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Abstract
Diagnostic classification modelling (DCM) is a family of 
restricted latent class models often used in educational 
settings to assess students' strengths and weaknesses. 
Recently, there has been growing interest in applying 
DCM to noncognitive traits in fields such as clinical and 
organizational psychology, as well as personality profiling. 
To address common response biases in these assessments, 
such as social desirability, Huang (2023, Educational and 
Psychological Measurement, 83, 146) adopted the forced- choice 
(FC) item format within the DCM framework, developing 
the FC- DCM. This model assumes that examinees with 
no clear preference for any statements in an FC block will 
choose completely at random. Additionally, the unique 
parametrization of the FC- DCM poses challenges for 
integration with established DCM frameworks in the 
literature. In the present study, we enhance the capabilities 
of DCM by introducing a general diagnostic framework 
for FC assessments. We present an adaptation of the G- 
DINA model to accommodate FC responses. Simulation 
results show that the G- DINA model provides accurate 
classifications, item parameter estimates and attribute 
correlations, outperforming the FC- DCM in realistic 
scenarios where item discrimination varies. A real FC 
assessment example further illustrates the better model fit 
of the G- DINA. Practical recommendations for using the 
FC format in diagnostic assessments of noncognitive traits 
are provided.
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1  | INTRODUCTION

Diagnostic classification modelling (DCM), also known as cognitive diagnosis modelling (CDM), is 
a family of restricted latent class models that classify respondents based on their levels in a series of 
discrete latent variables referred to as attributes. In the educational context, where most DCM research 
has been conducted, attributes are usually regarded as dichotomous; thus, examinees are classified into 
latent classes based on their mastery or non- mastery of these attributes (e.g., skills, competences, cog-
nitive processes). The focus of DCM research on education arises from how well such diagnostic clas-
sifications align with formative assessments, as they help teachers design remedial instruction based 
on the identification of examinees' strengths and weaknesses (de la Torre & Minchen, 2014; Paulsen & 
Valdivia, 2021).

Despite the prominence of educational research in the field of DCM (for a literature review of cur-
rent empirical applications, see Sessoms & Henson, 2018), the potential of these models transcends 
this context of application. Recently, there has been an increase in the number of studies that em-
ploy the DCM framework to facilitate diagnostic assessments in the areas of clinical psychology (de la 
Torre et al., 2015; Peng et al., 2019; Tan et al., 2023; Templin & Henson, 2006; Xi et al., 2019; Zhang 
et al., 2024), personality assessment (Liu & Shi, 2020; Revuelta et al., 2018) and organizational psy-
chology (García et al., 2014; Sorrel et al., 2016). The application of DCM to these contexts opens the 
door to new or refined types of assessments, such as diagnostic clinical evaluations according to the 
Diagnostic and Statistical Manual of Mental Disorders (American Psychiatric Association, 2013), where symp-
tom comorbidity and the interaction among disorders are properly captured and addressed (de la Torre 
et al., 2015; Templin & Henson, 2006), theoretically guided personality profiling for forensic purposes 
(Revuelta et al., 2018) and the construction and evaluation of situational judgement tests in staff selec-
tion or promotion processes (Sorrel et al., 2016).

These noncognitive assessments, however, are more susceptible to response biases that introduce 
nuisance variance to the constructs being measured. Especially in high- stakes evaluations, appli-
cants may be motivated to exhibit socially desirable responses or may be affected by other response 
biases, such as acquiescence or extremity (Christiansen et al., 2005; Paulhus, 1991). Among the dif-
ferent procedures to mitigate the impact of such distorted responses (e.g., modelling response biases; 
Ferrando et al., 2009), using a forced- choice (FC) item format is an effective way of mitigating the 
pernicious effects of social desirability, acquiescence and extremity (Brown, 2016; Cheung & 
Chan, 2002; Christiansen et al., 2005; Kreitchmann et al., 2019). In the FC format, items (stimuli) 
with similar social desirability are paired in blocks, so that respondents must choose the item that 
best describes them.1

Recently, Huang (2023) proposed the first DCM specifically tailored to FC assessments. This 
model, referred to as the forced- choice diagnostic classification model (FC- DCM), marks a milestone in 
the diagnostic evaluation of noncognitive traits. Despite the significance of this methodological 
development, the FC- DCM is not without relevant theoretical and practical limitations. These lim-
itations, which will be elaborated on below, include a restricted item response function and the 
inaccessibility of crucial additional features and analyses, such as classification accuracy assessment 
or model fit evaluation.

The main goal of this study is to enhance diagnostic assessments of noncognitive traits by introduc-
ing a general DCM framework for FC blocks. Namely, our proposal consists of integrating FC blocks 
into the generalized deterministic input, noisy ‘and’ gate (G- DINA) model (de la Torre, 2011), which addresses 
the previously mentioned limitations of the FC- DCM. The remainder of the paper is laid out as follows. 
First, the FC- DCM by Huang (2023) is reviewed. Second, an integrative approach for FC assessments 
via the G- DINA model is presented. Third, the viability of the G- DINA model is tested and compared 

 1This description pertains to the most- common item- pair FC blocks. A more exhaustive list of FC blocks format is provided by Hontangas 
et al. (2015).
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    | 3GENERAL DCM FOR FC ASSESSMENTS

to that of the FC- DCM through a Monte Carlo simulation study and a real data illustration. Finally, 
practical implications, limitations and future research lines are discussed.

1.1 | The forced- choice diagnostic classification model

Before introducing the FC- DCM, the notation used throughout the remainder of the paper is estab-
lished. In the DCM literature, N, J and K often denote the number of respondents, items and attributes 
involved in an assessment, respectively. In the most common case of binary attributes (e.g., mastery vs. 
non- mastery of competences), there are L = 2K possible latent classes. Let Y represent a binary response 
matrix (e.g., correct vs. incorrect) with dimensions N × J, and let Q denote the Q- matrix (Tatsuoka, 1983) 
with dimensions J × K, where q

jk
 equals 1 or 0 depending on whether item j measures attribute k or not, 

respectively. Lastly, let �
i
 represent the attribute profile of respondent i. For instance, �

i
= {101} means 

that, for an assessment measuring K = 3 attributes, respondent i masters the first and third attributes, 
but not the second. Furthermore, note that �

i
= �

i
� = �

l
 implies that respondents i and i’ belong to the 

same latent class l.
A few additional terms that are specific of FC assessment need to be established. To avoid ambi-

guity in language, we will reserve the term statement to individual items that are paired in FC blocks. 
Let F denote the number of FC blocks in a certain assessment. Each block compares two statements, 
referred to as A and B, which measure two different attributes, k

fA
 and k

fB
, respectively. Under the 

FC- DCM, a response ylf = 1 indicates that a respondent in latent class l has chosen statement A over 
B in block f. As an example, consider a FC block formed by two statements from the HEXACO 
Personality Inventory (Lee & Ashton, 2004) measuring Extraversion (k

f A
) and Conscientiousness 

(k
f B

), respectively: ‘I feel that I have some likable qualities’ and ‘I often check my work repeatedly 
to find any mistakes’. Individuals that are extraverted but unconscientious are more likely to choose 
statement A over B, resulting in a response of ylf = 1. Specifically, the block response function of the 
FC- DCM, which is the probability of endorsing statement A in block f as a function of latent class 
l, is given by:

where I ( ⋅ ) is the indicator function, and �
lk
fA

 and �
l k
fB

 denote the status for latent class l for the attributes 
involved in statements A and B, respectively. Here, �

f 0
 represents the probability of choosing statement A 

for respondents for whom 𝛼
l k
fA

< 𝛼
lk
fB

, while �
fA

 and �
fB

 denote the effects of attributes k
fA

 and k
fB

, re-
spectively. Considering that each statement is unidimensional, and therefore each block is two- dimensional, 
there are four possible latent groups for each block. Table 1 displays the probability of endorsement for each 
latent group as a function of the FC- DCM parameters, which are also illustrated in Figure 1. Note that, out 
of the three parameters per block in the FC- DCM, one of them (�

f 0
) is a block- level parameter, while the 

other two (�
fA

 and �
fB

) are statement- level parameters. Remarkably, according to Equation 1, whenever a 
respondent possesses neither (i.e., �

lk
fA

= �
lk
fB

= 0) or both (i.e., �
lk
fA

= �
lk
fB

= 1) attributes, the FC- DCM 
assumes there is no particular preference for either statement, resulting in a probability of endorsement 
equal to .5. In other words, the FC- DCM constraints P (00) = P (11) = .5.

In his study, Huang (2023) employed a higher- order structure to model attribute distributions (de la 
Torre & Douglas, 2004) and found that both measurement and structural parameters could be accu-
rately estimated using Markov chain Monte Carlo (MCMC). Additionally, beyond between- statement 
multidimensionality (i.e., where each statement measures only one attribute), Huang also explored the 
scenario of within- statement multidimensionality (i.e., where each statement measures two attributes). 
In the latter case, a conjunctive or disjunctive rule must be adopted to represent respondents' latent 

(1)
P

(
y
lf
=1|�

l

)
= 𝜂

f 0
+ I

(
𝛼
lk
fA

≥𝛼
l k
fB

)(
.5−𝜂

f 0

)
+

I

(
𝛼
l k
fA

>𝛼
l k
fB

)[
𝜂
fA
𝛼
l k
fA

+𝜂
fB

(
1−𝛼

l k
fB

)]
,
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4 |   NÁJERA et al.

groups. For example, under a conjunctive rule, the status is redefined as 
�
lk
fA

=
∏

k∈k
fA

�
lk
fA

q
fAk

, resulting 
in �

lk
fA

 = 1 or 0, depending on whether respondents in latent class l possess all the attributes involved in 
statement A of block f or not, respectively. Thus, in that case, �

lk
fA

 and �
lk
fB

 in Equation 1 are substituted 
by �

lk
fA

 and �
lk
fB

, respectively.
The FC- DCM represents a significant milestone in the diagnostic assessment of noncognitive traits. 

From here, some areas of further developments can be identified. The most notable area for improve-
ment relates to the fact that, as indicated by Equation 1 and illustrated in Table 1, the block response 
function of the FC- DCM imposes a fixed probability of .5 for the two latent groups where �

lk
fA

= �
lk
fB

. 
While this assumption might seem reasonable due to the lack of clear preference for either statement, it 
may not hold in various scenarios. Consider the previously mentioned FC block measuring Extraversion 
and Conscientiousness, respectively: ‘I feel that I have some likable qualities’ and ‘I often check my work 
repeatedly to find any mistakes’. The first statement is relatively easy to agree with, as most extraverted 
individuals (and even some introverted ones) would likely agree that they possess at least some lik-
able qualities. In contrast, the second statement is more extreme, with a slight association to obsessive 
behaviours, making it less likely to resonate with all conscientious individuals. In this scenario, one 
could expect the probability of choosing statement A for individuals who are both extraverted and 

T A B L E  1  Correspondence between latent groups' probabilities of endorsement and parameters for the FC- DCM, the 
MUPP and the G- DINA model.

Group FC- DCM MUPP G- DINA

P (00) .5
g
fA

(
1− g

fB

)

g
fA

(
1− g

fB

)
+
(
1− g

fA

)
g
fB

�
f 0

P (10) .5 + �
fA

+ �
fB

(
1− s

fA

)(
1− g

fB

)
(
1− s

fA

)(
1− g

fB

)
+ s
fA
g
fB

�
f 0
+ �

fA

P (01) �
f 0

g
fA
s
fB

g
fA
s
fB
+
(
1− g

fA

)(
1− s

fB

) �
f 0
+ �

fB

P (11) .5

(
1− s

fA

)
s
fB(

1− s
fA

)
s
fB
+ s
fA

(
1− s

fB

)
�
f 0
+ �

fA
+ �

fB
+ �

fAB

Note: These parameters relate to the case where both statements are measuring their corresponding attributes in a direct direction.
Abbreviations: FC- DCM, forced choice diagnostic classification model; G- DINA, generalized deterministic, input, noisy ‘and’ gate; MUPP, 
multi- unidimensional pairwise preferences.

F I G U R E  1  Correspondence between block parameters of endorsement for the FC- DCM and G- DINA model.
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    | 5GENERAL DCM FOR FC ASSESSMENTS

conscientious, P
(
y
lf
= 1|�

l
= {11}

)
 to be > .5. Furthermore, even in FC blocks where the FC- DCM 

assumption might appear reasonable, the absence of alternative models to compare and evaluate the 
appropriateness of this constraint presents a significant challenge. As we will show later, a more general 
model would allow estimating those probabilities.

Beyond the constraints of the block response function, the higher- order structure used in the formu-
lation of the FC- DCM also imposes restrictions on person parameters (de la Torre & Douglas, 2004). 
Namely, respondents' attributes are assumed to arise from a continuous second- order latent trait follow-
ing a logistic model. This structure was designed to represent scenarios where attributes belong to the 
same domain (e.g., mathematical ability) and are therefore highly correlated (de la Torre & Douglas, 2004). 
However, this structure is less representative of many noncognitive traits, such as personality, where 
latent constructs are expected to be only mildly correlated (Booth & Hughes, 2014). Additionally, the 
FC- DCM is currently estimated using MCMC estimation in JAGS (Plummer, 2003), which is computa-
tionally intensive. In this paper, we aim to enhance diagnostic assessments with FC blocks by proposing 
an approach that: (a) incorporates a flexible block response function, allowing it to accommodate sce-
narios where P

(
y
lf
= 1|�

l
= {00}

)
≠ P

(
y
lf
= 1|�

l
= {11}

)
≠ .5; (b) permits the specification of 

 different attribute structures beyond the higher- order model to better capture the theoretical relation-
ships among attributes and (c) is efficiently estimated and easy to integrate with popular DCM R pack-
ages (R Core Team, 2024), such as CDM (George et al., 2016) or GDINA (Ma & de la Torre, 2020), 
facilitating complementary psychometric analyses including reliability assessment, model fit evaluation 
and Q- matrix validation, among others. As a result, we propose using the well- established G- DINA 
model (de la Torre, 2011) as an integrated framework for the analysis of FC blocks.

1.2 | The G- DINA framework for forced- choice assessments

1.2.1 | Review of the G- DINA model

The G- DINA model is a general, saturated DCM that encompasses various reduced models, such as 
the deterministic, input, noisy ‘and’ gate ( Junker & Sijtsma, 2001), the deterministic input, noisy ‘or’ gate 
(Templin & Henson, 2006) or the additive cognitive diagnostic model (de la Torre, 2011). While these re-
duced models make specific assumptions about the item response function – thereby constraining some 
item parameters – the G- DINA model assigns a unique probability of success for each latent group in an 
unconstrained manner. It can be efficiently estimated using marginal maximum likelihood with the ex-
pectation–maximization algorithm (de la Torre, 2011) and supports a variety of attribute distributions, 
including the higher- order structure, attribute hierarchies (e.g., Tu et al., 2019) or a saturated structure. 
Additionally, the G- DINA model can be easily complemented with multiple analyses, including reliabil-
ity assessment, model and item fit evaluation and comparison, empirical Q- matrix estimation, empirical 
Q- matrix validation, differential item functioning and person fit evaluation. All these analyses, available 
in well- known R packages such as ‘CDM’ and ‘GDINA’, enable comprehensive diagnostic assessments 
within a unified framework.

In its traditional notation, the item response function of the G- DINA model is defined as follows:

where P
(
�
∗
lj

)
 is the probability of correctly answering item j for latent group �∗

lj
, which is the reduced 

attribute vector containing only the measured attributes by item j. Additionally, �
j0

 denotes the baseline 
probability of success for item j for respondents who do not master any attribute, �

jk
 represents the additive 

effect on the probability of success for item j due to mastering attribute k, �
jkk

′ captures the interaction effect 

(2)P

(
�
∗
lj

)
= �

j0
+

K
∗
j∑

k=1

�
jk
�
lk
+

K
∗
j∑

k
� =k+1

K
∗
j
−1∑

k=1

�
jkk

��
lk
�
lk
� … + �

j12…K∗
j

K
∗
j∏

k=1

�
lk
,
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of mastering attributes k and k’ and �
j12…K∗

j

 represents the interaction effect of mastering all K∗
j
 attributes 

required by item j. Adapted to the context of noncognitive factors, instead of discussing the probability 
of success, we would talk about the probability of endorsement, and instead of mastering an attribute, we 
would discuss whether the examinee possesses it or not.

1.2.2 | Adjusting the G- DINA model to FC blocks

Adapting the G- DINA model to FC assessments requires careful consideration of several key factors, 
which we outline below. We focus specifically on the case of pairs of unidimensional statements (i.e., 
between- statement multidimensionality). First, to maintain consistency in notation and considering 
that all blocks are measured by two attributes, the G- DINA response function can be reformulated to 
accommodate FC assessments as follows:

where, given any block f, �
lk
fA

 and �
lk
fB

 indicate whether the person with attribute profile l possesses 
the specific attribute measured by the first item and second items, respectively, (i.e., �

lk
fA

∈ {0, 1} and 
�
lk
fB

∈ {0, 1} ), �
f 0

 denotes the probability of endorsing block f for those respondents lacking the attributes 
measured by statements A and B, �

fA
 and �

fB
 represent the additive effect for respondents possessing the 

attribute measured by statement A or B, respectively and �
fAB

 captures the interaction effect of possessing 
both attributes. As detailed in Table 1 and exemplified in Figure 1, these components are estimated freely 
to yield a probability bounded between 0 and 1. Specifically, Equation 3 is illustrated in Figure 1 for a block 
formed by two direct statements, compared to the FC- DCM formulation (see Equation 1).

The second consideration relates to Q- matrix completeness and model identifiability. A Q- matrix is 
said to be complete if it contains an identity matrix (Köhn & Chiu, 2017), which is a necessary condi-
tion for the identifiability of many reduced diagnostic models. Model identifiability is crucial because it 
ensures that all latent classes can be distinguished (Xu & Zhang, 2016). In the case of FC assessments, 
where all blocks are measured by two attributes, this condition will not be satisfied. However, Gu 
and Xu (2020) demonstrated that the G- DINA model offers greater flexibility than reduced models. 
Therefore, while strict identifiability cannot be achieved without a complete Q- matrix, generic identifi-
ability can be fulfilled, which is suitable for practical applications. To ensure generic identifiability, the 
Q- matrix must have the following structure:

where Q
1
 and Q

2
 are square submatrices with ones on the diagonal (up to column permutation), while the 

remaining elements can be either 0 or 1. Additionally, Q⋆ must measure each attribute at least once (Gu & 
Xu, 2020).

The third consideration also pertains to model identifiability. In addition to the Q- matrix struc-
ture, a necessary condition for the G- DINA to be identifiable is the presence of monotonic prob-
abilities of success (Gu & Xu, 2020, 2021). Monotonicity is achieved when higher probabilities of 
success are associated with latent groups that master a greater number of attributes. However, for 
FC blocks, where a response yif = 1 indicates that respondent i prefers statement A over statement 
B in block f, the probability of endorsement does not increase monotonically with the number of 
attributes possessed (see Figure 1). In fact, a respondent's expected response to a block depends 
not only on their attribute profile and the attributes measured by the block, but also on the polar-
ity of the block. Table 2 summarizes the four possible configurations of an FC block based on the 

(3)P

(
y
lf
=1|�

l

)
= �

f 0
+�

fA
�
lk
fA

+�
fB
�
lk
fB

+�
fAB

�
lk
fA

�
lk
fB

,

(4)Q=

⎛⎜⎜⎜⎝

Q
1

Q
2

Q
⋆

⎞⎟⎟⎟⎠
,
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    | 7GENERAL DCM FOR FC ASSESSMENTS

direction (direct or inverse) of the statements and the expected preferred statement for each latent 
group. Based on these configurations, monotonicity is redefined as the alignment between expected 
responses and the magnitude of the probabilities of endorsement. The G- DINA model will be 
generically identified as long as the Q- matrix is constructed according to Equation 4 and ‘polarity- 
specific monotonicity’ is satisfied.

Given that the G- DINA model is originally designed for individual items rather than FC blocks, it 
does not inherently handle the scenario where yif = 1 indicates that respondent i prefers statement A 
over statement B in block f. Additionally, the model does not account for the direction of the statements. 
To enable the G- DINA model to interpret the direction of responses and achieve ‘polarity- specific 
monotonicity’ aligned with the FC blocks design, the estimation process needs to be either constrained 
or guided appropriately. The first approach involves directly imposing monotonicity constraints during 
the estimation process (Hong et al., 2016; Ma & Jiang, 2021). This strategy simplifies estimation, espe-
cially under challenging conditions (e.g., small sample sizes), by preventing deviations from monoto-
nicity caused by sampling error (i.e., overfitting; Ma & Jiang, 2021). However, this approach is effective 
only when the data- generating process is truly monotonic; otherwise, enforcing monotonicity con-
straints may result in model misspecification (de la Torre & Sorrel, 2017). This study adopts the second 
approach, which guides, rather than constrains, the probabilities of endorsement for latent groups, so 
that they align with the intended meaning of the responses based on the polarity of the block. Two dif-
ferent strategies to achieve this are explained below.

One effective approach is to use initial values in the estimation process. By assigning a high initial 
probability to the latent group expected to endorse the block (i.e., choose A over B), and a low initial 
probability to the latent group expected to reject the block (i.e., choose B over A), the model can be di-
rected to match the FC assessment design. Table 2 summarizes the initial values applied in this study for 
the different latent groups based on the direction of the statements. As shown below in the simulation 
study and in a sensitivity analysis with real data (see Table S1), initial values between 1e- 3 and 1e- 9 help 
ensure that attributes are interpreted in the intended direction with minimal impact on attribute clas-
sification and parameter estimates, without the need of imposing constraints on parameter estimation.

T A B L E  2  Statement preference, expected response and initial values for block parameter estimation depending on the 
direction of the statements.

Statement A Statement B {00} {10} {01} {11}

Statement preference

Direct Direct — A B —

Direct Inverse B — — A

Inverse Direct A — — B

Inverse Inverse — B A —

Expected response

Direct Direct — 1 0 —

Direct Inverse 0 — — 1

Inverse Direct 1 — — 0

Inverse Inverse — 0 1 —

Initial value for block parameter estimation

Direct Direct .5000 .9999 .0001 .5000

Direct Inverse .0001 .5000 .5000 .9999

Inverse Direct .9999 .5000 .5000 .0001

Inverse Inverse .5000 .0001 .9999 .5000

Note: {00} = latent group formed by respondents that do not possess any attribute. The hyphen (−) indicates that the latent group does not have 
a clear preference for any of the statements.
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8 |   NÁJERA et al.

Another option is to use Bayes modal (BM) estimation, which can guide block parameter estimation 
using prior distributions. Ma and Jiang (2021) proposed using BM estimation in small- scale scenarios 
to mitigate boundary problems sometimes encountered in DCM applications. In BM estimation, the 
probability of success for a latent group is calculated as follows:

where r
lj
 is the number of correct responses among respondents in latent group �∗

lj
, n
l
 is the total number of 

respondents in that group and �
1
 and �

2
 are the hyperparameters of the Beta distribution. The primary lim-

itation of this approach is that it might introduce bias in parameter estimation, for example, if informative 
and inappropriate priors are used (Ma & Jiang, 2021).

1.2.3 | The G- DINA Model as a Generalized Version of the FC- DCM

Despite having a different parametrization, the FC- DCM can be framed as a restricted version of 
the G- DINA. Table 1 presents the probability of endorsement for each latent group as defined by 
the parameters of the FC- DCM (Equation 1) and the G- DINA model (Equation 2). Figure 1 also 
reflects the similarities between both models. Specifically, the G- DINA model can accommodate the 
probabilities of endorsement in the FC- DCM under the following constraints:

Thus, the FC- DCM can be expressed using the G- DINA parametrization. This reparameterization offers 
the immediate advantage of enabling more efficient estimation procedures compared to MCMC. Specifically, 
marginal maximum likelihood could be used, applying the aforementioned constraints. Additionally, BM 
estimation can be easily applied by using highly informative priors for the probabilities of endorsement of 
the indecisive latent groups, ensuring that these probabilities are approximately equal to .5. For instance, 
consider an FC block composed of two direct statements. Hence, the FC- DCM assumes P (00) = P (11) = .5, 
P (10) ≥ .5 and P (01) ≤ .5. These constraints can be effectively managed using BM estimation by setting the 
following priors: P (00), P (11)~Beta (108, 108) and P (10), P (01) Beta(1, 1). As indicated in Equation 5, extreme 
priors for P (00) and P (11) will ensure that P (00)≈P (11)≈.5, while the noninformative priors for P (10) 
and P (01) will not impact the estimates, aligning them with those obtained through maximum likelihood 
estimation.

1.3 | The present study

The goal of the study is to show how it is possible to integrate the FC- DCM model within the G- DINA 
model framework. This will allow us to work without assuming that individuals who possess both traits 
(or neither) measured by an item block will choose randomly. Additionally, since the G- DINA model 
is being estimated, we can use the most computationally efficient and commonly used estimation al-
gorithms, as well as implement other methods developed within this framework to study, for example, 

(5)P

(
�
∗
lj

)
=

r
lj
+
(
�
1
−1

)

n
l
+
(
�
1
+�

2
−2

) ,

(6)�
f 0
= .5,

(7)�
fA
= �

fA
+�

fB
,

(8)�
fB
= �

f 0
− .5,

(9)�
fAB

= .5−�
fA
−�

fB
−�

f 0
=−

(
�
fA
+�

fB

)
.
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    | 9GENERAL DCM FOR FC ASSESSMENTS

model fit. This integration is demonstrated in the remainder of the article through a simulation study 
and an empirical example.

2 | SIMUL ATION STUDY

2.1 | DCM implementation

The primary objective of this simulation study is to assess the G- DINA model for FC assessments and 
compare its performance with the FC- DCM under various conditions. We will utilize the reparametrized 
version of the FC- DCM, employing BM estimation with informative priors for constrained parameters 
and noninformative priors for free parameters, as detailed in the previous section. This estimation 
approach was implemented using the function provided by Ma and Jiang (2021). In contrast, the G- 
DINA model was estimated using the GDINA package, which applies marginal maximum likelihood 
estimation with the expectation–maximization algorithm. The only adjustment made in the estimation 
process was the incorporation of initial values for the probabilities of endorsement of the latent groups, 
as specified in Table 2. Neither model was constrained by a specific attribute distribution (e.g., higher- 
order model); instead, both used a saturated structure. Additionally, the true model was included as an 
upper baseline to compare performance, using the generating item parameters and attribute distribution. 
Attribute profile classifications were obtained using the expected a posteriori (EAP) estimator (Huebner 
& Wang, 2011).

2.2 | Design and data generation

Data were generated using a combination of the G- DINA model and the multi- unidimensional pairwise- 
preference (MUPP) model (Stark et al., 2005). The MUPP model is a well- established item response 
theory model for FC blocks formed by two statements, and it can be easily adapted to the DCM 
framework. Specifically, it models the probability of choosing one statement over the other as a ratio 
of the probabilities of agreeing with each statement independently. In the context of unidimensional 
statements, the probabilities of endorsement for different latent groups are shown in Table 1. For 
instance, in the case of two direct statements, the probability of choosing statement A over B for the 
latent group {10} is given by:

where s
fA

 is the slip parameter for statement A (i.e., the probability of not agreeing with statement A despite 
possessing its attribute), and g

fB
 is the guessing parameter for statement B (i.e., the probability of agreeing with 

statement B despite not possessing its attribute). Similar to the G- DINA, the MUPP model allows for P (00) 
and P (11) to differ from .5, acknowledging that both statements may have different discriminating power. 
If the parameters for both statements are constrained to be equal (i.e., g

fA
= g

fB
= s

fA
= s

fB
), the assumption 

P (00) = P (11) = .5 of the FC- DCM is satisfied (see Table 1). Seven different factors were systematically ma-
nipulated in the simulation study: sample size (N = 500, 1000), number of attributes (K = 5, 10), number of 
statements per attribute (JK = 5, 10), number of FC blocks (F = 30, 60), FC block polarity (100% homopo-
lar/0% heteropolar, 70% homopolar/30% heteropolar), attribute correlations (AC = 0, .3, .6) and range of 
guessing and slip parameters to manipulate item quality (R = 0, .2, .4). The levels for several factors, such 
as sample size, number of attributes, number of statements per attribute and number of blocks, were taken 
from Huang (2023) to facilitate comparison between the two studies. Additionally, while Huang (2023) 
only considered the case of homopolar blocks (i.e., both statements being direct), we included an additional 

(10)P

(
y
lf
=1|�

l
={10}

)
=

(
1− s

fA

)(
1− g

fB

)
(
1− s

fA

)(
1− g

fB

)
+ s
fA
g
fB

,
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10 |   NÁJERA et al.

condition where 30% of the blocks were heteropolar (i.e., one direct statement and one inverse statement). 
The inclusion of this condition was based on the relevance of this variable in previous FC literature con-
cerning score ipsativity (e.g., Kreitchmann et al., 2023). Specifically, it is expected that the presence of het-
eropolar blocks will reduce ipsativity, which means, for example, that the correlation matrix between traits 
will be less likely to be biased towards a diagonal matrix.

Instead of using a higher- order model for the attribute structure, we employed the multivariate 
normal threshold model (Chiu et al., 2009) to generate respondents' attribute patterns. Specifically, K 
continuous latent variables were drawn from a multivariate normal distribution with a mean of 0 and 
correlations set according to the values of the AC factor (AC = 0, .3, .6). These continuous latent vari-
ables were then dichotomized, with each attribute �

ik
 assigned a value of 0 or 1 based on whether the 

continuous score was below or above 0, respectively.
Lastly, the statement parameters used in the MUPP model were drawn from 

g
fA
, g
fB
, s
fA
, s
fB
∼ U(.25 − R ∕2, .25 + R ∕2), where R represents the range of the guessing and slip pa-

rameters (R = 0, .2, .4). As previously noted, this is a critical simulation factor because when R = 0, it 
implies that g

fA
= g

fB
= s

fA
= s

fB
= .25, which upholds the FC- DCM assumption of P (00) = P (11) = .5. 

In other words, the FC- DCM is correctly specified under R = 0. Conversely, when R is > 0, the statement 
parameters will differ, violating this assumption. In these scenarios, the G- DINA model is expected to 
perform better than the FC- DCM due to its greater flexibility.

Given all this, the data generation process was carried out in five stages. Initially, a Q- matrix was 
constructed with K × JK statements, ensuring that all statements were unidimensional and each attribute 
was measured by the same number of statements. The guessing and slip parameters for each statement 
were generated according to the previously specified details. Second, statements were paired to form 
F blocks under several constraints: (1) each block had to include two statements measuring different 
attributes, (2) all statements needed to be used at least once before any were reused if the number of 
blocks exceeded twice the number of statements and (3) no two blocks could consist of the same pair 
of statements. Third, the probability of endorsement (i.e., choosing A over B) was calculated for each 
block using the MUPP model. For the condition with heteropolar blocks, the parameters were reversed 
for inverse statements (e.g., g

jA
= 1 − g

jA
). Fourth, N attribute profiles were generated based on the 

multivariate normal threshold model. Finally, N responses were generated using the G- DINA model, 
incorporating the computed probabilities of endorsement for each latent group and FC block based on 
the MUPP model along with the generated attribute profiles.

Data generation and analyses were conducted using the R package GDINA version 2.9.4 (Ma & de 
la Torre, 2020). All codes related to the simulation study are available at the Online Appendix https://
osf.io/h6x9e/.

2.3 | Performance measures

The performance of the FC- DCM and G- DINA model was assessed in terms of classification accuracy, 
block parameter recovery, attribute correlations recovery and detection rates of relative model fit indices. 
Specifically, classification accuracy was evaluated using the proportion of correctly classified attribute 
vectors (PCV), defined as:

where �̂
i
 and �

i
 represent the estimated and true attribute profile for respondent i, respectively. Note that 

the PCV accounts for all attributes in the attribute profile, making it stricter with an increasing number of 
attributes (e.g., K = 10 vs. K = 5).

Block parameter recovery was measured by the root mean squared error (RMSE) of the probabilities 
of endorsement:

(11)
PCV=

∑
N

i=1
I

�
�̂
i
=�

i

�
N

,
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where P̂
(
y
lf
= 1|�

l

)
 and P

(
y
lf
= 1|�

l

)
 denote the estimated and generating probabilities of endorsement 

for latent class l for item j, respectively. Attribute correlation recovery was evaluated by comparing the av-
erage tetrachoric correlation of the estimated attribute profiles with the generating attribute correlations 
(AC = 0, .3, .6). To analyse the effects of simulation factors on the DCM procedures, repeated measures 
ANOVAs were performed. An effect was considered relevant if the partial eta- squared (�2

p
) was equal to or 

> .14 (Cohen, 2013).
Finally, the models were also compared in terms of relative fit using the Akaike information criterion 

(AIC; Akaike, 1974) and the Bayesian information criterion (BIC; Schwarz, 1978).

2.4 | Results

2.4.1 | Classification accuracy

Table 3 displays the PCV for the true model, the G- DINA model and the FC- DCM across the different 
levels of range for guessing and slip parameters (within- method effect of �2

p
 = .24), number of attributes 

(between- method effect of �2
p
 = .90), number of FC blocks (between- method effect of �2

p
 = .76) and polarity 

(between- method effect of �2
p
 = .14). As could be anticipated, all DCM procedures showed higher clas-

sification accuracy with fewer attributes, longer tests and the presence of heteropolar blocks. The most 
significant difference between the G- DINA and FC- DCM was related to the range of guessing and slip 
parameters. Specifically, when these parameters were equal for all statements (i.e., R = 0), the FC- DCM 
generally provided slightly more accurate classifications (average PCV = .623) compared to the G- DINA 
(average PCV = .608). In more realistic scenarios, with varying discriminatory power among statements, 
the G- DINA consistently outperformed the FC- DCM in terms of classification accuracy. The only excep-
tion was found in the scenario with a small range (R = .2), a large number of attributes (K = 10), and shorter 
tests (F = 30), where the FC- DCM yielded slightly better classifications. This finding could be explained 
by a balance between the condition of R = .2, which, although it contradicts the FC- DCM assumptions, 
is less extreme than R = .4, and the challenging conditions (e.g., large dimensionality and a short test) for 
parameter estimation, which have a greater impact on the estimation of the G- DINA model as it is more 
complex. Regardless, the G- DINA achieved overall average PCV values of .631 and .675 for R = .2 and .4, 
respectively, compared to .597 and .492 for the FC- DCM. Finally, the standard deviation of the PCV for 
both the G- DINA and FC- DCM models was generally similar to that of the true model. However, the FC- 
DCM exhibited greater instability under a wide range of statement parameters (R = .4).

2.4.2 | Recovery of block parameters

Table 4 presents the RMSE of block parameter estimates for the G- DINA model and the FC- DCM, 
considering different ranges the guessing and slip parameters (within- method effect of �2

p
 = .77), the 

number of FC blocks (between- method effect of �2
p
 = .39), attribute correlations (between- method ef-

fect of �2
p
 = .36) and the number of attributes (between- method effect of �2

p
 = .27). Overall, both mod-

els provided more accurate estimates with longer tests and fewer, less correlated attributes. Consistent 
with the PCV results, the FC- DCM yielded more accurate estimates (average RMSE = .050) compared 
to the G- DINA model (average RMSE = .079) only when its assumptions were satisfied (R = 0). In 
contrast, the RMSE of the G- DINA model remained relatively stable across the different levels of 
variability in statement parameters (average RMSE = .075 for R = .2, and .070 for R = .4). Conversely, 

(12)RMSE

[
P

(
y
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l
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=
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L ⋅N

L∑
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N∑
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12 |   NÁJERA et al.

the accuracy of the FC- DCM was considerably impacted by this factor (average RMSE = .099 and .178 
for R = .2 and .4, respectively). Lastly, estimation accuracy for both models was consistent across rep-
licates, as evidenced by the small standard deviations reported in Table 4.

2.4.3 | Recovery of attribute correlations

Figure 2 shows the average correlations for the true model, the G- DINA model and the FC- DCM 
as a function of attribute correlations (within- method effect of �2

p
 = .21), block polarity (within- 

method effect of �2
p
 = .18) and the range for the guessing and slip parameters (within- method effect 

of �2
p
 = .14). Several notable trends can be noted in this figure. First, attribute correlation recov-

ery was generally satisfactory (RMSE ≤ .130) across all methods when attributes were independ-
ent (AC = 0) or when heteropolar blocks were present (P = 70/30). Second, the FC- DCM tended 
to underestimate attribute correlations, particularly under the condition of homopolar blocks 

T A B L E  3  Classification accuracy.

R K F P True model G- DINA FC- DCM

.4 5 60 70/30 .968 (.017) .964 (.020) .917 (.046)

100/0 .965 (.019) .959 (.022) .777 (.114)

30 70/30 .854 (.037) .837 (.043) .700 (.088)

100/0 .840 (.040) .819 (.048) .527 (.136)

10 60 70/30 .731 (.050) .663 (.066) .460 (.089)

100/0 .719 (.052) .647 (.068) .323 (.121)

30 70/30 .421 (.066) .270 (.073) .133 (.055)

100/0 .403 (.059) .244 (.068) .095 (.052)

Average .738 (.212) .675 (.271) .492 (.294)

.2 5 60 70/30 .962 (.011) .957 (.012) .949 (.013)

100/0 .945 (.014) .935 (.017) .845 (.062)

30 70/30 .824 (.026) .806 (.028) .785 (.031)

100/0 .783 (.025) .757 (.032) .674 (.063)

10 60 70/30 .678 (.042) .608 (.049) .582 (.046)

100/0 .654 (.036) .575 (.046) .512 (.043)

30 70/30 .370 (.058) .231 (.058) .244 (.048)

100/0 .333 (.039) .177 (.044) .189 (.037)

Average .694 (.225) .631 (.280) .597 (.260)

0 5 60 70/30 .960 (.008) .954 (.009) .956 (.009)

100/0 .887 (.042) .895 (.034) .850 (.063)

30 70/30 .814 (.022) .794 (.024) .801 (.022)

100/0 .722 (.045) .723 (.034) .705 (.050)

10 60 70/30 .660 (.040) .589 (.045) .608 (.041)

100/0 .607 (.020) .536 (.034) .553 (.026)

30 70/30 .353 (.056) .218 (.056) .281 (.051)

100/0 .299 (.022) .151 (.034) .235 (.025)

Average .663 (.225) .608 (.280) .623 (.246)

Note: Average (and standard deviation) proportion of correctly classified attribute vectors (PCV) across conditions. Highest PCV between the 
G- DINA and FC- DCM are shown in bold.
Abbreviations: F, number of FC blocks; K, number of attributes; P, FC block polarity (homopolar/heteropolar); R, range of the guessing and 
slip parameters.

 20448317, 0, D
ow

nloaded from
 https://bpspsychub.onlinelibrary.w

iley.com
/doi/10.1111/bm

sp.12393 by Spanish C
ochrane N

ational Provision (M
inisterio de Sanidad), W

iley O
nline L

ibrary on [23/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    | 13GENERAL DCM FOR FC ASSESSMENTS

T A B L E  4  Recovery of block parameters.

R F AC K G- DINA FC- DCM

.4 60 0 5 .043 (.009) .153 (.010)

10 .050 (.011) .160 (.010)

.3 5 .048 (.011) .158 (.013)

10 .054 (.011) .170 (.014)

.6 5 .066 (.014) .170 (.019)

10 .073 (.014) .191 (.021)

30 0 5 .051 (.013) .163 (.016)

10 .096 (.018) .180 (.016)

.3 5 .058 (.015) .178 (.022)

10 .100 (.019) .197 (.019)

.6 5 .083 (.019) .198 (.028)

10 .113 (.020) .217 (.023)

Average .070 (.027) .178 (.026)

.2 60 0 5 .045 (.009) .081 (.006)

10 .054 (.011) .084 (.005)

.3 5 .050 (.010) .084 (.006)

10 .059 (.012) .091 (.007)

.6 5 .068 (.014) .095 (.010)

10 .078 (.014) .107 (.013)

30 0 5 .057 (.013) .085 (.008)

10 .100 (.017) .100 (.010)

.3 5 .065 (.016) .094 (.013)

10 .106 (.018) .114 (.014)

.6 5 .090 (.019) .118 (.022)

10 .121 (.019) .139 (.021)

Average .075 (.028) .099 (.021)

0 60 0 5 .047 (.009) .026 (.006)

10 .056 (.011) .032 (.006)

.3 5 .054 (.011) .034 (.009)

10 .062 (.012) .042 (.010)

.6 5 .075 (.014) .055 (.015)

10 .084 (.015) .064 (.014)

30 0 5 .060 (.014) .033 (.008)

10 .102 (.016) .052 (.010)

.3 5 .070 (.017) .045 (.014)

10 .110 (.017) .065 (.015)

.6 5 .100 (.020) .073 (.021)

10 .129 (.019) .087 (.020)

Average .079 (.029) .050 (.022)

Note: Average (and standard deviation) root mean square error (RMSE) of block parameter estimates across conditions. Lowest RMSE between 
the G- DINA and FC- DCM is shown in bold.
Abbreviations: AC, attribute correlations; F, number of FC blocks; K, number of attributes; R, range of the guessing and slip parameters.
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14 |   NÁJERA et al.

(P = 100/0), high attribute correlations (e.g., AC = .6) and a broad range in the statement parameters 
(R = .4; RMSE = .650). Notably, even when the FC- DCM assumptions held (i.e., R = 0), it still un-
derestimated attribute correlations when only homopolar blocks were present in the test (P = 100/0; 
.115 ≤ RMSE ≤ .371). In contrast, the G- DINA model generally provided accurate attribute cor-
relations under most conditions (average RMSE = .120), though there was a slight underestimation 
tendency with highly correlated attributes (AC = .6), homopolar blocks (P = 100/0) and no variabil-
ity in statement parameters (R = 0; RMSE = .204). Notably, this underestimation tendency was also 
observed in the true model (RMSE = .254), primarily due to the lower discriminant information 
provided by the blocks in the absence of variability in the statement parameters. When R > 0, the 
probabilities of endorsement become more informative, which helps in more accurately recovering 
attribute correlations.

2.4.4 | Relative model fit

Table 5 summarizes the proportion of replicas in which the G- DINA model was preferred over the 
FC- DCM based on the AIC and BIC, influenced by the range in the statement parameters, number 
of attributes and test length. The BIC always preferred the FC- DCM when it was correctly specified 
(with R = 0) and always chose the G- DINA model when the FC- DCM was clearly misspecified (with 
R = .4). It also tended to prefer the G- DINA model under R = .2, particularly with longer tests. The 
AIC proved to be a more useful relative model fit index in this study as it consistently selected the 
G- DINA model when the FC- DCM was misspecified (with R > 0) but tended to favour the simplicity 
of the FC- DCM when it was correctly specified (with R = 0). The exception to this was in the chal-
lenging condition of measuring a high number of attributes (K = 10) with a short test (F = 30), where 
the AIC preferred the G- DINA model 69.2% of the time although the true generating model was 
FC- DCM. This is the most challenging condition from an estimation perspective, as it corresponds 
to the smallest number of blocks for estimating the largest number of parameters due to the greater 
number of attributes. In the case of AIC, this result may reflect a case of overfitting, where a more 
complex model captures the idiosyncrasies of a dataset with limited information. It can be observed 
that, in this situation, BIC, which penalizes model complexity more, correctly identifies the generat-
ing model 100% of the time.

F I G U R E  2  Average attribute correlations. The darker dotted line indicates the generating value for the attribute 
correlations (AC = 0, .3, .6). AC, attribute correlations; P, item block polarity (heteropolar/homopolar); R, range of the 
guessing and slip parameters.
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3 | R EA L DATA IL LUSTR ATION

3.1 | Method

In this section, data from Bunji and Okada (2020) are used to illustrate both models and compare them 
across a series of analyses related to item and person parameter estimates and model fit. These data 
correspond to a two- alternative multidimensional FC format personality assessment. The sample size is 
499 respondents, collected through a major online crowdsourcing service in Japan, resulting in a sample 
with an age range of 20 to 70 years, and 47% of the subjects are men. One case had 16 missing values, 
another had 2 missing values and three others had 1 missing value each. These cases were removed from 
the database, resulting in a final sample size of 494 cases. The questionnaire used was the Japanese ver-
sion of the Big- Five factor marker questionnaire (Apple & Neff, 2012). This scale measures the Big- Five 
traits: emotional stability, extraversion, agreeableness, conscientiousness and intellect/imagination. The 
pairs were assembled to ensure an even distribution among trait pairs and to include pairs of statements 
that were aligned in both the same and opposite directions. The Q- matrix derived from the assignment 
of each statement to its theoretical domain is shown in Table 6. As in the simulation study, highly in-
formative priors from the simulation study were used to set the indicated probabilities to .50 so that the 
G- DINA model corresponds to the FC- DCM. Additionally, the initial values for the remaining item 
parameters were set to ensure that the pole of the trait was kept in the desired direction. A sensibility 
analysis using different initial values (from .5 to 1e- 9) was conducted to evaluate the impact of this deci-
sion on attribute classifications and parameter estimates.

Different approaches were used to compare the G- DINA and FC- DCM models. First, the item 
parameters estimated under each model were examined, with special attention given to those fixed 
at  .50 in the FC- DCM model. Second, the models were also compared in relation to the person param-
eters, that is, the classifications made for each person and attribute. EAP was employed for attribute 
classifications. Finally, to determine which model is more appropriate for these data, the models were 
compared using relative fit statistics (AIC and BIC) and the congruence between the classifications ob-
tained with these DCM models and the continuous trait scores, calculated as sum scores and using the 
two- parameter MUPP (MUPP- 2PL) model by Morillo et al. (2016), a multidimensional item response 
theory (MIRT) model for FC data. The estimation of the MUPP- 2PL model was performed using 
the R package mirt (Chalmers, 2012) following the guidelines provided in Kreitchmann et al. (2023). 
Specifically, when performing this estimation, we considered that in item response theory, the direction 

T A B L E  5  Proportion of replicates under which AIC and BIC preferred the G- DINA model over the FC- DCM.

R K F AIC BIC

0 5 60 .000 .000

30 .001 .000

10 60 .000 .000

30 .692 .000

.2 5 60 1.000 .835

30 1.000 .662

10 60 1.000 .785

30 1.000 .567

.4 5 60 1.000 1.000

30 1.000 1.000

10 60 1.000 1.000

30 1.000 1.000

Abbreviations: AIC, Akaike information criterion; BIC, Bayesian information criterion; J, number of FC blocks; K, number of attributes; R, 
range of the guessing and slip parameters.
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of traits is not identified (i.e., trait poles may flip during estimation, changing the sign of discrimination 
parameters without affecting response functions). Therefore, starting values are set to the block scale 
parameters to ensure traits are estimated in the intended direction, accounting for item polarity (e.g., 
extraversion instead of introversion). This is done to set initial values for the mirt function, where the 
online appendix code shows that assigning the expected sign of the discrimination parameter based on 
polarity and reversing the sign of the second item are both necessary to achieve the correct estimation. 
This is required since, under the MUPP- 2PL model, the block scale parameter for the second item 
block is expected to have the opposite direction to the original item (i.e., the sign of the second item is 
reversed). For example, if both statements are positively keyed, the probability of endorsing statement A 
in a block is inversely related to the trait measured by statement B – higher levels of this trait correspond 
to a lower probability of endorsing A. The factor scores were calculated using the EAP estimator as in 
DCM, and following the recommendations of the R package, since it was a high- dimensional model 
(i.e., 5 factors), quasi- Monte Carlo integration was employed. Specifically, the point- biserial correlations 
between the DCM binary classifications and the MUPP- 2PL continuous scores for each attribute were 
examined. The data and code are provided at the Online Appendix https://osf.io/h6x9e/.

3.2 | Results

The constraint of fixing probabilities at .50 affects 50 out of the 100 parameters estimated. In Figure 3, 
it can be observed that when these parameters are freely estimated within the G- DINA model, a wide 
variability is observed (min = .11, max = .96). When considering the 95% confidence interval, .50 is not 
included in 66% of the cases. That is, in some blocks, such as block 22, both parameters, when freely es-
timated, actually approach .50, whereas in others, like block 3, this does not happen. These probabilities 
are assumed to be .50 in FC- DCM under the assumption that when there is no predominant attribute, it 
is expected that the respondent will choose randomly. The information presented suggests that this may 
not be the case. The estimated probabilities for each block are presented in Table S2. Table 7 presents a 
selection of two items that allow for a clear understanding of the results. In Table 7, we can observe that 
for Block 22, the probabilities fixed at .50 remain close to this value when estimated freely, whereas for 
Block 3, they are clearly higher than .50. This may indicate a general tendency to agree more with some 
of the statements (e.g., ‘Have a vivid imagination’) even when neither of the attributes involved is pre-
sent (.66) or when both are (.74). This can be related to the traits being measured (i.e., it is possible that 
the presence of Emotional Stability leads to a higher probability of agreement with ‘Am relaxed most of 
the time’, compared to the probability of agreement with ‘Have a vivid imagination’ if one demonstrates 
Openness) or response styles such as social desirability (i.e., in certain contexts, it may be preferable to 
choose a statement because it presents a more socially desirable image). This can be modelled using G- 
DINA but not with FC- DCM.

To compare the estimated parameters, we calculated the mean absolute difference between the es-
timates of both models. This allows us to observe that, although the estimated parameters generally 
appear similar, there is some variability in those probabilities fixed at .50. The mean absolute difference 
for the 50 parameters fixed at .50 is .18, while for the other 50 parameters, this value is slightly lower, 
reducing to .07. The next step was to assess the impact this has on the classification of individuals, a 
result that we summarize in the following text.

When comparing the classifications derived from each model, we found that, despite the relative 
similarity in some of the item parameters, the classifications were very dissimilar. Although 79.2% of 
the classifications are consistent on an attribute- by- attribute basis, the estimated attribute patterns from 
the two models match in just 30.6% of the cases. These differences in classification can be explained 
by the differences in the estimated parameters that were mentioned earlier. Given this, one might ask 
which model is preferable. To answer this question, we first examined the relative fit and found that, 
despite the larger number of parameters of the G- DINA model (131 vs. 81), it was preferred over 
the FC- DCM according to the AIC (14,434.46 vs. 14,926.91) and BIC (14,985.00 vs. 15,267.32). These 
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results indicate that the constraint of fixing the probabilities of success at .50 leads to a considerably 
worse fit. Another piece of evidence in favour of this decision is found in the congruence between the 
direct sum score and the scores obtained with the MIRT model. These correlations, shown in Table 8, 
indicate that, with the sole exception of the sum scores in openness and extraversion, in the other eight 
cases the scores obtained with the G- DINA provide more favourable congruence evidence, with the 
average difference being .06 (min = −.06, max = .14).

Lastly, Table S1 shows that attribute classifications and parameter estimates were virtually identical 
when using initial values ranging from 1e- 3 to 1e- 9. Less extreme initial values led to more disparate 
results, particularly the noninformative initial value of .5, which was unable to capture the intended 
meaning of the attributes.

4 | DISCUSSION

The present paper has focused on enhancing diagnostic FC assessments. Recent attention has 
increasingly been directed towards evaluating noncognitive traits using the DCM framework (e.g., de 
la Torre et al., 2015; Liu & Shi, 2020), where measurement can be prone to certain biases such as 
acquiescence and social desirability. The FC item format represents a widely explored approach in the 
previous literature to mitigate this type of bias (Brown, 2016). Building on Huang's (2023) introduction 
of the first DCM specifically designed for FC blocks, we proposed adapting the well- established G- 
DINA model to these assessments. This adaptation offers several advantages, including a general block 
response function capable of handling block responses from statements with varying discriminatory 
power, and the possibility of easily integrating the plethora of analyses developed within the DCM 
framework for evaluating reliability, model fit and other psychometric features. Furthermore, we have 
shown that the FC- DCM can be considered a restricted version of the G- DINA model. Consequently, 
it can be reparametrized as the G- DINA model, facilitating more efficient estimation algorithms and 
enabling the exploration of additional analyses mentioned earlier.

To effectively adapt the G- DINA model for FC assessments, two major practical considerations 
must be addressed. First, the Q- matrix must adhere to the criteria established by Gu and Xu (2020) 
to ensure the generic identifiability of the G- DINA model when all blocks measure two attributes 
(see Equation 4). Second, ‘polarity- specific monotonicity’ needs to be addressed either by imposing 
monotonicity constraints or by using appropriate initial values to properly reflect the direction of the 

F I G U R E  3  G- DINA estimated probabilities that are fixed at .50 in the FC- DCM. 95%- confidence interval containing 
.50 is highlighted in blue. Each of the 25 blocks contains two of these parameters. The block number appears in blue if the 
parameter's 95%- confidence interval contains .50, while an asterisk (*) is added when the confidence interval doest not 
include .50, indicating a statistically significant difference from this value.
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    | 19GENERAL DCM FOR FC ASSESSMENTS

statements and the attributes. MCMC estimation algorithms could also be employed, incorporating 
constrained sampling to ensure the identifiability of the model. Among the three options available for 
implementation within the G- DINA model for FC assessments, we opted for the second strategy due 
to its simplicity and straightforward implementation in marginal maximum likelihood estimation. This 
approach is considerably less computationally intensive than MCMC estimation. Future research could 
focus on comparing estimation procedures in these FC settings. However, based on previous studies 
(e.g., Sorrel et al., 2023) and the performance of the initial value- based strategy tested in the present 
research, we do not anticipate significant differences between the three approaches. Namely, in the 
simulation study, the use of initial values proved effective, with only 6 out of the 57,594 replicas exhib-
iting an inversion in direction of an attribute, and all of these occurring under the most challenging 
conditions (10 attributes and 30 blocks). Furthermore, the real data illustration showed the robustness of 
attribute classifications and parameter estimates when using initial values ranging from 1e- 3 to 1e- 9. To 
streamline the process of specifying these initial values and facilitate the application of FC assessments 
in R using the G- DINA model, we have included the ‘FCGDINA’ function in the cdmTools package 
(Nájera, Sorrel, & Abad, 2025).

The simulation study showed that the G- DINA model effectively recovers attribute profiles, block 
parameters and attribute correlations, consistently outperforming the FC- DCM, except in the scenario 
where all statements have identical guessing and slip parameters. This particular condition aligns with 
the constraints of the FC- DCM but is challenging to justify in most practical applications. Additionally, 
the simulation results suggest that, whenever feasible, incorporating heteropolar blocks in FC assess-
ments has a beneficial overall effect, particularly for the recovery of attribute correlations. This is in 

T A B L E  7  Estimated probabilities for two of the blocks under the G- DINA model and the FC- DCM in the real data 
illustration.

P (00) P (10) P (01) P (11)

Block 3: Prob. of choosing ‘Have a vivid imagination’ over ‘Am relaxed most of the time’

GDINA .66* .42 .99 .74*

FC- DCM .50 .38 .94 .50

The first attribute refers to Neuroticism and the second one to Openness.

Block 22: Prob. of choosing ‘I am exacting in my work’ over ‘Feel other's emotions’

GDINA .42 .34 .53 .45

FC- DCM .50 .32 .58 .50

The first attribute refers to Agreeableness and the second one to Conscientiousness.

*This is a G- DINA estimated probability, fixed at 0.50 in the FC- DCM model, whose 95% confidence interval does not include 0.50.

T A B L E  8  Point- biserial correlations between the DCM classifications and the sum and MUPP- 2PL scores in the real 
data illustration.

O C E A N

Sum scores

G- DINA .64 .77 .73 .68 .73

FC- DCM .70 .68 .71 .61 .69

MUPP- 2PL scores

G- DINA .76 .80 .80 .77 .78

FC- DCM .71 .72 .70 .63 .67

Abbreviations: A, agreeableness; C, conscientiousness; E, extraversion; MUPP- 2PL, multi- unidimensional pairwise preference two- parameter 
logistic model; N, neuroticism; O, openness.
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line with the reduction of ipsativity in previous studies in the area of traditional IRT (e.g., Bürkner 
et al., 2019; Frick et al., 2023). The real data illustration further supported these findings, showing that 
the G- DINA model not only provided a better model fit but also yielded block parameters that consid-
erably deviated from the constraints imposed by the FC- DCM. Notably, it is important to emphasize 
that the G- DINA model (and even the true generating model) benefits from pairing statements with 
unequal discrimination, as the probabilities of endorsement for latent groups with no clear preference 
for any statement deviate from .5, thus becoming more informative. It is common to observe that, 
among the statements included in a block, one is preferred over another due to the reasons outlined in 
the empirical example (e.g., related to trait level or social desirability). The G- DINA model provides a 
framework for modelling the data in such cases. The analysis of relative fit helps in determining when it 
becomes necessary to apply this more general model. The differences in the estimated parameters will 
allow for a more precise classification of the examinees.

This study concentrated on between- statement multidimensionality, where each block is composed 
of two unidimensional statements. Huang (2023) extended the FC- DCM to address within- statement 
multidimensionality, where each statement can measure multiple attributes. To achieve this purpose, 
a conjunctive or disjunctive rule was employed to determine the ideal response for each statement. 
Further research is needed to adapt this approach to the G- DINA model and explore whether rules 
beyond the conjunctive/disjunctive dichotomy can be incorporated. The measurement of noncognitive 
variables such as personality is often accompanied by an internal structure that is difficult to discern, 
frequently complex due to interstitiality and item wording, which can create overlaps between dimen-
sions or hinder the clear identification of constructs (Abad et al., 2018; Nájera, Abad, & Sorrel, 2025). 
This makes it particularly interesting in this field to explore the application of exploratory models. 
There is a tradition of studies in CDM on this topic that can serve as a starting point for this line of 
work (e.g., Chen et al., 2021; Gu & Xu, 2021; Xiong et al., 2024). Finally, the correspondence between 
attribute profile classifications and MIRT scores, as demonstrated in the real data example, suggests that 
future research could explore ways to bridge these measurement frameworks. Such integration could 
enhance the interpretation of outcome information and support more informed decision- making in 
various fields, be it education, clinical psychology, organizational psychology and personality profiling, 
among others. To conclude, while the recovery of the proposed model is studied across a wide range of 
scenarios in the simulation study and an empirical illustration is provided, it will be crucial to test the 
model on different datasets, which will undoubtedly help identify additional aspects to be considered 
in future research.
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