
ately identified. Furthermore, a significant redundancy has also been 
detected in the output variables themselves. Therefore, they have also 
been grouped by generator clusters, further reducing the number of 
parameters needed to describe the classification model. 

The results obtained by applying both approaches to the UC problem 
studied in this work show that, in general, they achieve an optimal 
balance between performance and interpretability, usually out
performing the rest of the intrinsically interpretable algorithms in both 
aspects. In fact, the mean RMSE or accuracy of these models is relatively 
close to those obtained using black-box machine learning models, as is 
the case of GBDTs. 

We should highlight that the models not only depend on the topology 
of the system with which the optimal solutions to the problem have been 
obtained but also, very importantly, on the scenarios that have been 
elaborated to obtain these solutions. These models, by default, try to 
extract the most general and valuable relationships they find in the data. 
Therefore, they will tend to learn the behavior of the UC model primarily 
in the most common sets of scenarios while potentially disregarding 
extreme or rare cases, which may not be found relevant either because of 
their low frequency or the error incurred when they are omitted. 

If we want to understand the performance of the UC in both common 
and rare situations, the solution is to balance the training set so that the 
model perceives all of them as equally frequent. However, this solution 
would not be the most appropriate since we would be forcing the model 
to replicate specific relationships that, according to the dataset, are a 
minority without providing more helpful information for the model to 
carry out such a task. Therefore, the algorithm will try to learn these 
relationships, even if they are not actually general enough. Analyzing 
the results in such a context would be meaningless since, if we also 
balance the test set itself, we are modifying the variability of the test set 
in our favor. If, on the other hand, we evaluate the model with the 
original distribution, the results will necessarily be worse since we have 
focused the model on learning certain relationships, which are not the 
most general ones. While interpretability is paramount, even above the 
algorithm’s own accuracy, it should not be ignored entirely. Suppose the 

Fig. 8. Classification tree that explains the commitment variable.  
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model cannot replicate the data it intends to explain. In that case, it 
cannot be guaranteed to provide a reliable explanation of how the re
sults were obtained [26]. Consequently, in order to carry out analyses of 
this type, it would be more appropriate to develop a set of scenarios that 
appropriately reflect the behaviors we seek to explain through the 
application of an IML model so that the model can suitably discern those 
cases. 

Finally, it is essential to mention that even though the presented 
models shed light on the functioning of the UC problem and explain how 
it obtains the optimal solutions, the obtained results do not let us 
consider them surrogate models entirely equivalent to the optimization 
problem itself. Not even the models based on GBDTs, which have been 
employed as a reference in this paper, would be sufficiently accurate to 
consider such a possibility. 

This conclusion is the same as that of numerous studies [5]. There
fore, the developed interpretable models should be understood as sub
stitutes and complements to the UC problem. Our method complements 
the solution of the UC via optimization because it is able to present, in 
terms that are easily understood, how system conditions determine the 
generating units that need to be committed, and how any increments in 
load will be served using these units. The tree can be evaluated much 
quicker than solving the UC, which can be useful when integrating the 
UC solution in a higher-level planning solution. It should be stressed that 
this substitution can only be possible after the UC has been solved via 
optimization for each scenario considered, as the tree is built based on 
the solutions from optimization. 

These trees are extremely useful tools to understand, in a general 
way, the operation of the optimization problem, to estimate which 
constraints will be active in the optimal solution of a scenario and for 
what reasons, or to predict approximate solutions, which can also be 
used as a starting point for the optimization itself. 

One of the main challenges of intrinsically interpretable models, 
especially when dealing with such complex tasks as unit commitment, is 
achieving results that compete with other highly accurate but completely 
opaque models. 

As indicated, interpretability has value, meaning it is unnecessary to 
aim for identical results. However, any effort to improve its accuracy 
will validate it as a reliable explanation of the underlying UC model. 

Alternative models, clustering methods, or feature selection tech
niques could improve our future results. More developed visualization 
techniques could be useful in making insights more apparent and could 
be explored in further research. However, this paper has already shown 
that interpretable machine learning can be a useful tool to automatically 
extract insights about system operation that were previously only 
available through human experience. 
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