The current issue and full text archive of this journal is available on Emerald Insight at:
https://www.emerald.com/insight/1229-988X.htm

Valuation of American options using
machine learning: beyond
Longstaff—-Schwartz and

hybrid models

Maria Vivas-Redondo, Maria Coronado-Vaca and

Esther Vaquero-Lafuente
Facultad de Ciencias Economicas y Empresariales,
Universidad Pontificia Comillas, Madrid, Spain

Abstract

This work explores the potential of different machine learning (ML) algorithms in the valuation of American
options (Aos), contrasting them with the Longstaff-Schwartz (L—S) model. To carry out this research, the
algorithms K-Nearest Neighbors (KNN), Random Forest (RF), Multi-Layer Perceptron (MLP) and
Convolutional Neural Network (CNN) are employed using RStudio. The project specifically targets the
prediction of the price of Apple’s put Aos through regression, utilizing data extracted from Bloomberg as a case
study. To evaluate the model’s performance in a multidimensional context, we use both historical and stochastic
volatility. The results show that these ML algorithms achieve a notable improvement in the performance and
accuracy of Aos price predictions compared to the L-S model. RMSE values are very similar using historical and
stochastic volatility, the most notable difference appearing in the L-S model. Prior trends in the literature show
the development of hybrid models, which combine traditional techniques with the predictive capabilities of ML
algorithms in the valuation of Aos in a more efficient and accurate way than the L-S model. However, our paper
determines whether the supervised training of ML algorithms exclusively with historical financial market data,
without relying on traditional methods, achieves better results than those of the L-S model. This ML “stand-
alone” approach to price Aos faces the inability to derive hedging strategies and optimal exercise conditions.
Future efforts could explore integrating deep reinforcement learning to identify optimal exercise policies or
developing hybrid models that combine ML with traditional frameworks.

Keywords American options valuation, Machine learning, Longstaff-Schwartz, Predictive analytics,

KNN (K-Nearest Neighbors), RF (Random Forest), MLP (Multi-Layer Perceptron),

CNN (Convolutional Neural Network)

Paper type Research paper

1. Introduction
American options (Aos) pricing represents a significant challenge within the financial industry
and has been a topic widely analyzed (Cox et al., 1979; White and Hull, 1990; Longstaff and
Schwartz, 2001). Black-Scholes (B-S) model (1973), designed to value European options,
cannot fully capture the flexibility of exercising Aos before maturity. Since the B-S model
assumes the option can only be exercised at maturity, there is a risk of underestimation of its
intrinsic value. Therefore, more sophisticated models should be used to avoid non-optimal
investment decisions and inefficient financial risk management.

Within this framework, some authors emphasize the importance of determining the
expected continuation value in every single moment to optimize the exercise strategy and
maximize potential returns. The Longstaff-Schwartz (L-S) (2001) model introduced a
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numerical approach based on Monte Carlo simulations and least squares regression to estimate
the continuation value of an option. Within the financial industry, this predominant approach is
also known as Least Square Monte Carlo (LSMC). The L-S model provides an effective
methodology for valuing Aos, yet it still relies on certain assumptions that may limit its
accuracy in highly volatile or non-normal market conditions.

Consequently, traditional methods exhibit notable limitations in handling the complexity of
American option valuation, thus creating a significant opportunity for ML algorithms in
determining their pricing. ML offers a data-driven approach that captures complex, non-linear
relationships from historical financial data, eliminating the need for rigid mathematical
models. This capability allows ML-based methods to dynamically adapt to changing market
conditions, enabling a more precise and flexible valuation. Unlike traditional models, which
rely on pre-defined assumptions about asset price behavior, ML algorithms can learn directly
from large datasets, identifying hidden patterns and improving predictive performance.

In recent years, the new technologies and ML have revolutionized the valuation of Aos by
introducing computational tools that enhance modeling and forecasting capabilities. ML
approaches facilitate processing vast amounts of market data from platforms like Bloomberg
and Reuters (Arévalo De Pablos et al., 2024), ensuring real-time access to reliable and up-to-
date financial information. This is particularly crucial for Aos, whose valuation is highly
sensitive to market fluctuations and optimal exercise strategies.

Furthermore, ML, models can incorporate a broader range of financial variables than
traditional methods, leading to more robust and adaptive pricing frameworks. This allows for
enhanced valuation accuracy and improved risk management and investment decision-making.

Recently, various authors have used ML to value Aos. Several studies have combined ML
algorithms with traditional techniques, such as PDE and LSMC, to value Aos. Among others,
Anderson and Ulrych (2023) as well as Becker et al. (2020) used Deep Neuronal Networks
(DNN); Hoshisashi and Yamada (2023) applied Multilayer Perceptron (MLP); Kanashiro
Felizardo et al. (2022) utilized Convolutional Neural networks (CNN); Dubrov (2015) and
Maidoumi et al. (2023) used random forest (RF); Feng et al. (2013) preferred KNN;
meanwhile Malpica and Frias (2019) applied RF, K-Nearest Neighbors (KNN), Light
Gradient-Boosting Machine (LGBM) and a combination of these algorithms through the
stacking technique.

These works show the diversity of approaches and the trend towards hybrid models, which
combine traditional techniques with the predictive capabilities of ML algorithms for Aos
valuation. The conclusions of those research studies are summarized in Table 1.

These conclusions (Table 1) show that using hybrid models to identify the conditional
expected continuation value and the optimal stopping rule in Aos is more efficient and accurate
than the L-S model. However, it still has to be determined whether the supervised training of
ML algorithms exclusively with historical financial market data, without relying on traditional
methods, achieves better results than the L-S model.

Therefore, this work aims to develop an approach to predict the price of Aos using only ML
algorithms and historical financial market data. The aim is to avoid hybrid models, such as
those implemented by the aforementioned authors, and focus on training the KNN, RF, MLP,
and CNN algorithms using the most influential financial market factors in Aos. This approach
increases adaptability and simplifies the valuation process, avoiding the complexity associated
with the mathematical formulas used in hybrid models. The hypothesis is that ML has the
potential to value Aos more precisely and efficiently than the L-S model. In order to validate it,
different algorithms are applied to a specific case—Apple American put options—in RStudio,
comparing them to each other and to the L-S model.

This paper is structured as follows. Section 2 presents an empirical analysis of the case,
including data acquisition, preprocessing, and a summary of the methodology. It also provides
a step-by-step explanation of the ML algorithms and L-S model used to value Apple American
put options in RStudio. Section 3 discusses the results and conclusions.



Table 1. Hybrid models for estimating the price of American options

Author/Year

Hybrid ML model

Conclusions

Anderson and Ulrych
(2023)

Becker et al. (2020)

Dubrov (2015)

Feng et al. (2013)

Hoshisashi and
Yamada (2023)

Kanashiro Felizardo
et al. (2022)

Malpica and Frias
(2019)

Maidoumi et al.
(2023)

DNN

DNN

RF

KNN

MLP

CNN

RF, KNN, LGBM
and Stacking

RF

Source(s): Table by authors

Training DNN with PDE and the Heston stochastic
volatility model (1993) improves price prediction in terms
of the balance between speed and accuracy, compared to
standard methods for valuing American options

The adaptation of LSMC using DNN provides an
estimation of the American option price with low bias
Accurate training of DNN requires more computational
time

RF trained with LSMC always achieves better results than
the L-S model

Its simplicity and accuracy make it an ideal algorithm
The Root Mean Square Error (RMSE) of the numerical
experiments shows that KNN trained with LSMC is
promising for pricing American options

Further research is needed to determine the dimension
threshold required for KNN estimators to be viable
Training MLP with LSMC is not much better than the L-S
model when there are few exercise dates. However, its
efficiency and accuracy in terms of RMSE are better when
there are many dates

High efforts and computational resources are required

It is necessary to frequently train MLP in response to
financial market conditions

Training CNN with LSMC allows for improving the
optimal stopping point performance

The improvement is achieved by transforming historical
information into a Markov state, along with extracting
features from the CNN layer

The results show that this methodology improves the
expected value compared to the L-S model

The RF, KNN, and LGBM models trained with LSMC
achieve approximate accuracy in terms of Mean Absolute
Error (MAE) with no significant differences

Their combination through stacking increases accuracy in
terms of MAE

On average, the price estimates approach their real value
The price estimated by RF trained with LSMC is similar to
that obtained through the L-S model, but slightly higher in
terms of Mean Squared Error (MSE)

RF generally performs better in the context of nonlinear,
highly correlated multidimensional models due to its
random tree structure

2. Material and methods

2.1 Data

2.1.1 Data sources. The database on which this work is based contains a daily historical record
with information on various Aos of Apple, covering the period from January 18, 2018, to
January 19, 2024. The data has been collected from Bloomberg.

During the analysis, the following challenge arose: while Bloomberg terminal’s “OMON”
provides information on active options, it does not include data on expired options. Since it
was necessary to extract historical data on expired options, the following Excel’s function has
been used “= BDS(‘AAPL US Equity’; ‘OPT_CHAIN’; ‘SINGLE_DATE_
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OVERRIDE = YYYYMMDD’)”, which returns the tickers of all the options within the
specified time range. Subsequently, the historical data of Apple’s Aos, as well as Apple’s stock
and US Treasury bonds, has been extracted using the historical data table from Bloomberg’s
Excel Add-In.

Due to the diversity of formats and the large volume of information, macros were created in
Excel Visual Basic to standardize the data and adapt it for implementation in RStudio. The data
on Aos has been divided into two Excel files, “Appleoptions1” and “Appleoptions2”, due to
Excel’s row limitations. Observations on Apple stock and US Treasury bonds have been saved
in two other Excel files, “Applestocks” and “TNOTES”.

After importing the Excel files into RStudio, a complete dataset was built by merging them
using “DATES” as the common element. As a result, 1,661,772 observations and 23 variables
were obtained, totaling approximately 0.3 gigabytes of memory.

2.1.2 Data pre-processing. In the dataset, there are missing values, and different
alternatives have been considered for handling them, such as taking the mean, maximum,
minimum, zero, or deleting all data for the corresponding option on that day. Ultimately, the
latter alternative was chosen, as missing data spanned several consecutive days, which could
significantly impact the results due to the high volatility in Aos. This reduced the number of
observations to 988,384.

Additionally, the dataset contained information on both American call and put options, so
the American put options to be used for analysis were extracted. As a result, the dataset is
reduced to 476,395 observations corresponding to 1,267 American put options.

To facilitate data handling, a random sample of 5% of the total observations (23,819) was
selected for efficient analysis and model building, ensuring minimal impact on accuracy.

Besides, the data was split into training and testing sets. In the training set (70%, 16,673
observations), the model was fitted and estimated to learn from the data and identify the
relationships. Meanwhile, the testing set (30%, 7,146 observations), was reserved for making
predictions and comparing the predicted values of the target variable with the actual values,
allowing for the evaluation of prediction error and predictive performance measures.

To avoid biases, the data was assigned to the training and testing sets randomly, ensuring
proper representation in both sets for accurate evaluation of the model.

2.1.3 Variables. From the 23 variables extracted from Bloomberg, four new ones have been
created that are considered relevant for predicting the price of American put options: “DAYS_
UNTIL_MATURITY”, “PAYOFF”, “MAX_PAYOFF_PER_OPTION” y “MAXIMUM
DATE_PAYOFF_OPTION”.

First, “DAYS_UNTIL_MATURITY” indicates the remaining days until the expiration of
each option. The proximity to expiration is a crucial factor in determining the price.
As expiration approaches, uncertainty about the future behavior of Apple’s stock decreases,
which can influence volatility and, therefore, the options price. Additionally, the fewer days
remaining, the lower the time value of the options.

Second, “PAYOFF” is the difference between the current price of Apple’s stock and the
strike price of the Apple American put option. A positive payoff implies profits, while a
negative payoff results in losses. Knowing the payoff is key to deciding whether to exercise the
option.

Third, “MAX_PAYOFF_PER_OPTION?” records the historical maximum payoff for each
option. In this study, since a random sample of daily observations from various Apple
American put options is being used, this variable helps identify patterns or trends in price
behavior and provides a reference for evaluating their future performance.

Finally, “MAXIMUM_DATE_PAYOFF_OPTION” indicates how many days remain until
the expiration of each option when the maximum payoff occurs. Understanding at what point
in the life of the option the highest historical payoff was achieved can provide insights into how
proximity to expiration may influence profitability.

Additionally, since Bloomberg provides the annual volatility of the stock but not the daily
volatility, the latter has been calculated using Bloomberg annual volatility. This variable is



more relevant when working with daily historical data, as it offers a clearer view of daily price

fluctuations and a more effective risk assessment and management.

To evaluate the performance of ML predictions in a multidimensional context, the analysis
will be conducted twice: once using historical volatility and once using stochastic volatility.
The stochastic volatility (“VOLATILITY_ST”) has been estimated with a GARCH(1,1)
model without ARMA terms in the mean equation. The model has been fitted to the return
series using the “Rugarch” package in RStudio, and the conditional daily volatilities have been

extracted using the sigma function.

As aresult, the total number of variables amounts to 29, including qualitative, quantitative,

and temporal variables.

To simplify the analysis and avoid multicollinearity, categorical, temporal, and highly
correlated numerical variables deemed unnecessary have been removed. A correlation matrix
(Figure 1) was used to assess the relationships between variables and to identify those that are
highly correlated. Specifically, the target variable “PX_LAST_OPTION” has been excluded.

Based on the correlation matrix analysis, the following variables have been removed:
“VOLATILITY_360D”, “VOLATILITY_30D”, “DIVIDEND”, “DELTA_LAST”,
“PAYOFF”, “USGOVT3MONTHS_PX_LAST”, “USGOVT6MONTHS_PX_LAST”,
“USGOVT2YEARS_PX LAST” and “USGOVTS5YEARS PX_LAST”. These variables
have a high correlation with others and are redundant in the analysis. Regarding US Treasury
bonds, which are used as an approximation for the risk-free rate, those with an annual interest
payment frequency have been selected, as the analysis focuses on Apple American put options

with an annual expiration.
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PX_LAST_STOCK
MAX_PAYOFF_PER_OPTION_DAYS_UNTIL_MATURITY 029 029 002 042 007 -0.11 -0.08 -0.03 032 -0.21 05 -04 -042 0 -0.13 -0.14 -0.06 -0.08 -0.1 -0.06 -0.09

VOLATILITY_360D .-0.01 0.07 -0.03 0.07 023 -0.04 -0.04 -0.38 0.29 -0.32 033 0 ..Auu -0.48 -0.52 -0.01 -0.03

VOLATILITY_1D  -0.01 007 -0.03 007 023 -0.04 -0.04 038 -0.29 0.32 033 0 -0.45 -0.48 -0.52 -0.01 -0.03

018 019 019 001 0.03 017 -0.45 -0.21 -021 -ﬂJJl.-D.ZI 001 024 028 047 02 022 004 -0.01

THETA_LAST 002 001 -0.02 -0.02 -002 002 0 -0.03 -002-003 0 001 001 001 001 001 -0.03 -0.02

DELTA_LAST 046 001 -0.08 -0.19 0.01 4).01.-0 0 -0.45 -0.16 -0.14 -0.15 -0.15 0.02 -0.12

RHO_LAST 047 -0.15 043 -0.43 -024 047 0.2 001 044 046 013 044 014 0.06 -0.07

PX_VOLUME_STOCK [049 02 003 036 003 023 021 -0.01 -0.35 -0.38 0.33 -0.34 034 0 -0.01
VOLATILITY_30D 009 001 044 -0.02 0.06 004 -0.01 -0.19 -0.23 023 -021 02 0 -0.02
VEGA_LAST 046 045 044 04 042 0 -0.41 -043 -0.09 -04 -01 -0.02 0.14
DAYS_UNTIL_MATURITY 006 -0.15 -0.1 -0.13 -0.01 -0.06 -0.05 -0.07 -0.07 -0.06 -0.13 -0.03

DIVIDEND_INDICATED_YIELD o025 -0.01 -0.03 -0.05 003 0 -0.02 -0.03 0.02

STRIKE 0 021 02 021 021 021 003 043

PAYOFF 0 004 002 007 006 0.05 -0.03 0.06
MAX_PAYOFF_PER_OPTION 0 007 004 01 008 007 -0.01 0.09
DIVIDEND 001 001 001 001 001 001 0

USGOVT2YEARS_PX_LAST 0.05 0.04

USGOVT5YEARS_PX_LAST 005 0.04
USGOVT3MONTHS_PX_LAST 005 0.04
USGOVTE6MONTHS_PX_LAST 005 0.04
USGOVT1YEAR_PX_LAST 005 0.04
PX_VOLUME_OPTION 028

Figure 1. Correlation matrix. Figure by authors
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Furthermore, the variables “GAMMA_LAST”, “VEGA_LAST”, “RHO_LAST”,
“THETA_LAST” and “PX_VOLUME_OPTION” which inherently rely on existing models
(Black-Scholes) or observed outcomes (directly correlate with PX_LAST_OPTION), were
excluded to ensure the independence of the proposed model and enhance its ability to predict
American put options prices autonomously, free from the assumptions embedded in traditional
models. This adjustment aligns the study with its primary objectives, emphasizing innovation
and strengthening the predictive validity of the ML-based approach.

Although some variables like “STRIKE”, “DIVIDEND_INDICATED_YIELD”, and
“PX_LAST_STOCK?”, show high correlation, it has been deemed necessary to include them in
the analysis to properly assess Apple American put options. Moreover, all these variables are
required to apply the L-S model later.

As a result, the numerical variables are reduced to 11 (Table 2). The ML models will be
executed twice: once using historical volatility and once using stochastic volatility, allowing
for a comparative analysis of their outcomes. Consequently, 9 variables are predictive, and
“PX_LAST_OPTION?” is the target variable.

It is important to highlight that, in the context of the L-S model, the following variables
have been specifically selected: “STRIKE”, “VOLATILITY_1D”, “PX_LAST_STOCK?”,
“USGOVTI1YEAR_PX_LAST”, “DIVIDEND_INDICATED_YIELD”, and “YEARS_
UNTIL_MATURITY”. The variable “YEARS_UNTIL_MATURITY” was created from
the “DAYS_UNTIL_MATURITY” variable and shows the remaining time to expiration in
annualized terms. The need for this variable lies in its inclusion in the L-S model, where it is
used to calculate the expected present value of the American put option over time.

2.2 Methodology
In this step, the ML algorithms -KNN, RF, MLP, and CNN- selected to solve the regression
problem and the L-S model will be explained, implemented and analyzed.

Table 2. List of variables included in ML algorithms with variable type and description

Variable Type Description
STRIKE Continuous Daily strike price of American put options
quantitative
PX_LAST_OPTION Continuous Daily price of American put options
quantitative
PX_LAST STOCK Continuous Daily stock price
quantitative
PX_VOLUME_STOCK Discrete Daily stock transaction volume
quantitativbe
DIVIDEND INDICATED YIELD Continuous Indicated dividend yield of a stock
quantitative
USGOVT1YEAR_PX_LAST Continuous Daily price of US Treasury bonds with annual
quantitative maturity, used as an approximation of the risk-free
rate
DAYS_UNTIL_MATURITY Discrete Days remaining until the expiration of American put
quantitative options
MAX_PAYOFF_PER_OPTION Continuous Maximum profitability achieved by American put
quantitative options
MAX_PAYOFF_PER_OPTION_ Discrete Days remaining until the expiration of American put
DAYS_UNTIL_MATURITY quantitative options when maximum profitability was achieved
VOLATILITY_1D Continuous Daily stock volatility
quantitative
VOLATILITY_ST Continuous Daily stock stochastic volatility
quantitative

Source(s): Table by authors




2.2.1 KNN. The KNN algorithm is a widely used Supervised Learning technique in both Journal of
classification and regression problems. KNN is a non-parametric algorithm, meaning it doesnot ~ Derivatives and
require a specific training process. Since KNN does not have a specific learning stage, it is a lazy Quantitative
learning algorithm. This algorithm determines the outcome by calculating the distance between Studies: MET
the new sample and the existing samples in the training set (Klidbary and Arabameri, 2023). In
other words, upon receiving a new instance X, the algorithm searches the entire training set for
the K cases most similar to it (the K nearest neighbors). Depending on the problem, the
neighbors are used to either classify the sample into a specific category (classification) or to
predict its summary value by averaging the K nearest neighbors’ values (regression).

The appropriate choice of the hyperparameter K is crucial, as a very small value can lead to
overfitting by adjusting too much to the noise in the data, while a value that is too large can
introduce excessive bias into the model. Therefore, it is important to find a balance to achieve
accurate and generalizable results. The simplicity, easy implementation and interpretability of
the results, high accuracy, suitability for non-linear data, and a wide range of applications can
be considered as the advantages of the KNN algorithm (Klidbary and Arabameri, 2023).

Next, the KNN algorithm is applied to Apple’s American put options data to predict their
price. The KNN model has been built using the “train()” function from the “Caret” package in
RStudio. For training, the normalized data from the training set was used so that all variables
were on the same scale. “PX_LAST_OPTION?” is the target variable, and all other variables
are used for prediction. The method argument specifies the use of KNN, and 10-fold cross-
validation is employed to evaluate model performance—training on 9 folds and testing on the
10th, repeated 10 times for reliability. For hyperparameter selection, “tuneLength” has been
used, specifying 15 iterations to find the optimal K.

In Figure 2, it can be observed how, depending on the value of K, the model will have a
different RMSE value. RMSE is a metric that provides the average difference between the
predicted and actual values. The optimal number of K is five, as it minimizes the RMSE value.

Since the data is normalized, it is returned to its original state to compare the KNN model’s
price predictions with the original data of Apple’s American put options.

In the histogram (Figure 3), it can be observed that most of the errors are concentrated
around 0, and there are minimal errors greater than 50 in absolute terms. The highest frequency
corresponds to negative values close to 0. This suggests that, overall, the KNN model tends to
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Figure 2. RMSE graph as a function of K. Figure by authors
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Figure 3. Histogram of KNN prediction errors. Figure by authors

produce results close to the expected value and performs well. However, the fact that there are
more negative errors indicates a tendency to overvalue Apple’s American put options.

In order to assess the accuracy of the KNN model, its RMSE was calculated, yielding a
value of 11.28885. This means that, on average, the model’s predictions differ by
approximately 11.29 units from the actual values.

Finally, when using stochastic volatility instead of historical volatility to evaluate prediction
performance in a multidimensional context, the RMSE is 11.40038. This indicates that the
model performs very similarly, having the choice minimal impact on prediction accuracy.

2.2.2 Random forest. RF is one of the most popular ML algorithms for solving classification
and regression problems. RF easily adapts to the non-linear relationships, which makes it more
likely to predict with greater accuracy than linear regression. RF is an ensemble of models using
bagging, aimed at improving prediction accuracy and reducing variance through a collection of
decision trees, especially when the predictions are negatively correlated or uncorrelated. In a RF,
observations are randomly sampled with replacement (bootstrap) to create a bootstrap sample of
the same size as the original dataset. Then, observations are repeatedly split using binary decision
rules, characterized by a cut-off point on a specific predictor in the dataset. The predictor and its
cut-off point are chosen to divide the observations into two groups (He et al., 2018). This process
is repeated to create multiple decision trees, resulting in a “forest”. The predictions from each tree
are then combined to obtain a final, more accurate and robust prediction. In the case of
classification, majority voting is used, while for regression, the one taken is the average.

Afterwards, the RF algorithm is applied to the Apple’s American put options data to predict
their price using the “train()” function from the “Caret” package in RStudio. For the
construction of the algorithm, the “trainControl” function was first created to set the control
parameters for the model training. In this function, repeated cross-validation is specified as the
validation method, with 10 folds and three repetitions. Additionally, message printing during
iteration (“verboselter”) is enabled, class probabilities (“classProbs”) are disabled as it is a
regression problem, and the summary function for the results (“defaultSummary”) is defined.

Subsequently, the predictive regression model was trained using the RF method on the
normalized training dataset. The previously created control function was used, and with
“tuneLength”, it was specified that four different models would be tested during the hyperparameter
tuning process to achieve the best performance. The hyperparameters tested are 2, 4, 6 and 9.

In Figure 4, it can be observed how, depending on the structure adopted, the RF model will
have a different RMSE value. The optimal hyperparameter to be used is 6, as it corresponds to
the minimum RMSE value. This indicates that the model trained with this value has the best
performance in terms of accuracy compared to the other hyperparameters tested.

Additionally, the variation in the error of the RF model as a function of the number of trees
used can be seen in Figure 5. It shows that after 100 trees, the decrease in error is minimal. This
suggests that adding more trees does not significantly improve the accuracy of predicting the
price of Apple’s American put options, thus helping to optimize the model’s performance.
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Figure 4. RMSE graph of RF as a function of the number of hyperparameters (mtry or random of selected
hyperparameters). Figure by authors

Error

4e-04

3e-04

o 100 200 300 400 500

trees

Figure 5. RF model error graph as a function of the number of trees. Figure by authors

Since the RF model cannot be visualized like decision trees, the importance of the variables
has been analyzed using the “varlmp” function (Table 3).

The analysis shows that the variables “STRIKE”, “MAX_PAYOFF_PER_OPTION” and
“PX_LAST_STOCK?” are the three most influential in predicting the price of American put
options. It is important to highlight the “STRIKE” variable, which is assigned a value of 100,
due to its strong correlation with the target variable “PX_LAST_OPTION”. This implies that
small changes in this variable will significantly impact the RF model’s predictions.

On the other hand, the three least important variables are “PX_VOLUME_STOCK?”,
“DAYS_UNTIL_MATURITY” and “MAX_PAYOFF_PER_OPTION_ DAYS_UNTIL_
MATURITY”. Their values are close to 0, with “PX_VOLUME_STOCK” even being
assigned a 0. This suggests that the aforementioned variables will have minimal or
insignificant impact on the prediction of the American put options price, and therefore, the RF
model can exclude them without significantly affecting the results. Moreover, eliminating
these variables will simplify the RF model’s structure and reduce its complexity without
compromising accuracy.
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Table 3. Importance of the variables in the RF model

Overall
STRIKE 100.000
MAX_PAYOFF_PER_OPTION 56.034
PX_LAST_STOCK 29.288
DIVIDEND_INDICATED_YIELD 17.651
USGOVTI1YEAR_PX_LAST 4.136
VOLATILITY_1D 3.117
MAX_PAYOFF_PER_OPTION_DAYS_UNTIL_MATURITY 2.734
DAYS_UNTIL_MATURITY 1.808
PX_VOLUME_STOCK 0.000

Source(s): Table by authors

Since the data is normalized, it is returned to its original state to compare the RF model’s
price predictions with the original data of Apple’s American put options.

The histogram (Figure 6) shows that most of the errors are concentrated around 0. The
frequency of errors is higher for negative values, reaching its peak close to 0 and suggesting
that the RF model tends to overestimate Apple’s American put options price. However, even
though errors greater than 50 in absolute terms are rare, it can be seen that there are more
negative than positive values in that range. These large negative errors may occur when the
actual price of the American put option is much lower than what the RF model predicts. This is
possibly due to abrupt and unexpected movements in the financial market or sudden changes in
volatility.

In order to test the accuracy of the RF model, its RMSE was calculated, yielding a value of
15.35954. This means that, on average, the RF model’s predictions differ by approximately
15.36 units from the actual values.

Finally, when using stochastic volatility instead of historical one to evaluate prediction
performance in a multidimensional context, the RMSE is 15.47832. This suggests that the
model’s performance is quite similar regardless of whether stochastic or historical volatility is
used, indicating that the choice may have little influence on prediction accuracy.

2.2.3 MLP. Artificial neural networks are ML algorithms used for both classification and
regression. MLPs are feedforward artificial neural networks with multiple fully connected
layers that use non-linear activation functions for training.

A simple perceptron (LP) has limitations in its ability to map desired input-output
relationships. This is because it only contains one neuron with adaptable synaptic weights and
bias. The aforementioned limitation can be addressed by using an MLP neural network with
more input data nodes and output layers interspersed with hidden layer nodes (Isabona et al.,
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Figure 6. Histogram of RF prediction errors. Figure by authors



2022). In a MLP, each neuron in the hidden and output layers takes weighted inputs from the Journal of
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capacity. Additionally, applying non-linear activation functions, such as the sigmoid function _ Quangtative
or Rectified Linear Unit (ReL.U), enables the network to capture more complex and non-linear Studies: MEAT
relationships.

Then, the MLP algorithm is applied to Apple’s American put options data to predict their
price. First, a grid set for the hyperparameter search is defined using “expand.grid”.
Specifically, considering the dimensions of the variables involved in the model, two possible
sizes for the two hidden layers have been specified: “7, 3” and “5, 2”. The MLP algorithm has
been built using the “train()” function from the “Caret’ package in RStudio. For training, the
normalized data from the training set was used so that all features are on the same scale. “PX_
LAST_OPTION?” is the target variable, and all other variables are used to predict Apple’s
American put options price. Particularly, in the “method” argument, it is indicated that the
algorithm is MLP. Additionally, three-fold cross-validation is applied to assess the model’s
performance, which involves splitting the data into three equal parts, training the model on two
parts, and evaluating its performance on the remaining part. Moreover, data preprocessing is
done by centering and scaling the features. For the hyperparameter search, the previously
defined grid in “tuneGrid = mlp_grid” is used. Furthermore, “linOut = TRUE” is set to obtain
a linear output instead of a logarithmic one. Finally, the MLP model’s performance is
evaluated using RMSE, and the ReLL U activation function, a non-linear function, is employed,
defined as f(x) = max(0, x).

In Figure 7, it can be observed that, depending on the structure adopted, the MLP model will
have a different RMSE value. The MLP model will have a structure with two layers, where the
first layer contains five neurons and the second layer contains two neurons, as this minimizes
the RMSE (Figure 8).

Since the data is normalized, it is returned to its original state to compare the MLP model’s
price predictions with the original data of Apple’s American put options.

The histogram (Figure 9) shows that most of the errors are concentrated around 0. The
highest frequency corresponds to negative values close to 0. This suggests that, overall, the
MLP model tends to produce results close to the expected value and performs well. However,
the fact that there are more negative errors indicates its tendency to overvalue Apple’s
American put options.

0055

0.050 -

RMSE (Cross-Validation)

0.045

#Hidden Units

Size RMSE Rsquared MAE
7,3 0.05732954  0.7257118  0.03090704
52 0.04117319 0.8606111  0.02457409

Figure 7. RMSE graph of MLP as a function of neuron structure (size or hidden units). Figure by authors
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Figure 9. Histogram of MLP prediction errors. Figure by authors

In order to test the accuracy of the MLP model, its RMSE was calculated, yielding a value
of 22.12773. This means that, on average, the MLP model’s predictions differ by
approximately 22.13 units from the actual values.

Finally, when using stochastic volatility instead of historical volatility to evaluate
prediction performance in a multidimensional context, the RMSE is 22.7533. This implies that
the model performs comparably whether stochastic or historical volatility is applied,
suggesting that the selection between them may have a minimal effect on prediction accuracy.

2.2.4 CNN. CNNs are specialized deep NNs (deep learning) that analyze input data
containing spatial structure. These deep NNs leverage the extraordinary computational power
and large datasets available in many fields today more efficiently. CNNs are mainly used to
solve various computer vision problems, using images as input data. In terms of their
functionality, they first derive low-level representations, such as local edges and points, and
then build higher-level representations, such as general shapes and contours. The name of
these deep NNs comes from the application of convolutions in at least one of their layers,
which is a type of linear mathematical operation. The use of convolutions replaces the general
matrix multiplication employed by feedforward NNs (Montesinos Lopez et al., 2022).

A typical CNN architecture (Figure 10) includes the following components. Convolutional
layers apply filters to extract features from the input data, producing feature maps that capture
essential patterns. This is followed by pooling layers, which reduce the spatial dimensions of
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Figure 10. CNN structure. Figure by authors

the feature maps, retaining key information while lowering computational complexity and
minimizing overfitting. The output of these layers is passed to a flattening layer, which
converts the multidimensional data into a one-dimensional vector. This flattened vector is fed
into fully connected layers, which learn complex combinations of features to make
predictions. Finally, the output layer generates results, such as classification probabilities or
continuous values for regression tasks, based on the processed data.

Next, the CNN algorithm is applied to Apple’s American put options data to predict their
price. Since CNNs expect three-dimensional inputs, an additional dimension has been added to
the input data to fit the CNN model format. The CNN algorithm has been built using the
“Keras” package in RStudio. The sequential model has been defined using “keras_model_
sequential()”, which adds sequential layers to the CNN model. The architecture of the CNN
model begins with a one-dimensional convolutional layer that has 64 filters and a kernel size of
two. The input for the layer is defined with the size of the inputs, and the ReL.U activation
function is used to learn complex patterns in the data. Later, a flattening layer converts data into
two dimensions for the densely connected layers. The first dense layer has 32 units and ReL. U
activation, enabling the learning of more abstract data representations. The second layer has
one unit and linear activation, making it the output layer that produces a continuous numerical
prediction. To compile the model, MSE and the Adam optimizer were used to minimize
prediction errors.

Table 4 summarizes the CNN model, providing an overview the NNs’s structure and
connections. It shows the architecture, including the layer type, output sizes, and the number of
parameters, which totals 26,881.

To fine-tune the CNN model, the training data is used, and the “fit()” function is employed
to train the CNN model for 100 epochs with a batch size of 16. During training, the CNN model
adjusts the parameters so that the predictions are as close as possible to the actual observations
of Apple’s American put options, as recorded in the training data. In Figure 11, the CNN
model’s error at each epoch can be observed. Upon completing the training, the model is
evaluated using the “evaluate()” function, yielding an error of 0.0001980907.

Since the data is normalized, it is returned to its original state to compare the CNN model’s
price predictions with the original data of Apple’s American put options.

The histogram (Figure 12) shows that most of the errors are concentrated around 0. The
highest frequency corresponds to negative values close to 0, with errors greater than —50 being
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Table 4. Summary of the CNN model

Layer (type) Output shape Param #
convld_1 (ConvlD) (None, 13, 64) 192
flatten_1 (Flatten) (None, 832) 0
dense_3 (Dense) (None, 32) 26,656
dense_2 (Dense) (None 1) 33

Total params: 26,881 (105.00 KB)
Trainable params: 26,881 (105.00 KB)
Non — trainable params: 0 (0.00 Byte)

Source(s): Table by authors
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Figure 11. Graph of CNN model errors by Epochs. Figure by authors
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Figure 12. Histogram of CNN prediction errors. Figure by authors

minimal. Consequently, the CNN model tends to overestimate Apple’s American put

options price.

In order to test the accuracy of the CNN model, its RMSE was calculated, yielding a value
of 16.44995. This means that, on average, the CNN model’s predictions differ by
approximately 16.45 units from the actual values.



Finally, when using stochastic volatility instead of historical volatility to evaluate Journal of
prediction performance in a multidimensional context, the RMSE increased slightly to ~ Derivatives and
17.78624 compared to 16.44995 with historical volatility. This indicates marginally better Quantitative
accuracy with historical volatility, but the overall similarity in performance suggests that the Studies: MET
choice between the two has minimal impact on the model’s predictive accuracy.

2.2.5 Longstaff-Schwartz. The L-S model (2001) is a key tool in valuing Aos, providing a
numerical approach based on simulation with optimization. The model compares the potential
benefit of exercising the American option at a given time (T) with the benefit that would be
obtained by holding it without exercising.

The objective of the L-S model is to find the exercise rule that maximizes the value of the
American option at each point in its lifetime. This process is carried out recursively, focusing on
in-the-money paths to improve the model’s efficiency and reduce computational complexity.

To determine the conditional expected value of holding the American option, L-S uses
LSMC, which involves generating multiple paths representing the underlying assets’ prices
over time.

Then, aregression of future cash flows is performed based on relevant variables to estimate
the conditional expected value of continuing with the American option. The resulting estimate
from the regression provides an efficient measure of the conditional expectation, allowing the
determination of the optimal exercise rule for the American option at each point in time.

Once the value of the American option is calculated for each path at time T, the values are
discounted back to the initial moment (T = 0). This process involves adjusting the future cash
flows by the appropriate discount factor to bring them to present value. Then, by averaging the
values of each simulated path, the final price of the American option is obtained.

To apply the L-S model to the empirical analysis data, the “L.SMonteCarlo” package from
RStudio will be used (Beketov, 2013).

As previously explained, the variables to be used in this model are: “STRIKE”,
“USGOVT1YEAR_PX_LAST”, “DIVIDEND_INDICATED_YIELD”, “PX_LAST_
STOCK”, “VOLATILITY_1D”, and “YEARS_UNTIL_MATURITY”.

Since the “AmerPutL.SM” function from the “LSMonteCarlo” package requires only a
single value for each variable, different lists have been created. These lists contain the data
from the Apple’s American put options observations that make up the test set. Additionally, an
empty list has been created to store the valuation results of Apple’s American put options. This
list will be used to compare the results with those obtained from the previously employed ML
models.

To properly value the American put options with the available data, two modifications were
made to the “AmerPutLSM” function.

First, it is adjusted to value the American put options on their expiration day. In this case,
the American put option value will be the maximum between 0 and the difference between the
strike price and the price of the underlying asset.

Second, a loop is created in the function to calculate the price of the American put options
for each stock price of Apple contained in the test set observations. Price paths for the
underlying asset are generated using the Geometric Brownian Motion (GBM) method. The
results are then stored in the empty list created earlier.

Next, cash flows are calculated for each period in each path, taking into account the
maximum between 0 and the difference between the strike price and the price of the underlying
asset. A linear regression is then performed to estimate the value of the American put option,
using the cash flows and the prices of the underlying asset in each period.

With the regression results, the control value is calculated to make exercise decisions in
each period. This control value is compared with the intrinsic value of the American put option
to determine whether it is optimal to exercise it at that specific moment. If the control value is
greater than the intrinsic value, the decision is made not to exercise the American put option,
and its future value is calculated. This process is repeated for all periods until expiration
occurs.
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Finally, the American put option price is calculated as the average of the discounted cash
flows brought to the present time.

Once the prices of the American put options were obtained, they were compared with the
real prices. In the histogram (Figure 13), it can be observed that the highest frequency of errors
is in positive values close to 0. However, the larger errors are in negative values, reaching up to
300 units. Therefore, although the L-S model tends to make accurate predictions in most cases,
it may struggle to predict accurately in certain extreme or unusual situations. This is due to the
use of the GBM method, which does not account for heteroscedasticity and non-normal
logarithmic returns. These limitations can lead to less accurate predictions in scenarios where
volatility is high or the return distribution deviates significantly from a normal distribution, as
is the case during extreme or unusual events in financial markets.

In order to assess the accuracy of the L-S model, its RMSE was calculated, yielding a value
of 69.93252. This means that, on average, the L-S model’s predictions differ by approximately
69.93 units from the actual values.

Finally, when using stochastic volatility instead of historical volatility to evaluate
prediction performance in a multidimensional context, the RMSE increased to 74.32405
compared to 69.93252 with historical volatility. This difference indicates that the model
achieves better accuracy with historical volatility, highlighting the importance of volatility
choice.

3. Analysis of results and conclusions
In this analysis, the performance of the models is evaluated using the RMSE metric as an
indicator of accuracy (Table 5).

When historical volatility is used, the KNN model has the best performance in terms of
accuracy, with the lowest RMSE value of 11.28885. This result suggests that this approach is
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Figure 13. Histogram of Longstaff-Schwartz prediction errors. Figure by authors

Table 5. RMSE table of the models

Model RMSE with historical volatility RMSE with stochastic volatility
KNN 11.28885 11.40038

RF 15.35954 15.47832

MLP 22.12773 22.7533

CNN 16.44995 17.78624

L-S 69.93252 74.32405

Source(s): Table by authors




highly effective for predicting Apple’s American put options price in this dataset. KNN stands Journal of
out for its transparency, simplicity, interpretability, and computational efficiency. Derivatives and

On the other hand, the RF, MLP and CNN models have moderate performance in terms of Quantitative
accuracy when historical volatility is used, with an RMSE of 15.35954, 22.12773 and Studies: M2 17
16.44995, respectively. Although these algorithms can handle some data complexity, they do
not appear to be as well-suited for this dataset as the KNN approach.

The L-S model presents a significantly higher RMSE than the ML algorithms when
historical volatility is used, with a value of 69.93252. This suggests that the model does not fit
well with the data for Apple’s American put options compared to the ML approaches. This
could be due to several reasons, such as the excessive simplification of the model’s underlying
assumptions and the limitations of the GBM method. As a result, the model struggles to
capture the inherent complexity of financial market data.

It is also important to point out that even an RMSE of around 11.29, which may be
considered low compared to the other models, is still significant in the context of valuing Aos.
A difference of 11.29 in price prediction can have important financial implications, especially
in a volatile market such as the Aos market. Even small discrepancies can translate into
considerable valuation differences, affecting investment strategies and financial decisions.

When analyzing the models using stochastic volatility to evaluate their performance in a
multidimensional context, the RMSE values are very similar to those obtained with historical
volatility. This suggests both approaches capture the general behavior of the data. However,
the most notable difference is in the L-S model, where the RMSE differs by
approximately five.

In conclusion, highlight that the KNN, RF, MLP, and CNN algorithms, trained exclusively
with historical financial market data, achieve a notable improvement in performance and
accuracy in predicting the Aos price compared to the L-S model. The results show the potential
of ML to tackle the more complex challenges faced by the financial industry today.

The L-S model, widely used in the valuation of Aos, shows limitations in capturing the
complexity and dynamics of the financial market. This can lead to investment decisions that do
not adequately reflect the financial market conditions. In contrast, ML algorithms, when
trained with large amounts of historical data and using advanced techniques, can significantly
improve the accuracy of predictions for the value of Aos.

Despite the remarkable advances achieved with these ML models, it is important to
recognize that challenges and limitations still need to be addressed. Although the predictive
values of the ML algorithms used in this work show a lower RMSE compared to the L-S
model, implementing more sophisticated techniques is required to reduce it further. Accurate
prediction is of great relevance in the context of Aos, where errors can have significant
consequences, such as financial losses, arbitrage opportunities, impacts on investment
strategies, and increased volatility in the financial market.

Moreover, it is worth noting that while the ML algorithms used have been shown to predict
better than the L-S model, further research is needed to determine whether they achieve
superior results compared to hybrid models, which have been applied by various authors in
recent years.

Finally, this ML approach to price Aos faces the inability to derive hedging strategies and
optimal exercise conditions. To address these gaps and enhance the ML models’ practical
relevance, future efforts could explore integrating deep reinforcement learning to identify
optimal exercise policies or developing hybrid models that combine ML with traditional
financial frameworks.
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