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Abstract

Many multiple-criteria decision-aiding methods apply the so-called multiplicative
pairwise comparisons, where the comparisons have a form of a ratio expressing
how many times one entity is more important (or preferred) than another.
Besides the multiplicative system, additive and fuzzy preference relations
systems have been proposed for pairwise comparisons in recent decades.
These systems are appealing for their intuitive use and natural properties,
but they are not as intensively studied as their multiplicative counterpart.
Namely, studies on inconsistency, and non-reciprocity in particular, in both
theoretical frameworks are rather scarce and fragmented. Therefore, our
study focuses on the problem of non-reciprocity in both frameworks and fills
the current gaps in its understanding and evaluation. We show that when
non-reciprocity is allowed, multiplicative, additive, and fuzzy systems do not
form an Alo group. However, measures of non-reciprocity in the additive and
fuzzy systems corresponding to the existing measure of non-reciprocity in
the multiplicative system can be defined and endowed with a set of desirable
properties. Furthermore, we perform Monte Carlo simulations on randomly
generated non-reciprocal matrices both in additive and fuzzy systems and
provide percentile tables allowing decision makers to decide whether a level
of non-reciprocity of a given PC matrix is acceptable or not.

Keywords: Additive pairwise comparisons; consistency; fuzzy pairwise
comparisons; fuzzy preference relations; multiple-criteria decision making;
pairwise comparisons; reciprocity.
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1. Introduction

Many multiple-criteria decision-making methods such as the AHP/ANP,
BWM, ELECTRE, MACBETH, PAPRIKA, PROMETHE etc., include as
one of their major features pairwise comparisons (PC), that is comparisons
of only two objects at the same time, e.g. Bana et al. (2005)); Brans & Vincke
(1985); (Govindan & Jepsen (2015); Rezaei| (2015); Saaty| (1980} 2008); Roy
(1968); Vaidya & Kumar (2006]). These methods have been applied to most
areas of human activity, and are subjects of intense research in terms of their
properties, including the aggregation of preferences or their consistency.

One of the features of pairwise comparison, typically neglected, is the
potential non-reciprocity of the judgements expressed by the decision makers.
For example, if object A is two times more important than object B, then the
reciprocal judgement would be that B is only half as important as B. This
reciprocity is typically taken for granted in many of the methods mentioned
above. This is understandable, given that it seems rational, natural and
intuitive (Harker & Vargas (1987)). However, empirical studies have shown
(see the next section) that human experts and decision-makers are often not
consistent in their judgments. The explanation of this phenomenon may
be related to external circumstances affecting the assessment process, such
as changes in the context (e.g. [Tversky & Simonson (1993)), unobserved
variables, asymmetric transaction costs (e.g. non-reciprocal currency exchange
rates), or hysteresis. But without a doubt, the main source of non-reciprocal
judgments is the human mind, which is known to be imperfect and susceptible
to many cognitive biases.

Given this inescapable reality, the question is how to deal with this lack
of reciprocity in pairwise comparisons: should it be considered a source of
important information, or a flaw of the cognitive process, and hence should it
be accepted or eliminated? In case it is accepted, should there be acceptable
levels?

In an earlier study of Mazurek & Linares (2023) these questions were
addressed and reliable measures of non-reciprocity that satisfy desirable properties
for the multiplicative pairwise comparisons (MPC) framework were introduced.

In this paper, the analysis of the previous questions is extended to two
alternative pairwise comparisons theoretical frameworks: additive and fuzzy.
Although less used than the MPC framework, additive and fuzzy frameworks
are also used for pairwise comparison and hence deserve a proper analysis.
Firstly, we show that multiplicative, additive and fuzzy pairwise comparisons



do not form Alo groups when non-reciprocity is allowed. Nevertheless, we
introduce new measures of non-reciprocity both in the additive pairwise
comparisons (APC) and fuzzy preference relations (FPR) frameworks corresponding
to the existing measure of non-reciprocity in the multiplicative system which
inherit a set of desirable properties from the multiplicative system. Further
on, we perform extensive Monte Carlo simulations to provide percentile tables
allowing a decision maker to reject or tolerate a given non-reciprocal APC
or FPR matrix with respect to the size of the matrix and applied p-metrics.

The paper is organized as follows: Section 2 reviews the existing literature;
Section 3 discusses algebraic structure of pairwise comparisons in the case of
non-reciprocity, Sections 4 and 5 are devoted to additive and fuzzy preference
relations frameworks respectively, and finally, numerical Sections 6 and 7
provide percentile tables for non-reciprocity measures in both frameworks.
Conclusions close the article.

2. Literature review

In the realm of decision-making, as highlighted in the preceding section,
the challenge of non-reciprocal matrices often arises. Addressing this challenge
is crucial for ensuring accurate and consistent decision outcomes. Essentially,
the literature presents four strategies or approaches to manage non-reciprocal
matrices:

1. Discarding information in order to consider only reciprocal matrices.

2. Transformations to reciprocal matrices. Some methods transform non-reciprocal
matrices into reciprocal ones that are subsequently managed and analyzed
by standard optimization methods.

3. Approximations to priority vectors. This approach aims at finding a
reciprocal (or more generally a fully consistent) approximation of a
given non-reciprocal matrix.

4. Developments of new theoretical framework. This category comprises
papers that merge or expand the standard methodology by shifting
from the reciprocity paradigm to a more realistic theoretical framework
without including non-reciprocity.

An example of the first approach is the study by [Saaty| (1994)), where
one of the pairwise comparisons from a non-reciprocal pair are discarded
(randomly, as there is no available information to decide which of the two



comparisons is the most accurate). As pointed out by |Linares et al.| (2016),
some experts believe that the extra information is unnecessary, because only

(n — 1) pairwise comparisons are needed (assuming that the decision-maker

is perfectly rational and the corresponding directed graph is connected).
Indeed, this reciprocity condition is foundational to the AHP, as corroborated

by sources like (Harker & Vargas, 1987) and (Saatyl, |1986). However, decision-makers
might not always behave rationally so, before deciding to discard any information,
it is essential to measure how inconsistent the provided preferences are.
Thurstone acknowledged in his 1927 Law of Comparative Judgment (Thurstone,
1927) that decision-makers could offer differing comparative judgments on
the same stimuli pair over different instances.

Grzybowski (2012) showed by numerical simulations that forcing reciprocity
into an MPC matrix may result in poorer estimations of a priority vector.
Diaz-Balteiro et al.| (2009) discovered inherent non-reciprocity when soliciting
identical comparisons at different times, especially in forest management
contexts. In their study participants first completed the upper triangle of
the MPC matrix and, after a month, the lower triangle. Notably, none of the
acquired MPC matrices were reciprocal. Fulop et al.| (2012) added to the list
of possible causes for non-reciprocity the fact that several teams might be
working in the assessments independently, or the fuzziness in the underlying
preference relations. They also provided several real-world examples where
the reciprocity condition is violated, including double-blind wine tasting.

From an economic perspective, Hovanov et al| (2008) mentioned the
case of transaction costs in exchange rates as a reason for non-reciprocity.
In different areas, such as the choice to vote for a political party, it was
believed traditionally that preferences stayed constant over time. However,
de Andres et al. (2020)), demonstrated, with the introduction of local and
global decision stability measures, that political preferences might shift with
greater frequency than once believed. Additionally, |Starczewski| (2017)) established
that while the AHP assumes decision-makers may err in comparing pairs of
alternatives, the adopted scale can exacerbate these discrepancies.

Mazurek & Linares (2023) have reviewed the most relevant literature
on dealing with this inconsistency in MPC matrices. This literature is
large, which is reasonable given its popularity. However, other theoretical
frameworks for pairwise comparisons exist, which have not received the same
level of attention in terms of their reciprocity properties, namely additive
pairwise comparisons (APC) and fuzzy preference relations (FPRs), which
constitute the focal point of this paper.
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Additive pairwise comparisons were introduced by Barzilai & Golany
(1990). The additive formulation of pairwise comparisons allows to use of
the mathematical apparatus of linear algebra, see e.g. (Fedrizzi et al., [2020).
Unfortunately, we have not found any discussions in the literature about the
reciprocity of APC matrices.

Fuzzy preference relations were introduced by Orlowsky| (1978) and later
elaborated in (Tanino (1984) or Herrera et al. (2004). FPRs enable natural
pairwise comparisons by dividing a line segment of a unit length into two
segments corresponding to two compared entities. Also, FPRs enable the
modelling of linguistic preferences, see e.g. Marimin et al.| (1998). Traditional
methods using fuzzy preference relations (FPRs) are based on the idea that
preferences are mutually consistent or reciprocal. However, this assumption
does not always align with the intricate and unpredictable situations that
experts might face with different opinions in real-world scenarios including
business strategy meetings, urban planning, healthcare, public policy, and so
on. In this context, Liu et al. (2021 a, b and ¢) introduced the concept of
additively reciprocal property breaking (ARPB), and in (Liu et al., [2022ablic;
Luo et al.l 2023) the concept of non-reciprocal fuzzy preference relations
(NrFPRs) was proposed to capture situations where the traditional reciprocal
assumptions of FPRs are not met and also constructing optimization models
that can elicit priorities from non-reciprocal matrices. Finally, in (Jiang et al.|
2021)) a non-reciprocal fuzzy preference relation (NrFPR) and a probabilistic
linguistic preference relation (PLPR) were combined to obtain a model capable
of expressing partial relations of alternatives (indifference, preference, and
incomparability relations) providing a practical application in selecting social
donation channels during the COVID-19 outbreaks. It should be noted that
non-reciprocal pairwise comparison matrices were also studied in the context
of incomplete information, see e.g. Khalid & Beg (2018)), [Huang et al.| (2020)
and Zhang| (2022). Measures of non-reciprocity in the context of (additive)
fuzzy preference relations were recently discussed in (Liu et al., 2022c)), (Wang
& Deng}, [2022) and (Yang) 2022)).

As mentioned earlier, in this paper our goal is to fill the research gap on
the characterization of reciprocity in APC and FPR matrices in a homogeneous
way, also compatible with the previous work on MPC (Mazurek & Linares,
2023)). In the next sections, we proceed to the evaluation of non-reciprocity
in APC and FPR systems.
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Figure 1: Transformations among the three pairwise comparisons frameworks.

3. Algebraic structure of multiplicative, additive and fuzzy preference
relations systems in the case of non-reciprocity

It is well known that multiplicative pairwise comparisons, additive pairwise
comparisons and fuzzy preference relations share an identical algebraic structure
and form three isomorphic representations of the same Abelian linearly ordered
group (Alo group), see e.g. |Cavallo & D’Apuzzo| (2009)), Cavallo & Brunellj
(2018)), or Kulakowski et al. (2019).

Thereinafter, we show that this is true only when pairwise comparisons
are reciprocal.

Definition 1. Let G be a non-empty set equiped with a binary operation
®:GxG — G. The set G is a group if the following axioms 1)-3) are
satisfied:

1. Associativity: for all a,b,c € G holds (a®b) ©®c=a® (b®c).



2. Existence of a unique neutral element e: for all a € G holds a ® e =
eG®a=a.

3. Existence of a unique inverse element: for all a € G, there exists a~
satisfyinga ® e =a ' ©a=e.

4. Commutativity: a ©b=>b® a for all a,b € G.

1

If the additional axiom (4) is satisfied, the group is called Abelian or
commutative.

The next remarks show that in the case of non-reciprocity, the set of
multiplicative pairwise comparisons (with elements denoted by the letter 'm’)
is not a group.

Remark 1. Let G = {m;; | m;; € (0,00)} be the set of multiplicative
pairwise comparisons equipped with the operation of standard multiplication
“7.If there exists a pair of indices (i,7) such that m;; - mj; # 1, where
mj = mi_jl, then the set G does not form a group under the given operation
because it violates group Axiom 3 (this aziom is identical to the reciprocity
condition of pairwise comparisons). Conversely, the assumption that the set
of multiplicative pairwise comparisons forms an Alo group directly excludes

non-reciprocity due to Aziom 3.

Analogously, the sets of additive pairwise comparisons and fuzzy preference
relations are not groups when non-reciprocity is allowed.

Since the multiplicative, additive and fuzzy preference relations frameworks
do not form a group under non-reciprocity (in abstract algebra, their structure
is called a monoid, or a semigroup with an identity element), we will refer to
them as ’systems’ for simplicity thereinafter. Also, we refrain from using the
word "isomorphism’ used in the group context to avoid confusion. Nevertheless,
the transformations among multiplicative, additive and fuzzy systems shown
in Figure 1 are preserved.

In the following sections we introduce measures of non-reciprocity in the
additive and fuzzy preference relations systems, which correspond to the
measure of non-reciprocity already introduced in Mazurek & Linares| (2023)
for the multiplicative system.

4. Non-reciprocity in the additive framework

In the additive pairwise comparisons system, a preference of i-th object
over a j-th object is expressed by a value a;; € R, where a;; > 0 means
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that the i-th object is preferred over a j-th object, a;; = 0 means indifference
between both objects and a;; < 0 means that the j-th object is preferred over
an i-th object. It is common to understand the value of a;; in the sense of
“by how much an object ¢ is better (more preferred) than an object j", see
also Figure 2.

Figure 2: Reciprocal additive pairwise comparisons are antisymmetrical.

Let A« = [a;;] be an additive pairwise comparisons (APC) matrix. The
reciprocity condition is given as follows:

The more general consistency condition is defined as follows:

aij + aj, = ag, Vi,j,k€{l,...,n} )

Proposition 1. Let A, «, = [a;;], aij € R, be an APC matriz. The consistency
condition (2) implies: a) a; = 0,Vi € {1,2,...,n}, b) reciprocity condition

(1).
Proof.

i) Let @ = j = k. Then from relation (2) we get: a; + a; = a;;, hence
iy = O, V1.

ii) Let ¢ = k # j. Then from (2) we get: a;; +a;jr —a;, = 0, Vi, j, k, hence
ag; +ajr, — 0= 0,4, j,k, thus ay; + a;, = 0,V4, j, k, as required. O

The next proposition is a straightforward consequence of the reciprocity
condition.

Proposition 2. Let A, ., = [a;;], aij € R, be a reciprocal APC matriz. Then
the sum of all its elements is equal to 0.

Proof. is obvious. ([l
On the contrary, when the sum of all matrix elements differs from 0, then
the matrix is necessarily non-reciprocal:



Proposition 3. Let A,,, = [a;;], a;; € R, be an APC matriz and ;. Z?:l a;; #
0. Then the matriz A is non-reciprocal.

Proof. (by contradiction) Assume the matrix A is reciprocal, thus a;; +
aj; = 0,Vi,j, and, at the same time, > > 7  a;; # 0 holds. Then,
after rearranging terms, we have: Y7 Y77 jay = D04 + > 4 =
Doie @i + D a5 = Yy >0 (ai; + aji) # 0, hence, at least one term
(a;j+aj;;) # 0, which is a contradiction with the initial assumption a;;+aj; =
0,Vi, j. Therefore, the matrix is not reciprocal. O

However, the fact that the sum of all matrix elements is equal to 0
does not imply that an APC matrix is reciprocal as shown in the following
counterexample:

0 8 —4
A=| -5 0 5
-8 4 0

The proposed measure of non-reciprocity based on the relation (1) and
the definition of a p—norm is introduced as follows.

Definition 2. Let A,y,, = [a;],a:;; € R, be an APC matriz. Let p > 1.
Then the non-reciprocity measure = (for non-diagonal elements) is given as
follows:

E(A) =3 > laij+aul’)> . (3)
i=1 j=1,j7#i

Further on, the measure (3) can be normalized by the factor (the number

n(n—1)
2

of reciprocal pairs) , where n is the matrix order:

Epn(A) = ﬁ(z Z |ai; + aji|p)% : (4)

i=1 j=1ji

Example 1. Consider the following additive PC matriz A = [a;;] and evaluate
its non-reciprocity (for p = 1) via the measure (3)

0 10 =5 15
-8 0 8 22
4 -8 0 13
—-15 =20 —-13 0

A:



Solution:
From (8) we have: Z(A) = >° Z?:L#i lai; + aji| = |10 + (=8)] +
|(=5) + 4] + |15+ (=15)| + |8 + (=8)| + |22 + (—20)| + [13 + (—13)| = 5.

Proposition 4. The measure of non-reciprocity in the additive system, =,,
given by relation (3), is identical to the measure of non-reciprocity O (M) =
1/p
Dim1 2o i log (M - mjz')|p) in the multiplicative system, where M =
[m;] denotes the multiplicative pairwise comparison matriz.

Proof. The transformation from the multiplicative to the additive system
(see Figure 1) is given by m;; = e%. Substituting this into O®) (M), we get:

n n 1/p n n 1/p
Or(A) = (Z > Jlog (e 'eaﬂ)|p> — (Z > Jlog (™) + log (eaji)p> :
i=1 j=1,j7#1¢

i=1 j=1j#i

Assuming the natural logarithm, we obtain:

n n 1/p
OW(4) = <Z > lay + ajz‘|p> = E,(4),

i=1 j=1,j#i

as required. ([l
It is shown in Mazurek & Linares (2023) that the measure of non-reciprocity
in the multiplicative system ©?) satisfies several desirable properties, namely:

e Property 1 (Existence of a unique element representing reciprocity).

Property 2 (Invariance under permutation of alternatives).

Property 3 (Monotonicity under reciprocity-preserving mapping).

Property 4 (Monotonicity on single comparisons).

Property 5 (Continuity).

Property 6 (Invariance under inversion of preferences).

Due to simple (log and exp) transformation between multiplicative and
additive systems, also the newly introduced measure =, satisfies all properties
above.
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5. Non-reciprocity in the fuzzy preference relations framework

In the fuzzy preference relations (FPR) system, the preference of object i
over object j is represented by a value f;; €]0,1[. When f;; > 0.5, it indicates
that object ¢ is preferred over object j. If f;; = 0.5, there is no preference
between the two objects, indicating indifference. Conversely, if f;; < 0.5, it
implies that object j is preferred over object . For a visual representation,
see also Figure 3.

Figure 3: Reciprocal fuzzy preference relations.

Let Foxn = [fi;] be a fuzzy preference relations (FPR) matrix. The
reciprocity condition is defined by

fZ]+ij:17 \Vll,jE{l,,’I'L} (5)

The generalized consistency condition for the fuzzy preference relation
(FPR) is defined as follows (Tanino|, [1984):

Jij = fir — Jug + 0.5 =0, Vi, j ke {1,...,n}. (6)

Proposition 5. Let F,,, = [fij], be a FPR matriz, where f;; €0, 1], satisfying
the generalized consistency condition @ Then:

(a) fii =0.5, foralli e {1,2,...,n}.
(b) The reciprocity condition is satisfied.
Proof. To prove part (a), let i = j = k. Then, substituting in @, we obtain
Jii = fi — Ju + 0.5 =0,

which simplifies to f; = 0.5 for all 4.
For part (b), let i« = j # k. Substituting into the consistency condition
yields:
Jii = fit — Jri £0.5 =0,

11



which simplifies to fi, + fri =1, for all , j, k, as required. O
The next proposition is a straightforward consequence of the reciprocity
condition.

Proposition 6. Let F, ., = [fij| be a reciprocal fuzzy preference relation
(FPR) matriz, where f;; €]0,1] and fi; + f;; =1 for alli # j, and f;; = 0.5

for allv. Then, the sum of all elements in the matriz is equal to "72

Proof. The total sum of all elements in the matrix can be written as:

IS WES I I

i=1 j=1 1=1 j=1,j#i

The sum of the diagonal elements is:

u n
;fu =0.5n = 5

For the off-diagonal elements, there are % reciprocal pairs, and since each
pair sums to 1, the total contribution from all off-diagonal elements is:

)OI DI A

i=1 j=1,j#i

Therefore, the total sum is:

O
On the contrary, when the sum of all matrix elements differs from n

27
then an FPR matrix is necessarily non-reciprocal:

Proposition 7. Let Fix, = [fij], fij €10, 1] be a FPR matriz and 37, 37, aij #

2 . . .
%-. Then the matriz F is non-reciprocal.

Proof. is analogous to the proof of Proposition 3.3. ([l

However, the fact that the sum of all matrix elements is equal to "("2_1)

does not imply that a matrix is reciprocal as shown in the following counterexample:
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0.5 08 0.4
04 05 0.7
04 03 0.5

To quantify the extent of non-reciprocity, a suitable function is necessary.
The only attempts in this direction are the so-called additive reciprocity
property breaking functions proposed in [Liu et al. (2021c) and revised in
Wang & Deng (2022). However, these functions are defined only for the case
0 < fij + f;i < 1;V4, j, thus neglecting the possibility of f;; + f;; > 1 for some
pair (i,7). Also, the authors do not attempt to investigate the measures’
properties or consider transformations (isomorphisms) among multiplicative,
additive and fuzzy theoretical frameworks.

Therefore, we propose a new measure of non-reciprocity of FPR matrices
without the shortcomings above based on the definition of a p—norm as
follows.

Definition 3. Let F,y,, = [fi;]. fi; €]0,1[, be a FPR matriz. Let p > 1.
Then the non-reciprocity measure Y (for non-diagonal elements) is given as
follows:

3=

T(F) = (3 S fogl—T gy

(7)
i=1 j=1,j#i (1= fi) (1 = f5)

The operation *’ in (7) is usual multiplication. Further on, the measure

(9) can be normalized by the factor (the number of reciprocal pairs) @,

where n is the matrix order:

2 NN fi-Bi
R DD DI oy ey

i=1 j=1ji

S

(8)

Example 2. Consider the following fuzzy preference relations matriz F' =
[fi;] and evaluate its non-reciprocity (for p = 1) via the measure (7).

05 04 0.8 0.7
0.6 0.5 0.6 0.3
0.1 0.3 0.5 0.6
04 05 04 05

Solution:
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From (7) we have: T1(F) = (|log(%)|+|log(%)|+m =
0+ 0.811 + 0.560 + 0.442 + 0.847 + 0 = 2.660

Due to the transformations among MPC, APC and FPRs systems shown
in Figure 1, the measure Y, (F) satisfies the desirable properties listed in the
previous section.

The following example illustrates that non-reciprocity evaluation in all
three systems leads to identical results.

Example 3. Consider the following pairwise comparison matrices M, A
and F corresponding to multiplicative, additive and fuzzy representations
of identical preferences (each matriz can be converted into another one by
formulas in Figure 1). We will evaluate their non-reciprocity for p =1 (and
natural logarithm).

1 4 5
M=103 1 05 |,
02 2 1

0 log(4) log(5)
A= 1log(0.3) 0 log(0.5) |,
log(0.2) log(2) 0

0.5 0.8 0.833
F=10231 05 0333
0.167 0.667 0.5

As can be seen, only one pair with indices (1,2) is non-reciprocal.

For the multiplicative matriz M we get:

oW(M) =311, Do,z og(mij - my;)| = |log(4-0.3)[+0+0 = log(1.2) =
0.182.

For the additive matriz A we obtain:

=1(A) = X0 Y lag + asil = (Jlog(4) + l0g(0.3)] + 0 +0 = 0.182.

For the fuzzy preference relations matrixz F' we get:

Y1(F) = (lloga=ysyi-ozn| + 0+ 0= 0.182.

The results - the extent of non-reciprocity - are identical in all systems.

In the next two Sections, we provide percentile tables for randomly generated
APC and FPRs matrices so that a decision maker can assess the non-reciprocity

14



of a given matrix and decide whether the extent of non-reciprocity is acceptable,
or not.

In Mazurek & Linares (2023), percentile tables for non-reciprocity for
random multiplicative PC matrices were provided. The applied scale was
Saaty’s scale from 1/9 to 9, which is the most common among practitioners.

For APC matrices, we use the scale from -100 to 100, which is also
preferred along with +10 scale, see e.g. |Guh & al. (2009), in practical
applications. Since this scale does not correspond to Saaty’s scale, both
percentile tables naturally differ. The same applies to percentile tables for
FPRs matrices, where matrix elements from the interval |0, 1| were considered.

6. Assessing the reciprocity of random APC matrices

To provide a decision maker with percentile tables for the measure of
non-reciprocity Z in the additive framework given by relation (3), we performed
Monte Carlo simulations for additive PC matrices of the order 2 < n < 8.
Matrix elements were drawn randomly from the [—100,100] interval under
the assumption of uniform distribution.

For each matrix size n, a total of 100,000 random matrices was generated.
After the set of matrices was generated, each matrix was evaluated for
non-reciprocity via relation (3) for p = 1, p = 2 and p = oo (the logarithm
applied was the decadic one).

Results in the form of percentile tables are summarized in Tables 1-3 and
Figure 4. As can be seen, percentile values expectedly grow monotonically
with increasing n: the larger the order of the matrix, the more significant
the value of non-reciprocity for a corresponding percentile.

Now, let’s consider an APC matrix of the order n = 6 with =; = 564.
Is this matrix tolerably non-reciprocal? From Table 1 it follows that such a
matrix is less non-reciprocal than 99% of random APC matrices of the same
order, hence, by applying the 10% rule similarly to the AHP, the matrix can
be considered tolerably non-reciprocal.
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Table 1: Percentile tables of = defined by relation (3) for random APC matrices, p =
1;2<n<8.

percentile | 0.1 1 2 3 4 5 10 20 25 | 50 (median)
n=2 0 1 2 3 4 ) 10.3 | 214 | 27.2 58.8
n=23 194 | 41.8 | 53.8 | 61.5 | 68.6 | 74.5 | 96.7 | 127.8 | 140.4 195.8
n=4 104.8 | 158.3 | 182.1 | 197.9 | 209.1 | 219.1 | 254.4 | 300.8 | 319.8 397.4
n=>=5 259.4 | 348.5 | 378.7 | 400.8 | 417.0 | 431.7 | 479.4 | 541.6 | 565.6 664.9

n==~0 494 | 602 | 646 | 674 | 694 | T11 772 | 848 | 878 1000
n=71 788 | 930 | 980 | 1012 | 1037 | 1058 | 1132 | 1224 | 1258 1403
n=238 1161 | 1315 | 1379 | 1416 | 1447 | 1472 | 1557 | 1663 | 1704 1872

Table 2: Percentile tables of = defined by relation (3) for random APC matrices, p =
2;2<n<8.

percentile | 0.1 1 2 3 4 5 10 20 25 | 50 (median)
n=2 0 1 2 3 4 ) 10.3 | 214 | 27.2 58.8
n=23 13.1 | 284 | 36.3 | 423 | 470 | 51.1 | 66.1 | 87.2 | 95.9 132.7

n=4 52.9 | 81.0 | 92.6 | 100.1 | 106.2 | 111.2 | 129.4 | 152.0 | 160.6 195.5
n=>5 104.5 | 138.6 | 151.5 | 159.9 | 166.3 | 171.5 | 189.9 | 212.8 | 221.2 255.3
n==~0 163.0 | 198.8 | 211.8 | 220.1 | 226.6 | 231.8 | 250.3 | 272.6 | 281.0 314.6
n="7 222.3 | 256.0 | 270.0 | 278.9 | 285.6 | 290.7 | 308.9 | 331.2 | 339.6 372.9
n=238 280.0 | 317.1 | 330.7 | 339.2 | 345.4 | 350.5 | 368.5 | 390.2 | 398.4 432.0

Table 3: Percentile tables of = defined by relation (3) for random APC matrices, p =
00;2<n<8.

percentile | 0.1 1 2 3 4 5 10 20 25 | 50 (median)
n=2 0 1 2 3 4 ) 103 | 214 | 27.2 58.8
n=3 10.5 | 23.3 | 29.6 | 342 | 38.0 | 41.3 | 539 | 71.2 | 785 109.5
n=4 355 | 838 | 61.7 | 674 | 71.4 | 748 | 87.3 | 103.5 | 109.6 134.5
n=>5 58.8 | 79.1 | 86.6 | 91.6 | 954 | 98.7 | 109.8 | 123.6 | 128.7 149

n =206 80.1 | 979 | 105.1 | 109.5 | 113.1 | 115.6 | 125.4 | 136.8 | 141.2 158.3
n="7 95.6 | 111.9 | 117.9 | 122.2 | 125.2 | 127.6 | 136.2 | 146.3 | 150.2 164.8
n= 106.8 | 122.6 | 128.4 | 132.3 | 134.8 | 137 | 144.5 | 153.6 | 156.8 169.6
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7. Assessing the reciprocity of random FPR matrices

To provide a decision maker with percentile tables for the measure of
non-reciprocity Y in the fuzzy preference relations framework given by relation
(7), we performed Monte Carlo simulations for FPR matrices of the order
2 <n < 8. Matrix elements were drawn randomly from the | — 1, 1] interval
under the assumption of uniform distribution.

For each matrix size n, a total of 100,000 random matrices was generated.
After the set of matrices was generated, each matrix was evaluated for
non-reciprocity via relation (7) for p = 1, p = 2 and p = oo (the logarithm
applied was the decadic one).

Results in the form of percentile tables are summarized in Tables 4-6 and
Figure 4. In general, percentile values expectedly grow monotonically with
increasing n: the larger the order of the matrix, the larger is the value of
non-reciprocity for a corresponding percentile.

Let us consider a FPR matrix of the order n = 6 with T, = 8.13, and
p = 2. Then this matrix would be considered intolerably non-reciprocal,
since the value of non-reciprocity equal to 8.13 is higher than the threshold
for the 20" percentile (8.02), see Table 5.

Table 4: Percentile tables of T defined by relation (7) for random FPR matrices, p =
1;2<n<8

percentile | 0.1 1 2 3 4 5 10 20 25 | 50 (median)
n=2 0.00 | 0.03 | 0.06 | 0.09 | 0.12 | 0.15 | 0.30 | 0.60 | 0.77 1.63
n=3 0.53 | 1.18 | 1.51 | 1.73 | 1.93 | 2.10 | 2.71 | 3.58 | 3.96 5.65
n=4 3.07 | 448 | 5.10 | 5.57 | 5.86 | 6.16 | 7.21 | 8.63 | 9.17 11.65

n=>5 7.52 | 9.75 | 10.73 | 11.38 | 11.81 | 12.27 | 13.75 | 15.61 | 16.37 19.64
n==06 13.87 | 17.11 | 18.34 | 19.17 | 19.85 | 20.41 | 22.23 | 24.66 | 25.61 29.65
n=7 22.36 | 26.47 | 28.03 | 29.08 | 29.80 | 30.50 | 32.73 | 35.69 | 36.85 41.58
n=3~8 32.73 | 37.68 | 39.63 | 40.87 | 41.83 | 42.56 | 45.24 | 48.69 | 50.04 55.57
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Table 5: Percentile tables of T defined by relation (7) for random FPR matrices, p =
2;2<n<8

percentile | 0.1 1 2 3 4 5 10 20 25 | 50 (median)
n=2 0.00 | 0.03 | 0.06 | 0.09 | 0.12 | 0.15 | 0.30 | 0.61 | 0.77 1.63
n=23 0.35]080|1.02|119| 1.31 | 1.43 | 1.84 | 2.44 | 2.68 3.80
n=4 1.50 | 2.26 | 2.59 | 2.81 | 298 | 3.11 | 3.64 | 4.32 | 4.58 5.80
n=>5 2931390 |4.27 | 453 | 469 | 485 | 542 | 6.17 | 6.44 7.71
n==6 |[4.57559]6.00|6.27| 648 | 6.63 | 7.24 | 8.02 | 831 9.60
n=7 ]622|730|775|801]| 826 | 844 | 9.06 | 9.86 | 10.15 11.45
n =238 7,93 | 9.10 | 9.54 | 9.83 | 10.06 | 10.24 | 10.88 | 11.67 | 11.99 13.28

Table 6: Percentile tables of T defined by relation (7) for random FPR matrices, p =
00;2<n<8

percentile | 0.1 1 2 3 4 5 10 | 20 | 25 |50 (median)
n=2 [0.00]{0.03]0.06 0.09|0.12|0.15| 0.29 | 0.61 | 0.77 1.63
n=3 [033]066]|0830.97|1.07]|1.15|149]|1.98|2.19 3.14
n=4 |097|148|1.71 185|199 |2.08]|245|294|3.14 4.07
n=>5 1.65 | 2.18 | 2.43 | 2.57 | 2.69 | 2.78 | 3.14 | 3.63 | 3.83 4.74
n==6 |223|275|297|313|323|3.34|3.69|4.16 | 436 5.24
n=7 |264]320]344|3.58|3.69|3.78|4.13 | 4.60 | 4.79 5.65
n=28 |3.06]3.60]|382|396|4.08|4.17|4.50|4.96 | 5.15 6.01
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Percentiles of = and Y for Random Matrices

Table 1 - Percentiles of = Table 2 - Percentiles of = Table 3 - Percentiles of =
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Figure 4: Percentile values for different p—metrics. Source: authors.

8. Conclusions

The paradigm of pairwise comparison methods assumes pairwise comparisons
are reciprocal (Harker & Vargas, 1987;[Saaty, 1977, |1980,1986). This assumption
is based on the notion of rationality and is a considered necessary requirement
for consistent judgments. However, recent empirical studies have shown that
non-reciprocal matrices appear naturally in many situations and that their
root is both subjective (caused by human cognitive bias, lack of knowledge,
time pressure, etc.) and objective (Diaz-Balteiro et al. 2009; Filop et al.,
2012; Hovanov et al., 2008; |Linares et al., |2016]).

The problem of non-reciprocity in the multiplicative pairwise comparisons
framework has been already addressed in the recent study by
(2023)). The aim of this paper was to extend the study of non-reciprocity
in pairwise comparisons to additive and fuzzy preference relations frameworks
as well. In both frameworks, new measures of non-reciprocity, = and T,
satisfying a set of desirable properties, were introduced. These two measures
correspond to the previously introduced measure of non-reciprocity in the
multiplicative framework in that sense that they provide the same results for
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the same preferences. However, a unified formula of non-reciprocity based
on Alo groups is not feasible since the very existence of non-reciprocity is
not compatible with a group structure. Thus, the introduction of measures
= and T is justified.

Further on, Monte Carlo simulations of randomly-generated non-reciprocal
APC and FPR matrices allowed us to provide a decision maker with percentile
tables depending on the selected p-metric, the order of the matrix and a given
tolerance value, so a decision maker can decide whether a given APC or FPR
matrix is acceptably non-reciprocal, or not.

Further research may focus on the analysis of the implications of different
p-metrics as well as connections between reciprocity and consistency measured
by inconsistency indices proposed for reciprocal PC matrices. Also, generalizations
towards pairwise comparisons with uncertainty (e.g. in the form of interval
numbers or fuzzy sets), or incomplete pairwise comparisons can be considered.
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