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On the set covering polytope:
Facets with coefficients in {0, 1, 2, 3}★
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Balas and Ng [1,2] characterized the class of valid inequalities for the set covering
polytope with coefficients equal to 0, 1 or 2, and gave necessary and sufficient conditions
for such an inequality to be facet defining. We extend this study, characterizing the class of
valid inequalities with coefficients equal to 0, 1, 2 or 3, and giving necessary and sufficient
conditions for such an inequality to be not dominated, and to be facet defining.
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1. Introduction

Let E = { e1,…,em} be a finite set, let S = { S1,…,Sn} be a given collection of
subsets of E, and let c = (c1,…,cn) be a vector of costs, where cj ≥ 0, ∀j = 1,…,n. Let
F # {1,…, n} be an index subset, F is said to cover E if 

⋃
j ∈FSj = E.

The set covering problem consists of determining a minimum-cost cover of E, if
it exists. Obviously, if 

⋃n
j =1Sj ≠ E, then the problem has no solution.

The set covering problem can be stated as

  min{ , { , } },cx Ax x n| ≥ ∈1 0 1(SC)

where A = (aij ) is an m × n matrix with aij ∈{0, 1}, ∀i, j, and 1 is the m-vector of 1’s.
This is an NP-complete problem for a general 0 –1 matrix A, and the model has appli-
cations such as crew scheduling, facility location, vehicle routing and a host of others.

We denote the set covering polytope

    P A x Ax x xI
n( ) : { , ,= ≥ ≤ ≤∈conv  integer},R | 1 0 1

and the polyhedron related to PI (A)

    P A x Ax xn( ) : { ,= ≥ ≤ ≤∈R | 1 0 1}.

Let M and N be the row and column index sets, respectively, of A.
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An inequality α x ≥ b is said to be valid for PI (A) if and only if, ∀z ∈PI (A),
α z ≥ b. It is said to be a face of PI (A) if and only if it is a valid inequality and there
exists z ∈PI (A), z integer, such that αz = b. For an n-dimensional polyhedron, the 0-
dimensional faces are its vertices. An inequality αx ≥ α0, valid for PI (A), defines a
facet of PI (A), if and only if, α x = α0 for n = dim(PI (A)) affinely independent points
x ∈PI (A). For an n-dimensional polyhedron, the (n – 1)-dimensional faces are its
facets.

Not much is known about the set covering polytope. Some of the following
classic results about it are well known. We assume throughout that A has no zero
columns or zero rows.

(1) PI (A) is full dimensional if and only if aijj
n ≥∑ = 21 for all i ∈M.

In the following, we assume that PI (A) is full dimensional.

(2) The inequality xk ≥ 0 is a facet defining inequality of PI (A) if and only if
aijj j k

n ≥∑ = ≠ 21, for all i ∈M.

(3) All inequalities xj ≤ 1 define facets of PI (A).

(4) All facet defining inequalities α x ≥ α0 for PI (A) have α ≥ 0 if α0 > 0.

(5) The inequality
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a xij j
j

n

≥
=

∑ 1
1

defines a facet of PI (A) if and only if

(a) there exists no k ∈M with akj ≤ aij ,∀j ∈N, and ∑n
j =1akj < ∑n

j =1aij ;

(b) for each k such that aik = 0, there exists j (k) such that aij (k) = 1 and ahj(k) = 1
for all h ∈M 0(k), where M 0(k) := { h ∈Myahk = 1 and ahj = 0, ∀j ≠ k, such
that aij = 0}.

(6) The only minimal valid inequalities (hence the only facet defining inequalities)
for PI (A) with integer coefficients and right-hand side equal to 1 are those of the
system Ax ≥ 1.

Statements (1) through (4) are easily seen to be true, and the proofs of (5) and
(6) may be seen in [1].

Therefore, characterizing facet defining inequalities with coefficients in {0, 1}
is a closed problem.

Other important results about facet defining inequalities of PI (A) may be seen
in [1–5]. In this paper, we are following the research guide developed in [1] and
continued in [4].

Balas and Ng [1] studied inequalities of the form α x ≥ 2, with αj = 0, 1 or 2,
j ∈N. They characterized this class of valid inequalities for the set covering polytope,
and gave neccesary and sufficient conditions for such an inequality to be minimal and
facet defining. Therefore, the study of this class of inequalities is also complete.
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Here, we will study valid inequalities for PI (A) of the form α x ≥ 3, with αj = 0, 1,
2 or 3,  j ∈N. These inequalities have been studied in [4], but the study is not complete.
We will give necessary and sufficient conditions for such an inequality to be minimal
and to be facet defining.

2. Valid and minimal inequalities of PI (A) with coefficients in {0, 1, 2, 3}

For all R # M and for all S# N, AR
S is written as the submatrix of A whose rows

and columns are indexed by R and S, and for every Q # N, M(Q) : = { i ∈M|aij = 0,
∀j ∈Q}, with M(∅) : = M.

Let α x ≥ 3 with αj = 0, 1, 2 or 3, j ∈N, be a valid inequality for PI (A). We denote

  J j N t tt j( ) { },   , , ,α α= = =∈ | 0 1 2 3

or Jt whenever the meaning is clear from the context.
To each nonempty subset S# M, an inequality α Sx ≥ 3 is associated, where

  

N j N a i S

N j N a i S

N N N N

ij

ij

3

0

3 0

1

0

= = ∀

= = ∀

′ =

∈ ∈

∈ ∈

{  };

{  };

( ).

|
|

\ ∪
N1 is a maximum cardinality set in N ′ such that ∀j, h ∈N1 ∃i ∈S with aij + aih

= 0; and the inequality is

α j
S

j N

j N

j N
=

∈











∈
∈

0

3

1

2

2 1

0

3

1

if

if

if

otherwise.

,

,

,
( . )

Notice that this inequality is not unique; with every different subset N1, different
inequalities are obtained.

Example 2.1. Consider the set covering polytope defined by the matrix

A =



























0 1 1 0 1 1 1 1
0 1 0 0 0 1 1 1
0 0 1 0 1 1 1 1
0 0 0 1 1 1 1 1
0 0 1 1 0 1 0 1
0 1 1 1 0 0 0 1
1 0 1 0 1 0 1 0
1 1 0 1 0 1 0 0

.
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The inequalities α i ii x ≥∑ = 31
6 obtained by (2.1), with the rows S= {1, 2, 3, 4} are

x x x x x x x2 3 4 5 6 7 82 3 3 3 3+ + + + + + ≥
and

2 3 3 3 32 3 4 5 6 7 8x x x x x x x+ + + + + + ≥ .

Next, we are going to prove that the inequalities (2.1) are valid for PI (A).

Theorem 2.1. An inequality α Sx ≥ 3 obtained by (2.1) is a valid inequality for PI (A),
for any S# M, S≠ ∅.

Proof. Let x ∈ PI (A), then ∀i ∈S ∑n
j =1aij xj ≥ 1. Let J = { jyxj = 1} and Ji = J > Ni ,

i = 0, 1, 2, 3. Obviously, if J3 ≠ ∅, then α Sx ≥ 3. Therefore, we may assume J3 = ∅.
Then there are three possible situations:

Car or

Car and Car or

Car and Car

( )

( ) ( ) ,

( ) ( ) .

J

J J

J J

2

2 1

2 1

2

1 1

0 3

≥
= ≥
= ≥

For every assumption, if x0 ∈PI (A) satisfies α Sx0 ≥ 3, then α Sx ≥ 3 is a valid inequality
for PI (A). u

In order to compare different inequalities with the right-hand side equal to 3, we
must define another concept of dominated inequalities.

Definition 2.1. A valid inequality for PI (A), βx ≥ 3, is dominated by γ x ≥ 3 if and
only if

    J J J J J J J J3 3 0 0 0 1 0 1( ) ( ),  ( ) ( ),  ( ( ) ( )) ( ( ) ( )).γ β γ β γ γ β β# $ Car Car∪ ∪≥

Notice that the above definition does not depend on the subset J1 itself, but only
on its cardinality. Therefore, inequality α Sx ≥ 3 obtained by (2.1) can be considered
as a unique inequality in order to compare it with those with the same right-hand side.

Theorem 2.2. Every valid inequality βx ≥ 3 for PI (A), with βj integer, j ∈N, is domi-
nated by the inequality α Sx ≥ 3, where S= M(J0(β)).

By convention, if J0(β) = ∅, S= M is considered.

Proof. By contradiction. Without loss of generality, we may assume that βj ∈{0,1,2,3}.
If J0(β) ≠ ∅ and S= ∅, then x defined byx j = 1, j ∈J0(β ), x j = 0 otherwise, satisfies
A x ≥ 1 but β x = 0 < 3, a contradiction. Therefore, S≠ ∅, and the inequality α Sx ≥ 3
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is well defined, except by the choice of the subset N1. From the definition of α S,
J0(α S) $ J0(β). Suppose there exists j1 ∈J3(α S) and j1 ∉J3(β); then x defined by
x j1 = 1, x j = 1, j ∈J0(b), x j = 0 otherwise, satisfies ax ≥ 1 and violates βx ≥ 3, a new
contradiction. Therefore, J3(α S) # J3(β).

Finally, we suppose that Car(J0(α S) < J1(α S)) < Car(J0(β) < J1(β)). This in
turn implies that Car(J1(α S)) < Car(J1(β)), but J1(α S) is a maximum cardinality set
such that ∀j, k ∈J1(α S) there exists i ∈S with aij + aik = 0; therefore there exist j1,
k1 ∈J1(β) such that j1 ∈J2(α S) and k1 ∈J1(α S), and aij1

+ aik1
≥ 1, ∀i ∈S. x  defined

by x j1 = 1, xk1
= 1, x j = 1, j ∈J0(β), and x j = 0 otherwise, satisfies Ax ≥ 1, but violates

βx ≥ 3, a contradiction. u

Next we identify those inequalities α Sx ≥ 3 that are not strictly dominated by
other inequalities of the same form (2.1). Hence, it is clear from the definitions that,
among all inequalities α Sx ≥ 3 with fixed J0, it is enough to consider those with
S= M(J0).

Definition 2.2. Given any inequality α Sx ≥ 3 with S= M(J0), we will say that the set
J0 is maximal if and only if ∀T , S such that  J JT S

0 0. verifies

  J JT S
3 3$ ,

and
(2.2)

  Car( CarJ J J JT T S S
3 2 3 2 2 3< <) ( ), ( . )≥

with either (2.2) or (2.3) strictly.

In other words, J0 is maximal if the transfer of any column from J1 < J2 to J0

requires either

• transfer some column from J1 < J2 to J3, or

• keep J3 the same and increase the number of variables with coefficient equal
to 2.

Theorem 2.3. Let α Sx ≥ 3, with S= M(J0(α S)), be the valid inequality for PI (A)
associated to S. Then α Sx ≥ 3 is not dominated if and only if J0

S is maximal.

Proof. Necessity. We prove the necessary condition by contradiction. If J0
S is not

maximal, there exists T , S such that  J JT S
0 0. , J JT S

3 3= and Car Car(( ) ),J JT S
2 2=  and

so α Sx ≥ 3 is strictly dominated by α Tx ≥ 3, a contradiction. Therefore, J0
S is maximal.

Sufficiency. We prove it also by contradiction. Suppose α Sx ≥ 3 is dominated.
There exists T # M such that α Tx ≥ 3 dominates α Sx ≥ 3, which implies that J0

T $ J0
S,

J3
T # J3

S and Car(J0
T < J1

T) ≥ Car(J0
S < J1

S), with some strict relation. But if J0
T = J0

S

and another inequality is strict, then α Sx ≥ 3 is not valid, a contradiction. Therefore,
J0

T . J0
S, and hence T , S strictly. From this we conclude that J3

T $ J3
S, so J3

T = J3
S.
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Further, since Car(J0
T < J1

T) ≥ Car(J0
S < J1

S), it is clear that Car(J2
T) ≤ Car(J2

S), con-
cluding that J0

S is not maximal, which is a contradiction. u

Example 2.2. Notice that the hypothesis S= M(J0) is very important, since in the
case this assumption is not verified, theorem 2.3 can be false. In example 2.1, the
hypothesis is not verified. In fact, the inequalities obtained with S= {1, 2, 3, 4} are
dominated by the inequality associated to S′ = M(J0) = M({1}) = {1, 2, 3, 4, 5, 6},
which is

x x x x x x x2 3 4 5 6 7 82 2 3 3 2 4+ + + + + + ≥ . ( . )

On the other hand, this inequality is not dominated because the subset J0 = {1} is
maximal, since no variable can be moved from J1 < J2 to J0 without violating either
conditions (2.2) or (2.3).

An alternative condition for an inequality of the form (2.1) not to be dominated
is developed below.

Definition 2.3. Let α Sx ≥ 3 be a valid inequality associated with S.

• A pair j, h, j ∈J1, h ∈J2, is called a 2-cover of AM(J0), if aij + aih ≥ 1 ∀i ∈M(J0).

• A trio j, h, k ∈J1 is called a 3-cover of AM(J0), if aij + aih + aik ≥ 1 ∀i ∈M(J0).

Corollary 2.1. The inequality α Sx ≥ 3, where S= M(J0), is not dominated if and only
if every j ∈J1 belongs to some 2-cover or 3-cover of AM(J0).

Proof. By theorem 2.3, α Sx ≥ 3 is not dominated if and only if J0 is maximal.
Obviously, if there exists j ∈J1

S such that j does not belong to any 3-cover or any
2-cover of AM(J0), then J0

S is not maximal.
Now, suppose J0

S is not maximal; then there exists T , S such that J0
T . J0

S,
J3

T = J3
S and Car(J2

T) = Car(J2
S). Let j ∈J0

T – J0
S. It is clear that j ∈J1

S and j does not
belong to any 3- or 2-cover of AS. u

3. Facets of PI (A) with coefficients in {0, 1, 2, 3}

Next, we address the question of which inequalities α Sx ≥ 3 are facet inducing
for PI (A). In stating the conditions for this, we will assume that PI (A) is full dimen-
sional, that is to say,

a i Mij
j

n

≥ ∀ ∈
=

∑ 2 3 1
1

  . ( . )

Every set covering polytope which is not empty may be transformed into another
polytope that satisfies (3.1). If PI (A) ≠ ∅ and violates (3.1), there exists some N′ , N,
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N ′ ≠ ∅, such that x ∈PI (A) implies xj = 1 for all j ∈N ′. Then setting xj = 1, j ∈N′,
and removing the inequalities satisfied by the assignment, we obtain a set covering
polytope that satisfies (3.1).

First, we will show some previous results which are necessary to answer this
question. These results study the number of vectors associated to 2-covers and 3-
covers which are linearly independent. In these results, we only consider the columns
in J1 and J2, so the vectors considered have only |J1| + |J2| components.

In the following, we denote nt = |Jt|, t = 0, 1, 2, 3. We begin with the study of
vectors associated to 2-covers of S.

Definition 3.1. The 2-cover graph associated with α Sx ≥ 3, GS, is defined as:

• a bipartite graph GS = (J1 < J2, D
S);

• j, k ∈DS if and only if { j, k} is a 2-cover of AM(J0).

Example 3.1. Consider the set covering polytope defined by the next matrix (the
same as example 2.1), and the inequality

x x x x x x x2 3 4 5 6 7 82 2 3 3+ + + + + + ≥

associated to S= {1, 2, 3, 4, 5, 6}, where J1 = {2, 3, 4, 5} and J2 = {6, 7}. Then the
2-cover graph associated with this inequality is the following:

0 1 1 0 1 1 1 1
0 1 0 0 0 1 1 1
0 0 1 0 1 1 1 1
0 0 0 1 1 1 1 1
0 0 1 1 0 1 0 1
0 1 1 1 0 0 0 1
1 0 1 0 1 0 1 0
1 1 0 1 0 1 0 0



























x x x x x x x2 3 4 5 6 7 82 2 3 3+ + + + + + ≥

2-cover graph

x2•
• x6

x3•
• x7

x4•

x5•

Theorem 3.1. Let GS be the 2-cover graph associated with α Sx ≥ 3, and k the number
of components of GS. The dimension of V(DS) = { Ibyb ∈DS} is Car(J1) + Car(J2) –k.

Proof. Since the vectors belonging to different connected components are independ-
ent, we can only prove the theorem for one connected component without loss of
generality.

Let υ1, υ2,…,υr be the elements belonging to J1
S, ordered such that ∀q = 2, 3,…,r

there exists utq ∈J2(q–1) with (υq, utq) ∈DS, where ∀q ≥ 2,
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J2(0) = ∅. The element utq exists because the graph is connected.
The vectors [(υq, utq]2≤ q≤ r and 

⋃ r
i =1{( υi , uj )yj ∈J2(i) – J2(i –1)} are linearly inde-

pendent and there are p + r – 1 vectors, with p = Car(J2
S).

Furthermore, since the graph is connected, there are no longer any linearly inde-
pendent vectors. u

Example 3.2. For the graph in the previous example, the following are the edges and
their linearly independent vectors obtained in the proof:

  J u k q u Dq i k k i
S

2 1 1( ) { , ,  ( , ) }− = ∃ ≤ − ∈y υ υwith 

x2•
• x6

x3•
• x7

x4•

x5•

                     Edges                                     Vectors

Next, we obtain results about the number of linearly independent vectors associ-
ated to 3- and 2-covers of S, which we will use to characterize the facet-defining
inequalities with these coefficients.

Definition 3.2. We define the 3-cover hypergraph associated with α Sx ≥ 3, as H S =
(J1, C1), with C ∈C1 if and only if Car(C) = 3 and AM(J0)IC ≥ 1; i.e. C1 are the 3-covers
of AM(J0).

Example 3.3. Shown below is the hypergraph associated with the matrix A and the
inequality (2.4) for example 2.1.

x2•

x3•

x4•

• x5

Theorem 3.2. Let D1,…,Dk be the components of GS, the 2-cover graph associated
with the inequality α Sx ≥ 3. There exist Car(J1) + Car(J2) linearly independent vectors
in GS and H S if and only if there exist k 3-covers, C1,…,Ck ∈C1 such that the k vectors
whose i th components are Car(Cj > Di), 1 ≤ i, j ≤ k, are linearly independent.

( )

( )

( )

( )

1 0 0 0 1 0

0 1 0 0 1 0

0 1 0 0 0 1

0 0 1 0 0 1
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Proof. Let D1,…,Dk1
, Dk1+1,…,Dk be the components of the graph GS, where D1,

D2,…,Dk1
 are the components which have elements in J2, and Dk1+1,…,Dk are isolated

elements.
From theorem 3.1, there exist n1 + n2 – k linearly independent vectors associ-

ated with 2-covers of S. Let Aii  be the matrix whose rows are the linearly independent
vectors from theorem 3.1 associated with the component Di , i = 1,…,k1. Without loss
of generality, Aii  may be considered to be of the form Aii = [I i

* Ei
* ], where I i

*  is a
diagonal matrix and Ei

*  is a column vector whose elements are 1’s and – 1’s: 1 if the
element of the diagonal is from a column in J2 and –1 otherwise.

Using this matrix to transform into zeros the elements of the vectors {ICj} 1≤ j ≤ k

associated with elements of {Ii
* } 1≤ i ≤ k1

, the vectors defined in the theorem are obtained.
Then the proof is easily seen with this transformation. u

Example 3.4. For the example we are studying in this article (k = 2), the elements of
C1 and the vectors obtained from them by replacing the components in D1, D2 are the
following:

where there are two linearly independent vectors; therefore, there are n1 + n2 = 4 +
2 = 6 linearly independent vectors 2-covers or 3-covers.

Lemma 3.1. Given n1 + n2 linearly independent vectors corresponding to 2- and 3-
covers of the matrix  AM J

J J
( )0

1 2∪ , any vector associated with a 2-cover or a 3-cover can be
written as a linear combination of those, where the sum of the coefficients is equal
to 1.

Proof. Let V = { υ1,…,υn1+n2
} be the linearly independent vectors associated with 2-

and 3-covers of  AM J
J J

( )0
1 2∪ . Suppose they are ordered such that {υ1,…,υk0

} are 2-covers
and {υk0+1,…,υn1+n2

} are 3-covers. Also suppose the n2 first components are indexed
by J2 and the other n1 components by J1.

For all υ , 2-cover or 3-cover may be writen asυ υλ= ∑ =
+

j jj
n n

1
1 2 , for each com-

ponent i, υ υλi
j j

i
j
n n= ∑ =

+ .1
1 2 Then

  

(      ) ( ,  )

(       ) ( ,  )

(       ) ( ,  )

1 1 1 0 0 0 3 0

1 1 0 0 0 1 2 1

1 0 1 0 0 1 2 1

1 2D D6 744 844 }

i

n n
i

i

n n

j

n n

j j
i

j

n n

j
i

n n

j
i

j
j k

n n

j
j

k

=

+

=

+

=

+

=

+

=

+

= +

+

=
∑ ∑ ∑ ∑ ∑ ∑∑= = = +

1 1 1 1 1 11

1 2 1 2 1 2 1 2 1 2

0

1 20

2 3 3 2υ υ υλ λ λ λ . ( . )

Now we study two different cases.

(a) υ is a 2-cover.
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For each i ≤ n2 and k0 + 1 ≤ j ≤ n1 + n2, υj
i = 0; from υj there are 3-covers and

the columns different to zero are those in J1. Therefore, for each i ≤ n2,
υ υλi

j j
i

j
k= ∑ = .1

0

Sinceυ is a 2-cover and υj with j ≤ k0 are 2-covers, they have exactly one com-
ponent equal to 1 in the columns in J2:

υ υ υλ λi
i

n

j j
i

j

k

j
i

j
j

k

i

n

j

k

i

n

= = = =
= = ====
∑ ∑ ∑∑∑∑ 1

1 1 1111

2 0 0202

.

Therefore, substituting into (3.2), we obtain

2 2 3 2 3

0 1

1 1 11

1 1

1 2

0

1 2

0

1 20

0

1 2 1 2

= = + = + ⇒

= ⇒ =

=

+

= +

+

= +

+

=

= +

+

=

+

∑ ∑ ∑∑

∑ ∑

i

n n

i j
j k

n n

j
j k

n n

j
j

k

j k

n n

j
j

n n

j

υ λ λ λ

λ λ     .

(b) υ is a 3-cover. Thenυ i = 0, ∀i ≤ n2. Further, for all i ≤ n2 and k0 + 1 ≤ j ≤ n1 + n2,
υj

i = 0. Therefore,

0 1
1 1

2
11

1 2

0

1 2 00

= = = + = ∀ ≤ ≤
=

+

= +

+

==
∑ ∑ ∑∑υ υ υ υ υλ λ λ λi

j

n n

j j
i

j j
i

j k

n n

j j
i

j j
i

j

k

j

k

i n  ,

and since υj , 1 ≤ j ≤ k0, are 2-covers and this implies υ j
i

i
n =∑ = 11

2 , then

0
1 1111

2 0200

= = =
= ====
∑ ∑∑∑∑
i

n

j j
i

j j
i

j
j

k

i

n

j

k

j

k

λ λ λυ υ ,

and substituting into (3.2), we obtain

3 3 1

1

1 1 1

1 11

1 2

0

1 2

0

1 2

1 2

0

1 20

= = ⇒ = ⇒

= + =

=

+

= +

+

= +

+

=

+

= +

+

=

∑ ∑ ∑

∑ ∑∑

i

n n
i

j k

n n

j
j k

n n

j

j

n n

j j
j k

n n

j
j

k

υ λ λ

λ λ λ      . u

Now we can conclude the following result, which characterizes those inequalities
α Sx ≥ 3 that are facet inducing for PI (A).

For every k ∈J0, the set T(k) is defined as in [1], i.e.,

  T k i M a a j J kik ij( ) { , { }}.= = =∈ ∈| \1 0 0for all

In other words, it is the set of rows such that k is the only column in J0 to cover T(k).
Obviously, T(k) # M\{ M(J0)}.
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Theorem 3.3. Let PI (A) be full dimensional and let α Sx ≥ 3 be a valid inequality for
PI (A), with S= M(J0). Let D1,…,Dk be the components of the 2-cover graph associ-
ated with the inequality α Sx ≥ 3 and H S = (J1, C1) the associated 3-cover hypergraph.
Then α Sx ≥ 3 defines a facet of PI (A) if and only if:

(i) there exist k 3-covers C1,…,Ck ∈C1 such that the k vectors whose i th com-
ponents are Car(Cj > Di), 1 ≤ i, j ≤ k, are linearly independent;

(ii) for every k ∈J0 such that T(k) ≠ ∅, there exists at least one of the following:

(a) some j (k) ∈J3 such that aij (k) = 1 for all i ∈T(k); or

(b) some pair j (k), h(k), j (k) ∈J1, h(k) ∈J2, such that aij (k) + aih(k) ≥ 1 for all
i ∈T(k) < M(J0); or

(c) some trio j (k), h(k), l(k) ∈J1 such that aij (k) + aih(k) + ail (k) ≥ 1 for all i ∈T(k)
< M(J0).

Proof. Necessity. Suppose α Sx ≥ 3 defines a facet of PI (A). Then there exists a collec-
tion of n affinely independent points {xi } 1≤ i ≤ n such that α Sxi = 3 for i = 1,…,n, and
xi ∈PI (A). Let X be the n × n matrix whose rows are these vectors; then, without loss
of generality, X is of the form

X
X X

X X
=







1 2

3 4

0

0
,

where the columns of X1, X3 are indexed by J0, those of X2 by J1 < J2, and those of X4

by J3. X4 is the identity matrix of order n3, and every row of X2 is a 2-cover or 3-cover
of  AM J

J J
( )0

1 2∪ .
The rows of (X3 : 0 : X4) are at most n0 + n4; then there are at least n1 + n2 rows

in (X1 : X2 : 0). Since X is a nonsingular matrix, X2 is of full column rank, and hence
X2 is of full rank; thus, there exist n1 + n2 row vectors which are linearly independent.
Therefore, from theorem 3.2, condition (i) holds.

To show that (ii) also holds, suppose there exists k ∈J0 such that T(k) ≠ ∅ and
for which (a), (b) and (c) are not satisfied. Then xk = 1 for every x ∈PI (A) such that
α Sx = 3, which contradicts the fact that α Sx ≥ 3 is facet defining.

Sufficiency. Suppose conditions (i) and (ii) hold. We show n linearly independent
vectors {xi } 1≤ i ≤ n such that xi ∈PI (A) > { xyα Sx = 3}, i = 1,…,n.

For t = 0, 1, 2, 3, we denote by 1nt  and 0nt the nt-vector whose components are all
1 and 0, respectively. For t = 0, 1, 2, 3, let Ej

nt be the j th unit vector with nt components.
Our first n0 vectors are defined as xk = {(1) or (2) or (3) or (4) or (5) or (6)},

k ∈ J0, where

(1) ( , , )1 0
0

0
1 2

3
n k

n
n n j

nE E− + for some j ∈J3, if T(k) = ∅ and J3 ≠ ∅.

(2) ( , , )1 0
0

0 1 2 1 2
3n k

n
j
n n

h
n n

nE E E− ++ + for some 2-cover (j, h), j ∈J1, h ∈J2,
if J2 ≠ ∅ and T(k) = J3 = ∅.
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(3) ( , , )1 0
0

0 1 2 1 2 1 2
3n k

n
j
n n

h
n n

l
n n

nE E E E− + ++ + + for some 3-cover (j, h, l ), j, h, l ∈J1

if T(k) = J3 = J2 = ∅.

(4) ( , , )( )1 0
0

0
1 2

3
n k

n
n n j k

nE E− + if T(k) ≠ ∅ and (a)  holds
(with j (k) as in (a)).

(5) ( , , )( ) ( )1 0
0

0 1 2 1 2
3n k

n
j k
n n

h k
n n

nE E E− ++ + if T(k) ≠ ∅ and not (a) but (b) holds
(with j (k), h(k) as in (b)).

(6) ( , , )( ) ( ) ( )1 0
0

0 1 2 1 2 1 2
3n k

n
j k
n n

h k
n n

l k
n n

nE E E E− + ++ + + if T(k) ≠ ∅ and not (a), not (b)
but (c) holds (with j (k), h(k), l (k)
as in (c)).

By property (ii), these vectors exist and belong to PI (A).
Our next n1 + n2 vectors are of the form

x E E j h Sk
n j

n n
h
n n

n= ++ +( , , )   ( , ) ,1 0
0

1 2 1 2
3

for  a 2-cover of 
or of the form

x E E E j h l Sk
n j

n n
h
n n

l
n n

n= + ++ + +( , , )   ( , , ) .1 0
0

1 2 1 2 1 2
3

for  a 3-cover of 

By condition (i) and theorem 3.2, there exist n1 + n2 linearly independent vectors in
PI (A) satisfying these conditions.

Finally, the last n3 vectors are of the form

x E k Jk
n n n k

n= + ∈( , , ),   .1 0
0 1 2

3
3

The vectorsEk
n3 form the identity matrix of order n3. The existence of vectors xk ∈

PI (A) follows from the definition of J3.
For t = 0, 1, 2, 3, we denote by1n nq t× and 0n nq t× the nq × nt matrix whose com-

ponents are all 1 and 0, respectively. LetEn n0 0× be the matrix of ordern n0 0× whose
diagonal is equal to zero and all other elements are 1. Then the matrix obtained with
the previous vectors is

B

E H H

A

n n

n n n n n n n n n n

n n n n n n n

=

















×

+ × + × + + ×

× × + ×

0 0

1 2 0 1 2 1 2 1 2 3

3 0 3 1 2 3 3

1 2

1 0

1 0 1

( ) ( ) ( ) ( )

( )

,

where the rows of (H1 : H2) are of the form

(d1) ( : )0 3Ej
n for some j ∈J3, or

(d2) ( : )E Ej
n n

h
n n

n
1 2 1 2

3
0+ ++ for some (j, h) 2-cover of S, or

(d3) ( : )E E Ej
n n

h
n n

l
n n

n
1 2 1 2 1 2

3
0+ + ++ + for some (j, h, l ) 3-cover of S.
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Now for every row of( : : )E H Hn n0 0 1 2× , one of the following is subtracted:

(s1) if (d1) holds, the similar row of the last n3 rows ( : : ),1 0
0 1 2

3
n n n j

nE+ or

(s2) if (d2) or (d3) holds, as the set of the rows vectors ofA n n n n( ) ( )1 2 1 2+ × + is a base,
the linear combination of these rows for obtaining the row of H1.

By lemma 3.1, the linear combination of (s2) is obtained with coefficients whose
sum is equal to 1. Then the matrix obtained is

′ =

−















× × + ×

+ × + × + + ×

× × + ×

B A

n n n n n n n

n n n n n n n n n n

n n n n n n n

1 0 0

1 0

1 0 1

0 0 0 1 2 0 3

1 2 0 1 2 1 2 1 2 3

3 0 3 1 2 3 3

( )

( ) ( ) ( ) ( )

( )

,

which is a nonsingular one sinceA n n n n( ) ( )1 2 1 2+ × + is nonsingular. Then the matrix B is
nonsingular, and the vectors xk, k = 1,…,n, belong to PI (A) and satisfy α Sx = 3. Hence,
α Sx ≥ 3 defines a facet of PI (A). u

Example 3.5. Consider example 2.1 and the inequality associated with S= {1, 2, 3,
4, 5, 6}, x2 + x3 + x4 + x5 + 2x6 + 2x7 + 3x8 ≥ 3. In example 3.4, we have seen that
property (i) of theorem 3.3 holds for this inequality.

The only k ∈J0 such that T(k) ≠ ∅ is 1, with T(1) = {7, 8}, and for example 3.5,
the pair (3, 6) satisfies ai 3 + ai6 ≥ 1 for all i ∈M(J0) , T(1) = {1, 2, 3, 4, 5, 6, 7, 8}.
Hence, the inequality

x x x x x x x2 3 4 5 6 7 82 2 3 3+ + + + + + ≥

defines a facet of PI (A).

4. Conclusions

In this paper, we have studied the set covering polytope, following the guideline
initiated in [1]. We characterize the class of valid inequalities for this polytope with
coefficients equal to 0, 1, 2 or 3, and give necessary and sufficient conditions for such
an inequality to be not dominated and facet defining. These results indeed extend the
knowledge about the facial structure of the set covering polytope.

In addition, a procedure to obtain these valid inequalities has been given. This
method and other similar methods for inequalities with larger coefficients have been
applied to obtain valid cuts for the set covering problem. First numerical results can
be seen in [6].
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