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Abstract: A smart city (SC) includes different systems that are highly interconnected. Transportation
and energy systems are two of the most important ones that must be operated and planned in a
coordinated framework. In this paper, with the complete implementation of the SC, the performance
of each of the network elements has been fully analyzed; hence, a nonlinear model has been presented
to solve the operation and planning of the SC model. In the literature, water treatment issues, as
well as energy hubs, subway systems (SWSs), and transportation systems have been investigated
independently and separately. A new method of subway and electric vehicle (EV) interaction has
resulted from stored energy obtained from subway braking and EV parking. Hence, considering
an SC that simultaneously includes renewable energy, transportation systems such as the subway
and EVs, as well as the energy required for water purification and energy hubs, is a new and
unsolved challenge. In order to solve the problem, in this paper, by presenting a new system of the
SC, the necessary planning to minimize the cost of the system is presented. This model includes
an SWS along with plug-in EVs (PEVs) and different distributed energy resources (DERs) such as
Photovoltaics (PVs), Heat Pumps (HPs), and stationary batteries. An improved grey wolf optimizer
has been utilized to solve the nonlinear optimization problem. Moreover, four scenarios have been
evaluated to assess the impact of the interconnection between SWSs and PEVs and the presence of
DER technologies in the system. Finally, results were obtained and analyzed to determine the benefits
of the proposed model and the solution algorithm.

Keywords: grey wolf optimization algorithm; optimal planning and operation; regenerative braking
energy; smart city

1. Introduction

Urban areas have been dealing with various challenges. These challenges include
sustainable development, enhancing services provided to citizens, reducing carbon genera-
tion, decreasing emissions of pollutants, and improving the utilization of resources. These
challenges have drawn attention to more efficient energy management (EM) within urban
areas. A smart city (SC) is a concept developed to achieve a more energy-efficient urban
area [1]. A comprehensive scheme of an SC considers the entire energy systems presented
in the model. This includes transportation systems such as plug-in electric vehicles (PEVs)
and subway systems (SWSs), and distributed energy systems such as Photovoltaics (PVs),
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Heat Pumps (HPs), and batteries. Considering the interconnection and cooperative oper-
ation of various energy systems within the SC model causes the model to become more
energy-efficient and flexible in supplying the total demands of the system.

Creating sustainable and better-functioning transportation systems is among the
main goals of smart cities [2]. High air pollution and traffic congestion are the main
challenges facing urban transportation systems [3]. Hence, a more efficient, secure, and
eco-friendly transport system is highly valued for the design of present and future cities.
Transportation systems are among the major consumers of energy, and smart management
of them is of great importance in lowering the energy consumption of the SC model. The
interconnections between all different parts, including the transportation systems and
distributed energy systems, must be modeled to obtain a more comprehensive and efficient
SC model.

PEVs and subways (SWs) are among the most utilized parts of the transportation
systems in cities. PEVs constitute 5% of the loads in an electric grid [3,4]. Therefore, they
need to be managed efficiently in order to obtain a sustainable SC model. PEVs can also be
used as a distributed resource for the grid when they are parked in a parking lot and are
being discharged. A handful of researchers have focused on the optimal management of
PEVs and the challenges they add to the model. In [5], an optimized bidirectional vehicle-to-
grid (V2G) system operation is presented that carries out the day-ahead scheduling of PEVs’
charging/discharging. An adaptive control method to manage PEV charging/discharging
for load leveling and peak shaving is presented in [6]. Ref [7] presents a novel EM scheme
for optimal integration of PEVs into a distribution system that involves two layers for
active and reactive power management. The SWS is the other major component of the
transportation system. Consequently, many researchers have studied SWSs and assessed
their impact on different parts of the entire system, and different studies are considered as
approaches to improve the efficiency of urban SWSs. Regenerative braking energy (RBE) is
considered to be a solution for the efficient EM of SWSs. In [8], a timetable optimization
method was proposed to utilize the braking energy (BE). This method is based on adjusting
the departure and arrival time of trains to use the BE of the arriving train directly from the
train that is leaving. Another method utilizes energy storage systems (ESSs) to reserve the
BE for later consumption. A novel method combining timetable optimization and onboard
ESS utilization was proposed in [9]. Wayside placement of an ESS is an alternative way
of implementing an ESS in urban SWSs. In [10], a wayside ESS and its different ways of
connecting to the system, including connection via the bidirectional converters and direct
connection, are studied. Another method employs reversible substations to feed the RBE
back to the upstream AC grid [11].

Different types of distributed energy resources (DERs) are incorporated into the SC
model to benefit from their advantages toward a more efficient SC. Stationary batteries
can be utilized for EM by storing electricity at off-peak hours and decreasing purchased
power from the grid. Air pollutants and greenhouse gasses are among the most noticeable
challenges of modern society. PVs are extensively utilized in residential, commercial, and
industrial sectors to convert light energy into electricity and reduce air pollutants [12].
Finally, electrification of heating by utilizing HPs along with renewable power generation
is recognized as an important factor in reducing carbon dioxide in the process of supplying
heat [13]. Considering these factors leads to the motivation of incorporating DERs into the
SC model.

As stated above, the interconnection between PEVs, metro systems, and DERs in
the SC must be considered to attain a more realistic and efficient EM in the SC model.
The following papers are some examples of the research conducted in this regard. A
programming model is used to investigate the synergy between DERs and transportation
systems in the context of an SC [14]. However, the proposed model is a simple linear model
and the investigated scenarios are limited. In addition, the destruction cost of the batteries
is not investigated in the total cost of the scheme. Similarly, in [15], a linear layout for
co-optimization operation and planning of PEVs, SWSs, and different types of DERs was
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presented based on V2G and vehicle-to-SW (V2S) concepts, considering the uncertainties
of DERs and PEVs. The authors of [16] proposed an optimization problem to minimize
the entire cost of the energy and apply RBE to achieve optimum operation in SCs. The
proposed model is linear and the uncertain behavior of transportation systems and loads is
depicted. A management framework utilizing V2G and V2S is proposed in [17] to attain the
maximum performance of the transportation systems. Additionally, blockchain technology
has been employed to enhance the security of exchanged information in the SC.

In [18], the authors propose the multi-swarm differential evolutionary particle swarm
optimization algorithm to optimize a mixed-integer nonlinear programming problem for
energy management in an SC. However, the interconnection between different parts of the
SC model is not covered thoroughly.

In previous studies, the nonlinear effects of the network model, the consideration
of depth of discharge (DoD) for a more realistic battery model, as well as the effects of
the subway, electric vehicle (EV), and DER have not been investigated simultaneously,
and issues such as the effect of EVs entering the network have only been investigated
separately. Therefore, in this paper, for the first time, to show the network model more
realistically, nonlinear effects have been considered in the system model, and also to be
closer to the real battery model, the DOD of the battery has been considered. In addition,
in the proposed SC model, EVs and subways, as well as different types of DER, have been
discussed simultaneously. Also, in this article, real models of PV, HP, and EV have been
used to obtain a real model of an SC.

Two main methods exist for solving optimization problems similar to the problem
in this research. The first one is using exact algorithms that can provide an exact global
optimum. However, the execution time of the exact algorithms is raised exponentially in
proportion to the number of variables [19]. In contrast, approximate optimization algo-
rithms can find optimal/near-optimal solutions in a reasonable amount of time [20]. The
grey wolf optimization algorithm (GWOA) is a nature-inspired optimization algorithm.
GWOA has been widely used due to its simplicity, fewer control variables, and easy imple-
mentation [20]. However, GWOA has some deficiencies that researchers have attempted to
overcome in the i-GWOA provided in [20]. Further explanations are provided in Section 3
of this paper.

The objective of this paper is the optimal planning and operation of the SC model
considering synergies between SWSs and PEVs in the presence of different DER technolo-
gies. Multiple scenarios are considered to assess the proposed layout. Additionally, the
destruction cost of the batteries is calculated and added to the total cost. This adds some
nonlinear terms to the problem, and, as a result, an intelligent algorithm must be utilized
to solve the problem. To solve this optimization problem, the i-GWOA was utilized and
was observed to be fully capable of solving the optimization problem in this study.

The main contributions of this study are presented as follows:

• A comprehensive SC layout considering PEVs, metro system, DER technologies, and
the interconnection between them is presented.

• The total cost of the SC model is improved by utilizing the i-GWOA that is illustrated
through different case studies and scenarios.

• Various DER technologies, such as PV, HP, and batteries are incorporated into the
model and their impact is analyzed.

• The destruction cost of batteries is considered along with losses regarding PVs and
HPs to achieve a more realistic and comprehensive model.

• Different kinds of algorithms such as GA, PSO, DE, BBO-DE, and GWOA are compared
to find the best and fastest way to solve the SC problem.

The remainder of the paper is organized as follows. Section 2 describes the mathe-
matical formulation of the problem. Section 3 presents the solution of the i-GWOA. The
proposed SC model and case study descriptions are provided in Section 4. The simulation
outcomes and discussion are presented in Section 5. Finally, the conclusions and future
horizons of the work are presented in Section 6.
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2. Problem Formulation
2.1. Planning

Here, a detailed description of the mathematical formulation of the linear optimization
problem is presented. The objective function (OF) of the problem has been proposed in
Equation (1):

min
(

costE
h + costP

h + costEth + costPth + costPV
inv&om + costHP

inv&om + costBat
inv + costDR

eq + costE
sub + costP

sub + costEV
)

(1)

Equations (2)–(14) are used to define the different terms in Equation (1). In Equations
(2) and (3), the costs of power and electric energy for the housing area are presented,
respectively.

costE
h = ∑

y
(ECostinc

y ∗ ∑
m.h

(Daym ∗ (EBuyres
m.h ∗ PBuyGrid

m,h − ESellm,h ∗ PSellGrid
m,h ))) (2)

costP
h = ∑

y

(
ECostinc

y ∗ TariffE ∗ PEContract
)

(3)

The cost of electric energy is calculated using the base residential price of electricity,
the base selling price of electricity, and the annual growth in the base purchase price of
electricity. The power cost presented in Equation (3) is calculated using the annual tariff for
residential power and the annual growth in the purchase price of electricity multiplied by
the annual contracted power.

Equations (4) and (5) denote the thermal energy and thermal power costs of the area.
TCostinc

y represents the annual growth of the purchase price of thermal energy, and TariffT

represents the annual tariff for residential thermal power:

costETh = ∑
y
(TCostinc

y ∗ ∑
q,m

(Daym ∗ PThBuy
q,m )) (4)

costPth= 4 ∗ nspan ∗ nhouse ∗ TariffT (5)

Equation (6) corresponds to the investment, operation, and maintenance costs of the
PV. Equation (7) represents the investment, operation, and maintenance costs of HP. In
Equation (8), the battery investment costs in the proposed method are represented, and
Equation (9) presents the cost related to the equipment that is needed for each customer to
perform load shifting.

costPV
inv&OM = ∑

q

(
CostPV

ins ∗ CapPV
q

)
+

(
OMPV

annual ∗ CapPV
q ∗ nspan

)
(6)

costHP
inv&OM = ∑

q

(
CostHP

ins ∗ CapHP
q

)
+

(
OMHP

annual ∗ CapHP
q ∗ nspan

)
(7)

costBat
inv = ∑

q

(
costBat

ins ∗ CapBat
q

)
(8)

costDR
eq = 4 ∗ nhouse ∗ costls

eq (9)

The demand response is considered as the ability to shift loads in a residential area
and has been set to a maximum of 13% of the total load in a typical house. Additionally,
it has been supposed that the residential region does not have any type of DER installed
beforehand [21].

In Equation (10), the upfront cost of the PEV batteries at the beginning of the 20-year
study period was calculated. CostBat

ins represents the upfront cost of the stationary batteries.
Finally, the equations that formulate the cost of SW power and SW energy are presented in
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Equations (11) and (12). Tariffsub represents the annual tariff for SW power during different
usage profiles. Dsub

m,h represents the SW consumption curve after changing the profile:

costEV
inv = (costBat

ins ∗ nEV ∗ CEV) (10)

costP
sub = ∑

y
ECostinc

y ∗ (
(

Tariffpeak
sub ∗ Ppeak

sub

)
+

(
Tariffmid

sub ∗ Pmid
sub

)
+

(
Tariffoff

sub ∗ Poff
sub

)
) (11)

costE
sub = ∑

y
(ECostinc

y ∗ ∑
m,h

(Daym ∗ EBuyres
m,h ∗ Dsub

m,h)) (12)

It is considered that all investments were made at the beginning of the study period
(20 years). The stationary batteries of the clients are assumed to be replaced every eight
years [22]. PEV batteries are also supposed to be replaced every five to eight years because
of the additional destruction caused by coupling usage with the SW [23].

Equation (13) is the electrical energy balance equation that ensures the balance between
all the electrical energy that enters and all the electrical energy that exits each node of the
system. Dnew

q,m,h is the consumption curve after changing the profile, and ηEV
D /ηEV

C are the
discharge/charge efficiencies of the PEV batteries. In Equation (14), all the energy that is
entering is separated from all the energy that is leaving to address the sold and bought
energy more efficiently. In Equation (15), the thermal energy is balanced, similar to the
electrical energy using the total thermal demand (DNew

q,m,h), energy saving owing to efficiency

measures (ηenergy), and the total loss of the HP system (lossHP). Several loss sources exist
in HPs, including throttling losses, superheating, pressure drop, compressor efficiency,
temperature driving forces, and mismatch amongst process and HP fluids [24,25]. Here,
the HP loss is assumed to be equal to 15 percent of the total power, as presented in Table 1.
In addition, CHP represents the coefficient of performance related to the HP system.

EGrid
m,h = ∑

q

(
Dnew

q,m,h − PPV
q,m,h −

(
PBatDis

q,m,h ∗ ηEV
D

)
+

(
PBatCh

q,m,h /ηEV
C

)
+ PinHP

q,m,h

)
+ ∑

y

((
PEV,ch

v,m,h /ηEV
C

)
−

(
PEV,dch

v,m,h /ηEV
D

))
(13)

EGrid
m,h = PBuyGrid

m,h − PSellGrid
m,h (14)

PThBuy
m = ∑

q
(
(

DTh
q,m ∗

(
1 − ηenergy

)
∗ 0.8

)
− ∑

h

(
PinHP

q,m,h ∗
(

1 − lossHP
)
∗ CHP

)
) (15)

Table 1. Second scenario of the fleet characteristics.

Fleet
Number

Number of
PEV

Access Time (h) in Capacity (KWh) Charge/Discharge Rate (KWh)

Grid Parking Subway Parking Min Max Min Max

1 68 1–7, 16–24 6–18 263 1973 7.3 496
2 40 1–7, 16–24 6–18 219 1644 7.3 292

The mathematical model for PEVs is formulated in Equations (16)–(22). Equation (16)
ensures that the initial SOC of the PEVs in the first hour of each month is equal to that in
the last hour of the previous month. Furthermore, it is shown in Equation (17) that the
initial and final SOCs of PEVs are assumed to be the same for each month. As shown in
Equation (18), the SOC of PEVs is restricted based on the minimum SOC required for EVs
to arrive at the parking lot and different types of PEV users.

SOCEV
v,m,h=0 = SOCEV

v,m−1,h=24 for 2 ≤ m ≤ 12 (16)

SOCinitialEV
v,m = SOCfinalEV

v,m for 2 ≤ m ≤ 11 (17)
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SOCminEV
v,h ∗ nEV ≤ SOCEV

v,m,h ≤ CapMaxEV
v,h ∗ nEV (18)

The SOC is calculated using Equation (19) using the SOC for the previous hour, the
amount of electricity charged/discharged into/from the PEV battery, and the amount of
electricity traded (charged/discharged) with the SWS. Equation (20) is used to ensure that
the amount of electricity discharged from the PEV is less than its SOC in the previous hour.
The binary variables UEV

v,m,h in Equation (21) indicate the presence of PEVs at the charging
station. If UEV

v,m,h equals 1, the PEV is plugged into and exchanges power with the grid and
is being charged or discharged. Conversely, if UEV

v,m,h equals zero, the PEV is not plugged in
and does not exchange power with the grid. Finally, Equations (22) and (23) indicate the
limits for the discharge and charge of the PEV batteries.

SOCEV
v,m,h = SOCEV

v,m−1 −
(

PEVdis
v,m,h ∗ ηEV

D

)
+

(
PEVch

v,m,h ∗ ηEV
C

)
+

(
SOCarrive

v,h ∗ ηEV

)
−

(
PSub,dis

v,m,h ∗ ηsub
D

)
+

(
PSub,ch

v,m,h ∗ ηSub
C

)
(19)

PEVdis
v,m,h ≤ SOCEV

v,m,h−1 (20)

UEVdis
v,m,h + UEVch

v,m,h = UEV
v,m,h (21)

UEVdis
v,m,h PEVdis

v,m,h ≤ PEVdis
v,m,h ≤ PEVdis

v,m,h UEVdis
v,m,h (22)

UEVch
v,m,hPEVch

v,m,h ≤ PEVch
v,m,h ≤ PEVch

v,m,hUEVch
v,m,h (23)

The SWS is modeled using Equations (24)–(30). Equation (24) indicates that the
amount of energy charged into the PEV batteries is limited to the SW regenerative BE. In
Equation (25), the power discharged from the SWS is guaranteed to be lower than the SOC
of the SW battery in the previous hour. The new SW consumption curve is calculated by
Equation (26). Equation (27) ensures that the contracted power for the SWS is higher than
the new consumption curve for all tariff intervals (off-peak, peak, and mid-peak). The
binary variable USub

v,m,h in Equation (28) indicates the connection of the PEVs with the SWS.
If USub

v,m,h equals 1, the PEV is connected to the SWS, exchanges power with the SW, and is
charged or discharged. Conversely, if UEV

v,m,h equals zero, the PEV is not connected to the
SWS and does not exchange power with the SW. The limits for the discharge and charge of
the SWS are presented in Equations (29) and (30), respectively.

∑
v

PSubch
v,m,h ≤ RBSub

h (24)

PSubdis
v,m,h ≤ SOCSub

v,m,h−1 (25)

DSubnew
m,h = RBSub

h − ∑
v

PSubdis
v,m,h (26)

Poff
Sub ≥ DSubnew

off
Pmid

Sub ≥ DSubnew
mid

Ppeak
Sub ≥ DSubnew

peak

(27)

USubdis
v,m,h + USubch

v,m,h = USub
v,m,h (28)

USubdis
v,m,h PSubdis

v,m,h ≤ PSubdis
v,m,h ≤ PSubdis

v,m,h USubdis
v,m,h (29)

USubch
v,m,h PSubch

v,m,h ≤ PSubch
v,m,h ≤ PSubch

v,m,h USubch
v,m,h (30)

Equation (31) indicates that the power drained by the HP is limited by its installed
capacity. The HP operation is modeled by Equation (32), where its output should follow a
specified thermal demand.

PinHP
q,m,h ≤ CapHP

q (31)
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∑
h

PinHP
q,m,h ∗

(
1 − lossHP

)
∗ CHP ≥ (1 − ηen) ∗ DTh

q,m ∗ 0.8 ∗ DnTh
h (32)

PVs are widely used in smart cities to decrease CO2 pollution by producing clean
electricity:

PPV
q,m,h = CapPV

q ∗
Ωm,h

ΩTC
∗ (1+KT(Tc − Ta)) ∗ (1 − lossPV) (33)

The power produced by the PV is modeled in Equation (33). Ωm,h is the global hori-
zontal irradiation at the current location (W/m2). ΩTC is the global horizontal irradiation
at the test condition. Tc is the temperature of the PV cell. Ta is the temperature of the
atmosphere [12]. The PV loss can be caused by various environmental and operational
factors. These factors include dust allocation, soiling effect, and humidity [26]. Here, for
the sake of simplicity, the PV loss is assumed to be equal to 24 percent, as stated in Table 2.

Table 2. DER costs and expected energy losses.

Technology Installation Cost OM Cost Losses (%)

PV 2.15 (EUR/W) 30.93 (EUR/KW) 24 (electric)
HP (CHP = 2.5) 2.94 (EUR/W) 100.1 (EUR/KW) 15 (thermal)

Battery 0.36 (EUR/W) - 10 (electric)

2.2. Operation

PEVs can charge or discharge by connecting to the grid and SWS when arriving at
a parking lot daily. The PEV cost must be added to the OF to optimize the operation of
the PEVs.

The PEV cost includes two terms when the daily operation of the PEVs is considered,
as shown in Equation (34). The first expression defines the cost of PEV power, which is
according to the number of PEVs and the amount of power being charged or discharged.
Equation (35) presents the formulation for the PEV operational cost. The subsequent
expression defines the destruction cost of PEV batteries.

CostEV
op = CostEV

pow + CostEV
deg (34)

CostEV
pow = ∑

h,nEV

Ch ∗ PEV
h (35)

The destruction cost of the battery is a consequence of the charging/discharging cycles
of the battery. According to [27], the number of cycles for which a battery can be charged
and discharged depends on the DoD through the Wöhler curve. An example of a Wöhler
curve for a typical battery is shown in Figure 1. It has been seen that the number of cycles
in the battery lifespan increases as DoD increases. Equation (36) presents the mathematical
formulation of the Wöhler curve. a and b express constants related to the kind of battery
and ncycle(DoD) is the number of possible cycles based on the amount of DoD [27]. For a
Li-ion battery manufactured by Saft company, the parameters a = 1331 and b = −1.825 are
obtained [28].

The destruction cost for discharging a battery from a fully charged status—that is, a
DoD equal to zero—to a specific level—that is, a DoD equal to DoDspec—is calculated in
Equation (37). EEVBat is the battery’s usable energy in kWh.

ncycle(DoD)= a.DoDb (36)

Costdeg(0, DoDspec) =
CostEVBat

inv ∗ DoDspec ∗ EEVBat

ncycle
(
DoDspec

) (37)
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The destruction cost of a discharge cycle from DoDinitial to DoDfinal was calculated
using Equation (38). Finally, Equation (39) presents the entire destruction cost, which is the
sum of destruction costs over the number of discharges.

Costdeg(DoDinitial, DoDfinal) = Costdeg(0,DoDfinal)− Costdeg(0, DoDfinal) (38)

CostEV
deg = ∑

ndis

Costdeg,n(DoDinitial, DoDfinal) (39)
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3. Solution Algorithm
3.1. Algorithm Description

This section provides a solution to the optimization problem formulated in the previ-
ous section.

The solution method was based on the i-GWOA. The GWOA is a metaheuristic
optimization algorithm on the basis of the hunting activities of gray wolves in nature. In
the GWOA, three wolves named α, β, and γ are the best solutions in each iteration and
are chosen to lead the remaining wolves to find the global optimum solution [20]. GWOA
is presented in Equations (40)–(47): Equations (40)–(44) model the “encircling” process,
where Wi is the situation of a wolf and Xp

i is the situation of the prey in the i-th iteration.
In addition, rand1 and rand2 are random vectors in the range of [0, 1].

C1 =
∣∣∣C2× Xp

i − Wi

∣∣∣ (40)

Wi+1 = Xp
i − C3 × C1 (41)

C3= 2 × C3× rand1 − Ai (42)

C2= 2 × rand2 (43)

Ai= 2 − (2 ∗ i)/imax (44)

In this stage, all wolves are restricted to follow the three best solutions (α, β, and γ).
This “hunting” behavior of the wolves is modeled by Equations (45)–(47), where C2(1),
C2(2), and C2(3) are calculated using Equation (43). Nw is the wolf population number.

Cα
1 = |C2(1)× Wα − Wi|Cβ

1 =
∣∣∣C2(2) × Wβ − Wi

∣∣∣Cγ
1 = |C2(3)× Wγ − Wi| (45)

Wn
i (1) = Wα

i − Cn
3 (1) × Cα

1,iW
n
i (2) = Wβ

i − Cn
3 (2)× Cβ

1,iW
n
i (3) = Wγ

i − Cn
3 (3) × Cγ

1,i; ∀n ∈ [1,Nw] (46)
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Wn-GW
i+1 =

Wn
i (1) + Wn

i (2) + Wn
i (3)

3
; ∀n ∈ [1,Nw] (47)

In the i-GWOA implemented here, a few steps are added to overcome the issues of the
GWOA. These issues include obtaining locally optimum solutions by relying on the three
best solutions only and the low diversity of the population [20]. These additional steps
provide a different search strategy based on the neighbors surrounding each wolf.

Equation (48) calculates the radius by using the distance amongst the current situation
of the n-th wolf and the calculated situation in Equation (47). Then, Equation (49) is used
to build the set of neighbors, where Dn is the distance between n-th and m-th wolves.
Furthermore, the d-th dimension of the answer for the new search strategy is calculated in
Equation (50) using the d-th dimension of a random wolf from the neighbors (Wb,d

i ), and
the d-th dimension of a random wolf from the population (Wr,d

i ).

Rn
i =

∣∣∣|Wn
i − Wn-GW

i+1 |
∣∣∣ (48)

Nn
i =

{
Wm

i

∣∣∣Dn
(

Wn
i , WM

i

)
≤ Rn

i , Wm
i ∈ pop} (49)

Wn-iGW,d
i+1 = Wn,d

i +rand ×
(

Wb,d
i − Wr,d

i

)
(50)

Finally, Equation (51) is used to select the best answer by comparing the fitness
amounts of the different search strategy answers. The pseudocode and diagram for the
i-GWOA have been depicted in Algorithm 1 and Figure 2.

Wn
i+1 =

{
Wn-GW

i+1 if f
(

Wn-GW
)
≤ f

(
Wn-iGW

)
Wn-iGW

i+1 O.W
(51)

Algorithm 1: The pseudocode of i-GWOA.

Set Nw The number of wolves
Set D The number of dimensions
Set imax Maximum iteration number
Input: D, Nw, imax
Output: The global optimum
Begin

Initialize: Distribute Nw wolves randomly and generate an initial population that
satisfies the constraints
Release Entire of the constraints of the problem via using Equation (53)
For i = 1 to imax

Find Wα, Wβ, and Wγ

For n = 1 to Nw
Calculate Wn

i (1), Wn
i (2), Wn

i (3), using Equation (46)
Calculate Wn−GW

i+1 , using Equation (47)
Calculate Rn

i , using Equation (48)
Construct Nn

i within Rn
i radius, using Equation (49)

For d = 1 to D
Calculate Wn−iGW

i+1 , using Equation (50)
End

Select the best answer
Update population
End

End
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3.2. Implementing the i-GWOA for the Proposed Problem

In this section, the implementation of the i-GWOA on the SC problem is presented
step by step to clarify the solution process.

• Step 1: Set input values including the number of parameters, the population, and
maximum iterations. Here, the population number is considered to be 400, and the
maximum number of iterations is set to 700;

• Step 2: Produce the primary population randomly. In addition, the initial population
must satisfy the inequality and equality constraints. In order to ensure this, vectors
Xmin and Xmax are calculated according to the minimum and maximum bounds of the
parameters. Then, the initial population is calculated using the following equation,
where rand is a random vector between [0, 1];

-
Xpop = (rand ∗ (Xmax − Xmin)) + Xmin (52)

This process is repeated for every variable for the population number, so that the
initial population is calculated.

• Step 3: Release the entire constraints of the problem by using the below equation:

G(X) =
[
f
( -

X
)]

+ L1(
Neq

∑
1
(heq(

-
X))2) + L2(

Nineq

∑
1

(Max
[
0, − gineq(

-
X)

]
)2) (53)



Processes 2024, 12, 1816 11 of 22

where f
(
X
)

is the OF of the problem. heq
(
X
)

and gineq
(
X
)

define the equality and
inequality constraints, respectively. Here, two parameters that affect the performance
of the algorithm are L1 and L2 penalty amounts. If the selected penalty amounts are
too high, the algorithm can become trapped in local minima. Conversely, if the selected
penalty amounts are too low, they cannot diagnose feasible optimum solutions. Here,
an adaptive penalty function used in [18] is adopted to handle penalty factors. For the

sake of brevity, ∑
Neq
1 (heq(

-
X))2 and ∑

Nineq
1 (Max [0, -gineq(

-
X)])2 are expressed as B and

L1 = L2 = i
√

iλBδ. Here, i is the iteration number, λ defines a multi-stage assignment
amount, and δ defines the power of the penalty amount. Here, if B ≤ 1 then δ = 1;
otherwise, δ = 2. Moreover, if B ≤ 0.001, then λ = 1, or if B ≤ 0.01, then λ = 10, or if
B ≤ 0.1, then λ = 30; otherwise, λ = 100.

• Step 4: Calculate the OF with the population. Sort the population according to the OF
amounts. Then, set the three best individuals as α, β, and γ;

• Step 5: Calculate Wn−GW
i+1 using Equations (46)–(49);

• Step 6: Calculate Wn−iGW
i+1 using Equation (50);

• Step 7: Select and update each individual of the population based on Equation (53);
• Step 8: Check the maximum iteration number. If it is not reached, go to step 4, and

continue until the maximum iteration number is reached.

4. SC Model and Case Studies
4.1. SC Model and Parameters

The presented model of the SC consists of an electric substation associated with the
SWS and PEV parking that is connected to the electric substation for energy transactions
between them, and a residential area that contains loads, and is augmented with certain
DER technologies, including PVs, HPs, and batteries. All these segments are coupled with
the grid. It is notable that the connection amongst the PEVs and the SWS consists of the
railway power line, an ESS, and the charging posts for the PEVs. These parts are connected
through DC links [14]. An illustration of the suggested layout is shown in Figure 3.
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Figure 3. Illustration of the SC model.

To model the electric substation, it is assumed that 80 percent of the total energy
consumed by the SWS is relevant to the trains’ traction energy, and only 33 percent of this
energy can be retrieved through regenerative braking [29,30]. Figure 4 illustrates the energy
profile of the SW substation obtained from [30].
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Two different scenarios are proposed for PEVs. In the first one, taken from [14], a
parking lot with 194 spots and two different types of PEV users (local and traveler) is
considered. Local users utilize parking at night when they arrive at their homes, whereas
travelers who come to the neighborhood use parking during the day when the locals have
left. To extend the battery life, it is assumed that the minimum SOC of the parked PEVs is
20 percent and the maximum SOC when the PEV leaves is 80 percent [31].

In addition, the storage capacity of each PEV was 19 kWh [32]. The energy required
for the trip is considered to be 40 percent of the maximum capacity, meaning that the PEV
enters the parking space with an SOC of 40 percent. The time-of-use and minimum SOC
requirements of the PEV users are shown in Figure 5.
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Figure 5. PEV users’ time-of-use and minimum SOC requirements.

The second scenario considers two PEV fleets with different characteristics, as pre-
sented in Table 1. Each fleet consists of several PEVs that take two trips throughout the day.
It is considered that the SOC of the PEV fleets is 100 percent when they leave the parking
lot for the initial trip.

The PEV batteries are assumed to be typical lithium-ion batteries. The Wöhler curve
parameters (a and b) for this battery type were 1331 and −1.825 respectively. The battery
investment cost was assumed to be EUR 300.

The solar production of the PV is computed using mean solar global horizontal
irradiance data for Madrid, at 35◦ inclination and facing south [33]. The PV panels that are
used here are mono-crystalline silicon, the same parameters described in [34].

The costs and parameters of the different DERs studied here are presented in Table 2.
Figure 5 shows the daily solar radiation profile during summer [15]. Moreover, a maximum
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of thirteen percent of the daily load is allowed to be shifted [21], and the cost of tools
needed for performing load shifting is assumed to be EUR 250/house [35].

The considered residential area was assumed to contain 250 houses with different
user types and different energy usage patterns [36]. The residential electricity usage was
modeled by a time-of-use electricity tariff presented in Table 3 [37,38]. In addition, the
thermal energy tariff was considered to be constant. SW time-of-use energy and power
tariff values are shown in Table 4, which also includes different time schedules during the
winter and summer months.

Table 3. Residential energy tariffs.

Peak Mid-Peak Off-Peak

Electric Energy (EUR/kWh) 0.1632 0.0843 0.0564
Electric Power (EUR/kW) - 49.2862 -

Time schedule 13–23 h 7–13, 23–1 h 1–7 h

Natural gas variable (EUR/kWh) 0.0567
Natural gas fixed (EUR/year) 0.05232

Table 4. SW energy tariffs.

Peak Mid-Peak Off-Peak

Electric Energy (EUR/kWh) 0.1266 0.1092 0.0804
Electric Power (EUR/kW) 59.4753 36.6768 8.4104

Winter schedule 17–23 h 8–17, 23 h 0–8 h
Summer schedule 10–16 h 8–10,16–0 h 0–8 h

4.2. Case Studies

Four different case studies are presented in this paper to thoroughly demonstrate
the impact of interconnections between PEVs and SWSs, along with the impacts of imple-
menting different DER technologies in the model. A base case (CBase) was presented as a
benchmark for evaluation and comparison with other case studies. In this case, there is no
interconnection between the PEVs and the SWS, and no DER technologies are present.

The second case study (CCon) assesses the interconnection between PEVs and the SWS
without considering DER technologies. In the third case study (CDER), DER technologies
were considered, but the PEVs and SWS were optimized separately. Finally, in the fourth
case study (CCon+DER), both DER technologies and the connection between PEVs and SWSs
were considered.

5. Simulation Results
5.1. Case Study Results

In this section, the simulation outcomes for each scenario have been provided and
compared with each other. The layout has been carried out in a MATLAB 2019a simulation
environment, and the simulations were performed on a standard laptop with a Core i7
processor and 8 gigabytes of RAM. The runtime for each simulation is approximately 60 s.

The total cost for each case study, based on the first PEV scenario, is shown in Figure 6.
It can be observed that for CBase, the total cost is EUR 37.2 million when 25 PEVs are
considered. The total cost gradually increases when the number of PEVs increases. This
growth was caused by the increase in PEV loads, as the other costs remained the same. In
addition, the SWS remains the same because no interconnection is considered. In the next
case study of CCon, the interconnection between the PEVs and SWS is considered.
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Figure 6. Total cost of each case study for different PEV numbers in the first PEV scenario.

It can be seen that the entire cost for this case study was lower than that of the base
case. This is caused by a decrease in SWS costs because of the interconnection, and the SWS
being able to take advantage of the higher storage capacity provided by PEVs.

For CDER, although the SW costs are the same as in the base case, and the investment
costs are higher, it can be noted that the entire cost is lower than in the previous cases. This
occurred as a consequence of electrical and thermal generation of PV and HP, respectively,
resulting in less energy being bought from the grid, in addition to load shifting being
considered. Finally, in the final case study (CCon+DER), where both the interconnection and
presence of DER technologies are considered, the total cost shows a significant decrease.

Figure 7 illustrates the operation of the PEVs and DER technologies on a typical
summer day considering CCon+DER. It can be observed that the PEVs and stationary battery
charge when the solar radiation and PV power production are high, and discharge when
solar radiation and PV power production are low, in that they supply other loads in the SC
model. As shown in Table 2, the investment costs of stationary batteries are significantly
lower than those of PVs. This has resulted in the battery capacity being higher than the
installed PV capacity, resulting in a system that exploits the high battery capacity and
reduces overall costs. The optimal operation of different parts of the model caused a
decrease that has been observed in the total cost rate.
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A percentage-based comparison of the different costs of the case studies is presented
in Table 5. It can be seen that in CDER, no change in SW costs is observed, but a rather large
decrease in residential area costs has occurred. The residential area costs decreased by up to
53.6% compared to the base case. In addition, the thermal costs were reduced significantly
by up to 95 percent owing to the thermal energy generation of the HP system. The total
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cost decreased by approximately 16.6 percent in this case study. On the other hand, CCon

resulted in a 35.7 to 50 percent decrease in SW costs, depending on the number of PEVs,
but it increased the residential area costs by 23 percent maximum. Thermal costs did not
change because of the absence of an HP system. The total cost in this case study decreased
by 7.8 percent. Moreover, for CCon+DER, all costs decreased significantly, which shows the
most favorable result among the case studies.

Table 5. The cost difference in comparison to the base case.

CCon+DER CDER CCon

Cost—Subway −78% to −86% 0% −35.7% to −50%
Cost—District −36% to −40% −51% to −53.6% 15% to 23%
Cost—Thermal −94% to −96% −94% to −95% 0%

Total Cost −31% −16.6% −7.8%

SW costs decreased by up to 86 percent. Residential and thermal costs decreased by
40 and 96%, respectively. Finally, the total cost in this case showed a 31 percent decrease
compared to the base case. Figure 8 illustrates the operation of an SWS interconnected with
25 PEVs on a typical day. It can be observed that approximately 86 percent of the total RBE
has been charged back into the SWS, which results in an 86 percent cost reduction in the
SWS, as presented in Table 5. The rest of this RBE charges the PEV batteries.
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Figure 8. Operation of the SWS, when connected optimally to PEVs for the first scenario.

The results corresponding to the second PEV scenario, which assumed two PEV fleets,
are shown in Figure 9. In this scenario, similar to the previous scenario, the total cost
decreases in CCon compared to the base case. In CDER the total cost is further decreased
from EUR 38.4 million to EUR 32 million when considering the fleet that contains 40 PEVs.
Finally, CCon+DER shows a significant 31 percent decrease compared to the base case.

Figure 10 illustrates the operation of the PEVs, SWS, and DER technologies on a
typical summer day considering CCon+DER for the second scenario. Similar to the previous
scenario, the batteries charge during the peak PV power production period and discharge
at other times. The operation of the SWS and the PEV fleet on a typical day is illustrated
in Figure 11. Notably, almost 93 percent of the RBE has been charged back into the SWS,
which is higher than the previous scenario. This is because, according to Table 1, the fleet is
not present in the SW parking during the hours when the exchange between the SWS and
the PEVs is beneficial, unlike the previous scenario.

This scenario further validates the outcomes of the case studies and demonstrates the
importance of both DER technologies and the simultaneous optimization of the SWS and
PEVs in the SC context.
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Figure 9. Total cost of each case study for different PEV numbers in the second PEV scenario.
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Figure 10. Daily operation of DER, PEV, and the SWS in summer for the second scenario.
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Figure 11. Operation of the SWS when connected optimally to PEVs for the second scenario.

5.2. Comparison

In this section, a comparison between different algorithms is presented to demonstrate
the capability of the utilized i-GWOA compared to other algorithms including Genetic
Algorithm (GA), hybrid Biogeography-Based Optimization and differential evolution (BBO-
DE) algorithm, differential evolution algorithm (DE), particle swarm optimization (PSO)
algorithm, and the simple GWOA. The optimal parameter settings of these algorithms that
are utilized in this paper are presented in Table 6.

Tables 7–9 present the results for the first scenario with 25, 50, and 150 PEVs, respec-
tively, calculated by different algorithms. The first two columns present the highest and
the lowest costs calculated by each algorithm in all of the iterations. The average cost
and the standard deviation for each algorithm are also presented in the next two columns.
It is observed that the lowest cost for each scenario belongs to the i-GWOA. In addition,
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the best, worst, and average costs calculated by the i-GWOA are the lowest among all of
the algorithms. Also, the standard deviation of the costs computed for the i-GWOA is
the lowest.

Table 6. Parameters of different algorithms.

Algorithm Parameters

GA Selection = roulette wheel, crossover = 0.8, Mutation
m = 4

PSO wmax , wmin, w = iter
iter_maxmaxmaxmin

DE F = 0.2, cr = 0.6

BBO-DE F = 0.2, cr = 0.6, KeepRate = 0.2, alpha = 0.9
Pmutation = 0.1, Sigma = 0.02 ∗ (Xmax − Xmin)

GWOA a = 2 − 2 ∗ iter/iter_max
i-GWOA a = 2 − 2 ∗ iter/iter_max

Table 7. Results obtained by different algorithms for 25 PEVs in the first scenario.

Solution
Technique

Total Cost (Million EUR) Standard
Deviation (%)Best Worst Average

GA 26.5 29 28.4 0.34
PSO 26 27.1 26.6 0.3
DE 25.7 26.6 26.1 0.21

BBO-DE 25.6 26.2 25.92 0.2
GWOA 25.7 26 25.75 0.15

i-GWOA 25.5 25.9 25.65 0.12

Table 8. Results obtained by different algorithms for 50 PEVs in the first scenario.

Solution
Technique

Total Cost (Million EUR) Standard
Deviation (%)Best Worst Average

GA 27 28.7 28.1 0.37
PSO 26.8 27.5 27.1 0.32
DE 26.3 27.1 26.6 0.2

BBO-DE 26.3 27.1 26.7 0.21
GWOA 26.1 26.7 26.4 0.13

i-GWOA 26 26.5 26.3 0.12

Table 9. Obtained results by different algorithms for 150 PEVs in the first scenario.

Solution
Technique

Total Cost (Million EUR) Standard
Deviation (%)Best Worst Average

GA 27.6 29.8 28.8 0.39
PSO 27.6 29.6 28.6 0.34
DE 27.4 28.2 27.9 0.22

BBO-DE 27.4 28.2 27.9 0.22
GWOA 27.1 27.8 27.5 0.16

i-GWOA 27 27.7 27.4 0.14

These results show the superiority of the i-GWOA and demonstrate that the i-GWOA
is more accurate and more relevant than the other similar algorithms for solving the
proposed problem.

6. Conclusions

The idea developed in this study was to demonstrate the impact of coordinated
planning and operation of different segments in an SC and to model them to calculate
the extent to which they affect the entire cost of the system. An iGW optimization algo-
rithm was utilized to solve the optimization problem owing to the nonlinearities in the
problem formulation.
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In addition, the destruction cost of the batteries was added to the OF, and the energy
losses relevant to the PV and HP systems were considered. Four different case studies in two
PEV scenarios were conducted, and the results are discussed. The optimization algorithm
showed good convenience by enhancing both the simulation runtime and numerical results
compared with similar studies in the literature.

Four different case studies are considered in this paper to thoroughly demonstrate
the impact of interconnections between PEVs and SWSs, along with the impacts of imple-
menting various DERs in this model. In the first case, there is no interconnection between
the PEVs and the SWS, and DERs are not considered. The second case study assesses the
interconnection between PEVs and the SWS without considering DERs. In the third case
study, DERs were considered, but the PEVs and SWS were optimized separately. Finally,
in the fourth case study, both DER technologies and the connection between PEVs and
SWSs were considered. In the first scenario, the entire cost is 37.2 Million Euro when 25
PEVs are considered. The entire cost gradually rises when the number of PEVs increases.
This growth was caused by increasing the PEV loads, as the other costs remained the same.
In addition, the SWS remains the same because no interconnection is considered. In the
second case study, the entire cost was lower than the first case. This is caused by a decrease
in SWS costs because of the interconnection, and thus, the SWS is able to take advantage of
the higher storage capacity provided by PEVs. For the third case study, although the SW
costs are the same as in the base case, and the investment costs are higher, it can be noted
that the entire cost is lower than in the previous cases. This occurred as a consequence of
the electrical and thermal generation of PV and HP, respectively, resulting in less energy
being bought from the grid, in addition to load shifting being considered. Finally, in the
fourth case study, where both the interconnection and presence of DER technologies are
considered, the total cost shows a significant decrease.

The obtained results validate the benefits of interconnections between PEVs and SWSs
and utilizing DER technologies in an SC model. However, many areas of this work can
be developed in the future. One of these areas is considering further DER technologies,
such as wind turbines, to completely model an SC. Another area that can be developed
is the modeling of the uncertainties that can arise in the model, such as the behavior of
PEVs, DER power output, and residential loads. To complete the discussion of the SC,
the SC model can be completed by considering water desalination, as well as discussions
related to cyber security and artificial intelligence to predict energy prices and network and
subway loads. Also, the proposed system can be solved in a multi-objective problem that
considers cost and emission together to reduce costs and emissions. Furthermore, the cyber
security issue and secure transmitted data in an SC is one of the interesting topics that can
be considered.
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Nomenclature

Sets and Indices
m Months
ms Months of summer
mw Months of winter
y Years
v Type of EVs
Nf Number of fleets
Ns Number of substations
q Type of buildings
h Hours
Parameters
CEV Maximum capacity of PEVs (kWh)
CapMaxEV

v,h Maximum available capacity of PEVs (kWh)
CostPV

ins Cost of installed PV (EUR/MW)
CostHP

ins Cost of installed HP (EUR/MW)
CostBat

ins Upfront cost of stationary batteries (EUR/MW)
Costls

eq Cost of load shedding equipment (EUR/customer)
Daym Number of considered days in month m
DTh

q,m Total thermal demand (MWh)
DnormTh

h Normalized residential thermal demand profile (%)
EBuycom

m,h Electricity base commercial price (EUR/kWh)
EBuyres

m,h Electricity base residential price (EUR/kWh)
ECostinc

y Annual growth of electricity base buy price (%)
ESellm,h Electricity base selling price (EUR/kWh)
nspan Lifespan of PV and HP
nhouse Number equivalent customers per house
nEV Number of PEV user types
OMHP

annual Annual operation and maintenance of HP (EUR/MW)
OMPV

annual Annual operation and maintenance of PV (EUR/MW)

PEVch
v,m,h/PEVch

v,m,h Max/min limits of energy charged into PEV (MWh)

PEVdis
v,m,h /PEVdis

v,m,h Max/min limits of energy discharged from the PEV (MWh)

PSubch
v,m,h /PSubch

v,m,h Max/min limits of energy charged from PEV into subway system (SWS) (MWh)

PSubdis
v,m,h /PSubdis

v,m,h Max/min limits of energy discharged from SWS to PEV (MWh)

RBSub
h Regenerative braking energy (MWh)

SOCarrive
v,h SOC of arriving PEV (%)

SOCminEV
v,h minimum SOC required for PEVs (%)

TariffE Annual tariff for residential electric power (EUR/kW)
TariffT Annual tariff for residential thermal power (EUR/customer)
Tariffpeak

sub Annual tariff for SWS power at peak hours (EUR/kW)
Tariffmid

sub Annual tariff for SWS power at mid-peak hours (EUR/kW)
Tariffoff

sub Annual tariff for SWS power at off-peak hours (EUR/kW)
TCostinc

y Annual growth of thermal energy buy price (%)
ηEV

C /ηEV
D Charge/discharge efficiency of PEV battery (%)

ηsub
C /ηsub

D Charge/discharge efficiency of SWS (%)
ηenergy Energy savings due to efficiency measures (%)
lossHP Total losses of HP system (%)
lossPV Total losses of PV system (%)
CHP HP coefficient of performance
Ωm,h Global horizontal irradiance (W/m2)
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Variables
CostE

dist Electric energy cost for the residential area (EUR)
CostP

dist Electric power cost for the residential area (EUR)
CostE

sub Electric energy cost for the SWS (EUR)
CostP

sub Electric power cost for the SWS (EUR)
CostETh Thermal energy cost for the residential area (EUR)
CostpTh Thermal power cost for the residential area (EUR)
CostPV

inv&OM Investments, operation, and maintenance costs of PV (EUR)
CostHP

inv&OM Investments, operation, and maintenance costs of HP (EUR)
CostBat

inv Investment cost of stationary batteries (EUR)
CostEV

inv Investment cost of PEV batteries (EUR)
CostEV

op Cost of aggregated PEVs (EUR)
CostEV

deg Destruction cost of PEV batteries (EUR)
CostEV

pow Operation cost of PEVs (EUR)
CostDR

eq Investment cost of demand response equipment (EUR)
CapBat

q Stationary batteries capacity (MWh)
CapHP

q HP capacity (MW)
CapPV

q PV capacity (MW)
Ch Hourly vehicle-to-grid price (EUR)
PEV

v,h Charge/discharge power rate of PEV fleet v at hour h
DNew

q,m,h Consumption curve after profile change (MWh)
DSub

m,h SWS consumption curve after profile change (MWh)
EGrid

m,h Grid energy transaction (MWh)
ETrans

q,m,h Energy transaction to the grid in each node (MWh)

PBuyGrid
m,h Entire energy bought from the grid (MWh)

PSellGrid
m,h Entire energy sold to the grid (MWh)

PThBuy
q,m Thermal energy bought from the utility (MWh)

PEContract Annual contracted power (MW)
PBatDis

q,m,h Discharged energy of battery (MWh)
PBatCh

q,m,h Charged energy of battery (MWh)
PEVdis

v,m,h Discharged energy from PEV (MWh)
PEVch

v,m,h Energy charged into PEV (MWh)
PSubdis

v,m,h Energy discharged from the SWS to the PEV (MWh)
PSubch

v,m,h Energy charged from PEV into the SWS (MWh)
PHP

q,m,h HP thermal energy production (MWh)
PinHP

q,m,h HP input electricity (MWh)
PPV

q,m,h PV power production (MWh)
Poff

sub Annual contracted power for the SWS during off-peak hours (MW)
Pmid

sub Annual contracted power for the SWS during mid-peak hours (MW)
Ppeak

sub Contracted annual power for the SWS during peak hours (MW)
SOCBat

q,m,h State of charge of battery (MWh)
SOCEV

v,m,h State of charge of PEV (MWh)
UEV

v,m,h Binary variables for on-grid PEVs
UEVch

v,m,h/UEVdis
v,m,h Binary variables for charge/discharge of PEVs

USub
v,m,h Binary variables for SWS connection of PEVs

USubch
v,m,h /USubdis

v,m,h Binary variables for charge/discharge of PEVs in connection with the SWS

References
1. Kumar, P.; Nikolovski, S.; Ali, I.; Thomas, M.S.; Ahuja, H. Impact of Electric Vehicles on Energy Efficiency with Energy Boosters in

Coordination for Sustainable Energy in Smart Cities. Processes 2022, 10, 1593. [CrossRef]
2. Parra-Domínguez, J.; López-Blanco, R.; Pinto-Santos, F. Approach to the Technical Processes of Incorporating Sustainability

Information—The Case of a Smart City and the Monitoring of the Sustainable Development Goals. Processes 2022, 10, 1651.
[CrossRef]

https://doi.org/10.3390/pr10081593
https://doi.org/10.3390/pr10081651


Processes 2024, 12, 1816 21 of 22

3. Shokri, M.; Niknam, T.; Mohammadi, M.; Dehghani, M.; Siano, P.; Ouahada, K.; Sarvarizade-Kouhpaye, M. A Novel Stochastic
Framework for Optimal Scheduling of Smart Cities as an Energy Hub. IET Gener. Transm. Distrib. 2024, 18, 2421–2434. [CrossRef]

4. Jokar, H.; Niknam, T.; Dehghani, M.; Sheybani, E.; Pourbehzadi, M.; Javidi, G. Efficient Microgrid Management with Meerkat
Optimization for Energy Storage, Renewables, Hydrogen Storage, Demand Response, and EV Charging. Energies 2023, 17, 25.
[CrossRef]

5. Amamra, S.A.; Marco, J. Vehicle-to-grid aggregator to support power grid and reduce electric vehicle charging cost. IEEE Access
2019, 7, 178528–178538. [CrossRef]

6. Shi, D.; Li, S.; Liu, K.; Wang, Y.; Liu, R.; Guo, J. Adaptive energy management strategy based on intelligent prediction of driving
cycle for plug− in hybrid electric vehicle. Processes 2022, 10, 1831. [CrossRef]

7. Mehta, R.; Verma, P.; Srinivasan, D.; Yang, J. Double-layered intelligent energy management for optimal integration of plug-in
electric vehicles into distribution systems. Appl. Energy 2019, 233, 146–155. [CrossRef]

8. Liu, H.; Zhou, M.; Guo, X.; Zhang, Z.; Ning, B.; Tang, T. Timetable optimization for regenerative energy utilization in subway
systems. IEEE Trans. Intell. Transp. Syst. 2018, 20, 3247–3257. [CrossRef]

9. Wu, C.; Lu, S.; Xue, F.; Jiang, L.; Chen, M.; Yang, J. A two-step method for energy-efficient train operation, timetabling, and
onboard energy storage device management. IEEE Trans. Transp. Electrif. 2021, 7, 1822–1833. [CrossRef]

10. Khodaparastan, M.; Mohamed, A. A study on super capacitor wayside connection for energy recuperation in electric rail systems.
In Proceedings of the 2017 IEEE Power & Energy Society General Meeting, Chicago, IL, USA, 16–20 July 2017; pp. 1–5.

11. Roch-Dupré, D.; Cucala, A.P.; Pecharromán, R.R.; López-López, Á.J.; Fernández-Cardador, A. Evaluation of the impact that the
traffic model used in railway electrical simulation has on the assessment of the installation of a Reversible Substation. Int. J. Electr.
Power Energy Syst. 2018, 102, 201–210. [CrossRef]

12. Al-Refaie, A.; Lepkova, N. Satisfaction with Rooftop Photovoltaic Systems and Feed-in-Tariffs Effects on Energy and Environmen-
tal Goals in Jordan. Processes 2024, 12, 1175. [CrossRef]

13. Calvillo, C.F.; Turner, K.; Bell, K.; McGregor, P. Impacts of residential energy efficiency and electrification of heating on energy
market prices. In Proceedings of the 15th IAEE European Conference, Vienna, Austria, 3–6 September 2017.

14. Calvillo, C.F.; Sánchez-Miralles, Á.; Villar, J. Synergies of electric urban transport systems and distributed energy resources in
smart cities. IEEE Trans. Intell. Transp. Syst. 2017, 19, 2445–2453. [CrossRef]

15. Jafari, M.; Kavousi-Fard, A.; Niknam, T.; Avatefipour, O. Stochastic synergies of urban transportation system and smart grid in
smart cities considering V2G and V2S concepts. Energy 2021, 215, 119054. [CrossRef]

16. Papari, B.; Edrington, C.S.; Ozkan, G.; Bader, P.R. Stochastic analysis of regenerative braking energy of urban transportation
system associated with Plug-in electrical vehicle in smart city. In Proceedings of the 2021 IEEE Fourth International Conference
on DC Microgrids (ICDCM), Arlington, VA, USA, 18–21 July 2021; pp. 1–5.

17. Zhang, L.; Cheng, L.; Alsokhiry, F.; Mohamed, M.A. A novel stochastic blockchain-based energy management in smart cities
using V2S and V2G. IEEE Trans. Intell. Transp. Syst. 2022, 24, 915–922. [CrossRef]

18. Niknam, T.; Azizipanah-Abarghooee, R.; Narimani, M.R. Reserve constrained dynamic optimal power flow subject to valve-point
effects, prohibited zones and multi-fuel constraints. Energy 2012, 47, 451–464. [CrossRef]

19. Talbi, E.G. Metaheuristics: From Design to Implementation; John Wiley & Sons: Hoboken, NJ, USA, 2009.
20. Nadimi-Shahraki, M.H.; Taghian, S.; Mirjalili, S. An improved grey wolf optimizer for solving engineering problems. Expert Syst.

Appl. 2021, 166, 113917. [CrossRef]
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