
*Corresponding author. E-mail: munoz@iit.upco.es
1Antonio Mun8 oz was partially supported by the Spanish Ministry of Education (FPI Program) during

the execution of this work.

Neurocomputing 23 (1998) 177—194

An incipient fault detection system based on the probabilistic
radial basis function network:

Application to the diagnosis of the condenser of a coal
power plant

A. Mun8 oz*,1, M.A. Sanz-Bobi
Instituto de Investigacio& n Tecnolo& gica, Universidad Pontificia Comillas, Alberto Aguilera 23, 28015 Madrid,

Spain

Received 3 January 1998; accepted 15 July 1998

Abstract

This paper introduces the probabilistic radial basis function network (PRBFN) and a new
incipient fault detection system based on it. The PRBFN is a neural network model able to
estimate I/O mappings and probability density functions. These capabilities play a crucial role
in the design of the proposed fault detection system, where faults are detected by comparing the
actual behaviour of the plant with the predicted using a model of normal operation conditions.
Once the reliable domain of the model has been defined, a comparison is made through a local
estimation of the upper bound of the resulting residual under normal operation conditions. This
procedure automatically adjusts the sensitivity of the fault detection system to the intrinsic
characteristics of the underlying process and prevents false alarms by detecting unknown
operating conditions. ( 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

The diagnosis of industrial processes is very important for increasing the security,
reliability and availability of the different components involved in the production
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scheme. It includes the tasks of fault detection, isolation, identification and accommo-
dation. This paper is devoted to the first task, introducing a new incipient fault
detection method based on a connectionist characterisation of the normal behaviour
of the components under study in an industrial process.

This characterisation is based on analytical redundancy and takes the form of
a dynamic black-box model using the PRBFN as function approximator. The model
is trained to predict the evolution of a particular set of output variables as a function
of another set of input variables. Both types of variables are obtained from files of
their real measurements. Fault detection is then performed by comparing the pre-
dicted outputs with the measured ones. This model-based approach to fault detection
is significantly improved by the definition of the reliable domain of the model and by
the local estimation of the residuals upper bounds.

The first part of this article will introduce the structure and learning strategies of the
probabilistic radial basis function network (PRBFN). The second part will be devoted
to the description of the proposed incipient fault detection method. Finally, the
proposed fault detection system will be tested on a real-world problem: the diagnosis
of the condenser of a coal power plant.

2. The probabilistic radial basis function network (PRBFN)

2.1. Structure

The probabilistic radial basis function network (PRBFN, see Ref. [18]) is an
extension of the general regression neural network (GRNN) proposed by Specht [28].
Given an input vector x3Rn, and a scalar “desired” output variable d3R, the
expression
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can be used as a function approximator of the I/O mapping xPd by applying the
general regression principle:
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Fig. 1. Structure of the PRBFN.

where the activations a
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are given by

a
i
(x)"A

n
<
k/1

1

J2pDp
ik
DBexpA!

n
+
k/1

1

2p2
ik

(x!r
ik
)2B. (3)

An estimation of the input vector pdf can also be obtained by integrating Eq. (1):
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Eqs. (2)—(4) can be structured as a two-layered neural network, giving rise to the
PRBFN structure as shown in Fig. 1.

2.2. Learning strategies

Depending on the learning strategy (cost function) used to train the network, the
PRBFN can be used in three different ways:

(a) as a function approximator of the I/O mapping xPy,
(b) as an estimator of the input vector pdf p(x),
(c) as both, a function approximator and a pdf estimator.

In all three cases, a low-memory quasi-Newton method will be used to minimise a cost
function defined over the training set. Cross-validation with a different validation set
will be used as stopping criterion during the optimisation procedure.

(a) ¹raining a PRBFN as a function approximator. Given a training set M(x[i], d[i]),
i"1,2, NN, the free parameters of the network (weights) are initialised in the same
way as a standard RBFN [17]: a clustering algorithm (k-means) is applied in order to
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distribute the centres r
i
on the input space, the p-nearest-neighbour heuristic (with

p"2) is used to initialise the widths r
i
, and the LMS algorithm estimates the initial

values of v
i
. The cost function minimised during the learning phase is the mean

squared error (MSE)
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where y[i] is the response of the PRBFN to the input pattern x[i] (the pdf output of
the network is not used in this case).

(b) ¹raining a PRBFN as a pdf estimator. In this case the only parameters that need
to be adjusted in each hidden unit are r

ik
and p

ik
. These weights are initialised as in the

previous case, and adjusted by the maximisation of the log-likelihood [9,29]:
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(c) ¹raining a PRBFN as function approximator and pdf estimator simultaneously.
The weights of the network are initialised as in the first case. The simplest way to use
a PRBFN as both, a function approximator and an input vector pdf estimator, is to
perform the training in two phases: in the first phase the weights r

ik
and p

ik
are

adjusted to maximise the log-likelihood », and in the second phase the weights v
i
are

obtained by LMS. However, if the estimation of the I/O mapping, xPy is considered
to be more relevant than the estimation of p(x), a better model can be obtained by the
minimisation of the cost function
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where j is a control parameter of the trade-off between the two objectives (R and »).

3. Incipient fault detection system

3.1. Principle of operation: Analytical redundancy

Many fault detection methods have been previously described in the literature. The
simplest and most frequently applied one is the limit checking of individual plant
variables. This method has two important drawbacks [8]: (1) the check thresholds
have to be set rather conservatively in order to cover all the normal operating
conditions and (2) the fault isolation task becomes very difficult because a single-
component fault may cause many plant variables to exceed their limits.

Another important kind of fault detection methods are the statistical ones. An
example of these methods is the application of quality control techniques [3,16] to the
statistical characterisation of the normal behaviour of the plant components (see for
example Ref. [25]). The main limitation of this approach is the lack of flexibility of the
proposed statistical models. The pattern recognition approach can be considered as
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2We have restricted ourselves to multiple inputs single output (MISO) models for simplicity. However,
the detection of different faults may require the generation of multiple residuals, leading to multiple inputs
multiple outputs (MIMO) models, or multiple MISO models.

Fig. 2. Structure of an analytical redundancy based fault detection system.

another statistical method. This method solves the fault detection problem as a classi-
fication task, where the feature vectors describing the dynamic state of the process are
mapped onto the space of possible faults (“normal condition, faultd1, faultd2,2”).
The practical implementation of this mapping requires the availability of a fault
dictionary including the description of the behaviour of the process (in terms of feature
vectors) under the considered faults. Many classification algorithms may be applied
for this purpose (as the Bayes classifier [6] or the K-nearest-neighbour algorithm [2]),
but the most “popular” ones during the past 10 years have been based on artificial
neural networks (ANN) [4,10—12,30]. The performance of a fault detection system
based on pattern recognition techniques is directly related to the quality of the fault
dictionary. This database can sometimes be obtained by accessing a historical record-
ing or by simulation, but in practice it usually represents a serious bottleneck.

For this reason an increasing predominance of analytical redundancy methods in
fault detection systems has been observed (see [1,5,7,19—21,23,24]). These systems
perform the fault detection task in two steps (see Fig. 2): residual generation and
decision making.

Residuals are quantities that represent the inconsistency between the actual plant
variables and the predicted ones by a mathematical model of the normal condition
operation of the plant. They are computed from the plant variables (sensor outputs)
and are ideally zero in the absence of anomalies. When particular faults occur, the
residuals deviate from zero in characteristic ways. The decision maker is in charge of
analysing the degree of significance of the residuals in order to determine if a fault has
occurred.

A very common choice for the residual generator is a dynamic model of normal
condition operation which predicts the evolution of one of the observed plant
variables2 (the output of the model) as a function of the evolution of a subset of the
other observed plant variables (the inputs of the model). The corresponding estimation
error may be used as a residual (see Fig. 3).

Most of the published applications of analytical redundancy methods make use of
linear normal condition operation models, in the form of state equations or transfer
functions, with an additive model for the treatment of faults. Under these circum-
stances, it is possible to define three different strategies for the generation of the
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Fig. 3. Model of normal condition operation based residual generator.

residuals: parity equations, the diagnostic observer and the Kalman filter (see Ref. [8]
for a survey on these methods).

In the general case of non-linear plants, two possible choices for the model of
normal condition operation may be considered: physical or white-box models and
black-box models. In the first case, physical laws are applied in order to link the plant
variables. All the parameters of the model equations have a physical meaning so their
values may be obtained from technical specifications, direct measurement or param-
eter estimation. However, it is not always practical to use physical models due to
two main reasons: the complexity of the underlying processes and the unavailability of
“reliable” design data. Black-box models are statistical tools able to characterise
input/output relationships by means of a function approximator. As opposed to all
the external variables of the model (inputs and outputs) which are physical variables,
its internal variables and its free parameters may not have a direct physical interpreta-
tion. The black-box model of normal condition operation is adjusted with a set of
input/output observations representative of the normal behaviour of the plant.
A great amount of research devoted to ANN in the recent years has led to the
extension of classical system identification techniques [14] to the non-linear case
[15,27], with the use of supervised ANN [22] as function approximators.

The proposed incipient fault detection system is an analytical redundancy based
system,. using supervised ANN’s as function approximators in the model of normal
condition operation and connectionist models also in the decision maker.

The first step in the development of a diagnosis system is the representation of the
industrial process to be supervised as a hierarchical set of functional units or compo-
nents. The depth of this representation will depend on the complexity of the process
and the desired degree of detail in the diagnosis. A particular fault detection system is
dedicated to each component, simplifying the fault isolation task.

The only indispensable requirement for the application of the proposed fault
detection system is the availability of a continuous data acquisition system in charge
of the periodic sampling of the variables representative of the state of the component.
The existence of implicit redundancies among these variables is the basis of the
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methodology. A set of variables MX
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state of the component, if under normal operation it is possible to define a set of parity
equations or parity relations of the form
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expressing the links between different lags of the state variables X
j
, and such that in

the presence of one of the faults to be detected at least one of the parity relations is not
satisfied.

In the case of static processes, the relations G
i
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variables corresponding to the instant of time. In the case of dynamic processes,
different lags of the state variables will be linked by the parity equations.

Each relation G
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can be used as residuals for diagnostic purposes. The set of equations given by Eq. (3),
for i"1,2, m, define the model of normal condition operation of the component. The
most general dynamic model represented by Eq. (3) is the non-linear autoregressive
moving-average model with exogenous variables (NARMAX).

3.2. Structure of the fault detection system

3.2.1. Model of operation under normal conditions
Let us assume that the model of normal condition operation of the component

under study has a single output (only one parity relation). In that case, the model of
normal condition operation can be expressed as

y[k]"f (dMk~1N, uMkN, eMk~1N)"f (x[k]), (12)

where x[k]3Rn is the input or regressor vector at time k, containing the appropriate
lagged values of the different variables identified as relevant by the non-linear system
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identification procedure. The residual is then obtained from the comparison of the
actual measured output d[k] with the above estimation:

e[k]"d[k]!y[k]. (13)

Once the residual has been generated, the proposed decision-making procedure is
equivalent to the application of the rule:

“If the absolute value of the residual is significantly high and the prediction y[k] is
reliable, then conclude that there is a fault in the component”.

The application of this rule requires the quantitative definition of the two concepts:
the reliability of a prediction and the degree of significance of a residual (the same
concepts are considered in Ref. [13], but quantified in a different way).

3.2.2. Reliable domain of the model
In order to quantify the reliability of a prediction, we have to consider the nature of

the proposed model of normal condition operation. This model is a black-box model
which is the result of the fitting of a function approximator to a set of samples of the
input/output relationship (the training set). The estimation will hence be reliable inside
the region of the input space XLRn represented by the input samples of the training
set. This region of the input space will be called the reliable domain of the model. The
proposed method for delimiting the reliable domain of the model is based on the
PRBFN estimation of the probability density function (pdf) of the input vector in the
training set. Let p

x
[k] be the estimated pdf of x[k]. High values of px[k] indicate

a good representation of the environment of x[k] in the training set, and hence a good
characterisation of the residual e[k] under normal condition operation in the same
environment. Low values of px[k] would indicate a poor representation of the actual
input vector x[k] in the training set and therefore a low level of reliability on the
estimation y[k]. By defining an extrapolation lower bound p

.*/
, we will consider as

unknown all input vectors x such that p(x)(p
.*/

. The region of the input space
satisfying p(x)'p

.*/
will be taken as the reliable domain of the model.

3.2.3. Degree of significance of the residuals
In order to quantify the degree of significance of the residual e[k], we propose to

estimate the standard deviation (s
e
[k]) of the residual as a function of the input vector

x[k]. The output layer of the PRBFN used to estimate p(x) can be used for this
purpose, by assigning its output weights v

i
to the expected residual local variances in

each cluster:
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variance:
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Fig. 4. Structure of the fault detection system.

Assuming a Gaussian local distribution of the residual in the input space under
normal condition operation, we will state that the residual is significantly high with
a confidence degree of 95% if its absolute value exceeds the residual upper bound
e
.!9

[k] given by

e
.!9

[k]"2 ) s
e
[k]. (16)

This criterion comes from the quality control theory [3,16] where it is usual to assume
a Gaussian distribution with constant mean and variance for the variable under study.
We are assuming a constant zero mean for the residual, but we are estimating its
variance as a function of the input vector x. This procedure leads to a different residual
threshold for each operating condition, adjusting the sensitivity of the fault detection
system to the underlying characteristics of the process. The estimation of the residual
standard deviation will also be reliable inside the reliable domain, due to the use of the
same training set for the fitting of its model (outside this region of the input space the
residual distribution is unknown).

The structure of the proposed fault detection system is shown in Fig. 4.

4. Application of the fault detection system to the diagnosis of the condenser of
a coal power plant

The condensing system of a coal power plant is simply a heat-exchange process in
which the steam exhausted from the low-pressure turbines is condensed back into
water (condensate) before being returned to the boiler (see Fig. 5). Unfortunately,
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Fig. 5. Condensing system of a coal power plant.

because of the very large amounts of low-grade heat involved, it has the potential to
seriously impair the unit efficiency if poorly designed or operated and it is the one item
in the turbine house which requiries constant monitoring. Most of the condensers are
of the surface type, i.e., tubed, with circulating water (which is drawn from the sea,
river or from the cooling tower ponds) pumped through the tube banks whilst the
exhaust steam surrounds the banks. Water has a much smaller comparative volume
than steam and a vacuum is created as the steam condenses, allowing the steam to
expand down to a very low absolute value and enabling more energy to be extracted,
thereby improving the cycle efficiency [31].

4.1. Model of normal condition operation: Estimation of the back pressure

The low back pressure (vacuum) created inside the condenser by the cooling water
is a key issue for the cycle efficiency. This variable will be taken as the output variable
of the model of normal condition operation of the condenser. In order to maximise the
unit efficiency, operating nomograms are used to determine target back pressure
values as a function of the plant load and the cooling water temperature. These two
variables will be taken as input or explanatory variables of the model of normal
condition operation, which takes the form

PK "f (¸, ¹), (17)

where PK is the estimated back pressure (in mbar), ¸ is the plant load (in MW) and ¹ is
the input cooling water temperature (in °C). It is important to note that this model is
not a physical or thermodynamic model of the condenser, but rather a model of its
normal operation where implicitly incorporates the control strategies established in
the power plant. The training set (used to adjust the model parameters), testing set
(used to prevent overfitting) and validation set (used to finally validate the model)
were collected from real operation data coming from a Spanish power plant owned by
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Fig. 6. Data corresponding to normal condition operation (training set).

Fig. 7. Data corresponding to normal condition operation (test and validation sets).

the electrical utility Unión Fenosa S.A. Figs. 6 and 7 are examples of the evolution of
the three variables involved in the model under normal condition operation (these
data sets were part of the training, testing and validation sets). The sampling interval is
1 min in all cases.

A PRBFN was used as function approximator in the normal condition operation
model. The model was trained with a low-memory quasi-Newton method and
cross-validation was applied in order to select the number of hidden units (10 hidden
units were selected) and prevent overfitting. The evaluation of the resulting model
under different operating conditions leads to the contour plot shown in Fig. 8. This
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Fig. 8. Contour plots of the estimated back pressure and input vector pdf.

figure also shows the reliable domain of the model obtained by the estimation of the
input vector pdf p(¸, ¹).

4.2. Model of the input vector pdf: Estimation of the reliable domain

The input vector in this case is a two-dimensional vector composed of the load of
the power plant and the input cooling water temperature. A new PRBFN with 10
hidden units was trained to predict the input vector pdf p(¸, ¹) of the same training set
used to adjust the model of normal condition operation. The weights of the PRBFN
hidden layer were adjusted by maximising the log-likelihood of the input vector
training samples (6). Fig. 8 shows the contour plot of the estimated input vector pdf
along with the input training samples.

The analysis of the distribution of p(¸, ¹) over the training set shows that 98% of
the training input vectors produce a value of p(¸, ¹) greater than 10~2. This value will
be used as extrapolation lower bound: p

.*/
"10~2. The reliable domain of the model

can then be defined as the region of the input space corresponding to p(¸, ¹)'p
.*/

.

4.3. Model of the residual variance: Estimation of the degree of significance of the
residuals

A residual will be considered as significant if its value exceeds twice the estimated
standard deviation of the model residuals. Following Eqs. (14) and (15), the output
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Fig. 9. Estimated standard deviation of the residual as a function of the input vector (L, T).

layer of the PRBFN used to estimate p(¸, ¹) will be used to predict the residual
variance s2

e
as a function of the input variables ¸ and ¹. Fig. 9 shows the resulting

residual variance estimation.
The observed relationship between the residual variance and the two input vari-

ables reveals two important phenomena: as the temperature of the cooling water
increases, the residual variance increases due to a decrease in the heat exchange
process which makes it more difficult to maintain the low back pressure. In the same
way, the residual variance also increases as the load increases, due to the correspond-
ing rise in the steam flow which tends to elevate the back pressure in the condenser.
These considerations stress the importance of a local estimation of the residual
variance, which enables the system to adjust its sensibility to the stability of the
underlying process.

4.4. Evaluation of the fault detection system under normal condition operation

The application of the fault detection system under normal condition operation is
illustrated in Fig. 10. The measured back pressure does not exceed in any case the
limits of normal condition operation, remaining very close to its estimated values.
However the system has detected an unknown operating condition which has gener-
ated a low value of p(¸, ¹). This situation corresponds to a period of high load with
low temperatures not included in the training set (see Fig. 7). These data should be
included in the training set for retraining.

4.5. Evaluation of the fault detection system under anomalous condition operation

Fig. 11 illustrates the response of the fault detection system under a fault in the
condenser vacuum system. In this case an internal fault in the condenser is detected
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Fig. 10. Application of the fault detection system under normal condition operation (testing and validation
sets): (a) normal condition operation limits; (b) estimated input vector pdf p(PG,TAC).

when the measured back pressure exceeds the normal operation limits, whereas the
input vector remains inside the reliable domain of the model (the estimated input
vector pdf is greater than its extrapolation lower bound p

.*/
).

Fig. 12 is an example of the response of the condenser fault detection system
when confronted to an external fault, located in the HP turbine. In this case the
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Fig. 11. Application of the fault detection system under anomalous condition operation (fault in the
condenser vacuum system). (a) normal condition operation limits; (b) estimated input vector pdf
p(PG,TAC).

measured back pressure also exceeds the normal operation limits, but at the same
time the estimated input vector pdf p(¸, ¹) reveals an unknown operating condi-
tion. The consideration of the reliable domain of the model allows the fault
detection system to distinguish an internal fault from an external one, preventing false
alarms.
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Fig. 12. Application of the fault detection system under anomalous condition operation (fault in HP
turbine): (a) normal condition operation limits; (b) estimated input vector pdf p(PG,TAC).

5. Conclusions

A new incipient fault detection method based on the PRBFN has been introduced
in this article. The proposed model performs the fault detection task by comparing the
actual behaviour of the plant with the predicted by a connectionist model of normal
condition operation. This comparison is made through a local estimation of the upper
bound of the resulting error, once the reliable domain of the model has been delimited.
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This procedure automatically adjusts the sensitivity of the fault detection system to
the intrinsic characteristics of the underlying process and prevents false alarms by
detecting unknown operating conditions.

The performance of the proposed fault detection system has been tested on a real
world problem: the diagnosis of the condenser of a coal power plant. The simplicity of
the model of normal condition operation used in this case has permitted to graphi-
cally illustrate the concepts of reliable domain of the model and the local estimation of
the residual variance. This system has been tested under real anomalous conditions
registered by the power plant acquisition system.
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