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Abstract
Point-of-interest (POI) recommendations are essential for travelers and the e-tourism 
business. They assist in decision-making regarding what venues to visit and where to 
dine and stay. While it is known that traditional recommendation algorithms’ perfor-
mance depends on data characteristics like sparsity, popularity bias, and preference 
distributions, the impact of these data characteristics has not been systematically 
studied in the POI recommendation domain. To fill this gap, we extend a previously 
proposed explanatory framework by introducing new explanatory variables specifi-
cally relevant to POI recommendation. At its core, the framework relies on having 
subsamples with different data characteristics to compute a regression model, which 
reveals the dependencies between data characteristics and performance metrics of 
recommendation models. To obtain these subsamples, we subdivide a POI recom-
mendation data set on New York City and measure the effect of these characteristics 
on different classical POI recommendation algorithms in terms of accuracy, novelty, 
and item exposure. Our findings confirm the crucial role of key data features like 
density, popularity bias, and the distribution of check-ins in POI recommendation. 
Additionally, we identify the significance of novel factors, such as user mobility 
and the duration of user activity. In summary, our work presents a generic method 
to quantify the influence of data characteristics on recommendation performance. 
The results not only show why certain POI recommendation algorithms excel in 
specific recommendation problems derived from a LBSN check-in data set in New 
York City, but also offer practical insights into which data characteristics need to be 
addressed to achieve better recommendation performance.
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1 Introduction

Understanding which recommendation algorithm is most effective for a specific data 
set is crucial, as it has been widely acknowledged that no single recommender can 
achieve optimal performance in all scenarios (Im and Hars 2007; Anelli et al. 2022). 
Apart from the performance variation of the algorithms across different data sets, 
it should be taken into account that the quality of any recommender can be evalu-
ated through a wide array of different dimensions (Gunawardana et al. 2022). While 
accuracy may be the primary concern when recommending items that a user might 
actually consume, it is equally important to prioritize recommending different items 
for the users (diversity), items that may be unfamiliar to users and, hence, surprise 
them (novelty), or ensure that our recommendations are not biased towards individ-
ual users or items (fairness)  (Castells et al. 2022; Ekstrand et al. 2022). However, 
designing models that perform well in all these dimensions is challenging, as they 
need to deal with, for example, the accuracy-diversity trade-off (Isufi et al. 2021). 
Whereas such analysis of accuracy versus novelty, diversity, and other dimensions 
has been conducted in traditional recommendation scenarios like movies or books, 
within the point-of-interest recommendation domain, the problem has not been ana-
lyzed in such detail, although some researchers have started to examine these dimen-
sions in this context (Massimo and Ricci 2021; Sánchez and Dietz 2022).

Moreover, while most existing studies have primarily focused on evaluating the 
quality of recommendations based on the accuracy of recommended venues through 
offline experimentation metrics (i.e., using ranking accuracy metrics like Preci-
sion or Recall), there remains a lack of consensus on the other crucial aspects of 
evaluation methodology, such as data sets, data filtering, data partitioning, and other 
evaluation metrics (Sánchez and Bellogín 2022). In addition, it is important to con-
sider that users can be grouped based on simple touristically relevant information, 
such as their origin or the categories of visited POIs, all of which can correlate with 
their preferences. It has been shown that recommendation performance may fluctu-
ate substantially depending on the user group a user belongs to, especially between 
local users and visiting tourists (Sánchez and Dietz 2022).

Deldjoo et al. (2021) proposed a method to analyze the impact of different data 
characteristics on the accuracy and fairness of matrix factorization algorithms in 
the movie and book recommendation domains. As opposed to such classical rec-
ommendation problems, point of interest (POI) recommendations are influenced in 
a way larger degree by further factors, such as seasonality, geographical influences 
of the venues to be recommended, and the type of users of such system (Sánchez 
and Bellogín 2022). Hence, in this paper, we investigate the success factors of clas-
sical and POI recommendation algorithms through the lens of data characteristics 
present in the data set used as input by the recommendation models. To do so, 
we incorporate the most relevant influences in a framework derived from  (Deld-
joo et  al. 2021) to analyze the effect they have on the performance of a set of 
recommenders.
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1.1  Using data characteristics to explain recommender performance

When proposing a new recommendation model, researchers often begin with intui-
tions or anecdotal evidence, until they ultimately obtain empirical evidence through 
experimentation to validate the model effectiveness. However, relying solely on 
intuitions or anecdotal evidence to justify the quality of recommendations is insuffi-
cient. This approach may explain why some models obtain excellent results on some 
data sets while, at the same time, they perform poorly in others, as recent efforts on 
reproducibility have demonstrated (Dacrema et al. 2019; Said and Bellogín 2014).

It should be noted that some studies have analyzed the effect of different aspects 
in the recommendations, like the data partitioning (Meng et al. 2020) and the hyper-
parameters of the models (Anelli et  al. 2019). The experiments presented in this 
paper are based on the approach by the works of Deldjoo et al. (2021, 2020), where 
the authors defined a set of explanatory variables that model the characteristics of 
the data set (e.g., ratings per user, per item, population bias, etc.). On the basis of 
those works, herein, we use a similar methodology as proposed by Deldjoo et  al. 
(2021), but adapt the framework towards POI recommendation by incorporating 
additional variables that capture the unique dynamics of the POI recommendation 
domain. The core idea is that recommendation performance is influenced by quan-
tifiable patterns in the data, which result in easier or more difficult recommendation 
problems. For example, a high density of the user-rating matrix, i.e., where many 
users have already rated a large portion of items, generally provides recommenda-
tion models with ample signal to compute suitable recommendations. Hence, many 
such data characteristics can potentially influence performance. In this paper, we 
study not only the impact of these data characteristics on ranking quality, but we 
also analyze the effect on the recommendations in terms of both novelty and the 
amount of exposure each item receives across all users. These aspects are impor-
tant as they help identifying recommenders that may be amplifying unfairness in the 
exposure of items. For example, if a model recommends popular POIs significantly 
more frequently than they appear in the test set, it can lead to low novelty values and 
greater disparities in item exposure. In e-tourism, this is a key consideration as it can 
decide which businesses thrive.

Despite the commonalities with the approach presented in Deldjoo et al. (2021), we 
further develop several aspects of the general method, which requires generating a suf-
ficiently large number of recommendation data sets with varying data characteristics to 
compute a regression model. To achieve this, we start from a widely-used check-in data 
set based on the location-based social network Foursquare and generate domain-driven 
subsamples; that is, considering characteristics of special importance in both traditional 
and POI recommendation. The subsamples are created using filter-like rules targeting 
the interaction density, popularity of venues, seasonality and origin of users, e.g., locals 
visitors of a travel destination. This is in contrast with the original approach which used 
a constraint-based random sampling method to derive subsamples. By subdividing the 
set of all POI visits in the data set based on the aforementioned domain-specific rules, 
we can better steer the subsampling process and simultaneously obtain interpretable 
subsamples, which can be used to understand inherent attributes and characteristics of 
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the POI recommendation domain. As an outcome, we obtain individual subsamples of 
the data set with varying data characteristics.

This variability in the data characteristics in the individual subsamples is impor-
tant as, in the next step, we independently perform recommendation experiments 
with each subsample and record the outcome variables in terms of accuracy, novelty, 
and item exposure. Herein, it is important to note that these subsamples are synthetic 
simulations of recommendation data sets. We compute regression models using the 
data characteristics of the individual subsamples as independent variables and the 
performance metrics as dependent variables. In other terms, we quantify data char-
acteristics using explanatory variables to explain the performance changes of the 
recommenders in terms of ranking accuracy, novelty, and item exposure using the 
regression model. Through the quantification of the statistical significance of the 
explanatory variables within the regression model, we ensure that the determined 
influences are robust and not spurious effects. To capture all potential influences on 
the recommendation outcome in the POI recommendation domain, we further extend 
the variables proposed for classical recommendation domains (Deldjoo et al. 2021, 
2020; Adomavicius and Zhang 2012) with spatio-temporal features. An analysis of 
the statistical significance of the coefficients in the regression model reveals which 
data characteristics are needed to explain the recommenders’ performance.

1.2  Overview of contributions

While the core concepts of this paper are based on previous approaches of Deldjoo 
et al. (2021) and Adomavicius and Zhang (2012), we go beyond of simply adapting an 
established method to the domain of POI recommendations. We make the following 
conceptual and methodological contributions: 

1. We extend the corpus of explanatory variables for analyzing the effect of differ-
ent data characteristics, including geographic aspects, in a varied set of state-
of-the-art POI recommendation algorithms (Sect. 3.2). This analysis considers 
three complementary evaluation dimensions: ranking accuracy, novelty, and item 
exposure.

2. We introduce a domain-specific subsampling algorithm for POI recommenda-
tion (Sect. 4). This algorithm ensures that the simulated data sets are grounded 
in the domain instead of random subsampling, as done in previous works.

3. We perform a comprehensive analysis of a set of recommendation algorithms by 
considering 144 different simulations (Sect. 5). Each simulation corresponds to 
a subsampled recommendation data set of a specific city within the Foursquare 
check-in data set. In this way, we conduct an analysis of different samples with 
disparate characteristics to detect which explanatory variables help us to better 
explain the performance of the recommenders.
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1.3  Impact on e‑tourism

This research can have significant implications for the tourism industry. POI rec-
ommendations play a crucial role in shaping tourists’ experiences and guiding their 
choices of which places to visit; thus, they are a key factor in decision-making. We 
offer valuable insights that can enhance the tourism industry’s ability to provide 
more tailored and satisfying experiences to travelers by determining which recom-
mendation algorithms should be used in which kind of specific recommendation 
scenarios. The analysis of the beyond-accuracy metrics, i.e., novelty and item expo-
sure, offers valuable perspectives that cater to the user needs and local businesses. 
Novelty is especially relevant to local users, as it fosters the exploration of their city, 
whereas item exposure is a precondition to ensure that the flow of visitors is dis-
sipated on many venues, contributing to provider fairness (Deldjoo et al. 2023). By 
harnessing data characteristics such as density, popularity bias, and user activity 
duration, the proposed methods can be used to select algorithms that better align 
with the business goals of destination management stakeholders. Thus, understand-
ing how user behavior varies in different parts of a destination can enable businesses 
to tailor their offerings and marketing efforts more effectively. Our research under-
scores the value of data-driven decision-making in the tourism sector. By leverag-
ing the insights gained from this study, both providers of POI recommendation plat-
forms and the tourism industry can enhance their ability to provide personalized and 
engaging experiences to users.

2  Background

2.1  Point‑of‑interest recommendation

The POI recommendation problem is typically defined as suggesting venues in a 
city or particular region that the target user has not previously visited (Massimo and 
Ricci 2022). These venues have a specific location, typically expressed as latitude 
and longitude, and might be varied in nature, including museums, parks, restaurants, 
or bars, among others. As in the traditional recommendation scenario, the objective 
is to maximize the number of relevant items (in this case, venues) that are being 
recommended to the user. Formally, as pointed in a recent survey by Sánchez and 
Bellogín (2022), the POI recommendation problem can be formulated as follows:

where P denotes all POIs available in the region, p∗ is the optimal venue that maxi-
mizes the utility for user u among all POIs1 in P , as defined by the utility func-
tion g, and � represents the set of influences, also referred to as contextual informa-
tion in some works (Adomavicius et al. 2022). This contextual information should 

(1)p∗(u) = argmax
p∈P

g(u, p,�)

1 Even though we use the symbol P to refer to the POIs, in line with the standard notation from the 
traditional recommendation problem, we shall use the letter I to refer to the items of the system, i.e., the 
POIs.



 L. W. Dietz et al.

be considered to perform meaningful POI recommendations (Manotumruksa et al. 
2018).

Temporal, sequential, social, categorical, and, most importantly, geographi-
cal information are normally exploited in most POI recommendation approaches 
(Li et  al. 2015; Griesner et  al. 2015; Zhang and Chow 2015; Liu et  al. 2014). In 
order to perform POI recommendations, researchers often use the information avail-
able in location-based social networks (LBSNs). Foursquare, Gowalla, or Yelp are 
examples of this type of application where users are allowed to register the check-
ins they perform at the different venues they visit. Data sets extracted from such 
LBSNs are invaluable for understanding the visiting behavior of users. Information 
about friendship links, along with the geographical coordinates of the venues, their 
categories, and the timestamps of the check-ins, can be used to model the aforemen-
tioned influences and generate potentially interesting recommendations to the users 
who are new in a specific geographical region, sometimes even requiring completely 
different approaches, such as reinforcement learning (Massimo and Ricci 2023).

It is important to note that LBSNs typically contain check-ins from different cit-
ies around the world. However, as this type of recommendation is affected by all 
the aforementioned influences (especially the geographical information), many 
researchers perform recommendations considering each city/region as independent 
data sets (Liu et al. 2014; Li et al. 2015). This strategy is not only practical from an 
experimental point of view, but it is also quite reasonable since when a user is in 
a particular city, she will be interested in visiting venues belonging to that region 
and not from distant cities. Furthermore, each city may exhibit a unique distribution 
of POIs to visit, along with distinct cultural characteristics and specific urban plan-
ning. In fact, this is one of the reasons why POI recommendation is closely related 
to the tourism industry (Wang et al. 2020a; Santos et al. 2019), since tourists, when 
they arrive to a new city, are usually interested in visiting the most relevant venues 
of that specific city and immerse themselves in the local culture. Besides, we need 
to consider that tourism is the base of many economies, such as some countries in 
southern Europe (Cortés-Jiménez 2008), due to the large number of stakeholders 
involved, including tourists, venue owners, and local residents.

2.2  Specific considerations of the POI recommendation domain

When addressing the POI recommendation problem, it is necessary to regard several 
domain-specific considerations and problems. Some of them include:

Sparsity: The ratio between the stored preferences in the data set and all the pos-
sible interactions between the users and the venues is extremely low. While the den-
sities of LBSNs data sets from Foursquare and Gowalla are approximately 0.0034%, 
the density of the Netflix and Movielens20M data sets, typically used in classical 
recommendation, are around 1.77%, hence showing much higher values of sparsity.

Additional influences: As discussed in Sect. 2.1, POI recommendation is influ-
enced by geographical aspects, social connections, and temporal information. Due 
to the high data sparsity, it is crucial to leverage additional information to enhance 
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the performance of the algorithms. Among all the information sources, geographical 
influence plays the most important role since users often prefer to visit nearby POIs 
in accordance to Tobler’s law: “[...]Everything is related to everything else, but near 
things are more related than distant things” (Tobler 1970). However, temporal influ-
ence can also provide valuable insights, such as the duration of users’ visits and their 
movement patterns between POIs. Therefore, exploiting information suitable to the 
respective use cases is essential for the success of the recommendations.

Implicit information: Traditionally, classical recommender systems model user-
item interactions using ratings. However, in POI recommendation data sets, we typi-
cally lack of explicit ratings and we only have timestamps of user visits. Moreover, 
users may check in multiple times at the same POI, which classical recommendation 
systems typically do not account for Nikolakopoulos et  al. (2022). In POI recom-
mendation, repeated check-ins to the same venue can serve as implicit information, 
refining the model of a user’s preference similar to explicit ratings. As normally we 
do not have explicit information to create a user-item matrix, these repeated check-
ins provide valuable implicit feedback. POI recommender systems capture latent 
user preferences using frequency matrices, providing better recommendations.

Popularity bias: Popularity bias is a well-studied problem in the recommender 
systems domain that occurs when popular items are recommended more frequently 
than less popular ones, regardless of whether they actually match the interests of 
the target user (Abdollahpouri et al. 2019). The effect of popularity bias is evident 
in multiple layers within the context of POI recommendation. Firstly, at the city 
level, an analysis of the original Foursquare data set reveals that out of the 415 cit-
ies worldwide, the top 1% of the most popular cities (based on the highest number 
of check-ins) represent the 20% of the total check-ins in the data set. However, when 
considering the top 2% of the most popular cities, this percentage increases to 28% 
of the total check-ins. Additionally, within each specific city, we can observe the 
impact of popularity bias on individual POIs. Taking New York City and Tokyo 
as examples, two extensively studied cities in the Foursquare data set (Sánchez and 
Bellogín 2022), we find that in New York City, the top 1% of the most popular ven-
ues are responsible for 27% of all check-ins, while the top 2% of venues account for 
36% of the total check-ins. Similarly, in Tokyo, the top 1% of venues comprise 48% 
of all check-ins, and the top 2% represent 57% of the check-ins in the city.

2.3  Offline evaluation in point‑of‑interest recommendation

In offline evaluation of POI recommendation methods, most works follow the same 
protocols used in the traditional recommendation scenario. The data set is split into 
a training and test set with, occasionally, an additional validation set being used for 
model parameter tuning. All models are trained on this data, and for each user in the 
test set, a top-N list of recommendations is generated based on predicted user satis-
faction (Cremonesi et al. 2010).

As in classical machine learning, subsets are often generated through ran-
dom splits or cross-validation from the original data set (Cheng et al. 2016; Wang 
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et al. 2020b). However, recently, temporal dimension has been considered in these 
splits (Zhao et al. 2019; Huang et al. 2020). Currently, two main types of temporal 
splits are common: per user, where the n oldest interactions for each user are used 
for training, and the rest for validation and testing, and a global split, where interac-
tions before a specific timestamp are used for training and the rest, for validation and 
test (Sánchez and Bellogín 2022). The latter is more natural, mimicking production-
scale recommender system evaluation and avoiding data leakage to the test set  (Ji 
et al. 2022).

Different metrics are used to evaluate recommendation algorithms, and most 
of them focus on measuring recommendation accuracy. This is determined by the 
overlap between recommended and actually visited venues in the test set. Greater 
overlap implies better recommendation quality. However, there is a recognition 
in the community that solely focusing on items in the ground truth may overlook 
other user-centric evaluation dimensions such as novelty (recommending non-pop-
ular items), diversity (recommending items that are different), and serendipity (rec-
ommending items that are novel and not easy to discover) (Castells et al. 2022). In 
the POI recommendation domain, which is influenced by categorical, geographi-
cal, and social factors, additional metrics can be used. For instance, category-level 
accuracy metric (Zhao et al. 2015) and the error in geographical distance between 
recommended and visited POIs (Yin et al. 2015) are used for measuring additional 
dimensions.

Another aspect that has received considerable attention in recent years in the 
recommender systems community, as in other areas of Artificial Intelligence 
and Machine Learning, is trying to understand the inherent biases learned by 
these systems and how they get reinforced by the recommendations. Thus, many 
researchers have focused on analyzing potential biases that may be found in either 
the data sets or the recommendations produced by the models. These biases vary 
widely, ranging from gender (Ekstrand and Kluver 2021; Melchiorre et al. 2021) 
to popularity bias (Abdollahpouri et  al. 2019; Cañamares and Castells 2017). 
Moreover, whereas in the classical recommendation scenario it is currently estab-
lished that analyzing different types of biases is important, the POI recommenda-
tion domain appears to lack comprehensive exploration in this regard. To the best 
of our knowledge, only a limited number of studies have analyzed this aspect. 
For example, Sánchez and Dietz (2022) observed biases in the recommendations 
provided to different groups of tourists and locals; and Weydemann et al. (2019) 
studied three types of fairness in this domain, i.e., fairness regarding the popu-
larity of the venues, fairness with respect to the nationalities of the users, and 
an assessment if the recommendations are aligned with the category distribution 
observed in previous visits.

In light of the complexities and influences in the POI recommendation domain, 
there is little known about the impact of data characteristics on the recommenda-
tion performance. We address this gap using an explanatory framework, which was 
adapted to this domain from Deldjoo et al. (2021).
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3  An explanatory framework for POI recommendation

The overall goal of this work is to understand which factors influence the perfor-
mance of different recommendation models in the POI recommendation domain in 
terms of different evaluation dimensions such as ranking accuracy, novelty, and item 
exposure. Similar to previous approaches addressing this challenge (Adomavicius 
and Zhang 2012; Deldjoo et al. 2021), we use data characteristics to describe sub-
samples of a recommendation data set and use a regression model to capture the 
impact of each feature on the recommendation outcome. The idea behind analyzing 
different subsamples of the same data set is that the regression analysis would reveal 
the influence of variations in data characteristics on dependent variables. The main 
difference to previous studies is that our analysis is regarding POI recommendation, 
which enables us to define further explanatory variables capturing the geographical 
influences of users visiting venues in a city. Moreover, we are able to use a domain-
driven subsampling approach, which yields additional insights into the performance 
of recommenders.

In this section, we describe the explanatory framework, which is a regression 
model applied to a series of data characteristics for capturing the interactions of 
users with the respective venues in a city. These data characteristics are computed 
for each subsample independently using a domain-driven approach outlined in the 
subsequent Sect. 4.

3.1  Regression model

Given all subsamples, we aim to model the relationship between the data charac-
teristics and the recommendation performance of each individual recommendation 
algorithm. This allows us to test hypotheses regarding which explanatory variables 
are able to describe the variations in the dependent variables in a statistically signifi-
cant way. Equation (2) shows the regression model, which is the core of the explana-
tory analysis.

where � is the error term (residuals), �0 is the intercept, i.e., the mean value of the 
dependant variable when the rest of the independent variables are zero, �ev is the 
regression coefficient of the respective explanatory variable ev (among the set of 
variables EV), xev represents the value of the explanatory variable in the current 
training example, and y is the value of the dependent variable according to the rec-
ommendation models. Since some of these values will depend on a specific recom-
mendation model r, the notation shows this with a superscript. In particular, this 
means that, for a specific recommender system r, the value of the dependent vari-
ables will be potentially different for each r. Then, the performance would be mod-
eled upon the set of explanatory variables xev , that will depend on the characteristics 
of the data set. Based on this, the regression model will produce coefficients �r

ev
 spe-

cifically tailored for this particular recommender, as it will consider the explanatory 

(2)yr = �r + �r
0
+

∑

ev∈EV

�r
ev
xev
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variables and the dependent variables at the same time. When using the EVs within 
the regression model, we apply min-max normalization to obtain coefficients that 
are directly comparable.

3.2  Explanatory variables

We define 32 explanatory variables (EVs) which serve as independent variables in 
the regression analysis. Unlike the approaches of Adomavicius and Zhang (2012) 
and Deldjoo et al. (2021), we do not have a user-rating matrix, but a user-check-in 
matrix, since the interaction between the users and POIs is a visit and not a rating. 
While the user-check-in matrix (UCM) is conceptually very similar to a user-rating 
matrix (URM), the UCM is established based on unique visits, i.e., the cell values 
of the UCM are 1 if a user has visited a venue; otherwise, it is 0. Multiple visits of 
one user to the same venue also result in a value of 1. Despite this small conceptual 
difference, most EVs proposed and used by Adomavicius and Zhang (2012) and 
Deldjoo et  al. (2021) can also be computed for a UCM. Since there is a signifi-
cant geographic influence in POI recommendation (Li et al. 2015), we also propose 
some further EVs that capture such geographic information about the visited ven-
ues. Thus, the EVs we use can be categorized in the following four categories: 

1. EVs that describe the structure of the UCM.
2. EVs that describe the check-in distribution of the UCM.
3. EVs that are based on item and user properties in the UCM.
4. EVs that capture the underlying user activity and mobility.

3.2.1  EVs based on the structure of the UCM

These EVs capture the general structure of the UCM and are well established to 
describe properties of recommendation data sets. Thus, we keep the discussion 
around them succinct.

Definition 1 (SpaceSize) Given a UCM, SpaceSize is defined as:

We use the SpaceSize instead of its components, the number of users, |U|, and 
the number of items |I| since it reduces the number of variables. As pointed out in 
Sect. 2.1, although we are dealing with POIs, denoted in that section as P , we use 
the letter I to refer to items in general.

Definition 2 (Shape) Given a UCM, shape is defined as:

(3)ev1 = SpaceSize(UCM) = |U| ⋅ |I|
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The ratio between the number of users and the number of items can be an 
initial indicator of whether user-based collaborative filtering or item-based col-
laborative filtering approaches might be more successful (Nikolakopoulos et  al. 
2022).

Definition 3 (Density) Given a UCM, density is defined as:

Density, or its inverse, sparsity, is a commonly reported metric to give an estima-
tion of the recommendation difficulty for collaborative recommendation algorithms. 
Here we use C to refer to all the check-ins performed by the users and registered in a 
data set. Generally, the higher the density, the more signal is available for the algo-
rithm to compute fitting recommendations. Density typically varies a lot depending 
on the data set and the domain, as mentioned in Sect. 2.2.

Definition 4 (Cpu,Cpi ) Given a UCM, check-ins per user ( Cpu ) and check-ins per 
item ( Cpi ) are defined as:

The number of interactions per user/item is also a simple but effective measure 
to put the recommendation quality into perspective. If the number of interactions 
is remarkably small for a user or an item, it can be regarded as “cold”, indicat-
ing that there is not sufficient information to compute meaningful recommenda-
tions. Given the high sparsity of the data sets in the POI recommendation domain, 
it is very common to impose a minimum number of interactions for both items and 
users, i.e., enforcing a k-core, cf. Sect. 4.1. This is done to avoid evaluating cold-
start recommendations.

3.2.2  EVs based on the check‑in distribution of the UCM

Naturally, some users are more active than others, and not all items get the same 
attention. In the POI recommendation domain, this is a very natural phenomenon 
since major highlights inherently attract more visits. This is a major challenge 
with respect to several dimensions of the recommendation algorithms, including 

(4)ev2 = Shape(UCM) =
|U|
|I|

(5)ev3 = Density(UCM) =
|C|

|U| × |I|

(6)ev4 =Cpu(UCM) =
|C|
|U|

(7)ev5 =Cpi(UCM) =
|C|
|I|
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accuracy, novelty, and fairness, as there is a delicate trade-off between recommend-
ing popular POIs and items in the long-tail (Rahmani et al. 2022).

Definition 5 (GiniI , GiniU ) Given a UCM, |Ci| and |Cu| be the number of check-ins 
associated with item i and user u and the users/items are sorted according to Ci and 
Cu , respectively; then GiniI and GiniU are defined as follows (Deldjoo et al. 2021):

The Gini coefficient captures the frequency distribution of the check-ins for users 
or items. It is scaled between [0, 1], where a score of 0 would correspond to a uni-
form popularity distribution, and 1 to the extreme case of all check-ins being con-
centrated on one user/item.

3.2.3  EVs based on the item and user properties

The following two EVs, popularity bias and long tail items, have been motivated 
by Deldjoo et al. (2021) to be included in their explanatory framework. Arguably, 
the POI recommendation domain is even more severely impacted by popularity bias 
(Massimo and Ricci 2021; Sánchez and Dietz 2022), thus, it is imperative to include 
them in our framework. Given the distribution of the metrics with outliers, we aug-
ment the aggregation methods used in Deldjoo et al. (2021) (mean, standard devia-
tion, skewness, and kurtosis) with the median value, as the median is more robust 
against outliers compared to the mean value. Note that a higher kurtosis is related to 
heavier tails, and hence, more outliers, while the skewness is related to the symme-
try of the distribution. If the skewness is positive, it means that the right-hand tail is 
longer than the left-hand tail. If the skewness is negative, then the right-hand tail is 
shorter than the left-hand tail.

Definition 6 (Popularity bias) We follow the commonly accepted definition of popu-
larity bias proposed by Abdollahpouri et al. (2019), which should not be confused 
with the popularity bias produced by the recommendation algorithm, as this applies 
to the bias that exists in the original data:

where �(i) is the popularity scoring function for an item i. The notation {⋅}u aims 
to indicate that we iterate over the users and compute the value inside the brackets, 

(8)ev6 =GiniI(UCM) = 1 − 2

|I|∑

i=1

|I| + 1 − i

|I| + 1
×
|Ci|
|C|

(9)ev7 =GiniU(UCM) = 1 − 2

|U|∑

u=1

|U| + 1 − u

|U| + 1
×
|Cu|
|C|

(10)ev8∶12 = f
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which is then processed by the outer function f. An item’s popularity score is thus 
defined as the number of users who visited i over the entire number of users, and 
|Cu| is the number of check-ins of user u. The term f is an aggregation operator 
over users to capture inter-user differences in the popularity profiles of users. They 
include average popularity bias ( ev8 , APB), median popularity bias ( ev9 , MedPB), 
standard deviation of popularity bias scores ( ev10 , StPB), skewness popularity bias 
( ev11 , SkPB), and kurtosis popularity bias ( ev12 , KuPB).

Definition 7 (Long tail items) Analyzing the popularity of items, they can be sepa-
rated into a short-head and a long-tail.

where Cu are, again, the check-ins of user u, �  , on the other hand, represents long-
tail items, which is determined by splitting the items into short-head and long-tail 
items. We define the split between short-head and long-tail in terms of the number 
of different users that have visited the item. In the literature, typical cutoffs for sepa-
rating the short-head from the long-tail are at 20–80%, cf.  Yin et al. (2012), Abdol-
lahpouri et al. (2017), Deldjoo et al. (2021), which we also use in our experiments.

As before, f is an aggregation operator over users to capture inter-user differ-
ences in long-tail profiles of users. They include average long tail items ( ev13 , ALT), 
median long tail items ( ev14 , MedLT), standard deviation of long-tail items scores 
( ev14 , StLT), skewness long tail items ( ev15 , SkLT), and kurtosis long tail items 
( ev17 , KuLT).

3.2.4  EVs based on the user activity and mobility

In this section, we introduce a family of data characteristics that are specific to the 
POI recommendation domain. The radius of gyration captures the size of a user’s 
activity area. The distance from the city center is defined similarly, but the informa-
tion it captures is more about how central the check-ins of a user are. Finally, the 
user’s activity duration is interesting to include as well, as one can assume that the 
longer a user is within a city, the more familiar she becomes with the city, and it 
might result increasingly difficult for recommendation algorithms to propose inter-
esting items.

Definition 8 (Radius of gyration) This is a common metric to capture the geographic 
extent of user mobility.

(11)ev13∶17 = f

({|i, i ∈ (Cu ∩ � )|
|Cu|

}

u

)
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where cu is the centroid of all the user’s visited venues (González et al. 2008) and lati 
and loni represent the latitude and the longitude of item i respectively.

Again, f is an aggregation operator over users to capture inter-user differences in 
the radius of gyration of users. They include average radius of gyration ( ev18 , ARG), 
median radius of gyration ( ev19 , MedRG), standard deviation of radius of gyration 
scores ( ev20 , StRG), skewness of radius of gyration ( ev21 , SkRG), and kurtosis of the 
radius of gyration ( ev22 , KuRG).

Definition 9 (Distance to city center) This EV is very similar to the radius of gyra-
tion, however, the center is not set to the centroid of the venues visited by the user, 
but to the center of the city. It is useful to differentiate between users who perform 
activities near the center of a city—typically of historic significance—and users who 
are more active in the outskirts.

where cc = (ccx, ccy) is the geographic location of the city center. Again, we use dif-
ferent aggregation functions: the average distance to the city center ( ev23 , ADCC), 
median distance to the city center ( ev24 , MedDCC), standard deviation of the dis-
tances to the city center ( ev25 , StDCC), skewness of distance to the city center ( ev26 , 
SkDCC), and kurtosis of the distance to the city center ( ev27 , KuDCC).

Definition 10 (Duration active) This EV is useful to provide insights into the effects 
of how long the duration of user activity was. In this context, users who have been 
active for a shorter duration may correspond to tourists, whereas those who have 
been performing check-ins for a longer period can be considered local residents of 
the city (Sánchez and Bellogín 2021).

where t(i)0, t(i)l is the time of the first and last check-in of the items i the user u 
has visited, respectively. Note that in this case, we took the duration from all check-
ins of the user, including repeated check-ins. Again, we use different aggregation 
functions: the average duration active ( ev28 , ADA), median duration active ( ev29 , 
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MedDA), standard deviation of duration active ( ev30 , StDA), skewness of duration 
active ( ev31 , SkDA), and kurtosis of the duration active ( ev32 , KuDA).

3.3  Dependent variables

For the dependent variables, we decided to analyze three different dimensions of the 
recommendations:

Ranking accuracy: We will focus on measuring how many recommended items 
actually match the ground truth of the user. For this purpose, we will use the nDCG 
metric (Järvelin and Kekäläinen 2002) that is defined in Eqs. (16) and (17). 

 where RLu is the recommendation list for user u, reln denotes the real relevance of 
item in , and k denotes the first k items of RLu . In explicit rating data sets, this rel-
evance value is normally bounded in the [0, 5] interval, with 0 representing a non-
relevant value; in our experiments, as we do not have explicit ratings but check-ins, 
the relevance of the items appearing in the test set will always be 1. IDCG represents 
the ideal DCG, and it is computed in the same way as DCG but using the ground 
truth as the ranking. Higher values in nDCG mean that more relevant recommenda-
tions are being provided to the users; that is, more recommended venues are actually 
visited by the user according to the test set.

Novelty: The novelty of a recommendation can be assessed by measuring the 
proportion of popular venues being recommended. If a high percentage of the rec-
ommended venues are already well-known or frequently consumed/visited, it indi-
cates that the recommendations lack novelty. To measure novelty, popularity is often 
used as a proxy, especially in offline evaluation where direct feedback from users is 
not possible. This is because it is generally assumed that whatever is popular within 
a community is likely to be known by most users and, thus, not novel. To measure 
this dimension, we use the Expected Popularity Complement (EPC)2 metric (Vargas 
and Castells 2011), defined in the following equation: 

(16)nDCG@k =
1

U

∑

u∈U

DCG (u)@k

IDCG (u)@k

(17)DCG (u)@k =
∑

in∈RLu@k

2reln − 1

log2(n + 1)

(18)EPC@k =
1

U

∑

u∈U

Z(u)
∑

in∈RLu@k

(1 − p( seen ∣ in))

2 Please, note that the original definition of the metric provided by Vargas and Castells (2011) also 
incorporates a discount model (as the one used in the nDCG metric) and a relevance model, in order to 
measure both the relevance and the novelty of the recommendations together. However, in our work, as 
we are evaluating ranking accuracy with nDCG, we will use the pure definition of EPC.
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 where RLu is again the recommendation list for user u, Z(u) is a normalizing con-
stant (generally Z(u) = 1∕

∑
i∈RLu@k 1 ), and p( seen ∣ in) represents the probability 

of item in to be consumed. This probability is estimated as |Ui|∕|U| , that is, the num-
ber of users who have visited POI i in the training set, divided by the total number of 
users in the training set. Higher values in EPC imply that more novel recommenda-
tions are provided to the users.

Item exposure: In traditional recommendation domains, many algorithms tend to 
emphasize only a few items from the entire catalog (Liu and Zheng 2020; Abdollah-
pouri et al. 2019), leading to a popularity bias which we discussed in Sect. 2.3. This 
bias results in models favoring the most popular items, regardless of their relevance. 
In our study, to account for this effect, we measure item exposure by means of the 
so-called expected exposure loss, which slightly differs from plain popularity (Shih 
et al. 2016; Ekstrand et al. 2022). While popularity bias means recommending the 
most popular items without considering the distribution in the ground truth, poor 
performance with respect to expected exposure loss occurs when items are over- or 
under-represented in recommendations compared to the test set. Thus, we compare 
the number of times an item is recommended against the number of actual interac-
tions in the test set (Ekstrand et al. 2022): 

 where Utest denotes the number of users in the test set, Utest(i) refers to the number 
of users that visited item i in the test set, and Rec@k(i) is the number of times item i 
has been recommended considering all recommendations (i.e., rankings) until posi-
tion k, i.e., at cutoff @k. As we are comparing the recommended exposure and the 
exposure of the items in the test set, the lower the values obtained in this metric, the 
better the performance of the recommenders in terms of item exposure.

4  Constructing subsamples with different data characteristics

To apply the explanatory framework described in the previous section, it is neces-
sary to obtain several subsamples from a larger recommendation data set. We now 
discuss our approach to constructing various data sets with different characteristics 
that will serve as inputs for the explanatory framework. This aspect poses a chal-
lenge since the recommendation data sets, specifically the user-item interaction 
matrices, exhibit interdependencies that are complex to disentangle. The approach 
proposed by Deldjoo et  al. (2020) constructs subsamples by selecting a random 
number of users and items while enforcing certain constraints, such as predefined 
data set densities.

As opposed to prior studies (Adomavicius and Zhang 2012; Deldjoo et  al. 
2021), we propose to use subsamples created by exploiting different data charac-
teristics that are grounded in the domain instead of randomly sampling users with 
constraints. Generating the subsamples in such a way has two advantages: first, the 

(19)IE@k =
∑

i∈I

||||
Utest(i)

Utest

−
Rec@k(i)
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subsamples retain meaningful semantics, which provides additional analytic insights 
into the domain; second, it allows providers of recommender systems to understand 
in which real-world situations different recommendation models are advantageous 
or unfavorable. In the following section, we describe our proposed domain-driven 
subsampling procedure, which is based on subsetting a recommendation data set by 
factors that might be relevant to recommending points of interest within a city.

4.1  Data characteristics for creating domain‑driven subsamples

Our design goals when developing the methods to construct subsamples are that (i) 
the subsamples must have a common basis to enable fair and meaningful compari-
sons, (ii) while at the same time, they show variability in terms of their resulting 
data characteristics. (iii) Further, we need to generate a sufficiently large number of 
subsamples to obtain robust results from the regression model, but (iv) each sub-
sample should be a tractable recommendation problem, i.e., there is sufficient signal 
for the individual recommendation models to produce sensible recommendations.

As mentioned before, we take a different approach to construct subsamples com-
pared to the approaches in the literature (Deldjoo et al. 2021, 2020). We formulate 
hypotheses regarding relevant factors that might have an influence on the outcome of 
POI recommendations. The core idea is to introduce a number of data characteristics 
relevant to the POI recommendation domain and use them as filters to include an 
interaction in the UCM or not. Thus, each data characteristic represents the explicit 
hypothesis that changing its value has an influence on the recommendation outcome.

The set of all subsamples is the cross-product of the data characteristics values 
applied to the original data set. This means that the generation of the subsamples is 
not only controlled by the outcome of the random processes that define the number 
of items and users in the interaction matrix but by meaningful subsetting of groups 
of users, items, or interactions. In the following subsections, we propose different 
data characteristics for subsampling, as the POI recommendation domain offers 
possibility for more complex hypotheses, since—unlike most classic recommenda-
tion data sets—there is the temporal (when a venue is visited) and the geographi-
cal (where the venue is and where the user is from) aspects to analyze. We lever-
age these aspects to formulate hypotheses along with common strategies employed 
in the evaluation of POI recommendation data sets to shape the recommendation 
outcome.

4.1.1  Enforce a minimum k‑core

To mitigate the extreme sparsity of typical POI recommendation data sets, it is com-
mon to remove interactions from the UCM until all users and venues have at least k 
interactions. This is done to achieve a certain—higher—level of density in the UCM 
and, thus, fewer ‘cold’ items/users which usually results in higher accuracy metrics 
for interaction-based algorithms. Typical values for k are 2 (cf.   Gao et al. 2015), 
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5 (cf.   Yuan et al. 2013, 2014; Yao et al. 2015), or 10 (cf.   to Nunes and Marinho 
2014; Feng et al. 2015; Li et al. 2016).

4.1.2  Drop top n% popular venues

As previously discussed, popularity bias plays a large role in POI recommendation 
with a substantial interplay between the popularity of items and recommendation 
accuracy (Abdollahpouri et al. 2019; Massimo and Ricci 2021; Sánchez et al. 2023). 
As check-in-based data sets usually do not come with rating information, we limit 
the scope of popularity to the number of people that have visited a venue (Jannach 
et al. 2015).

The method to analyze the impact of popularity bias is to generate different sub-
samples by removing the most popular venues in the data set. We propose to drop 
the most n% popular items from the data set to obtain different distributions of the 
item popularity (Abdollahpouri et al. 2017). The concrete values depend on the data 
set at hand, but as a general guideline, we propose values for n between 0 and 5% for 
the specific point-of-interest recommendation domain after considering the popular-
ity bias discussed in Sect. 2.2.

4.1.3  Filter by season

Seasonality is also a relevant factor that undoubtedly has an influence on the visited 
venues both by locals and tourists (Liu et al. 2011). The exact split between seasons 
can be tricky to make as a high granularity (e.g., weeks or months) can result in very 
small subsamples. Further, seasons are not the same in different regions, potentially 
requiring different segmentations for destinations in different climate zones (Trattner 
et al. 2018). In the context of an explainability study, we recommend using broad 
season categories, such as a two-season (warmer and colder months) or a four-sea-
son model.

4.1.4  Filter by user residence

In the context of POI recommendation, different groups of users exhibit different 
behavior  (Sánchez and Dietz 2022). Due to the differences in behavior between 
locals and visitors, we argue that it is very promising to use such a division as a 
subsampling variable. If the information about the user’s home is available in the 
recommendation data set, the typical groups to analyze would be the locals of the 
city, domestic visitors, or international travelers.

4.2  Discussion

In this section, we have formulated various hypotheses of what influences 
POI recommendations. These hypotheses are manifested in different data 
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characteristics to enable a rigorous computational analysis. In the choice of data 
characteristics, we discussed the ones that we deem to be most relevant based on 
the literature on the analysis POI recommendation algorithms.

When setting up the experiments, it is still necessary to analyze the statistics of 
the resulting subsamples to understand which value ranges of the data character-
istics to test. Here, it is important to retain tractable recommendation problems, 
i.e., not result in too sparse or small subsamples. Also, depending on the data set, 
it is not always possible to test all data characteristics discussed in Sect. 4.1. For 
example, removing resident users in a city that is not very active as a tourist des-
tination could be counterproductive in making interesting recommendations that 
may attract more tourists.

4.3  Visualizing the subsampling variations

To exemplify the effect of subsampling variables, Fig. 1 visualizes the interplay 
of two data characteristics: the k-core and the origin of the users. In this heat map 
showing the density of check-ins in New York City, USA, the difference between 
the behavior of the locals and travelers becomes apparent: travelers tend to visit 
venues in Manhattan (with the exception of the airports), while the locals natu-
rally have check-ins all over the map. A higher value for k-core leads to a higher 
density in the UCM but eliminates many venues, which can be observed in the 
map visualization.

Fig. 1  Heat map of the visited venues in New York with different parameters for the k-core and the ori-
gin of the users (better viewed in color)
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5  Experimental setup

In this section, we describe the used data set and the process of selecting the sub-
sampling variables to obtain the subsampled recommendation data sets. We provide 
details about the data preprocessing, how we conducted the recommendation experi-
ments, and give an overview of the outcomes. Finally, we outline the variable selec-
tion process for the regression model, which is the core of the explanatory frame-
work. The full process explained in this section is shown in Fig. 2.

5.1  Selecting a suitable data set

To evaluate our proposed approach, it is essential to have a sufficiently large data 
set for POI recommendation that enables us to perform meaningful subsampling. 
Revisiting the literature (Bao et al. 2015; Sánchez and Bellogín 2022), we decided 
to use the Foursquare data set published by Yang et al., which has about 33 million 
check-ins in 415 different cities of the world (Yang et al. 2015) and has been fre-
quently used to benchmark POI recommendation performance.3 Although the data 
set contains check-ins from many cities, we conclude that it is infeasible to include 
multiple cities in the scope of the analysis. The number of check-ins per city is influ-
enced by the number of people and the popularity of Foursquare in the city, which 
results in a few cities having a large number of check-ins but many not having suf-
ficient interactions to further subsample them. Furthermore, the behavior of users is 
influenced by the topological realities of cities, such as centralized vs. decentralized 
cities. Therefore, each city needs to be analyzed separately to account for the differ-
ent geographic influences.

In this study, we focus on New York City (NYC), NY, USA, as it is one of the 
most active cities on Foursquare and, hence, has been a common subject of analysis 
in the POI recommendation domain, e.g., in Albanna et al. (2016), Maroulis et al. 

Fig. 2  Diagram representing the methodology followed in the paper. Each number corresponds to a step 
in the process: Initially, we clean the original check-in data set (1) to obtain a recommendation data set, 
which we subsequently subdivide into the 144 subsamples (2). Each subsample is further split into train-
ing and test sets (3), where a recommendation model is trained on each subsample individually (4) and 
the explanatory variables are computed based on the training sets  (5). We determine the best hyperpa-
rameters of each recommender in each subsample using the test set (6), and record the metrics of the best 
performing recommendation configuration  (7). Finally, we perform the regression analysis towards the 
performance metrics of each recommendation algorithm using the explanatory variables (8)

3 Data set is available from https:// sites. google. com/ site/ yangd ingqi/ home/ fours quare- datas et.

https://sites.google.com/site/yangdingqi/home/foursquare-dataset
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(2016), Jiao et al. (2019). Concretely, the scope of our analysis is the New York City 
Metropolitan Area, which comprises the five boroughs of New York City and New-
ark, NJ. The complete data set from New York City Metropolitan Area consists of 
17,467 users, 71,310 venues, and 608,131 check-ins. The geographical scope of the 
analysis is visualized in Fig. 1. To adapt the data set for the POI recommendation 
domain, we eliminated venues of the “Residences” category, as we do not consider 
them as interesting POIs to recommend. Finally, we also removed duplicated check-
ins, i.e., check-ins at the same venue and identical timestamps.

5.2  Generation of subsampled recommendation data sets

In Sect. 4, we discussed subsampling data characteristics to be used in an explana-
tory framework for POI recommendation. In the context of this study we instantiated 
them as follows: We imposed a minimum k-core of the recommendation data sets, 
excluded varying levels of the most popular venues, and subdivided by season of the 
year and the origin of the user.

5.2.1  Subsampling data characteristics

UCM density Traditionally, density (i.e., the inverse of sparsity) has been a key met-
ric to quantify the difficulty of a recommendation problem. The sparsity is normally 
referred to as the situation where most of the user-item interactions are not observed 
in the training data (Idrissi and Zellou 2020).

However, density is a dependent variable, which is typically adjusted by enforc-
ing a k-core, i.e., requiring at least k interactions for each user and venue and dis-
carding users and venues that do not fulfill this threshold.

Following the practice in literature, we create subsamples using the following 
values for k:

– 2: Enforce a k = 2-core.
– 5: Enforce a k = 5-core.
– 10: Enforce a k = 10-core.

Item popularity Due to the large popularity bias in POI recommendation, we argue 
that it is important to analyze the effect of disregarding the most popular venues. We 
used the following values to analyze this effect:

– 0.5: Drop the most popular 0.5% venues from the current data set.
– 1: Drop the most popular 1% venues from the current data set.
– 2: Drop the most popular 2% venues from the current data set.
– 5: Drop the most popular 5% venues from the current data set.
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Season The effect of seasonality on the recommendation outcome has not been ana-
lyzed in depth so far, providing us with the opportunity to analyze this within the 
explanatory study. The oceanic climate of New York City comes with relatively sim-
ilar precipitation throughout the year, thus, we used the temperature aspect of the 
climate diagram to subdivide the year into the following groups:

– all: All check-ins irrespective of the season.
– summer: check-ins during the warmer months in New York City from May to 

October.
– winter: check-ins during the colder months in New York City from November to 

April.

By using only two groups, we hope to achieve a clear separation and keep the size of 
the resulting subsamples larger.

User origin The Foursquare data set contains check-ins from users from all 
around the world. Although we are only running the recommendation experiments 
with check-ins in New York City, we can use the complete data set to determine the 
home city of the people in the recommendation data set. To achieve this, we use the 
open-source tripmining library4 to obtain the residence of the different users (Dietz 
et al. 2020). This library converts the check-in stream of users into periods of being 
at home and on travel. It uses the plurality strategy, i.e., selecting the city with the 
most check-ins as home city, to determine which is the user’s home city, which has 
been shown to be accurate in a ground-truth study (Kariryaa et al. 2018).

We use this user home label as a subsampling data characteristic with the follow-
ing values:

– all: considering all users.
– US: only domestic visitors from the United States, but not citizens of New York 

City.
– NYC: citizens of New York City.
– other: travelers from outside of the US.

The intuition behind using the users’ home as a subsampling data characteristic is 
that the behavior of locals is different than the one of visitors. This also has a sig-
nificant influence on the recommendation outcome, as shown by Sánchez and Dietz 
(2022).

4 https:// github. com/ Linus Dietz/ tripm ining.

https://github.com/LinusDietz/tripmining
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5.2.2  Summary

Using these aspects, we generate 144 recommendation subsamples in the form of 
usercheck-in matrices. The result of the cross-product of applying the aforemen-
tioned subsampling data characteristics as filters on the original data set is 144:

5.2.3  Training and test set generation

For each of the subsamples, we perform a temporal split per user, where 80% of 
the oldest interactions of each user are sent to the training set and the rest to the test 
set. Foursquare users might have performed check-ins at the same venue more than 
once, but the algorithms we use are meant to recommend new items, which means 
that we discard all duplicate check-ins of a user in the same venue both in the train-
ing and the test set. We decided to proceed like this in the test set because the goal of 
recommender systems is to recommend new venues to users to explore, not venues 
that the user already knows, which is common practice in the POI recommendation 
domain.

Table 6 (in the Appendix) tabulates statistics regarding the subsamples with the 
average values of different explanatory variables. For space reasons, we only tabu-
late the 12 subsampling data characteristics independently to get an impression of 
their individual impact. The experiments for the explanatory analysis used the cross-
product of the subsampling data characteristics, resulting in 144 subsamples.

5.3  Algorithms for POI recommendation

In this section, we explain in detail the algorithms that we have used in our experi-
ments. Due to the nature of the application of the different models, we will divide 
them into two main groups: classical recommendation algorithms and those specifi-
cally designed for point-of-interest recommendation.

5.3.1  Classical recommendation algorithms

Random: performs recommendations of venues randomly.
Pop: recommends to the target user the venues ordered by decreasing popularity. 
The popularity is measured by the number of different users that have visited that 
venue.
UB: user-based neighborhood. Non-normalized k-nn algorithm that recommends 
to the target user venues that other similar users visited before (Nikolakopoulos 

{origin = [all, NYC, US, international]} × {season= [all, summer,winter]}

× {k-core = [2, 5, 10]} × {drop top venues = [0.5, 1, 2, 5]}
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et al. 2022; Aiolli 2013). We used the cosine similarity and Jaccard Index as simi-
larity metrics.
IB: item-based neighborhood. Non-normalized k-nn that recommends to the tar-
get user venues similar to the ones that she visited previously (Nikolakopoulos 
et al. 2022; Aiolli 2013). We use the item variations of the same similarity met-
rics used for UB.
HKV: matrix factorization (MF) algorithm that uses alternate least squares for 
optimization proposed by Hu et al. (2008).
BPRMF: matrix factorization (MF) algorithm that uses the pairwise Bayesian 
personalized ranking loss proposed by Rendle et al. (2009) as optimization algo-
rithm. For our experiments. we used the version from MyMedialite’s5 library.

5.3.2  Point‑of‑interest recommendation algorithms

IRENMF: weighted matrix factorization method proposed by Liu et al. (2014). 
This algorithm incorporates geographical information by assuming that users 
tend to visit neighboring venues (instance-level influence) and also by consider-
ing that the users check-ins are shared in the same geographical region (region-
level influence).
GeoBPRMF: geographical Bayesian personalized ranking matrix factorization. 
Algorithm proposed by Yuan et al. (2016) that assumes that the target user will 
prefer to visit new venues that are close to the ones she visited previously.
RankGeoFM: a ranking-based matrix factorization model proposed by Li et al. 
(2015). They also incorporate the geographical influence in the recommendations 
by exploiting the neighboring venues (by geographical distance) with respect to 
the candidate POIs to recommend.
PopGeoNN: hybrid algorithm combining popularity (Pop), a user-based neigh-
borhood method (UB), and a simple geographical component that recommends 
to the target user the venues closer to the average geographical position of all the 
venues visited by the user in the training set. This recommender has been used in 
previous works such as Sánchez and Dietz (2022). The final score is an aggrega-
tion of every item score provided by each recommender after normalizing its val-
ues by the maximum score of each method.

To achieve optimal parameters for each recommendation subsample, we system-
atically chose the optimal hyperparameters for each recommendation model by 
nDCG@5. We do this as it is a standard procedure in the area, despite the mod-
els could be optimized independently for each evaluation dimension, however, this 
would not be practical, as accuracy is typically understood as a first order-objec-
tive of any recommender system. The tested hyperparameter ranges are listed in the 
Appendix, Table 7.

5 MyMedialite library: http:// www. mymed ialite. net/.

http://www.mymedialite.net/
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5.4  Recommendation results on subsamples

Using the recommendation models presented in Sect.  5.3 with the optimal 
parameters, we achieve the following recommendation outcomes regarding 
nDCG  (Fig. 3a), EPC (Fig. 3b), and Item Exposure (Fig. 3c) in the 144 subsamples. 
We also report in Table 1 the average (denoted as avg) and the standard deviation 
(denoted as std) by each recommender in nDCG, EPC, and Item Exposure, all of 
them measured at a ranking cutoff of 5.

Table 1 reveals that the performance of the recommenders, in terms of nDCG, is 
relatively low. This is a common phenomenon in the POI recommendation domain, 
given the vast number of candidate POIs and the scarcity of user visits to train the 
models. However, some recommenders, like HKV or RankGeoFM, consistently 
show a lower performance overall, with limited standard deviation. With respect to 
novelty, we generally obtain high results, even in the Pop recommender. This can be 
attributed to the data sparsity, where although certain popular POIs have a signifi-
cant number of visits, they have been explored by only a small percentage of users 
relative to the total number of potential users. Notably, the Pop algorithm exhibits 
the highest deviation, indicating that each subsample may feature different popu-
lar POIs. This also shows that the popularity bias is different in each subsample, 
being more exaggerated in those subsamples where we remove a smaller percent-
age of popular items (dtv = 0.5). This popularity bias impacts the performance of 
other recommenders with a bias towards popularity, such as BPRMF or PopGeoNN, 
while others like IB or RankGeoFM are less affected. In terms of Item Exposure, we 
can observe notable variations among the algorithms. While the Pop recommender 
achieves higher exposure results by focusing solely on recommending popular ven-
ues, other models such as RankGeoFM, UB, or IB can offer recommendations that 
encompass a more diverse range of POIs. The behavior of the IB recommender is 
particularly interesting: as derived from the results, it ranks fourth in terms of Item 

Table 1  Mean value of the performance results of the recommenders in all subsamples

All values are reported at a cutoff of 5. We represent in bold the best value obtained when computing the 
mean in each metric

Family Recommender nDCG EPC Item Exposure

Mean Std Mean Std Mean Std

Classic Rnd 0.000 0.001 0.999 0.001 5.602 0.737
Pop 0.004 0.004 0.987 0.009 7.820 1.430
UB 0.011 0.006 0.997 0.003 6.128 1.230
IB 0.010 0.005 0.999 0.001 6.137 1.026
HKV 0.003 0.005 0.998 0.002 7.689 1.482
BPRMF 0.010 0.008 0.994 0.005 6.618 1.223

POI IRENMF 0.011 0.009 0.996 0.004 6.818 1.089
GeoBPRMF 0.009 0.010 0.995 0.004 7.223 1.348
RankGeoFM 0.003 0.004 0.998 0.002 5.336 0.708
PopGeoNN 0.009 0.006 0.992 0.006 6.784 1.123
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Fig. 3  The recommendation outcomes using the following metrics: a nDCG@5, b EPC@5, and c Item 
Exposure@5. The boxplot indicates the 25%, the median, and the 75% quantiles. Overlayed is a violin 
plot emphasizing the density of values and the overall range of the outcomes and the mean value with an 
x. The dashed line in the nDCG plot of Fig. 3a indicates the mean value of the Popularity algorithm
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Exposure, highlighting its ability to provide fair recommendations for items appear-
ing in the test sets; simultaneously, its performance in novelty stands out while it 
also obtains a competitive level of relevance, falling slightly behind the UB and 
IRENMF recommenders. However, both UB and IRENMF do not obtain results as 
competitive as IB in both Item Exposure and Novelty.

Visualizing the distribution of recommendation results in Fig. 3, we see that the 
recommendation accuracy varies substantially between the 144 subsamples, which 
is an expected and desired outcome (Fig. 3a). The random recommender is the one 
with the least variance and performance, however, the HKV matrix factorization 
model is also consistently low in performance, indicating that it can not deal well 
with many of the smaller subsamples. Furthermore, the Pop, IB, UB, and Rank-
GeoFM models seem to be more robust regarding their outcomes compared to the 
purely matrix factorization-based approaches that do not consider the geographical 
component, as their interquartile ranges are smaller.

There are no surprises regarding the novelty of the recommendations, which we 
measure using the EPC metric, cf. Sect. 3.3. The models that involve some aspect 
of popularity (Popularity, PopGeoNN) and the BPR models produce relatively 
fewer novel recommendations, which is expected due to how the recommendations 
are computed (Fig. 3b). On the contrary, as mentioned before, the behavior of IB is 
interesting in terms of novelty since it is the second-best model (after Rnd) in all 
subsamples, obtaining relatively competitive accuracy results. This makes the IB a 
model that should be considered to try to achieve a balance between accuracy and 
novelty.

Finally, the Item Exposure (Fig. 3c) shows a low variation between most models, 
with the quantiles all being between 5 and 7.5. Again, the recommenders that gen-
erated fewer novel recommendations or exhibited a higher popularity bias, such as 
Pop, BPRMF, GeoBPRMF, or PopGeoNN, also achieved higher scores in terms of 
item exposure. This indicates a notable disparity in the distribution of recommended 
POIs compared to the POIs that the user has visited during the test set. This is con-
sistent with previous work (Sánchez et al. 2023), where different biases are analyzed 
in the POI recommendation domain, and the effect on the performance of a set of 
recommenders in different cities around the world is compared.

The plots in Fig. 3 also tell much about the outcome of the subsampling process. 
With respect to the nDCG and the EPC metrics, the mass of the density plots is 
relatively compact, with some outliers to the top or bottom, respectively. In the Item 
Exposure plot, the shapes of the density plots are strung out, generally matching 
the interquartile ranges better. An interesting observation is that in the recommenda-
tion outcomes of the worse-performing models in terms of accuracy, i.e., Random, 
Pop, HKV, and RankGeoFM two groups become visible, i.e., the density plot looks 
tapered just below the mean value, meaning that the subsamples could be divided 
into 2 groups according to their performance. Even though a deep analysis of this 
aspect is out of the scope of this paper, it might be interesting to understand in the 
future which samples belong to each group and the impact the number (and fre-
quency) of these groups may have on the explanatory power of the methodology 
followed in this work.
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5.5  Excluding low‑performing recommendation models from the explanatory 
study

The pure Popularity-based recommendation algorithm is a very simple, parameter-
free model, but nevertheless a useful baseline in POI recommendation due to the 
inherent popularity bias of the domain (Bellogín et al. 2017). Even though comput-
ing the recommendations solely on the popularity of the items contradicts the prin-
ciple of personalization, visitors tend to visit the popular highlights of a destination. 
Thus, we argue that any model in POI recommendation should at least outperform 
the Popularity model in terms of accuracy.

When it comes to the explanatory analysis, we remove the Random, HKV, and 
RankGeoFM models from the pool of algorithms for the explanatory study since 
the mean recommendation accuracy over all subsamples is lower than the simple 
Popularity baseline. The reason for this is that the purpose of the explanatory study 
is that we want to learn what the success factors of recommendation models are in 
terms of their data characteristics measured using EVs. By including models that are 
not “successful” (by outperforming the popularity baseline in terms of nDCG), we 
would analyze the factors contributing to poor recommendations, which is a mean-
ingless endeavor.

This sets the final pool of 7 recommendation models to Pop, IB, UB, BPRMF, 
GeoBPRMF, IRENMF, and PopGeoNN.

5.6  Selecting relevant explanatory variables

In Sect.  3.2, we defined 32 potential explanatory variables that can be used to 
explain the dependent variables (Sect.  3.3) using the regression model. Naturally, 
not all independent variables possess equal levels of informative signal, i.e., they can 
be noisy. The regression model is useful in identifying noisy or unrelated independ-
ent variables as these will not be statistically significant coefficients with respect to 
the target variable. However, when using multiple variables in a regression model, 
multicollinearity can arise, i.e., two or more explanatory variables being correlated 
with each other. While this does not impede the outcome of the regression model, 
multicollinearity in the explanatory variables decreases the predictive contribu-
tion of the individual coefficients. To obtain meaningful results in the significance 
analysis of the coefficients, we mitigate collinearity by eliminating such redundant 
variables.

To do this in a reproducible way, we propose a procedure to remove highly cor-
related variables until the collinearity is mitigated to an acceptable level. The multi-
collinearity of a regression model is measured by the variance inflation factor (VIF), 
but the scientific literature is divided on what maximum VIF value is acceptable 
(Robinson and Schumacker 2009; O’brien 2007; Stine 1995). Reflecting on this, 
we systematically analyzed the outcome of applying Algorithm 1 with VIF thresh-
olds between 5 and 25, ultimately choosing 12, which retains 8 EVs and explains on 
average R2 = 0.79 of the variance in our regression models towards the nDCG@5. 
The choice of the VIF threshold is a trade-off between the number of variables, the 
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resulting variance the regression model can explain, and the level of multicollin-
earity, which any analyst or researcher must consider carefully on a case-by-case 
basis. Our proposed procedure is useful with an increasing amount of variables, as 
it removes human judgement from the process of choosing which variables to elimi-
nate. This is an improvement on the previous work (Adomavicius and Zhang 2012; 
Deldjoo et al. 2020, 2021), where this step was not precisely specified.

Algorithm 1  Elimination of EVs based on correlation analysis

The goal is to determine a set of input variables for the regression analysis that 
have low collinearity, which is measured by the variance inflation factor (VIF). 
To determine variables that cause unwanted collinearity, a correlation analysis is 
required to discard correlated variables. Algorithm  1 describes our proposed pro-
cedure: while there is still an EV with a VIF over the threshold (TR_VIF), we com-
pute all pairwise Pearson correlation coefficients (PCC) of the features, obtaining 
the correlation matrix, and determining the two different features with the highest 
positive or negative correlation as our candidates for elimination. From these two 
candidates (c1, c2) , we eliminate the candidate that has the highest correlation to any 
other feature in the remaining features. This elimination of EVs is repeated until the 
VIF values of all remaining EVs satisfy the threshold.

Table 2 shows the outcome of applying Algorithm 1 to the data from the experi-
ments comprising the recommendation outcome of the well-performing recom-
menders as established previously in Sect.  5.5 on the 144 subsamples. The target 
metric of the linear model to compute the VIF was nDCG@5. We retain 8 EVs, 
namely shape, density, GiniU , StPB, KuPB, StRG, MedDA, and KuDA. This out-
come is interesting as it puts emphasis on the EVs that capture the structure of the 
user-check-in matrix, such as shape, and density. This is not surprising, as these are 
very common metrics to quantify the difficulty of a recommendation problem. Fur-
thermore, some aspect of most families of EVs was included, with the exception of 
the distance to city center and long-tail items. While we will come to the explana-
tory power of the EVs in the following section, this result alone underlines that the 
newly introduced EVs regarding mobility and user activity broaden the perspective 
of POI recommendation problems. We plot the pairwise correlations of the EVs in 
the Appendix, Fig. 7, where we find that the maximum (in absolute terms) pairwise 
PCC is −0.69 between GiniU and density, after removing highly correlated variables.
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6  Results

Recall from Sect.  3 that in its core, the explanatory framework is a linear regres-
sion (cf. Eq.  2) with the data characteristics of the 144 subsamples quantified in 
the explanatory variables as input variables and nDCG, EPC, and Item Exposure as 
dependent variables. What we are interested in are the coefficients of the model ( �ev 
in Eq. 2), as these coefficients quantify the impact of the individual EV on the out-
come variable. We run the explanatory framework for each recommendation model 
that produced competitive results (cf. Sect.  5.5) independently using the EVs that 
did not suffer from multicollinearity (cf. Sect. 5.6).

Table 2  Final EVs after 
controlling for multicollinearity

EV VIF before VIF after

SpaceSize 25.90 –
Shape 71.79 1.51
Density 30.95 5.10
Cpu 69.71 –
Cpi 304.45 –
GiniI 103.34 –
Gini

U
130.78 6.13

APB 9138.49 –
MedPB 6802.78 –
StPB 316.46 3.27
SkPB 31.19 –
KuPB 15.47 1.36
ALT 519.42 –
StLT 661.18 –
SkLT 567.80 –
KuLT 449.43 –
ADCC 5711.40 –
MedDCC 1229.74 –
StDCC 1731.52 –
SkDCC 354.85 –
KuDCC 225.33 –
ARG 2749.51 –
MedRG 561.53 –
StRG 129.15 11.32
SkRG 1002.16 –
KuRG 204.44 –
ADA 561.36 –
MedDA 66.90 2.77
StDA 52.75 –
SkDA 429.65 –
KuDA 146.96 4.95
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In the analysis of the results, we assessed three key aspects: Accuracy, Novelty, 
and Item Exposure. Our findings revealed notably high R2 values for each of these 
aspects. This suggests that, even after discarding numerous explanatory variables, 
our regression models still have substantial explanatory power. In this section, we 
make a detailed discussion of our results, using a cutoff value of 5 for each met-
ric (i.e., we evaluate the top 5 recommendations), as in the POI recommendation 
domain, it is common to report small cutoffs (Liu et al. 2014; Li et al. 2015; Yuan 
et  al. 2016). For additional results at cutoff values of 10 and 20, please refer to 
Appendix C.

Our structure for presenting the experimental results follows this format: 
firstly, we tabulate the regression coefficients ( �ev ) and then visualize these 
coefficients through coefficient plots. The result tables, i.e., Tables  3, 4, and 5, 
provide an overview of the goodness-of-fit with the R2 and adjusted R2 values. 
Subsequently, we present the coefficients �ev for each model. These coefficients 
are annotated with stars, which indicate the significance level of the relationship 
between the explanatory variable and the outcome variable. The significance lev-
els and the corresponding p-values used are *** to indicate that p < 0.001 , ** for 
p < 0.01 , and * for p < 0.05.

Furthermore, we visualize the values of the tables in coefficient plots (Figs. 4, 5, 
6). The dots show the coefficient �ev ; the whiskers span the 95% confidence interval.

6.1  Accuracy

First, we analyze the recommendation accuracy in terms of nDCG in Table 3. The 
R2 coefficients of determination of the regression models are all between 0.68 and 
0.88, indicating that the 8 EVs could explain 68%–88% of the nDCG@5 varia-
tion. This result is consistent with the two previous studies of Adomavicius and 
Zhang (2012) and Deldjoo et al. (2021). The least predictable algorithm was the 
IB recommendation model, while the GeoBPRMF algorithm had the highest R2.

Table 3  Coefficients of the regression model for nDCG@5

***p < 0.001 , **p < 0.01 , * p < 0.05

Name Popularity IB UB BPRMF GeoBPRMF IRENMF PopGeoNN

R2 0.768 0.698 0.72 0.845 0.886 0.798 0.799

R2 (adj) 0.754 0.68 0.704 0.836 0.879 0.786 0.787
Shape − 0.003*** 0.002 − 0.002 0.001 0 0.003* − 0.003*
Density 0.006*** 0.009*** 0.009*** 0.018*** 0.019*** 0.009*** 0.011***
GiniU − 0.001 0.015*** 0.014*** 0.015*** 0.012*** 0.006 0.003
StPB 0.005*** 0.003 0.005* 0.006*** 0.011*** 0.007** 0.009***
KuPB − 0.002 0.002 0.002 0.005*** 0.006*** − 0.004* − 0.002
StRG − 0.006** − 0.009** − 0.014*** − 0.009** − 0.009*** − 0.018*** − 0.01**
MedDA − 0.004*** 0.01*** 0.003* 0.011*** 0.01*** 0.01*** − 0.001
KuDA 0.001 0.011*** 0.011*** 0.004 0.002 0.009** 0.012***
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When it comes to the general patterns in the coefficients (cf. Fig.  4), we 
observe that an increase in the standard deviation of the radius of gyration has 
clearly the most negative influence on the recommendation accuracy of all vari-
ables. On the contrary, a higher density, GiniU , standard deviation of the popular-
ity bias, and kurtosis of the duration active generally tend to improve the accu-
racy. The EVs shape, median of duration active, and the kurtosis of the popularity 
bias have mixed influences, with shape overall having the smallest (but still statis-
tically significant in three cases) influence.

Turning our attention to the significance levels of the coefficients regarding the 
outcome variable, we observe that density and StRG are always highly significant 
with p < 0.01 for all recommendation models. These consistently low p-values 
across the board of all recommendation models underline their importance for the 
success of POI recommendation algorithms. All EVs were a significant predic-
tor towards the nDCG@5 in some of the recommendation models, although the 
shape was only significant towards the accuracy of the popularity and the Pop-
GeoNN models.

Fig. 4  Coefficient plot for nDCG@5. StRG has a negative influence on nDCG@5, shape, KuPB, and 
MedDA are mostly neutral, whereas the other EVs have a positive impact
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6.2  Novelty

The second aspect of our analysis is novelty, which we measure using the EPC 
metric. Again, we tabulate the coefficients in Table 4. Comparing the R2 values to 

Table 4  Coefficients ( �ev ) of the regression model for EPC@5

***p < 0.001 , **p < 0.01 , * p < 0.05

Name Popularity IB UB BPRMF GeoBPRMF IRENMF PopGeoNN

R2 0.88 0.953 0.803 0.769 0.749 0.861 0.869

R2 (adj) 0.873 0.951 0.791 0.755 0.734 0.852 0.861
Shape 0.01*** 0 0.003*** 0.004*** 0.006*** 0.004*** 0.006***
Density − 0.024*** − 0.004*** − 0.008*** − 0.013*** − 0.017*** − 0.01*** − 0.017***
GiniU 0.009** 0 0.001 0.009*** 0.007* 0.006*** 0.006**
StPB − 0.021*** − 0.001*** − 0.004*** − 0.01*** − 0.013*** − 0.011*** − 0.014***
KuPB − 0.004* 0 0.002 0.003 0.002 0.001 0
StRG 0.005 0 0.003 − 0.001 − 0.001 − 0.001 0.002
MedDA 0.004** 0 0.003*** 0.004*** 0.004** 0.001* 0.003***
KuDA − 0.002 − 0.001*** 0.001 0 − 0.005 − 0.003* − 0.002

Fig. 5  Coefficient plot for novelty measured using EPC@5. We observe an inverse relationship compared 
to nDCG @5 with density, StPB, and KuDA having a negative impact and shape, Gini

U
 , and MedDA 

having a positive impact on the EPC metric
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the ones in Table  3 (accuracy), we see a slightly better regression fit with values 
ranging from 0.73 (GeoBPRMF model) to 0.95 (Item-based model). This indicates 
that despite the fact that the explanatory variables were selected based on their 

Table 5  Coefficients ( �ev ) of the regression model for average item Exposure@5

***p < 0.001 , **p < 0.01 , * p < 0.05

Name Popularity IB UB PopGeoNN GeoBPRMF BPRMF IRENMF

R2 0.932 0.907 0.902 0.873 0.874 0.666 0.917

R2 (adj) 0.928 0.902 0.896 0.866 0.866 0.646 0.912
Shape − 1.609*** − 2.631*** − 2.421*** − 1.924*** − 2.165*** − 1.515*** − 2.347***
Density 0.547 − 0.069 0.273 0.36 0.106 0.561 − 0.361
GiniU 1.813*** 1.302*** 1.052* 0.839 0.351 − 1.486* 2.126***
StPB 1.573*** 0.985*** 1.222*** 1.232*** 1.743*** 2.26*** 0.814**
KuPB − 0.514* − 0.264 − 0.326 − 0.889*** − 0.525* − 1.418*** − 0.015
StRG 0.688 0.193 0.477 0.934 1.371** 2.249** 0.849*
MedDA 3.388*** 1.719*** 2.595*** 2.553*** 1.988*** 1.503*** 2.23***
KuDA 0.496 0.019 0.422 1.348*** 1.583*** 2.517*** 0.563

Fig. 6  Coefficient plot for average item Exposure@5. Shape and KuPB exert a negative influence on 
average item exposure, meaning that the difference to the expected item exposure is smaller, which is 
better. StPB and MedDA have a clearly positive influence on the item exposure metrics, whereas the 
remaining EVs are mostly slightly positive or neutral (density)
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collinearity with respect to the nDCG@5 (cf. Sect. 5.6), the regression model for the 
EPC metric is similarly accurate and even slightly more expressive compared to the 
one for nDCG@5.

Analyzing the patterns within the coefficients presented in Fig. 5, we can discern 
a noteworthy observation: our experiments reveal an inverse relationship between 
novelty and accuracy, which is a well-known trade-off in recommender systems. 
For all considered EVs, except for the statistically non-significant StRG and KuPB 
(except in the Pop model), and across various recommender models a distinct change 
in the sign of coefficients is evident. Specifically, many coefficients switch from a 
positive association to a negative one and vice versa. The coefficients for the Item-
based model converge near zero, indicating that this model produces recommenda-
tions with a stable Novelty regardless of the data characteristics. Among the EVs, 
the shape, GiniU , and MedDA display positive coefficients for EPC@5. Conversely, 
the other EVs exhibit a negative impact (density, StPB) or a neutral influence (StRG, 
KuDA) on this particular outcome variable. The observation of a neutral influence 
of the standard deviation of the radius of gyration is bolstered by the finding that its 
coefficients do not achieve statistical significance across any of the recommendation 
models. In contrast, we note that certain EVs exhibit a high level of significance 
( p < 0.001 ) across all recommendation models. Specifically, these influential EVs 
are density, shape, StPB, and MedDA.

6.3  Item exposure

Lastly, we shift our focus to the assessment of item exposure, as measured by the 
metric defined in Sect.  3.3. Notably, the R2 values for this analysis are remark-
ably high, exceeding 0.86 in all cases, except for BPRMF, where the EVs can still 
account for 0.65 of the variance, as detailed in Table 5. We would like to emphasize 
that higher values in the item exposure metric indicate a larger disparity between the 
number of times items are recommended and the number of times they should ide-
ally be recommended (as defined in Eq. 19).

The coefficients that exhibit high levels of significance across all recommenda-
tion models include shape, StPB, and MedDA. In contrast, density fails to achieve 
significance in any of the models. Lastly, the significance of the coefficient for GiniU 
in the IB and UB models is noteworthy as this EV quantifies the inequality in the 
frequency distribution of item check-ins.

Upon analyzing the grouping of coefficients and models in Fig. 6, again certain 
patterns emerge: shape and KuPB consistently exert a negative influence on Item 
Exposure within all recommendation models. As their values increase, the item 
exposure metric decreases, which means that the item exposure is closer to the 
expected item exposure from the test set. This observation is in line with the intu-
ition that a relatively higher number of check-ins within the user-check-in matrix 
results in a more dispersed distribution, which in turn helps mitigate the influence of 
popularity bias. Conversely, the median of the duration active (MedDA) consistently 
exhibits a positive impact on the item exposure metric across all the recommenda-
tion models. One plausible explanation for this trend is that when users spend longer 
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periods in a city, they are more likely to explore and visit a large number of popu-
lar POIs, further accentuating the effect of popularity bias. The other EVs typically 
have an overall positive influence on the Item Exposure metric, with many (but not 
all) being significant predictors.

7  Discussion

The obtained results shed light on the strengths and weaknesses of POI recommen-
dation models in terms of the data characteristics of the recommendation problem. 
Using the domain-driven subsampling approach to create specific subsamples from 
a large POI recommendation data set, we noticed that several established POI rec-
ommendation models are unsuited for smaller problems (cf. Fig.  3a), which war-
ranted their exclusion from the explanatory analysis.

In terms of the quality of the linear model, it is striking that it was possible to 
explain 68–88% variation of the nDCG with the remaining 8 out of 32 EVs after 
the elimination of the collinear EVs. Besides, we also obtained high results in 
terms of explaining item exposure (65–86%) and novelty (73–95%) variations. This 
result confirms that the collinearity analysis is necessary and helps to focus on the 
interesting variables without losing explainability. In terms of accuracy, we find a 
clearly positive influence of density on the nDCG@5, which confirms the findings 
from other domains that a higher density creates an easier recommendation prob-
lem (Deldjoo et al. 2021). Furthermore, we provide evidence that a higher standard 
deviation of the radius of gyration leads to diminished accuracy. This shows that 
geographic information is determinant in predicting the results in terms of rank-
ing accuracy in POI recommendation. In this scenario, an increase in the standard 
deviation of the radius of gyration suggests a greater diversity in user movement pat-
terns, making it more difficult (for algorithms) to identify consistent global move-
ment trends among users.

In terms of novelty of recommendations, we see a similar trend as for the accu-
racy; however, our results showed once more that these two concepts are inverse due 
to the popularity bias and related trade-offs discussed in the literature (Kaminskas 
and Bridge 2016; Zhao et  al. 2019). Unsurprisingly, we could show that a higher 
variance in the popularity bias in the interaction data helps to promote novel rec-
ommendations. Thus, these two targets still need to be balanced in any POI recom-
mender system in accordance with business needs. Emphasizing these dimensions is 
also important from the user’s point of view, as it would allow the system to surprise 
them with recommendations that are different from what they may be familiar with 
beforehand.

Regarding Item Exposure, we observe negative coefficients of the shape (which 
is the ratio between the number of users and items) on this metric, signifying that 
relatively more users compared to items tend to yield lower values of the item expo-
sure metric. In this context, lower values are preferable, as it means that they are 
closer to the exposed values in the unbiased test set. However, we should also con-
sider that an increased duration active and standard deviation of the popularity bias 
leads to a higher item exposure than desired, as this variable always obtains positive 
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coefficients in the regression model. Platforms need to monitor such effects closely, 
as the exposure of small local travel enterprises in the recommendations can deter-
mine whether they have a means of existence in the market.

7.1  Practical and theoretical implications

In this paper, we go beyond evaluating recommendation models by employing a 
framework that reveals the associations between various data characteristics and dif-
ferent dimensions of performance. While this framework is not without its imper-
fections, as discussed below, its application carries significant implications for the 
training and evaluation of POI recommender systems. For instance, our obser-
vations highlight the impact of explanatory variables such as Density, GiniU , and 
StPB which have a positive influence on nDCG@5, as opposed to EVs like StRG, 
which displays a negative influence. Based on our findings, developers, analysts, 
and researchers of POI recommender systems should be aware of the importance 
of these data characteristics. In practice this means that countermeasures against 
adverse data characteristics can be undertaken: The density can be addressed by 
defining a minimum number of interactions before a user is served by the main rec-
ommendation model (for “warm” users) instead of computing cold-start recom-
mendations to a user with too little interactions. By directly asking “cold” users for 
venues they have visited, relevant information can be collected. At the same time, 
the geographic scope of candidate items can be adjusted to deal with the adversary 
effects of the radius of gyration.

Furthermore, it is worth noting that the effect of these explanatory variables is 
dependent on the specific recommendation algorithm employed; however, we see 
systematic common effects on related recommendation models. Nevertheless, 
researchers should be mindful of this when comparing baseline methods against 
proposed models. Unintentionally, they might report comparisons that are not fair 
because some methods are either positively or negatively impacted by the data char-
acteristics. Notably, this observation extends to beyond-accuracy metrics, as we 
have observed similar trends in novelty and item exposure.

From a more theoretical perspective, this work introduces the prospect of learn-
ing these data dependencies directly from the data themselves and incorporating 
them into recommendation models and user profiles. Specifically, our work gives 
guidance to the choice of models for recommendations in automated ways, e.g., 
through Auto-RecSys (Anand and Beel 2020; Vente et al. 2023), analogous to Auto-
ML (Karmaker et al. 2021). As our approach is entirely data-driven, the only ad-hoc 
decisions we made were related to the selection of the original explanatory vari-
ables, which could vary depending on the specific target domain. However, once the 
explanatory and dependent variables are established, it becomes conceivable to inte-
grate the methodology presented here into a reinforcement learning framework. In 
such a setup, data could be fed to the recommenders in accordance with the pre-
dicted effects they are anticipated to have, thus optimizing recommendation out-
comes, as addressed in some works based on specific user characteristics to improve 
overall performance (Said and Bellogín 2018; Penha and Santos 2020).
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Even in the absence of a reinforcement learning framework, the current method-
ology can provide valuable insights into designing and enhancing existing recom-
mendation algorithms, at least in the POI recommendation domain. For instance, 
we observed that IB is less sensitive to density than GeoBPRMF across the three 
metrics analyzed. Given that their accuracy metrics are similar, one way to lever-
age this insight is to explore how to make GeoBPRMF more resilient in scenarios 
where data sets exhibit varying levels of density. To achieve this, researchers and 
practitioners could consider incorporating strategies from IB or similar robust meth-
ods into an improved version of the GeoBPRMF algorithm. This integration might 
involve adapting the underlying model or introducing additional mechanisms that 
allow GeoBPRMF to handle data sets with different density levels more effectively. 
By doing so, GeoBPRMF could become more versatile and capable of delivering 
consistent performance across a wider range of data set characteristics, enhancing its 
practical applicability in diverse POI recommendation scenarios.

Most importantly, whether it is hotels, restaurants, or other POIs, this work gives 
guidance to recommendation platforms of the e-tourism sector to characterize their 
recommendation data and understand the benefits and drawbacks of their recom-
mendation model from the perspective of different users groups and businesses. It 
can also inform methods to self-audit biases in the recommendations of platforms, 
e.g., with regards to the expected and achieved item exposure of items in certain rec-
ommendation models (Srba et al. 2023).

7.2  Limitations and future work

While being a widespread drawback of offline analyses of POI recommendation 
algorithms using location-based social network data, we still acknowledge that there 
is a gap between actual user behavior and what is recorded in LBSNs. Although this 
is universal for all recommendation models in all studies, it is worth mentioning that 
such studies analyze a proxy concept of check-ins that have been actively submitted 
instead of the actual ground truth of the temporal visitation of all POIs, venues, and 
other places. Thus, the generalization of the analyses in this study is—just as in all 
other studies— constrained by the limited availability of high-quality POI recom-
mendation data sets. This limitation can only be overcome by collecting data sets 
that reflect user interactions from actual POI recommender systems, which would be 
a crucial next step in advancing the field.

Although we utilized the widely employed global Foursquare data set contain-
ing 33  million check-ins (Yang et  al. 2015), its sparsity posed a significant chal-
lenge since the actual number of check-ins per destination dwindled, limiting our 
ability to create meaningful subsamples for most of the cities within the data set. 
To prevent biases stemming from geographic influences of the topological features 
of different cities, we focused our study on a single destination, the New York City 
metropolitan area, due to its prominence and the number of check-ins in the data set. 
This decision to focus on one city was essential because many less popular destina-
tions on Foursquare lacked the volume of check-in data to support the explanatory 
analysis with subsamples of sufficient size, which would lead to a deterioration in 
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recommendation quality and lower statistical significance. In fact, while New York 
City provided ample interaction data for addressing the recommendation problem, 
it is a city less susceptible to seasonal variations in travel behavior, as evidenced by 
the minor differences in data characteristics between the summer and winter sub-
samples shown in Table 6, hence the obtained results cannot be considered univer-
sal, since this analysis in only based on one data set from one city. As future work, 
analyzing the generalizability of the explanatory framework between cities and to 
further data sources would be an obvious extension to our work. If one would repeat 
the experiments in many cities, how robust would the set of significant explana-
tory variables (i.e., the coefficients in the respective linear regression models for 
the individual algorithms) be? Such an analysis would be interesting, however, it 
would involve computing explanatory variables whose values are comparable, i.e., 
normalized between different cities. Generalizing the method towards incorporating 
different data sources would be a further step to understand the impact of different 
data collection methods on the data characteristics and the performance of POI rec-
ommender systems. Herein, the challenge lies in establishing comparable check-ins 
data sets, both in terms of geographic and temporal coverage.

In this context, another distinct line of future work would be to compute a uni-
versal regression model, with the aim to predict the performance of recommenda-
tion algorithms in different cities. The relevant research questions are two-fold: (a) 
under which circumstances is it permissible to mix data characteristics of samples 
from different cities, as they have different sizes, which might result in incompa-
rable values of the same explanatory variables?, and (b) are other influences, such 
aspects that cannot be directly quantified as explanatory variables, like cultural or 
climatic aspects, small enough so that they do not have a practical influence on the 
predictions?

In our study, we incorporated EVs capturing both spatial and temporal aspects, addi-
tional variables capturing more of the users’ context were omitted for the subsampling 
for practical reasons. With the currently used data sets, a finer temporal subdivision 
of check-ins by different times of the day or weekdays and weekends would be pos-
sible in theory but are practically prevented by the size of the resulting subsamples. 
While further contextual information is not available in the data set, the performance 
of a POI recommendation is known to be influenced by many contextual factors, such 
as the weather on a given day (Trattner et al. 2018). User context has been the focus of 
various approaches in literature (Wörndl et al. 2011; Cai et al. 2017; Yang et al. 2017; 
Zhao et al. 2019), this gives opportunity for future works to analyze the importance of 
different contextual factors, including more information about the users and their needs, 
which has been analyzed in literature on traveler types (Gibson and Yiannakis 2002; 
Neidhardt et al. 2014; Dietz et al. 2020), which offers various roles that one could use 
as subsampling data characteristics. Specifically, since it has been shown that locals 
and tourists showcase different behavior in the same city (Sánchez and Dietz 2022), 
it would be worthwhile identifying which explanatory variables are more relevant for 
various user groups.
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8  Conclusions

In both the classical recommendation domain and specialized fields, such as point of 
interest recommendation, a multitude of algorithms have been proposed. However, 
the effectiveness of these algorithms often varies significantly depending on the data 
set under evaluation. While addressing this challenge has been explored previously 
in classical recommendation scenarios, there remains a research gap within the POI 
recommendation domain. This gap is particularly significant, given the relevance of 
POI recommendations in the tourism sector, affecting a multitude of businesses and 
consumers. Unlike the traditional recommendation domain, like purchasing a book or 
watching a movie, recommending POIs involves algorithms that utilize various signals, 
such as popularity and geographic locations of venues.

In this paper, we expanded upon the framework introduced by Deldjoo et al. (2021), 
incorporating additional explanatory variables specific to the POI recommendation 
domain. Our objective was to investigate which data characteristics affect the per-
formance of both classical and state-of-the-art POI recommendation algorithms. We 
assessed these algorithms across three dimensions: accuracy, novelty, and item expo-
sure. The results we obtained shed light on the robustness of recommendation mod-
els concerning the data characteristics inherent in recommendation data sets, offering 
valuable insights for the field. Among the various explanatory variables we analyzed, 
it became evident that certain factors pertaining to the data structure (shape, density), 
as well as those associated with the distribution of check-ins ( GiniU , StPB, and KuPB), 
along with geographical and temporal variables (StRG, MedDA, and KuDA) are criti-
cal for explaining the performance of POI recommender systems. In terms of ranking 
accuracy, density, GiniU , StPB, and KuDA generally tend to be conducive to higher 
accuracy, whereas an increase in the standard deviation of the radius of gyration is det-
rimental. The significance of newly introduced spatio-temporal explanatory variables 
(radius of gyration and duration active) in the coefficient analysis of the regression 
models underlines our conclusion that the well-known data characteristics from the 
analysis of classical recommendation domains are insufficient to explain algorithmic 
performance in the POI recommendation domain.

Appendix

A Statistics of subsamples

Table 6 presents the values obtained by independent subsamples in the explana-
tory variables defined in Sect. 3.2.
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B Hyperparameters

Table 7 shows the search space of the hyperparameters for each recommendation 
model. Refer to Sect. 5.3 for context.

C Supplementary result tables

The following tables correspond to the results presented in Sect. 6 at cutoffs of 10 
and 20, respectively. The results generally follow the same patterns as presented 
for a cutoff of 5, however, we can observe a tendency that with a higher cutoff, 
the absolute impact of coefficients becomes smaller in the item exposure metric 
(Tables 8, 9, 10, 11, 12, 13).

Table 7  Hyperparameters tested in the recommenders

The best configurations are selected by maximizing nDCG@5

Rec Hyperparameters

Random None
Pop None
UB Sim = {Vector Cosine, Set Jaccard}, k = {20, 40, 60, 80, 100, 120}

IB Sim = {Vector Cosine, Set Jaccard}, k = {20, 40, 60, 80, 100, 120}

HKV Iter = 20, Factors = {10, 50, 100} , � = {0.1, 1} , � = {0.1, 1}

BPRMF Factors = {10, 50, 100} , BiasReg = {0, 0.5, 1} , LearnRate = 0.05, Iter = 50, RegU = RegI 
= {0.0025, 0.001, 0.005, 0.01, 0.1} , RegJ = RegU/10

GeoBPRMF Factors = {10, 50, 100} , BiasReg = {0, 0.5, 1} , LearnRate = 0.05, Iter = 50, RegU = RegI 
= {0.0025, 0.001, 0.005, 0.01, 0.1} , maxDist={1, 4}

IRENMF Factors = {50, 100} , geo-� = {0.4, 0.6} , �3 = {0.1, 1} , clusters = {5, 50}
RankGeoFM Factors = {50, 100} , � = {0.1, 0.2} , c = 1, � = 0.3 , neighs = {10, 50, 100, 200} iter = 120, 

decay = 1, boldDriver = True, learnRate = 0.001
PopGeoNN Sim = {Vector Cosine, Set Jaccard}, k = {20, 40, 60, 80, 100, 120}
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Table 8  Coefficients of the regression model for nDCG@10

Name Popularity IB UB PopGeoNN GeoBPRMF BPRMF IRENMF

R2 0.801 0.717 0.724 0.827 0.861 0.825 0.817

R2 (adj) 0.789 0.701 0.708 0.817 0.852 0.815 0.806
Shape − 0.004*** 0.003** − 0.003 − 0.004** 0 0.002 0.005***
Density 0.008*** 0.012*** 0.012*** 0.012*** 0.022*** 0.023*** 0.011***
GiniU − 0.002 0.018*** 0.018*** 0.003 0.014*** 0.019*** 0.005
StPB 0.007*** 0.003 0.008** 0.011*** 0.013*** 0.007** 0.008**
KuPB − 0.001 0.003 0.002 − 0.001 0.007*** 0.007*** − 0.004
StRG − 0.009** − 0.011** − 0.019*** − 0.013*** − 0.013*** − 0.012*** − 0.021***
MedDA − 0.006*** 0.012*** 0.004* − 0.003* 0.012*** 0.012*** 0.011***
KuDA 0.002 0.009** 0.011** 0.013*** − 0.001 0.002 0.008*

Table 9  Coefficients of the regression model for EPC@10

Name Popularity IB UB PopGeoNN GeoBPRMF BPRMF IRENMF

R2 0.892 0.955 0.82 0.896 0.739 0.764 0.873

R2 (adj) 0.886 0.953 0.809 0.89 0.723 0.75 0.865
Shape 0.008*** 0 0.003*** 0.005*** 0.005*** 0.004*** 0.003***
Density − 0.021*** − 0.004*** − 0.008*** − 0.017*** − 0.014*** − 0.011*** − 0.009***
GiniU 0.009** 0 0.001 0.007*** 0.006* 0.009*** 0.006***
StPB − 0.019*** 0** − 0.004*** − 0.014*** − 0.012*** − 0.01*** − 0.01***
KuPB − 0.002 0 0.002* 0 0.002 0.002 0.001
StRG 0.004 0 0.002 0.001 − 0.002 − 0.001 − 0.001
MedDA 0.003** 0 0.002*** 0.002* 0.003** 0.003*** 0.001*
KuDA − 0.002 − 0.001** 0.001 − 0.002 − 0.004 0 − 0.003**

Table 10  Coefficients of the regression model for ItemExposure@10

Name Popularity IB UB PopGeoNN GeoBPRMF BPRMF IRENMF

R2 0.933 0.851 0.835 0.818 0.811 0.476 0.897

R2 (adj) 0.929 0.842 0.825 0.807 0.799 0.445 0.891
Shape − 1.593*** − 3.224*** − 3.208*** − 1.712*** − 2.339*** − 1.509*** − 2.662***
Density 0.518 − 0.277 − 0.026 0.537 − 0.179 0.394 − 0.626*
GiniU 1.843*** 2.059*** 1.125 1.083* − 0.188 − 2.266** 2.123***
StPB 1.521*** 0.894** 1.45*** 0.758* 1.8*** 2.282*** 0.687**
KuPB − 0.515* − 0.015 − 0.258 − 1.241*** − 0.526* − 1.613*** − 0.074
StRG 0.697 − 0.968 − 0.574 1.009 1.53** 2.4** 0.817
MedDA 3.403*** 1.048*** 1.844*** 2.569*** 1.308*** 0.77** 1.638***
KuDA 0.483 − 1.908*** − 1.037* 1.598*** 1.926*** 2.902*** 0.839*
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Table 11  Coefficients of the regression model for nDCG@20

Name Popularity IB UB PopGeoNN GeoBPRMF BPRMF IRENMF

R2 0.834 0.746 0.747 0.831 0.858 0.844 0.821

R2 (adj) 0.824 0.731 0.732 0.821 0.85 0.835 0.811
Shape − 0.005*** 0.005*** − 0.003 − 0.005*** 0.001 0.003 0.008***
Density 0.011*** 0.014*** 0.017*** 0.014*** 0.026*** 0.029*** 0.014***
GiniU − 0.005 0.021*** 0.024*** 0.001 0.018*** 0.021*** 0.005
StPB 0.011*** 0.003 0.01** 0.015*** 0.017*** 0.012*** 0.011***
KuPB − 0.002 0.004 0.004 − 0.001 0.009*** 0.008*** − 0.003
StRG − 0.01** − 0.015*** − 0.025*** − 0.016*** − 0.017*** − 0.016*** − 0.025***
MedDA − 0.009*** 0.014*** 0.006** − 0.006*** 0.015*** 0.015*** 0.014***
KuDA 0.003 0.007* 0.009* 0.013*** − 0.005 0 0.007

Table 12  Coefficients of the regression model for EPC@20

Name Popularity IB UB PopGeoNN GeoBPRMF BPRMF IRENMF

R2 0.903 0.96 0.841 0.912 0.731 0.758 0.889

R2 (adj) 0.897 0.958 0.831 0.907 0.715 0.744 0.882
Shape 0.007*** 0 0.002*** 0.004*** 0.004*** 0.003*** 0.003***
Density − 0.018*** − 0.004*** − 0.007*** − 0.015*** − 0.012*** − 0.01*** − 0.007***
GiniU 0.009*** 0 0.002 0.007*** 0.006* 0.008*** 0.005***
StPB − 0.017*** 0* − 0.004*** − 0.014*** − 0.01*** − 0.009*** − 0.009***
KuPB 0 0 0.001* 0.002 0.002 0.002 0.001
StRG 0.003 0 0.002 0 − 0.002 − 0.001 − 0.001
MedDA 0.002* 0 0.002*** 0.001 0.002* 0.003** 0.001
KuDA − 0.002 0* 0 − 0.003 − 0.003 0 − 0.002**

Table 13  Coefficients of the regression model for ItemExposure@20

Name Popularity IB UB PopGeoNN GeoBPRMF BPRMF IRENMF

R2 0.933 0.717 0.714 0.715 0.69 0.29 0.868

R2 (adj) 0.929 0.7 0.697 0.698 0.672 0.248 0.861
Shape − 1.58*** − 4.227*** − 4.517*** − 1.474*** − 2.5*** − 1.515*** − 2.915***
Density 0.44 − 0.135 − 0.118 0.635 − 0.473 0.112 − 0.899**
GiniU 1.885*** 5.417*** 3.738** 1.362* − 0.73 − 2.924*** 2.023***
StPB 1.443*** 1.389 2.253* 0.127 1.726*** 2.178*** 0.463
KuPB − 0.519* 0.604 0.1 − 2.026*** − 0.496 − 1.795*** − 0.144
StRG 0.682 − 4.454** − 3.889** 1.088 1.648** 2.376** 0.754
MedDA 3.415*** 1.056 1.368* 2.639*** 0.405* − 0.061 0.91***
KuDA 0.446 − 7.898*** − 6.694*** 2.106*** 2.294*** 3.135*** 1.103**
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Fig. 7  Above: Pairwise Pearson correlations between all explanatory variables. Below: Pearson correla-
tion between explanatory variables after removing highly correlated variables using Algorithm 1



 L. W. Dietz et al.

D Pairwise correlations of explanatory variables

The following Fig. 7 showcases the effect of the reduction of EVs using pairwise 
correlation plots.
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