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Abstract

Power system protection and asset management present persistent technical challenges,
particularly in the context of the smart grid and renewable energy sectors. This paper
aims to address these challenges by providing a comprehensive assessment of machine
learning applications for effective asset management in power systems. The study focuses
on the increasing demand for energy production while maintaining environmental sus-
tainability and efficiency. By harnessing the power of modern technologies such as
artificial intelligence (AI), machine learning (ML), and deep learning (DL), this research
explores how ML techniques can be leveraged as powerful tools for the power indus-
try. By showcasing practical applications and success stories, this paper demonstrates
the growing acceptance of machine learning as a significant technology for current and
future business needs in the power sector. Additionally, the study examines the barri-
ers and difficulties of large-scale ML deployment in practical settings while exploring
potential opportunities for these tactics. Through this overview, insights into the trans-
formative potential of ML in shaping the future of power system asset management are
provided.

1 INTRODUCTION

Nowadays, technological advancements, governmental man-
dates for regulatory policy, and environmental concerns all
contribute to the ongoing evolution of contemporary power
systems. They are currently operating near their nominal rat-
ings, necessitating the availability of control schemes, effective
monitoring frameworks, and quick protection countermeasures
to sustain secure operations. Power transmission generators,
substations, transmission lines, and distribution channels are
costly assets [1–3] with prolonged manufacturing/installation
procedures. Recent modifications to power systems have sig-
nificantly impacted the energy sector, not just in terms of
technical characteristics but also in the context of managerial
features. Implementing new generation systems [4, 5], con-
structing lines for transmission and distribution, and building
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substations have recently proven challenging for utilities due to
economic and environmental constraints. This fact means that
machinery will need to be utilized for a more extended period,
close to their operating limits, and towards the end of their use-
ful lives [6]. Consequently, organizations in the electric sector
will be required to deploy advanced management and control
systems for the manufacturing equipment and elements of the
power system.

The utilities have made effective asset management their pri-
mary concern. Making efforts to construct and maintain plants
at a suitable level of investment and quality can help to increase
profitability and durability. The primary objective of asset man-
agement is to strike a balance between operating and capital
costs to provide the highest possible value for shareholders and
power users. The challenge has become more complex, with the
cost of new and replacement plants soaring out of control. To

IET Gener. Transm. Distrib. 2024;18:2155–2170. wileyonlinelibrary.com/iet-gtd 2155

https://orcid.org/0000-0002-9731-959X
mailto:glrajora@comillas.edu
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/iet-gtd
http://crossmark.crossref.org/dialog/?doi=10.1049%2Fgtd2.13183&domain=pdf&date_stamp=2024-06-12


2156 RAJORA ET AL.

solve the issue and consider the particular business procedures
involved in building and operating plants, most utilities adopt
automation.

AM goal is to manage physical assets in the best possible way
to achieve an organization’s goal while considering risk. The
goal could be to maximize the value of assets, improve bene-
fits, or reduce the lifespan cost, and the risk may be defined as
the probability that an incident will occur and have a negative
impact, such as cutting off customers’ access to power. Elec-
tricity is essential for the industrial revolution since it allowed
lighting and transportation. The electronic society of today
relies heavily on power. Returning to using electricity for trans-
portation is a trend that will make it feasible to use renewable
fuels.

According to the indications of AM, network deployment,
and system operation, the optimal level of dependability, asset
lifecycle, and cost management have typically been found [7,
8]. According to the perception of system engineering, AM
is mainly utilized to increase marketing strategy, good earn-
ings, strong credibility, and reduced costs. By adhering to the
AM lifecycle’s management discipline strategy, these variables
can be provided in applications for the power system. While
doing operation maintenance, repairing components, and dis-
covering faults, it is crucial to choose the correct option [9].
The AM process is the most effective approach to raising the
productivity of industrial goods in power systems. Driven by
technology advancements, regulatory mandates, and concerns
about the environment and the climate, modern power systems
are still developing [10]. The planning, selection, assessment,
and asset migration sequence can also characterize AM. Yet, the
most difficult duties included in AM techniques are determining
the component’s lifetime, estimating management costs, assess-
ing its quality, and executing flawless maintenance [11, 12]. The
technological, economic, and strategic evaluations must be met
to increase the value of AM systems. In power systems, maxi-
mizing asset performance is usually one of the most important
factors.

The contributions of this specific paper are,

∙ To examine the principles and methods of various ML
approaches applied to enhance the effectiveness of AM in
power systems.

∙ A variety of performance measures should be used to con-
firm the efficacy of supervised and unsupervised ML models
used for AM.

∙ To evaluate the difficulties and manage the AM techniques
based on technical and economic considerations.

∙ To thoroughly analyse the ML models with their unique
benefits and drawbacks.

Also, it aims to identify and discuss the challenges and
shortcomings inherent in previous studies related to asset man-
agement within electric power and energy systems. While these
studies have laid a solid foundation, there remains a gap in
integrating machine learning approaches with a comprehen-
sive consideration for data integrity, regulatory standards, and
environmental sustainability.

The remaining sections of this paper are as follows: The
AM overview and several ML techniques used to enhance AM
strategies in the power system networks are presented in Sec-
tion 2. The detailed examination of the various ML techniques
utilized in power system applications is illustrated in Section 3,
along with their difficulties, benefits, and drawbacks. In Section
IV, the overall study is summarized together with the results and
upcoming examples.

2 RELATED WORKS

This section looks into various methods and technologies for
effective AM on networks of power systems. AM is one of
the main factors that typically offers information on protec-
tion devices, power systems, transmission systems, and support
systems. Because of these factors, it is crucial to the indus-
tries that deal with the energy distribution. The electric grid
represents a complex ecosystem encompassing asset owners,
manufacturers, service providers, and government officials. As
the energy industry embraces digital transformation, substantial
investments are being made across all production, generation,
transmission, and distribution levels. This transformation is
fuelled by cutting-edge technologies, such as sensors, data ana-
lytics, privacy-aware markets, and smart meters, which enable
the realization of smart grid solutions. These advancements,
facilitated by two-way communication technologies, control sys-
tems, and powerful computer processing, aim to modernize the
grid and enhance its intelligence and resilience. However, the
existing electric infrastructure faces challenges, as it is being
tasked with functionalities beyond its original design. As part of
the energy transition objectives, developing smart power grids
necessitates meeting new functional requirements that some
legacy energy distribution assets may not fulfil. Equipment
obsolescence, aging components, and evolving technological
standards may induce premature replacements, driving up costs
and posing environmental concerns. Adopting asset manage-
ment (AM) becomes imperative to address these challenges and
unlock the electric power system’s potential. AM, a concept
widely utilized in both the financial and engineering sectors,
involves coordinated activities to realize value from assets. For
the electric power system, which is a critical enabler for the
transition to a sustainable and intelligent energy system (Smart
Grid or SG), effective AM practices can optimize the utilization
and lifespan of equipment. Moreover, the reliability centered
maintenance (RCM) method emerges as a structured approach
focusing on reliability when formulating maintenance plans.
Originating in the commercial aviation industry in 1978, the
RCM method addresses the need to enhance reliability while
managing maintenance costs. Reliability and maintenance are
of utmost importance in the electric power system context due
to significant associated costs and potential production losses
or breakdowns that can impact the environment and personal
safety. In this research, the focus is on presenting the reliability
centered asset maintenance (RCAM) method. Building on the
proven RCM principles, the RCAM method integrates quantita-
tive maintenance optimization techniques. Originally designed
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for electric power distribution systems by Bertling in 2002,
the RCAM method demonstrates promising results for mainte-
nance strategy selection and optimization of wind turbines. The
application of advanced artificial intelligence (AI) technologies,
such as machine learning, within AM and RCAM can provide
a significant competitive advantage. AI-driven algorithms can
process vast datasets, enable predictive maintenance, and iden-
tify patterns and anomalies that human-driven approaches may
overlook. By harnessing the potential of AI in AM and RCAM,
the electric power system can achieve higher levels of reliability,
efficiency, and sustainability, ultimately supporting the transition
towards a more innovative and resilient energy landscape.

Koksal and Ozdemir [13] proposed a reliability-centered
(RCM) AM approach to create the power transformer’s main-
tenance plan. In this work, a Markov model has been used
to assess the dependability and cost of transformers and offer
the best solutions. Also, a sensitive examination of the transi-
tion rate has been completed, and the lifetime of transformers
has been calculated using data from real service. The authors
thoroughly analysed the various AM strategies applied to power
distribution/transmission systems in [14]. The AM approach is
divided into time- and activity-based groups based on how dis-
tribution networks are planned and operated. For examining the
effects of data quality in power systems, Koziel et al. created a
ground-breaking AM methodology. The key steps of the AM
system, including maintenance and replacement, are explained
in this study. Based on the findings of this paper [15], it is deter-
mined that asset managers must assess the effects of each device
with regard to the reliability of the assessment. Babu et al. [16]
analysed various controlling strategies used in a hybrid energy
storage systems. The key benefits of using hybrid sources are
reduced initial cost, better system efficacy, minimized stress, and
better storage capacity. Moreover, the controlling techniques
used for hybrid energy systems are categorized into the types of
classical controlling models and intelligent controlling models.
Duchesne et al. [17] reviewed recent works and developments
in ML models for improving AM in power systems. Cao et al.
[18] examined the different reinforcement learning approach
for enhancing the AM of modern power systems. Many con-
trol and optimization issues in power systems involve typical
hierarchical structures and human decision-making. Another
interesting method for controlling extensive systems is using
hierarchical frameworks, which can lower the deployment costs
of communication devices and eliminate the isolation prob-
lem. Applications of RL for hierarchical control are uncommon
in power systems due to the complexity of the hierarchical
structure and the absence of a standard hierarchical frame-
work. Future studies might use a hierarchical control framework
based on reinforcement learning for complex systems. Modern
power systems [19, 20] are getting larger, more sophisticated,
and have more operating conditions and controlling options.
Single-agent reinforcement learning algorithms use centralized
frameworks that primarily rely on uninterrupted transmission
lines, making them unable to scale up to huge systems or handle
communication delays.

Tang, et al. [21] employed a knowledge graph methodol-
ogy for developing an effective power AM framework. This

study suggests a method for building power equipment knowl-
edge graphs by combining existing multi-source heterogeneous
power equipment-related data. This study uses different types
of heterogeneous data sources [22], like equipment operation
records, equipment inspection records, equipment parameters,
manufacturer information, operator information, equipment
parameters, manufacturer information, operator information,
equipment operation regulations, and other related informa-
tion. Due to the shortcomings of the current AM system,
there is insufficient data sharing between equipment manufac-
turing businesses and power providers, which leads to low data
utilization efficiency. Bosisio, et al. [23] developed a new meta-
modal for multi-AM systems for electric distribution networks.
While making operational and strategic decisions, a utility AM
system is utilized to store, maintain, and support asset data.
Although it has always been a crucial factor for utilities, man-
aging distribution assets is now getting more attention as they
aim to strengthen their business models in a changing sector
and maximize the lifespan of new and current asset invest-
ments. Regulations, network complexity, consumption patterns,
and budgetary control are a few of the key issues affecting
power AM techniques [24]. Effective AM strategies are built
on a solid meta-model. It divides the AM strategies for the
power transmission sector into three-time frames: short-, mid-,
and long-term. Operational concerns are dealt with in short-
term AM; system device maintenance in mid-term AM [25];
and distribution system strategic planning in long-term AM.
To achieve the desired levels of service reliability, AM for
long-term planning is necessary, along with the identification
of asset upgrade and development plans. For distribution net-
works operating radially, the least reliable equipment already in
the system typically determines the efficiency [26]. As a result,
decision-making processes used in planning the energy distri-
bution system should evaluate the viability and effectiveness of
the system’s resources. A multi-utility can manage several asset
kinds and associated parameters in its asset portfolio by spec-
ifying assets. In order to generate object libraries, the asset’s
parameters are then categorized into classes. Besides that, dur-
ing each stage of the distribution network management process,
the associated libraries are utilized to represent the assets. The
identification of the asset’s views makes it easier to identify the
parameters.

3 ASSET MANAGEMENT

The electric power sector is changing and putting a lot of strain
on transmission and distribution assets, which has given rise
to AM in the power system. AM [27, 28] is seen as one of
the most crucial functions in developing and operating today’s
transmission and distribution systems. Electric utilities have
been pushed to find the best ways to manage installed capacity
while minimizing the cost of current components through-
out their useful lives by a tendency to increase power system
reliability. In order to achieve the best outcomes, researchers
separate the operations of the power system into three key
stages.
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∙ Grid enlargement
∙ AM
∙ System operation and maintenance

Frequently, the phrase “asset” refers to something used in
various settings, such as a model, design, system software, piece
of instruction, or verification code. Data analysts and compu-
tational experts frequently use the term “artefact” to refer to
various resources needed for model construction. Due to the
experimental nature of ML [29], which necessitates preserving
artefacts for later use, these artefacts qualify as assets in this
context. Compared to the engineering of systems using ML,
traditional software engineering frequently has fewer asset cate-
gories because it focuses exclusively on source code assets. For
instance, datasets, algorithms, model parameters, and indicators
for model evaluation are other fact categories included in ML.
It is appealing to use conventional software engineering meth-
ods in the state of the art to solve some of the issues with AM
[30] that have been highlighted. Also, explicit management tools
and procedures are used to gather, arrange, and manage assets
during model construction and after creation, which helps to
resolve various AM difficulties. In this context, AM is defined
as a crucial discipline that helps with the engineering of ML
experiments and systems [31]. The objectives of AM are to
enhance maintenance schedules, optimize asset life cycles, and
develop successful marketing plans for the acquisition of fresh
assets. This can be accomplished by creating better information
management systems that support data analysis tools, preserva-
tion, and retrieval. Moreover, predictive maintenance, network
maintenance, procurement and asset tracking, forecasting, and
decision-making are some of the outputs of these technologies.
The AM system [32] is generally classified into three types such
as:

1. Time-based
2. Activity-based

The time-based AM models [33–35] are split into short-term,
mid-term, and long-term categories. Similarly, the activity-based
AM is categorized into technical, economic, and societal types.
The primary benefits of using the time-based models are low-
ering operation costs for serving customers in a competitive
environment, optimizing the allocation of volatile and finite nat-
ural resources for leveraging company assets, prolonging the
useful life of assets through proper maintenance and opera-
tion timeframes, and raising investment costs for the creation
of fresh assets. Figure 1 shows the primary stages involved in
the ML model.

4 ML MODELS USED FOR AM IN
POWER SYSTEMS

ML [36, 37] is a kind of data analytics method that aims to
teach computers to do tasks similar to those performed by
humans and animals based on a learning process. Instead of
predetermined equations, ML algorithms [38–40] can directly

FIGURE 1 Stages of working in ML model.

“learn” information from the given data using computational
techniques. They can also improve themselves adaptively as
more data becomes available. ML analyses can use guidelines
and several algorithms to produce conclusions and accurate pre-
dictions. ML must be carefully designed and programmed to
accomplish various capabilities, such as classification, sorting,
and analysis. ML and deep learning [41, 42] as a specialized
field have shown promise in numerous fields of engineering and
study during the past ten years. Moreover, the ML techniques
[17, 43] are categorized into the following types:

1. Supervised learning
2. Unsupervised learning
3. Reinforced learning
4. Ensemble learning

The goal of supervised learning [44, 45] is to discover a
mapping between inputs and outputs using a labelled set of
input/output pairs in a training set with a large number of train-
ing samples. Unsupervised learning is a subset of ML paradigm,
in which an algorithm is trained using data that has neither been
classed nor given a label so that the system can group the data
based on how similar or different it is. Typically, the unsuper-
vised learning algorithms [46] are more unpredictable than other
natural learning techniques and can handle more sophisticated
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FIGURE 2 ML framework in power system.

tasks better than supervised learning algorithms. Cluster analy-
sis is one of the most popular unsupervised learning techniques,
which involves discovering hidden patterns or groups in data
during exploratory data analysis. Furthermore, reinforcement
learning (RL) is a type of learning [47] in which an agent con-
nects with its surroundings and adapts its behaviour in response
to the stimuli it receives. The RL is distinct from supervised
learning in that it does not call for labelled input/output pair-
ings; instead, the agent is awarded or docked based on how it
behaves in the environment. Hence, RL [7, 48] enables the agent
to autonomously determine behaviours that are impossible with
supervised or unsupervised learning. Compared to a single ML
algorithm, an ensemble of methods is more effective, using mul-
tiple ML algorithms to enhance the prediction performance. In
contrast to individual-based learners, ensemble learning creates
a group of hypotheses that are combined and utilized to resolve
a single problem. In the paper [49], a hierarchical deep learning
machine is applied to predict the transient stability of the power
systems. This paper validates the computational effectiveness of
various deep learning algorithms in terms of processing time,
response time, computational complexity, and memory usage.
A back-propagation artificial neural network (BP-ANN) tech-
nique was used by Trappey et al. [50] to create an intellectual AM
system. This work’s primary objective is to assess transformer
problems under various operating circumstances. Here, using a
feature selection technique based on principle component anal-
ysis (PCA) decreases the number of important components.
Figure 2 shows the typical model of the ML framework used
in the power system applications. The electric power system
is being updated to support a sustainable energy system [51].
As an integrated energy system component, the generation,

delivery, and use of electricity present both opportunities and
challenges. This entails updating current power infrastructures
and new types of electricity usage, such as demand response and
mobility. The power generation trend is toward new, small-scale,
and large-scale advancements, such as offshore wind turbines
and roofing solar panels. As society becomes more digitalized,
new options for automation and control, as well as new busi-
ness models and energy-related services, are being created. New
options for measurement and control are the general trend for
technological advancements. As an illustration, consider pha-
sor measurements units (PMUs), which can monitor voltage
and current up to 30–120 times per second and are typically
found in the transmission network. Others include smart meters
installed at the consumer’s home, which allow for the integra-
tion of home-scale power generation from solar panels, energy
storage from electric vehicles, and general distributed control
of energy use. The development of diagnostic assessment tech-
niques for evaluating the insulation quality and estimating the
useful life of physical assets and innovative approaches for con-
dition monitoring, such as employing sensor networks, are two
further trends. The general growth of these several tendencies
is toward the handling and analysis of massive volumes of data,
and another idea gaining popularity is referred to as “Big Data,”
which offers new tools for infrastructure asset management.

4.1 Support vector machine (SVM)

Support vector machines (SVMs) are crucial to learning theory
[52]. They work rather well for a lot of scientific and engi-
neering applications, especially when it comes to classification
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FIGURE 3 Separation of hyperplane in SVM.

problems. Among these techniques, support vector machines
(SVM) are among the most widely used to improve the expected
result. SVM’s outstanding prediction accuracy, optimal judg-
ment, and discriminative capabilities have recently piqued the
interest of data analysis, information processing, and machine
learning communities [53]. Furthermore, the SVM outper-
forms other supervised learning strategies in real-world binary
classification problems, demonstrating its strength. The deci-
sion functions are automatically produced from learning data
using SVM to maximize the margin (distance) between deci-
sion borders in a big region known as the subspace. To
put it another way, there are significant differences between
SVMs and the classification capabilities of other techniques,
mainly when there are few input data points. This classifica-
tion approach decreases the training data’s prediction error, and
better generalization performance is obtained. SVMs [54] are
a powerful tool for data classification and predictive analysis.
During the learning phase, SVMs get a subset of support vec-
tors, which is frequently a tiny percentage of the original data
set. This tiny bit of data creates a set of support vectors reflect-
ing a particular classification issue. It specializes in processing
numerical data and making well-suited choices for continu-
ous monitoring variables such as voltage levels, temperature,
and pressure, commonly found in asset management scenarios.
Figure 3 displays the hyperplane separation model of the SVM
approach.

4.2 Naïve Bayes (NB)

The construction and analysis of massive data can be done using
the NB model [55]. This technique is an extremely smart and
simple classification system that excels even in challenging situa-

tions. It is a straightforward probability classifier that determines
a set of probabilities by estimating the frequency and varia-
tions of values found in a particular data set. By considering
the value of the class variable, the algorithm applies Bayes’ the-
orem and assumes that all parameters are unbiased. The method
typically learns quickly in various controlled classification prob-
lems despite this conditional independence assumption being
considered naive because it is rarely true in real-world appli-
cations. Balaraman, et al. [56] utilized several ML models for
effective AM and fault diagnosis. This paper aims to categorize
the type of transformer faults based on the prediction result
of the classifier. Toubeau, et al. [57] developed a new data-
driven methodology for improving the maintenance activities
of grid assets. Moreover, the authors used different classifica-
tion approaches, such as the Bayesian model, SVM, DT, etc., to
solve the prediction problem.

4.3 Artificial neural network (ANN)

Artificial neural networks are a framework that many machine
learning techniques employ to interpret complex input data.
Artificial neural networks (ANNs), a popular machine learn-
ing tool, are modeled after the biological neural network seen
in the human brain. Feed-forward neural networks, which pro-
cess inputs from artificial neurons in the layer below and send
the weight values of each input neuron as output to the layer
above, are ANNs that are often utilized. Regression analysis,
linearization, and prediction are only a few applications for
artificial neural networks [58, 59]. As seen in Figure. 4, the fun-
damental unit of an artificial neural network is a neuron that
applies a transfer function to the output formulation. The main
advantage of ANN models is that they are less challenging to
deal with in multivariate situations. The backpropagation algo-
rithm is the most frequently used MLP training technique. To
lower error, this adjusts the weights of the neurons. This model
does quite well when learning patterns. While the system may
readily adapt to new data values, it may show signs of gradual
convergence and even reach a local optimum. The number of
layers and neurons in the hidden layer and their connectivity are
important considerations. The artificial neural network’s perfor-
mance is heavily reliant on these variables and problems. Any
one of these components could drastically change the results.
Different ANN architectures will yield different results for dif-
ferent problems. However, trial and error is necessary to obtain
the optimal ANN architecture. Abu-Elanien et al. [49] used
a feed-forward artificial neural network to analyze the health
index-based state of the power transformers. High-risk ele-
ments are identified, and the health index is computed using
AM mainly to extend the life of power transformers. It requires
large, diverse datasets that encompass both numerical and cate-
gorical data. Their strength lies in modeling complex non-linear
relationships, making them ideal for forecasting tasks, including
energy consumption and load patterns. The ability to process
a mix of time-series data and static asset characteristics allows
ANNs to offer comprehensive insights into asset performance
and future behavior.
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FIGURE 4 ANN architecture.

4.4 Extreme gradient boost (XGB)

XGBoost is a highly scalable ensemble of decision trees based
on gradients [60]. By decreasing a loss function, XGBoost cre-
ates an additive expansion of the decision variables, much as
gradient boosting. The ensemble method is the foundation for
this supervised machine learning algorithm, which enhances the
gradient-boosting methodology. Through additive techniques,
the XGBoost algorithm [61, 62] constructs an efficient learn-
ing model by averaging the predictions of base learners. The
XGBoost classier solves the overflow problem and maximizes
the use of computational resources and is fast and efficient.
Regularisation and predictive terms can be integrated with the
benefits of the objective functions, which are simplified to
enable parallel execution during the training phase. XGB per-
forms well with organized, tabular data, particularly excelling
in scenarios where feature selection is critical to the analysis. It
is capable of handling missing values and identifying the most
relevant features for models, making it invaluable for risk assess-
ment and life-cycle analysis of power system assets, where data
can often be incomplete or unevenly distributed.

4.5 Random forest (RF)

As opposed to using a single classifier, ensemble classification
methods build a group of classifiers. They then use a vote of
the predictions from those classifiers to categorize new data
points. The set of classifiers with tree structures makes up the
Random Forest (RF) classifier [63, 64]. It is an improved form
of bagging in which randomness has been incorporated. Each
node is divided using the best split among a subset of predic-
tors that were randomly selected at a certain point, as opposed
to using the best split across all variables. The original data
set is replaced, a new training data set is produced, and a tree
is developed using random feature selection. This tactic gives
unmatched RF precision. Moreover, RF is quick, resistant to

overfitting, and allows users to build as many trees as desired.
Furthermore, RF [63, 65] is a hierarchical grouping of base clas-
sifiers with a tree topology. For the classifier model, just a few
significant attributes are informative. The RF algorithm uses
a straightforward predefined probability to choose the most
crucial considerable property. Breiman [66] developed the RF
technique by mapping a random sample of feature subspaces
to sample data subsets and building multiple decision trees.
Figure 5 shows the architecture model of RF.

4.6 Decision tree (DT)

With rectangles for the core nodes and oval tracks for the leaf
nodes, a decision tree [67] is a tree structure that resembles a
flowchart. It is the most widely used algorithm because it is eas-
ier to create and understand than other classification algorithms.
Decision tree classifiers attain equivalent, and sometimes even
higher, accuracy than other classification algorithms. Decision
tree implementation can be carried out sequentially or concur-
rently, depending on the volume of data, the amount of memory
that is available on the computer resource, and the scalability
of the algorithm. Every node in a decision tree [68] represents
an attribute, every connection denotes a choice, and every leaf
shows the result (continuous or categorical value). Decision
trees mimic how humans think, making it incredibly simple to
collect data and derive insightful conclusions. The goal is to pro-
cess a single result at each tree leaf created by organizing the
data in this manner [69]. The decision tree explicitly lists every
possible option and tracks each one through to completion in
a single display to make it easier to compare the many options.
Transparency is one of the best aspects of the Decision Tree.
Another significant advantage is the ability to select the most
biassed feature and comprehensibility nature [70, 71]. It is also
easier to categorize and understand and works better with dis-
crete and continuous data sets. Decision trees can efficiently use
feature parts and continuous screening for precise prediction
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FIGURE 5 Architecture of RF.

FIGURE 6 DT architecture.

results. It offers the flexibility to handle both numerical and
categorical data efficiently. This characteristic is beneficial for
developing decision support tools that guide maintenance and
operation decisions. The DT architecture model is displayed in
Figure 6.

4.7 Logistic regression (LR)

A linear model lays out the connection between one or more
independent variables [72, 73] and a dependent predicted value.
If the labels are known, supervised learning is the phrase used in
ML to describe mapping qualitative or quantitative input quali-
ties to a target variable that is being intended to be predicted,
such as economic, biological, or sociocultural data. Logistic
regression is one of the most often used linear statistical models
for multiple regression. Figure 7 shows the typical architecture

FIGURE 7 Architecture of LR.

model of LR, which demonstrates that the LR can predict the
output label according to the weight values of the input data.

4.8 Fuzzy logic (FL)

The conclusions generated by fuzzy logic are identical to those
produced by human vision and reasoning. It has been demon-
strated that fuzzy logic works effectively in expert systems. The
construction of fuzzy sets, which range from 0 to 1, aids in
deciding whether a member belongs to the set. It is employed
when making decisions under ambiguous circumstances. Fuzzy
logic calculates the problem’s degree of confidence, and its
algorithms are reliable and flexible enough to adapt to shift-
ing conditions. Fuzzy logic was used by Arshad and Islam
[74] to enhance the AM procedures in power transformers. An
AM strategy is primarily used to calculate power transformers’
age (retirement/replacement) to reduce failure rates. The aging
effect can be calculated during this process based on the power
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FIGURE 8 Architecture of FL.

transformers’ dependability, lifespan, and performance rate. In
this case, the fuzzy logic technique supports the AM system’s
dependability, availability, and efficiency. Additionally, it aids in
extending life and managing power transformers with higher
dependability measures. The typical architecture of fuzzy logic
is shown in Figure 8. In the paper [75], the risk assessment for
the ideal AM strategy in the power distribution systems uses
a fuzzy logic model. They include economic, environmental,
safety, regulatory, vulnerability, and risks related to supply qual-
ity and supply chain vulnerability. The production of inference
rules, fuzzification, and defuzzification are the three main work-
ing phases of the fuzzy logic system. Here, the AM is mainly
carried out to estimate the risk variables that could have an
impact on the operation system as a whole.

Looking ahead, a viable path toward improving asset man-
agement in power systems is the incorporation of symbolic
data into machine learning models. Symbolic data, such as
operational statuses, maintenance records, and safety codes,
encapsulate qualitative information that can provide deeper
context and insights into the health and performance of power
system assets. For instance, symbolic data can enhance model
predictions by directly incorporating expert knowledge and
regulatory standards into the analytical process.

Considering symbolic data requires methodologies capable
of interpreting and processing this form of information along-
side traditional numerical and categorical data. Techniques such
as symbolic regression, logic-based AI models, and hybrid
approaches that combine symbolic reasoning with conventional
machine learning could be explored. These methodologies can
uncover patterns and relationships that purely numerical data
might not reveal, leading to more holistic and robust asset
management strategies.

5 RESULTS AND DISCUSSION

As shown in Table 1, some of the recent state-of-the-art model
approaches used for AM in power systems are reviewed, as well
as their pros and cons.

Perhaps the most challenging aspect of AM is coming up
with predictions with the highest level of accuracy feasible to
serve as the basis for distribution networks and long-term plan-
ning systems. Data-driven intelligent systems (AI) are defined as
a collection of techniques and algorithms that use approaches
from statistics to learn from, project, and make choices that
depend on the construction of models from a set of data. These
techniques embrace deep learning and evolutionary algorithms,

which are not solely based on the work of data researchers or
statistical experts in the past. Using different data-driven intel-
ligence algorithms to develop predictive maintenance policies
and skills helps to improve scheduled maintenance to avoid
breakdowns and safeguard associated costs. Before implement-
ing data-driven AI methods, a historical deterioration set of
information needs to be gathered. Moreover, it is challenging to
provide general adaptive maintenance support due to the intri-
cate nature of the numerous assets in terms of data sources,
knowledge, and information available. To exchange and exploit
knowledge in a domain, taxonomy are detailed formal descrip-
tions of ideas and attributes of features in a specific domain.
This literature review concludes that numerous machine learn-
ing and deep learning approaches have been established in
earlier studies for asset management in power systems. Based
on the findings, it is evident that most conventional systems
suffer from issues related to interpretability, resource collec-
tion complexity, erroneous consequences, the inability to handle
large-dimensional data, and high risk. Also, integrating AI-based
approaches into existing workflows requires careful planning to
avoid operational disruptions. Thus, the proposed work aims to
create an effective and lightweight learning algorithm for asset
management in power systems.

5.1 Green grids

The transition of the electricity grid, often referred to as the
“green grid,” represents a shift towards energy solutions. This
shift is driven by concerns about climate change and the desire
for energy systems. In addition to sustainability, there is also a
focus on cost-effectiveness and efficient use of resources. In this
context, infrastructure asset management technologies provide
avenues for grid operation and maintenance [97]. Advance-
ments in technology, such as phasor measurement units (PMUs)
in transmission grids and widespread usage of meters at con-
sumer endpoints, enable the integration of distributed energy
resources like solar panels, electric vehicles, and energy stor-
age systems [98]. Additionally, artificial intelligence (AI) and
machine learning (ML) are playing roles in making the grid
greener by enabling maintenance, optimizing energy distribu-
tion, managing demand-side resources effectively, and refining
diagnostic assessment techniques used to evaluate insulation
quality and predict the lifespan of physical assets [99]. Integrat-
ing AI and ML in the grid allows for more efficient and effective
management of energy resources. ML algorithms can analyse
large amounts of data collected from PMUs and other sensors
to optimize energy distribution and detect real-time anomalies.
These algorithms can also be used to refine diagnostic assess-
ment techniques, such as evaluating insulation quality, which
can help predict the lifespan of physical assets [100]. By lever-
aging AI and ML, the grid can be operated more intelligently,
improving reliability and efficiency. Additionally, the adoption
of modern condition monitoring mechanisms, like sensor net-
works and the subsequent influx of data they generate, have
underscored the significance of “Big Data” analysis.
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6 DISCUSSION

An extensive literature review shows that machine learning and
deep learning approaches are gaining significant traction in
addressing various asset management challenges within power
systems. Considering the surge in development and interest
across diverse ML applications, the electric power industry
benefits substantially from integrating ML technology. In this
study, we conducted a comprehensive review of the existing and
potential applications of ML in asset management and power
system protection. Our analysis encompassed a quick overview
of machine learning research publications within the power
systems domain and the popularity of machine learning tech-
niques in the last 5 years. Various machine learning techniques
have been thoroughly researched to tackle the technological
complexities inherent in different power system application
domains. It becomes evident that ML becomes an indispens-
able paradigm shift when substantial amounts of data exhibiting
suitable spatial and temporal diversity are made available. In
such cases, ML intelligence possesses the capability to offer
valuable insights and informed decisions solely based on the
input data, surpassing the limitations of traditional model-
based or analytical approaches. Additionally, we identified ML’s
potential in exploring opportunities in scenarios where certain
phenomena remain unidentified and conventional modelling
methods prove impractical. This paper provides a comprehen-
sive summary of the adopted machine learning approaches,
outlining the input variables and performance indicators and
the associated benefits and drawbacks. Based on these justifi-
cations, ML can significantly enhance power system protection
and condition monitoring, leading to instant diagnostics and
reduced operating costs while simultaneously prolonging the
lifespan of critical electrical components. Furthermore, the con-
tinuous advancement of sophisticated computing systems and
cutting-edge technological progress in the field of comput-
ing encourage the integration of intricate and computationally
demanding algorithms. These innovations effectively address
various academic and engineering challenges, positioning pow-
erful machine learning technologies as promising tools for
efficient asset management within power systems. As we con-
clude this study, it is evident that the application of machine
learning in power systems holds immense potential for future
research prospects. Embracing this technology promises to
enhance asset management practices further, thereby opti-
mizing power system operations and contributing to a more
sustainable and reliable energy landscape. By continuously
exploring and harnessing the capabilities of ML in the power
sector, we can truly unlock novel opportunities to shape the
future of efficient asset management in power systems. AI has
made it possible for advanced asset management to more effec-
tively interpret business objectives into decisions concerning
the acquisition of assets, analytics for tracking the performance
of assets, forecasting and restricting operations, planning the
supply chain, replacement components optimization, and final
stages of life asset management.

Integrating AI-based AM systems into existing infrastructure
and workflows at scale presents several challenges, including
ensuring data quality and availability, seamless integration with
legacy systems, scalability, security, and privacy, and addressing
the skill gap among the workforce. To overcome these hur-
dles, organizations can adopt a multifaceted approach. First,
establishing robust data governance frameworks can enhance
data quality, while modular and API-driven integration strate-
gies can facilitate the incorporation of AI functionalities into
existing systems without significant disruptions. Scalability
can be achieved through cloud computing and scalable AI
architectures, ensuring the system can handle growing oper-
ational demands. Addressing security and privacy concerns
is critical, requiring the implementation of robust security
protocols and adherence to regulatory standards to protect
sensitive data. Finally, addressing the skill gap by investing in
training programs for existing employees and fostering part-
nerships with educational institutions can equip the workforce
with the necessary skills for AI implementation. By tack-
ling these challenges head-on, organizations can effectively
integrate AI-based asset management systems, improving effi-
ciency and decision-making without adding undue complexity
to operations.

7 CONCLUSION

The overall review of the study indicates that AM has become
a crucial component in the ever-changing electric power mar-
ket environment. The power industry constantly changes due
to environmental, socioeconomic, and technical variables. This
study focused on transmission and distribution assets, including
power converters, grids, security protocols, intermediate sys-
tems, and structural components. It also extensively explored
various ML strategies and their respective benefits and draw-
backs. The significance of maintenance tasks and adherence
to asset management guidelines were underscored as crucial
elements in ensuring electrical equipment’s functioning stabil-
ity and lifespan prediction. These factors play a vital role in
enhancing the overall efficiency of power system networks.

While this study focused on exploring the potential of ML,
for future research, applying machine learning algorithms along-
side appropriate asset management policy frameworks holds the
promise of achieving optimal asset management and system
performance. Moreover, we discover that deep learning meth-
ods present a viable path for power system applications due to
their reduced complexity and increased efficiency. The power
industry can benefit from enhanced asset management proce-
dures and enhanced decision-making processes by utilizing deep
learning capabilities. To support the power sector in its goal
of efficient asset management, we must keep investigating and
developing ML-based strategies. By doing this, we can ensure
sustainable, dependable, and effective energy networks for the
future while fostering resilient power systems that satisfy the
changing demands of a changing world.
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There are several interconnected issues facing the electrical
industry AM in light of rising temperatures, aging infrastructure,
and growing dependability needs. These include:

∙ Need for prioritizing assets to maximize performance while
limiting costs and risks across the entire energy production,
distribution, and dissemination chain.

∙ A notable rise of in asset management.
∙ Restricted human and financial assets.
∙ Potential advantages of the use of new techniques existing in

the current state-of-the-art to assist asset management.

To resolve these problems, a detailed assessment of the influ-
ence of Industry 4.0 tools on the AM of electrical industries can
be conducted. It is evident that the following are the primary
tools that would enable the energy generator, transmission sup-
plier, and power suppliers to apply an integrated AM model and
surpass AM issues:

∙ Computerized modelling and training of the whole intricate
reliability of the system, which takes into account.

∙ The remaining life expectancy of getting older supplies.
∙ Failure planning.
∙ Adverse conditions and resilience to disturbances.
∙ The predictive maintenance techniques are integrated.
∙ Machine learning algorithms based on appropriately struc-

tured data from these three functions’ apparatus and systems
are integrated to enhance simulation models.

∙ Assets are ranked depending on the safety index calculation’s
use of suitable methods.

These components can concentrate resources on vital infras-
tructure and machinery while limiting the use of limited assets.
In the future, we plan to prioritize maintenance tasks by
optimizing asset replacement using simulation models.
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