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On the set covering polytope:
Facets with coefficients in {0, 1, 2, 3}
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Balas and Ng [1,2] characterized the class of valid inequalities for the set covering
polytope with coefficients equal to 0, 1 or 2, and gave necessary and sufficient conditions
for such an inequality to be facet defining. We extend this study, characterizing the class of
valid inequalities with coefficients equal to 0, 1, 2 or 3, and giving necessary and sufficient
conditions for such an inequality to be not dominated, and to be facet defining.
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1. Introduction

Let E={ey,...,ey} be a finite set, letS ={S,,...,S,} be a given collection of
subsets OE, and letc = (c4,...,C,) be a vector of costs, whemjez 0,Vj=1,...n Let
F C{1,...,n} be an index subseE is said tocoverE if U5 § =E.

The set covering problem consists of determining a minimum-cost cotzeifof

it exists. Obviously, in”=131 # E, then the problem has no solution.

The set covering problem can be stated as
(SC) min{cx| Ax > 1, x [1{0, 1"},

whereA = (a;) is anm x n matrix witha; [}{0, 1}, Vi, j, and 1 is then-vector of 1's.

This is an NP-complete problem for a general 0—1 mairand the model has appli-

cations such as crew scheduling, facility location, vehicle routing and a host of others.
We denote the set covering polytope

R (A) :=conv{x LIR"|Ax = 1,0 < x < 1, xinteger},
and the polyhedron related B(A)
P(A) :={x UR"|Ax=21,0< x< 1.
Let M andN be the row and column index sets, respectivel.of
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An inequalityax > b is said to be valid foP (A) if and only if, Vz LR (A),
azz=h. Itis said to be a face & (A) if and only if it is a valid inequality and there
existsz IR, (A), z integer, such thatz =b. For ann-dimensional polyhedron, the 0-
dimensional faces are its vertices. An inequatity= a,, valid for B (A), defines a
facet ofP, (A), if and only if,ax = a, for n = dim(P (A)) affinely independent points
x LJP (A). For ann-dimensional polyhedron, then ¢ 1)-dimensional faces are its
facets.

Not much is known about the set covering polytope. Some of the following
classic results about it are well known. We assume throughoufAthat no zero
columns or zero rows.

(1) PR (A) is full dimensional if and only ifz?zlaij > 2 for alli M.
In the following, we assume thB{(A) is full dimensional.

(2) The inequalityx, = 0 is a facet defining inequality & (A) if and only if
S".1 2k a; = 2 for alli OMm.

(3) Allinequalitiesx; < 1 define facets o (A).
(4) All facet defining inequalitiesrx = ag for B (A) havea = 0 if ay > 0.

(5) The inequality n
z ajXj 2 1
j=1

defines a facet df (A) if and only if
(a) there exists nka M with ay; < a;,Vj UN, andy =18y < Y {-1a;
(b) for eachk such thaty = 0, there existg(k) such thay; = 1 anday = 1
for all h OMO(k), whereM°(k) : = {h [OM/a, = 1 anday; = 0, Vj £k, such
thata; = 0}.
(6) The only minimal valid inequalities (hence the only facet defining inequalities)

for P, (A) with integer coefficients and right-hand side equal to 1 are those of the
systemAx=> 1.

Statements (1) through (4) are easily seen to be true, and the proofs of (5) and
(6) may be seen in [1].

Therefore, characterizing facet defining inequalities with coefficients in {0, 1}
is a closed problem.

Other important results about facet defining inequalitieB, &) may be seen
in [1-5]. In this paper, we are following the research guide developed in [1] and
continued in [4].

Balas and Ng [1] studied inequalities of the foorm = 2, with a; =0, 1 or 2,
j LN. They characterized this class of valid inequalities for the set covering polytope,
and gave neccesary and sufficient conditions for such an inequality to be minimal and
facet defining. Therefore, the study of this class of inequalities is also complete.
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Here, we will study valid inequalities féy(A) of the formax = 3, witha; = 0, 1,
2 or 3,j LIN. These inequalities have been studied in [4], but the study is not complete.
We will give necessary and sufficient conditions for such an inequality to be minimal
and to be facet defining.

2. Valid and minimal inequalities of B (A) with coefficients in {0, 1, 2, 3}

For allR C M and for allSC N, ASis written as the submatrix éfwhose rows
and columns are indexed B/andS, and for everyQ C N, M(Q) :={i LIM| a; =0,
Vj 0Q}, with M(O) := M.

Letax=3witha;=0, 1, 2 or 3] LIN, be a valid inequality fa®, (A). We denote

Ji(a) ={j ONJa; =8, t=0,123

or J; whenever the meaning is clear from the context.
To each nonempty subs8iC M, an inequalitya>x = 3 is associated, where

N3 ={] EINIaijzl 0 dg;
No ={j UN|g; =0 0i 0g;
N’ = N\(N3U No)

N; is a maximum cardinality set W' such thatvj, h [N, O IS with a; + a,
= 0; and the inequality is

00 if j ONp,
O L
3 if j ONg,

af=g, 2.)
0l if jONy,
O

2  otherwise.

Notice that this inequality is not unique; with every different sulgedifferent
inequalities are obtained.

Example 2.1 Consider the set covering polytope defined by the matrix

o 1 1 0 1 1 1 1[
00 1 0 0 0 1 1 10
%o 01 0 1 1 1 1%

A_00 0 0 1 1 1 1 1f
00 0 1 1 0 1 0 10
So 111 0 0 0 1%
101 01010
1101 0 1 0 0
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The inequalitiesziszlam = 3 obtained by (2.1), with the rows= {1, 2, 3, 4} are

Xo + X3+ X4 + 2X5 + 3Xg + 3X7 + 3Xg = 3
and
2Xy + X3+ X4 + X5 + 3Xg + 37 + 3Xg = 3.

Next, we are going to prove that the inequalities (2.1) are valiB (6J.

Theorem 2.1 An inequalityaSx = 3 obtained by (2.1) is a valid inequality fa(A),
foranySC M, S# [.

Proof. LetxJ R (A), thenVi S 3] a;x = 1. Letd={j/x=1}andJ=JN N;,
i=0,1, 2, 3. Obviously, ifl; # [1, thena Sx = 3. Therefore, we may assurig= [1.
Then there are three possible situations:

Car(J,)=2 or
Car(J;)=1 and Car(J)=1 or
Car(J,) =0 and Car(J) = 3.

For every assumption, X (IR (A) satisfiesa S, = 3, thena Sx > 3 is a valid inequality
for B (A). O

In order to compare different inequalities with the right-hand side equal to 3, we
must define another concept of dominated inequalities.

Definition 2.1. A valid inequality forR (A), Bx = 3, isdominated by yx = 3 if and
only if

J3(y) € J3(B), Jo(y) 2 Jo(B), Car(Jo(y) U h(y)) = Car(Io(B) U h(B))-

Notice that the above definition does not depend on the siibiself, but only
on its cardinality. Therefore, inequality™ = 3 obtained by (2.1) can be considered
as a unique inequality in order to compare it with those with the same right-hand side.

Theorem 2.2. Every valid inequality3x = 3 for B (A), with §; integer, LIN, is domi-
nated by the inequality 5 = 3, whereS= M(Jy(B)).

By convention, ifJo(B8) = U, S= M is considered.
Proof. By contradiction. Whout loss of generality, we may assume ﬂpﬂ{o, 1,2,3}.

If Jo(B) # O andS=[J, then X defined byx; =1, ] U3o(B), X; = 0 otherwise, satisfies
AX =1 butBx = 0 < 3, a contradiction. Therefor8# 1, and the inequalityxsx >3
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is well defined, except by the choice of the subéetFrom the definition ofxrS,
Jo(aS) D Jo(B). Suppose there exists[1J;(aS) andj; [135(B); then x defined by
X, =1, X;= 1,j UJp(b), X;=0 otherwise, satisfiemx = 1 and violategx = 3, a new
contradiction. Thereforely(a®) C J;(B).

Finally, we suppose that Cdg(aS) U J;(aS)) < Caro(B8) U Ji(B)). This in
turn implies that Cady(a S)) < Car@y(B)), butJ;(aS) is a maximum cardinality set
such thatVj, k 0J;(a ®) there exists JS with a; + & = 0; therefore there exigt,
k; 0J1(B) such that; 0J,(a®) andk, 0Jy(a®), anday, + &, = 1, Vi S x defined
by X,=1, X, =1, Xj= 1,j Jy(B), and X;=0 otherwise, satisfiedx = 1, but violates
[Bx= 3, a contradiction. O

Next we identify those inequalitie®Sx = 3 that are not strictly dominated by
other inequalities of the same form (2.1). Hence, it is clear from the definitions that,
among all inequalitiesrSx > 3 with fixed J,, it is enough to consider those with
S=M(Jp).

Definition 2.2. Given any inequalityr 5 = 3 with S= M(J,), we will say that the set
Jo is maximal if and only if VT C Ssuch that)] D J§ verifies
J 233, (2.2)

Car(J3 U JJ) = Car(J5 U J5), (2.3)

and

with either (2.2) or (2.3) strictly.

In other wordsJ, is maximal if the transfer of any column framu J, to Jg
requires either

 transfer some column frody U J, to J;, or

* keepJ; the same and increase the number of variables with coefficient equal
to 2.

Theorem 2.3 Let ax = 3, with S= M(Jy(a®)), be the valid inequality foR (A)
associated t& Thena>x = 3 is not dominated if and only 3 is maximal.

Proof. NecessityWe prove the necessary condition by contradictiord§lfs not
maximal, there exist§ C Ssuch that)] D J§, J3 = J§ andCar(J]) = Car(J5), and
soa > = 3 is strictly dominated by "x = 3, a contradiction. Therefords is maximal.
Sufficiency We prove it also by contradiction. Suppasex = 3 is dominated.
There exist§ C M such thatr 'x = 3 dominates Sx = 3, which implies thail D J3,
JI c J¥ and card U J]) = Car(§ U JD), with some strict relation. But df = J§
and another inequality is strict, ther’x > 3 is not valid, a contradiction. Therefore,
J§ D J§, and hencd C S strictly. From this we conclude thaf D J$, soJj = J3.
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Further, since Calf U J") = Car@§ U Jp), it is clear that Cadf) < Car(5), con-
cluding thatJ(? is not maximal, which is a contradiction. O

Example 2.2 Notice that the hypothesB= M(Jp) is very important, since in the
case this assumption is not verified, theorem 2.3 can be false. In example 2.1, the
hypothesis is not verified. In fact, the inequalities obtained ®#h1, 2, 3, 4} are
dominated by the inequality associatedSto= M(Jp) = M({1}) ={1, 2, 3, 4, 5, 6},
which is

Xo + Xg+ X4+ Xg + 2X6 + 2X7 + 3X8 > 3. (24)

On the other hand, this inequality is not dominated because the Sybsfil} is
maximal, since no variable can be moved frgnu J, to Jy without violating either
conditions (2.2) or (2.3).

An alternative condition for an inequality of the form (2.1) not to be dominated
is developed below.

Definition 2.3. Let o= 3 be a valid inequality associated wh

 Apairj, h, j 1J;, h[0J,, is called @-coverof Ay, if aj + &, 2 1 Vi LIM(Jy).
« Atrio j, h, k1J; is called a3-coverof Ay s, if a&; + ain + a2 1 Vi M(Jp).

Corollary 2.1. The inequalitya S = 3, whereS= M(J,), is not dominated if and only
if everyj [1J; belongs to some 2-cover or 3-coverr@fiyy)-

Proof. By theorem 2.3¢0° = 3 is not dominated if and only &% is maximal.
Obviously, if there exists[1J{ such thaj does not belong to any 3-cover or any
2-cover ofAy ), thenJg is not maximal.
Now, supposels is not maximal; then there existsC S such thatl] D Jg,
JI =33 and Card)) = Car@?). Letj 0J§ - J3§. It is clear thaj (J7 andj does not
belong to any 3- or 2-cover ék. O

3. Facets off (A) with coefficients in {0, 1, 2, 3}

Next, we address the question of which inequaliti€s > 3 are facet inducing
for B (A). In stating the conditions for this, we will assume R&A) is full dimen-

sional, that is to say, n

a;=22 0Oi0OMm. (3D
1=1
Every set covering polytope which is not empty may be transformed into another
polytope that satisfies (3.1).Bf(A) # O and violates (3.1), there exists soWeC N,
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N’ # 0, such thax IR (A) impliesx; = 1 for allj LIN'. Then settingg =1, j LIN’,
and removing the inequalities satisfied by the assignment, we obtain a set covering
polytope that satisfies (3.1).

First, we will show some previous results which are necessary to answer this
guestion. These results study the number of vectors associated to 2-covers and 3-
covers which are linearly independent. In these results, we only consider the columns
in J; andJ,, so the vectors considered have ohly + |J,| components.

In the following, we denote, = |J;|, t=0, 1, 2, 3. We begin with the study of
vectors associated to 2-coversSf

Definition 3.1. The2-cover graph associated withoSx = 3, GS, is defined as:
« a bipartite graplGS= (J; U J,, DS);
« j, k ODSif and only if {j, k} is a 2-cover ofAM(3y)-

Example 3.1 Consider the set covering polytope defined by the next matrix (the
same as example 2.1), and the inequality

Xo + X3+ Xg + Xg + 2Xg + 2X7 + 3Xg= 3

associated t&={1, 2, 3, 4, 5, 6}, wherel; ={2, 3, 4, 5} andJ, = {6, 7}. Then the
2-cover graph associated with this inequality is the following:

00 1 1 0 1 1 1 10 Xo+X3+Xa+Xs+2%X+2x7+3%g2=3
00 1 0 0 0 1 1 10
EO 010 1 1 1 1% 2-cover graph
0 0 0 1 1 1 1 1 X2 Y6
00 0 1 1 0 1 0 10 Xg
Eo 111000 1% . X7
101 01 010 4
1101 01 0O X5

Theorem 3.1. Let GSbe the 2-cover graph associated weitfx > 3, andk the number
of components o6 5. The dimension o¥/(DS) = {l,/b DS} is Car(J,) + Car(,) k.

Proof. Since the vectors belonging to different connected components are independ-
ent, we can only prove the theorem for one connected component without loss of
generality.

Let vy, Uy, ..., 0, be the elements belongingds ordered such thatq=2, 3,...r
there existsk, [1Jyq_1) With (ug, u,) CDS, whereVq = 2,
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‘]2(q—l) = {Ui/DUk, k < q-1 with (Uk, Ui) ] DS}

J20)= U. The element, exists because the graph is connected.

The vectors [{g, W ]2<q<r andUf=1{(v;, U;)/] a4y — Jag-1) are linearly inde-
pendent and there apet r — 1 vectors, withp = Car(3).

Furthermore, since the graph is connected, there are no longer any linearly inde-
pendent vectors. O

Example 3.2 For the graph in the previous example, the following are the edges and
their linearly independent vectors obtained in the proof:

Edges Vectors
X2 " @ 0 0 0 1 0
X3 (0O 1 0 0 1 0
Xa X © 1 0 0 0 1
X5® (0O 01 0 0 1)

Next, we obtain results about the number of linearly independent vectors associ-
ated to 3- and 2-covers & which we will use to characterize the facet-defining
inequalities with these coefficients.

Definition 3.2. We define th@-cover hypergraph associated witlr 5 > 3, asH S =
(J1, C1), with C [IC; if and only if CarC) = 3 andAyy,lc 2 1; i.e.C; are the 3-covers
of AM(Jo)'

Example 3.3 Shown below is the hypergraph associated with the matard the
inequality (2.4) for example 2.1.

Theorem 3.2 LetDy,...,Dy be the components &S, the 2-cover graph associated
with the inequalityor S > 3. There exist Cad() + Car(J,) linearly independent vectors
in GSandH Sif and only if there exist 3-coversC;,...,C, C; such that th& vectors
whoseith components are C&;(N D;), 1<1i, ] <k, are linearly independent.
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Proof. Let Dy,...,Dy,, Dy+1,...,Dx be the components of the graf¥, whereDy,
D,,...,Dy, are the components which have elements,iandD, . 4,...,Dy are isolated
elements.

From theorem 3.1, there exisf + n, —k linearly independent vectors associ-
ated with 2-covers db. LetA; be the matrix whose rows are the linearly independent
vectors from theorem 3.1 associated with the compddgnt 1,...,k;. Without loss
of generality,A; may be considered to be of the foAn=[l;" E'], wherel; is a
diagonal matrix and;" is a column vector whose elements are 1’s and —1’s: 1 if the
element of the diagonal is from a columnJinand —1 otherwise.

Using this matrix to transform into zeros the elements of the vedt@}sisﬂ<k
associated with elements df}1<,<kl, the vectors defined in the theorem are obtained.
Then the proof is easily seen with this transformation. O

Example 3.4 For the example we are studying in this arti&le ), the elements of
C, and the vectors obtained from them by replacing the componeis Dy are the
following:

Dy D,

(1110070 (3 0
(11000 1) (20
(10100 1) (2 1

where there are two linearly independent vectors; therefore, therg am =4 +
2 = 6 linearly independent vectors 2-covers or 3-covers.

Lemma 3.1 Givenn; + n, linearly independent vectors corresponding to 2- and 3-
covers of the matrim,f,ll(‘jjg , any vector associated with a 2-cover or a 3-cover can be
written as a linear combination of those, where the sum of the coefficients is equal

to 1.

Proof. LetV ={vy,...,unn,} b€ the linearly independent vectors associated with 2-
and 3-covers ofAMl(JJ) Suppose they are ordered such that {.,u,} are 2-covers
and {Uy+1,...,Un+n,} are 3-covers. Also suppose thgfirst components are indexed
by J, and the othen; components by,.

For all 0, 2-cover or 3-cover may be writen as= y [', Aju;, for each com-
ponenti, o' = 3" A;u}. Then

n+ny M+ny, np+ny m+n,  m+n n+ny
Mol = S A =23 2,+3 5 4. (32
XA EIED R TED LY

Now we study two different cases.

(@) v isa 2-cover.
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For eachi <n, andky+ 1<j<n;+n,, uji = 0; from u; there are 3-covers and
the columns different to zero are those Jn Therefore, for each < ny,

o' = 35450}

Sincev is a 2-cover and; with j < ky are 2-covers, they have exactly one com-
ponent equal to 1 in the columnsdsn

Zlu,= :ZZJZAU, Zzu, ZA

Therefore, substituting into (3.2), we obtaln

N +ny ng+ny M+ Ny
5,=23A4+3 Y A4=2+3 5 A O
"2 2 PPN
m+ny n+ny
A =00 A =1
J J
j=ko+1 Z

(b) 0 isa3-cover. Thew'= 0, Vi < n,. Further, for all < n,andky+1<j <n;+n,,
= 0. Therefore,

M+ ny n+ny ko _
Z '—ZAUJ+ z/\uJ > Ay Oi<i<m,
=1 =1 j=ko+1 =1
and sincevj, 1<j <k, are 2-covers and this mplieg”%luij =1, then

0= z ZAUJ Z/\ ZUJ ZAJ,

and substituting into (3.2), we obtam

n+ny n+np m+n;
3= =3 A O A =10
J J
i; j:%+1 ':%+1
n+ny k() nl+n2
A =1 ]

Now we can conclude the following result, which characterizes those inequalities
aSx = 3 that are facet inducing f& (A).
For everyk [1J,, the sefT(k) is defined as in [1], i.e.,
T(k) ={i UM|ax =1 a; = 0foral j LJJo\{K}.

In other words, it is the set of rows such tké the only column id, to coverT(K).
Obviously, T(k) € M\{M(Jp)}-
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Theorem 3.3 LetR (A) be full dimensional and let> = 3 be a valid inequality for

P, (A), with S=M(Jy). LetDy,...,D, be the components of the 2-cover graph associ-
ated with the inequalitg > = 3 andH S = (J;, C,) the associated 3-cover hypergraph.
ThenaSx = 3 defines a facet d® (A) if and only if:

(i) there existk 3-coversC,,...,C, LIC; such that theék vectors whoséth com-
ponents are Caf N D;), 1<1i,]j <k, are linearly independent;

(i) for everyk [1J, such thaff(k) # [, there exists at least one of the following:
(a) somg (k) [1J; such thaty;, = 1 for alli LJT(K); or
(b) some pairj(k), h(k), j(k) 1J;, h(k) 1JJ,, such thataj + &g 2 1 for all
i OT(k) U M(Jp); or
(c) some trioj(k), h(k), I(k) [1J; such thatyjy+ aing + @i = 1 for alli LIT(k)
U M(Jy).

Proof. Necessity Supposer > = 3 defines a facet &% (A). Then there exists a collec-
tion of n affinely independent pointsx{} i<, such thatrSx' = 3 fori = 1,...,n, and

x' P (A). Let X be then x n matrix whose rows are these vectors; then, without loss
of generality,X is of the form

X X2 00O

"B, o xH

where the columns of;, X; are indexed by,, those ofX, by J; U J,, and those oX,
by J;. X, is the identity matrix of orders;, and every row oK, is a 2-cover or 3-cover
of A

The rows of ¥3: 0 : X,) are at mosh, + n,; then there are at least + n, rows
in (X1: X,:0). SinceX is a nonsingular matrix, is of full column rank, and hence
X, is of full rank; thus, there exisf + n, row vectors which are linearly independent.
Therefore, from theorem 3.2, condition (i) holds.

To show that (ii) also holds, suppose there exXdts], such thaff(k) # O and
for which (a), (b) and (c) are not satisfied. Thgr 1 for everyx LIP,(A) such that
a>x = 3, which contradicts the fact thatx > 3 is facet defining.

Sufficiency Suppose conditions (i) and (ii) hold. We sholinearly independent
vectors '} 1<, such thax' OP (A) N {x/a>=3},i=1,...,n

Fort=0, 1, 2, 3, we denote by,land Q, then;-vector whose components are all
1 and 0, respectively. For 0, 1, 2, 3, leE™ be thejth unit vector wittn, components.

Our first ny vectors are defined aé( ={(1) or (2) or (3) or (4) or (5) or (6)},

k 1 Jo, where

(1) (@ — B, Opyanys E) for somej [1J;, if T(K) =0 andJ; # 0.

(2) (o, — B EM™ + ET™,0p,) for some 2-coverj( h), j (J;, h J,,
if 3,70 andT(K) = Js = .
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(3) (L, — E°, EM"™ + B + '™, 0,) for some 3-coverj( h, 1), j, h, 1 03
if T(k) =J3=J2= 0.

(4) (Lo, — B, Onynys Efflg) if T(k) =0 and (a) holds
(with j (k) as in (a)).
(5) (In, — B, El3™ + ENO™, Op) if T(k) # O and not (a) but (b) holds

(with j (K), h(K) as in (b)).

(6) (1, - BO, Ejr‘(lk‘;r‘z + Er"‘(;)”Z + E{E{)’ ", 0p,) if T(K) # 0 and not (a), not (b)
but (c) holds (withj (k), h(k), (k)
as in (c)).

By property (ii), these vectors exist and belondpt@).
Our nextn; + n, vectors are of the form

= (L, E™"™ + E™,0,,) for (j,h) a2-cover of §
or of the form

XK= (Lo, EMT™ + BT + EMT™,0,,) for (j,h,1) a3-coverof S

By condition (i) and theorem 3.2, there exigt+ n, linearly independent vectors in
P, (A) satisfying these conditions.
Finally, the lasih; vectors are of the form

X< = (Lny» Onpenys E2), k O J3s.

The vectorsE® form the identity matrix of ordems. The existence of vector []
R (A) follows from the definition ofls.

Fort=0, 1, 2, 3, we denote b%qxnt and anxnr theny x n; matrix whose com-
ponents are all 1 and 0, respectively. g}« ,, be the matrix of ordeng x ny whose
diagonal is equal to zero and all other elements are 1. Then the matrix obtained with
the previous vectors is

0 Enoxno H, H, 0

O

B= M +nz) XNy A(nl"'nz)x(nl"'nz) 0(n1+n2)><n3D!
B 1”3X No Ongx(n1+n2) lnax n3 B

where the rows ofH; : H,) are of the form
(d1) (0: E®) for somej [1J3, or
(d2) (E™*™ + Ef"™ 1 0y,) for some (, h) 2-cover ofS, or

(d3) (E**™ + Ef*™ + E™"™:0,,) for some {, h, 1) 3-cover ofS
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Now for every row of(En xn, : H1: Hz), one of the following is subtracted:

(s1) if (d1) holds, the similar row of the lagf rows (1, : Op +n, : E}‘3), or

(s2) if (d2) or (d3) holds, as the set of the rows vectorgQf n,yx(n,+n,) iS @ base,
the linear combination of these rows for obtaining the row of

By lemma 3.1, the linear combination of (s2) is obtained with coefficients whose
sum is equal to 1. Then the matrix obtained is

0 = 1nyxng Ongx (ny + 1) Ongxn, U

O

B = M +nz) X Ny A(nl“‘nz)x(nl*‘nz) 0(“1*'”2)"“3 e
Hlns"”o On3x(n1+n2) 1n3xn3 H

which is a nonsingular one sin@gy, +n,)x(n, +n,) IS NONsingular. Then the matrikis
nonsingular, and the vectort§ k=1,...,n, belong td? (A) and satisfyxsx = 3. Hence,
aSx = 3 defines a facet d® (A). O]

Example 3.5 Consider example 2.1 and the inequality associated Svitkil, 2, 3,
4,5, 6}, Xo+ X3+ X4+ X5 + 2Xg + 2X7 + 3xg = 3. In example 3.4, we have seen that
property (i) of theorem 3.3 holds for this inequality.
The onlyk [1J, such thaf(k) # O is 1, withT(1) = {7, 8}, and for example 3.5,
the pair (3, 6) satisfieg;3 + ag=>1 for alli UM(Jy), T(1) ={1, 2, 3, 4,5, 6, 7, 8}.
Hence, the inequality
Xo + X3+ Xq4 + X5 + 2Xg + 2X7 + 3Xg= 3

defines a facet o (A).

4. Conclusions

In this paper, we have studied the set covering polytope, following the guideline
initiated in [1]. We characterize the class of valid inequalities for this polytope with
coefficients equal to 0, 1, 2 or 3, and give necessary and sufficient conditions for such
an inequality to be not dominated and facet defining. These results indeed extend the
knowledge about the facial structure of the set covering polytope.

In addition, a procedure to obtain these valid inequalities has been given. This
method and other similar methods for inequalities with larger coefficients have been
applied to obtain valid cuts for the set covering problem. First numerical results can
be seen in [6].
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