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Abstract—This paper proposes a stochastic adaptive robust
optimization approach to build the bidding curves of an aggre-
gator managing a fleet of electric vehicles (EVs) participating in
the day-ahead and intraday electricity markets. These bidding
decisions are made hourly, one day in advance, within an
uncertain environment. In this context, uncertainties comprise
market prices, as well as driving requirements of EV users.
These uncertainties are accounted for by using a set of scenarios
and confidence bounds, respectively. In this way, this paper
combines classic stochastic optimization techniques with adaptive
robust optimization, realistically modeling multiple sources of
uncertainty. EVs are equipped with vehicle-to-grid technology
so that they can both buy and sell energy to the market.
The resulting stochastic adaptive robust optimization problem is
solved by using the column-and-constraint generation algorithm,
which ensures the attainment of the optimal solution in a finite
number of steps. Simulations are run by applying CPLEX
under GAMS. A case study demonstrates the effectiveness of the
proposed approach. Results show that the bidding decisions of
the EV aggregator are sensitive to the uncertainty in driving
requirements of EVs, which can be controlled through the
uncertainty budget. This highlights the usefulness of the proposed
approach to prevent the attainment of suboptimal bidding deci-
sions. Moreover, the good performance of the algorithm in terms
of obtaining the optimal solution with computational times lower
than 6 min suggests potential for model expansion and increased
complexity in future works.

Index Terms—Adaptive robust optimization, aggregator, bid-
ding strategy, electric vehicle, electricity market, stochastic pro-
gramming, uncertainty.
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NOTATION

The main notation used in this paper is defined below for
the virtual battery (VB) used to represent the electric vehicle
(EV) aggregation. Subscripts t and ω denote the dependence
on time periods and scenarios, respectively.

A. Sets and indexes

T Set of time periods indexed by t.
Ω Set of scenarios indexed by ω.

B. Parameters

EIO
t Forecast net energy contribution to the VB by the

arrival/departure of EVs (MWh).
Emax

t Forecast maximum energy level (MWh).
Emin

t Forecast minimum energy level (MWh).
M Large-enough positive constant.
P Upper limit of the net power bought in the market

(MW).
P Lower limit of the net power bought in the market

(MW).
PC,max
t Forecast maximum charging power level (MW).

PD,max
t Forecast maximum discharging power level (MW).

∆t Duration of time period t (h).
ηC Charging efficiency (p.u.).
ηD Discharging efficiency (p.u.).
λID
tω Price in the intraday market ($/MWh).

λDA
tω Price in the day-ahead electricity market ($/MWh).

πω Probability of occurrence of scenario ω (p.u.).

C. Optimization variables

etω Energy stored at the end of time period t (MWh).
eIOtω Worst-case realization of the net energy contribution

(MWh).
emax
tω Worst-case realization of the maximum energy level

(MWh).
emin
tω Worst-case realization of the minimum energy level

(MWh).
hE,max
tω Slack variable associated with the maximum energy

level (MWh).
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hE,min
tω Slack variable associated with the minimum energy

level (MWh).
hPC
tω Slack variable associated with the maximum charging

power level (MW).
hPD
tω Slack variable associated with the maximum dis-

charging power level (MW).
pCt Charging power level (MW).
pC,max
tω Worst-case realization of the maximum charging

power level (MW).
pDt Discharging power level (MW).
pD,max
tω Worst-case realization of the maximum discharging

power level (MW).
pDA
tω Net power bought in the day-ahead electricity market

(MW).
pDA,+
tω Power bought in the day-ahead electricity market

(MW).
pDA,−
tω Power sold in the day-ahead electricity market (MW).

pIDtω Net power bought in the intraday market (MW).
pID,+
tω Power bought in the intraday market (MW).

pID,−
tω Power sold in the intraday market (MW).

I. INTRODUCTION

THE day-ahead bidding curves of an EV aggregator are
built under uncertainty in this work with the aim of

minimizing its cost. This cost is associated with the payments
that must be made in the wholesale market to acquire the
energy needed to supply the fleet of EVs managed by the
aggregator, considering that failing to meet the matched energy
commitments implies paying extra penalties, as well as the fact
that potential sales generate additional revenue.

A. Motivation

The environmental impact of the transport sector has pro-
moted an increase in the number of EVs, expanding from
hundreds to millions in the last decade [1]. The charging
of EVs is carried out by connecting them to the grid, i.e.,
they act as consumers. However, the uncontrolled charging of
EVs may imply deviations in voltage levels, increases in peak
demand levels, and needs to reinforce the grid to guarantee
the supply of the loads [2]. Several works have studied how
EVs can be integrated in the grid. For instance, fluctuations
of renewable generating units, such as wind- and solar-power
units, could be mitigated using EVs as storage units [3]. This is
motivated by the fact that EVs are parked 96% of the time [4].
Additionally, the participation of EVs in frequency regulation
services is analyzed in [5]. In this paper, we focus on the
building of bidding curves for EVs participating in the day-
ahead and intraday electricity market. The involvement of EVs
in multiple markets has been considered in previous works,
including participation in day-ahead and reserve markets, as
considered in [6] and [7].

The individual participation of EVs in the wholesale market
is not feasible, due to not only regulatory reasons such as
a minimum bid size requirement, but also practical issues

related to real-time bid submission, handling of uncertainty,
and limitations of information and communication technology
systems. If the energy of individual EVs were available, it
could be used to supply the demand of the power system
during periods when other technologies are more expensive.
Moreover, the EVs could be charged when cheap generation
is available in the electricity markets. To take advantage of
these potential benefits of EVs, the authors of [8] introduce
the concept of the EV aggregator, namely, a market agent that
participates in the wholesale electricity market by managing
and coordinating the charging and discharging schedules of
a sufficient number of EVs. The aim of the EV aggregator
considering vehicle-to-grid (V2G) capabilities, which allow
buying and selling energy in the electricity market [9]–[11],
is to pool together the storage capacities of multiple EVs to
act as a single, larger entity that serves as an intermediary
between the system operator and the EV owners. This allows
the aggregator to participate in the electricity market more
effectively, offering services such as load balancing, peak
shaving, and ancillary services.

Note that the EV aggregator lacks full information about the
operating conditions at the time of building the bidding curves
in the day-ahead electricity market since this is done one
day in advance. Therefore, the EV aggregator should consider
the uncertainty to develop its bidding strategy minimizing
the risks. In particular, this paper addresses two sources of
uncertainty: market prices and driving needs of the EVs under
its control.

B. Literature review
The uncertainties in unknown parameters have been tra-

ditionally modeled using stochastic programming (SP) [12].
This approach relies on a discrete set of scenarios, each one
representing specific values of the uncertain parameters and its
probability of occurrence. For instance, the optimal bidding
strategy problem of EV aggregators in electricity markets
is identified using SP in [13]–[18]. Nevertheless, the main
drawback of SP is that a large number of scenarios may
be required to accurately represent uncertain parameters and
their probability distributions, which may lead to computa-
tionally intractable problems. Additionally, characterizing the
probability functions to select representative scenarios can be
challenging. Furthermore, SP only guarantees the feasibility of
the problem within the analyzed scenarios, without ensuring
robustness across all possible uncertainty realizations.

Conversely, other researchers have solved the bidding prob-
lem of an EV aggregator modeling uncertain parameters using
robust optimization (RO) [19]. This approach considers that
the uncertain parameters take the worst-case values within
pre-specified confidence intervals, generally resulting in a
lower computational burden than a SP problem with many
scenarios. Additionally, RO does not require the information
of the probability distribution of the uncertain parameters.
Moreover, the feasibility of the problem is ensured, provided
that the unknown parameters take values within the confidence
intervals considered.

The RO approach has been considered in previous works
related to EV aggregators [20]–[25]. For instance, the authors
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of [20] use confidence intervals to represent the uncertainties
in power charged and discharged by garages. Day-ahead
bidding curves for an EV aggregator are built in [21] consid-
ering a set of scenarios and confidence bounds to represent
the uncertainty in market prices and driving requirements,
respectively. The bidding strategy of an aggregator of EVs
that share the same distribution network is addressed in
[22], where the uncertainty in real-time prices is modeled
through confidence bounds. A robust EV aggregation for the
provision of ancillary services is considered in [23] modeling
a utilization compensation scheme that accounts for battery
aging. The optimal scheduling of an EV aggregator under
uncertain market prices is determined in [24] using an RO
approach. A hierarchical optimization approach for an EV
aggregator that participates in the day-ahead electricity market
is presented in [25], where worst-case EV availability profiles
are identified in terms of battery draining and energy exchange
with the market.

The main drawback of RO is that the solutions obtained may
be overly conservative. One way to mitigate this conservative
behavior is through the use of adaptive robust optimization
(ARO) [26]. Unlike traditional RO approaches, ARO allows
for adjustments to certain decision variables once the worst-
case uncertainty realization occurs. In the context of the
bidding strategy problem, this allows the EV aggregator to
adjust the charging and discharging power levels of the EVs
once the actual realizations of the uncertain parameters are
known.

It is important to point out that SP can be combined with RO
and ARO to model different sources of uncertainty, as it is not
necessary to use the same modeling approach for all the uncer-
tain parameters. When uncertainty can be well-characterized
with a set of discrete scenarios and their probabilities can be
estimated, SP is often the best approach. Conversely, RO is
particularly useful when probability distributions are unknown
or difficult to estimate. Consequently, some studies, like [20]–
[22], combine stochastic optimization and RO to tackle the
problem of building offer curves for EV aggregators.

C. Contributions

Within this context, this paper proposes a stochastic ARO
model to build the bidding curves for an aggregator managing
a set of EVs that participates in the day-ahead and intraday
markets. Market price uncertainty is modeled using a set of
discrete scenarios, while confidence bounds are considered to
represent the variability in driving needs of EV users. These
bounds account for factors such as the net energy contribution
of EVs arriving to and departing from the aggregation, the
minimum and maximum energy levels, and the maximum
charging and discharging power levels. Day-ahead decisions
are identified in the first stage, while the second stage involves
intraday decisions based on the worst uncertainty realization of
the driving needs of EVs. The resulting problem is solved by
using the column-and-constraint generation algorithm (CCGA)
[27], which has been widely applied to address ARO problems.
This work extends the research presented in [21], which
employed a stochastic RO approach rather than a stochastic

ARO framework. ARO provides a critical advantage over RO
by better modeling the real-world context of the aggregator.
Specifically, after day-ahead market clearing, the aggregate
charging and discharging needs of EVs may deviate from
the scheduled values on an hourly basis. Unlike RO, the
ARO model allows for intraday market adjustments, making
it possible for the aggregator to adapt to these changes. This
adaptability makes the bidding strategy more reflective of
operational realities and enhances the robustness of market
participation.

In summary, the contributions of this paper are threefold:

1) A novel stochastic ARO approach is provided for the
bidding strategy problem of an EV aggregator that
participates in the day-ahead and intraday electricity
markets. Unlike previous works, the ARO framework
allows minimizing the worst-case total costs of the EV
aggregator by participating in the intraday electricity
market after the driving requirements of the EVs are
revealed. This enhancement in the model provides a
more realistic and practical tool to determine the day-
ahead bidding curves.

2) The tri-level structure of the problem is formulated and
described in detail, along with the corresponding master
problem and subproblem used in the CCGA.

3) The bidding curves and the costs of the EV aggregator
are analyzed in a base case study and several sensitivity
analyses, considering changes in: i) the uncertainty set’s
size, ii) the EV aggregator’s size, iii) the price variability
in the day-ahead and intraday electricity markets, and iv)
the possibility of the EV aggregator to participate in the
intraday electricity market.

D. Organization of paper

The remainder of this paper is organized as follows. Section
II provides the main characteristics of the proposed bidding
problem for an EV aggregator and formulates the bidding
strategy problem as a stochastic ARO model, whose solution
methodology is then described in Section III. A case study
is presented in Section IV to illustrate the application and
performance of the proposed approach. Finally, Section V
gathers the conclusions of this paper.

Note that this work is an extension of the authors’ previous
work in [28], incorporating an updated state-of-the-art review
with new references in Section I, expanded explanations of
the model formulation in Section II, additional details on
the equivalent single-level subproblem in Section III-B, and
comprehensive steps with a flowchart of the solution procedure
in Section III-C. Furthermore, new figures are introduced in
Section IV-A, as well as additional analyses of the case study
presented in Sections IV-B and IV-C.

II. PROBLEM MODELING AND FORMULATION

This section details the main features of the bidding strategy
problem of an EV aggregator and its formulation.
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A. Modeling assumptions

The inherent flexibility of EVs makes them suitable for
participation in different electricity markets and ancillary
services. Nevertheless, this work focuses on the day-ahead and
intraday markets. Therefore, one day with hourly time periods
is considered as the planning horizon of the bidding strategy
problem. In addition, we consider that EVs can participate in
these energy markets by buying and selling energy through the
V2G technology, allowing them to operate as both consumers
and producers. Note that although V2G technology degrades
the lifespan of EV batteries, this modeling aspect is out of the
scope of this work. The reader is referred to [10] for additional
information about modeling the degradation of the battery.
Furthermore, managing the operation of each individual EV
within the aggregation, as presented in [29], is also beyond
the scope of this work.

B. Electric vehicle aggregator

Managing the charging of each individual EV may be
intractable due to computational issues and the inherent diffi-
culty in managing and collecting all the necessary data. Hence,
the set of EVs controlled by the aggregator is modeled as a
virtual battery (VB) as explained in [30].

The operation of this VB is represented by the following
constraints [30]:

et = et−1 + pCt η
C∆t − pDt ∆t/η

D + EIO
t ;∀t ∈ T, (1a)

0 ≤ pCt ≤ PC,max
t ;∀t ∈ T, (1b)

0 ≤ pDt ≤ PD,max
t ;∀t ∈ T, (1c)

Emin
t ≤ et ≤ Emax

t ;∀t ∈ T. (1d)

Equations (1a) model the energy evolution in the VB. The
term EIO

t reflects the abrupt change that occurs between
two consecutive hours regarding the total aggregated storage
capacity. These fluctuations arise from the varying number
of EVs connected to charging points as EVs arrive and
depart throughout the day. Constraints (1b) and (1c) bound
the charging and discharging power levels, respectively, while
constraints (1d) bound the energy level in the VB. Note that
the limits of power and energy levels in constraints (1b), (1c),
and (1d) are time-dependent. This time variation reflects the
dynamic nature of the VB, accounting for changes in the
number of EVs connected and the driving requirements of
EVs in the next time periods.

C. Uncertainty characterization

The EV aggregator determines its bidding decisions in
the day-ahead electricity market on an hourly basis and one
day in advance. At this planning stage, the aggregator faces
uncertainties, such as market prices and driving requirements
of EV users. Uncertainty in market prices is modeled using a
set of discrete scenarios. In contrast, the uncertainty in driving
requirements, which affects the parameters denoted by capital
letters in constraints (1), is modeled using confidence bounds,
i.e., it is assumed that these parameters are uncertain; how-
ever, their actual realization is within pre-specified confidence
intervals. This is explained further in Section II-F.

Note that the above modeling choice is motivated by the
available historical data and multiple forecasting methods for
electricity market prices, which make scenario-based modeling
suitable for this type of uncertainty. However, this approach is
less applicable for EV usage patterns, which exhibit significant
uncertainty, making the characterization of probability-based
scenarios very challenging [21]. Although a full SP model
could be used by considering scenarios to represent the uncer-
tainty in the driving requirements, the results obtained would
depend heavily on the assumed probability distribution of
those scenarios, which may be overly simplistic or inaccurate.
For instance, the driving patterns used to construct such
scenarios may be unrealistic due to underlying assumptions,
such as EVs returning directly home after work instead of
traveling to other locations [31]. As a result, the EV aggregator
is unlikely to have much confidence in the results of that full
SP model due to the lack of realistic information available on
driving patterns. Hence, using confidence bounds to model the
driving needs provides more robustness to the bidding strategy
of the EV aggregator.

D. Solution approach

The decision sequence of the problem works as follows:
1) The EV aggregator makes the bidding decisions one day

in advance, i.e., at a time where the actual uncertainty
realizations are unknown.

2) The EV aggregator is informed about the actual uncer-
tainty realizations of the market prices and the driving
requirements of EVs.

3) Based on this information, the EV aggregator determines
the actual charging and discharging operation of the VB.

Considering this decision sequence enables the formulation
of the bidding strategy problem as a stochastic ARO problem.
Bidding decisions in the day-ahead electricity market are
identified to minimize the worst-case costs, i.e., these decisions
are made considering that, after they are made, the worst case
uncertainty will occur. However, after the actual realization of
the uncertainties is revealed, the EV aggregator can incorporate
some corrective actions to adapt to these conditions and
to minimize the costs, e.g., to sell or buy energy in the
intraday market. This adaptive response allows the aggregator
to mitigate adverse effects from initial uncertainty, enhancing
the overall cost-efficiency of the bidding strategy.

E. Stochastic ARO model

The bidding strategy problem is formulated as follows:

min
ΦFL

max
ΦSL∈Υ

min
ΦTL∈Ψ

∑
ω∈Ω

πω

∑
t∈T

(
∆t

(
λDA
tω pDA

tω + λID
tωp

ID
tω

)
+M

(
∆t

(
hPC
tω + hPD

tω

)
+ hE,max

tω + hE,min
tω

))
(2a)

subject to:

P ≤ pDA
tω ≤ P ;∀t ∈ T, ∀ω ∈ Ω, (2b)

pDA
tω ≥ pDA

tω̃ if λDA
tω ≤ λDA

tω̃ ;∀t ∈ T, ∀ω ∈ Ω, (2c)

pDA
tω = pDA,+

tω − pDA,−
tω ;∀t ∈ T, ∀ω ∈ Ω, (2d)
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pDA,+
tω , pDA,−

tω ≥ 0;∀t ∈ T, ∀ω ∈ Ω, (2e)

where sets ΦFL =
{
pDA
tω , pDA,+

tω , pDA,−
tω , ∀t ∈ T , ∀ω ∈ Ω

}
,

ΦSL =
{
eIOtω , emax

tω , emin
tω , pC,max

tω , pD,max
tω , ∀t ∈ T , ∀ω ∈ Ω

}
,

and ΦTL =
{
etω , hE,max

tω , hE,min
tω , hPC

tω , hPD
tω , pIDtω , pID,+

tω ,

pID,−
tω , ∀t ∈ T , ∀ω ∈ Ω

}
include the optimization variables

of the first-, second-, and third-level optimization problems,
respectively, while sets Υ and Ψ refer to the uncertainty and
feasibility sets, respectively.

The aim of problem (2) is to determine robust bidding
decisions. Specifically, the min-max-min structure in (2a)
is designed to handle decision-making under uncertainty by
minimizing costs in the worst-case situation while preserving
flexibility in decisions once uncertainty is revealed. The first
min represents the goal of minimizing total costs. The max
accounts for the most adverse realization within the uncer-
tainty set, ensuring that the solution is prepared for the worst
possible outcome. Lastly, the second min reflects the ability
to adjust decisions once uncertainties are clarified, enabling
the decision-maker to reduce the impact of the worst-case
situation. This approach ensures robust cost minimization with
flexibility in the face of uncertainty.

Objective function (2a) involves the costs associated with
the participation of the EV aggregator in the day-ahead and
intraday electricity markets. These costs are computed using
given values of the day-ahead and intraday prices λDA

tω and
λID
tω , and the optimal values of the net power bought in the

day-ahead and intraday electricity markets pDA
tω and pIDtω . Note

that the intraday decisions protect the EV aggregator’s costs
against the worst-case uncertainty realization of the driving
requirements of EVs.

Constraints of this problem comprise (2b) to limit the net
power bought in the day-ahead electricity market, constraints
(2c) to guarantee that bidding curves are monotonically de-
creasing, equations (2d) that define the net power bought in
the day-ahead electricity market as the difference between the
power bought and sold in the day-ahead electricity market,
and constraints (2e) that impose the power bought and sold
must be non-negative. Note that the net power bought in the
day-ahead electricity market is positive if the EV aggregator
buys more power than it sells and negative otherwise.

The tri-level optimization structure of problem (2) implies
a sequence among the decisions variables:

1) The EV aggregator determines the bidding decisions
in the day-ahead electricity market in the first-level
problem.

2) Considering these decisions, the second-level problem
determines the worst-case realizations of the uncertain
variables, i.e., .

3) Finally, the EV aggregator determines the actual charg-
ing and discharging power levels, as well as the power
bought and sold in the intraday market in the third-level
problem.

This nested approach allows the aggregator to make initial
decisions while anticipating and mitigating the effects of the

worst possible uncertainties, followed by the ability to refine
these decisions as conditions become clearer.

F. Uncertainty set

Uncertainty in driving requirements is represented by vari-
ables eIOtω , emax

tω , emin
tω , pC,max

tω , and pD,max
tω , which are defined

in the notation section. As explained in Section II-C, it is
assumed that these variables are uncertain; however, their
values are within known confidence intervals. For instance, for
variables eIOtω , this can be mathematically expressed as follows:

eIOtω ∈
[
EIO

t − ÊIO
t , EIO

t + ÊIO
t

]
;∀t ∈ T, ∀ω ∈ Ω, (3)

where parameters ÊIO
t represent the maximum deviations from

EIO
t that may occur. Fig. 1 illustrates an example of the

confidence bounds of equations (3).

Fig. 1. Example of the confidence bounds of equations (3).

In addition, it is defined the so-called uncertainty budget
Γ to manage the robustness of the solution. This uncertainty
budget defines the number of time periods in which the
uncertain variables are allowed to deviate from their forecast
values. This means that if Γ is equal to 0, then all the above
uncertain variables match their forecast values, while if Γ is
equal to |T |, then uncertain variables can deviate from their
forecast values in every time period, which leads to a more
conservative solution.

The aim of the second-level problem in (2) is determining
the worst-case values of the above uncertain variables, i.e.,
those that maximize the cost. For polyhedral uncertainty
sets as the cardinality-constrained uncertainty set described
by constraints (3), uncertainty budget Γ, and formulation of
problem (2), the worst-case uncertainty realization corresponds
to an extreme or vertex of the polyhedron representing the
uncertainty set [32], [33]. Accordingly, binary variables are
used to model the extreme-based equivalent for the original
cardinality-constrained uncertainty set, and constraints from
the uncertainty set Υ associated with variables eIOtω can be
reformulated as:

eIOtω = EIO
t − ÊIO

t uIO,−
tω + ÊIO

t uIO,+
tω ;∀t ∈ T, ∀ω ∈ Ω, (4a)

uIO,−
tω , uIO,+

tω ∈ {0, 1};∀t ∈ T, ∀ω ∈ Ω, (4b)

uIO,−
tω + uIO,+

tω ≤ 1;∀t ∈ T, ∀ω ∈ Ω, (4c)∑
t∈T

(
uIO,−
tω + uIO,+

tω

)
≤ Γ; ∀ω ∈ Ω. (4d)
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Equations (4a) define the uncertain variable representing the
net energy contribution of the EVs arriving to and departing
from the aggregation in terms of its forecast value and the
maximum deviation from this forecast value. Constraints (4b)
define binary variables uIO,−

tω and uIO,+
tω . If one of these

variables are equal to 1, then the uncertain variable eIOtω is equal
to its lower and upper bound, respectively. Constraints (4c)
impose that uncertain variable eIOtω cannot be simultaneously
at its lower and upper bound. Finally, constraints (4d) limit the
number of time periods during which the uncertain variable
eIOtω can deviate from its forecast value.

The uncertainty set Υ includes analogous constraints for
variables emax

tω , emin
tω , pC,max

tω , and pD,max
tω , which have been

omitted here due to space limitations but detailed in [34].

G. Feasibility set

The third-level decision variables of problem (2) should
comply with the following constraints of the feasibility set
Ψ:

etω = e(t−1)ω +
(
pDA,+
tω + pID,+

tω

)
ηC∆t

−
(
pDA,−
tω + pID,−

tω

)
∆t/η

D + eIOtω ;∀t ∈ T, ∀ω ∈ Ω, (5a)

pDA,+
tω + pID,+

tω ≤ pC,max
tω + hPC

tω ;∀t ∈ T, ∀ω ∈ Ω, (5b)

pDA,−
tω + pID,−

tω ≤ pD,max
tω + hPD

tω ;∀t ∈ T, ∀ω ∈ Ω, (5c)

pIDtω = pID,+
tω − pID,−

tω ;∀t ∈ T, ∀ω ∈ Ω, (5d)

emin
tω − hE,min

tω ≤ etω ≤ emax
tω + hE,max

tω ;∀t ∈ T,

∀ω ∈ Ω, (5e)

P ≤ pDA
tω + pIDtω ≤ P ;∀t ∈ T, ∀ω ∈ Ω, (5f)

pID,+
tω , pID,−

tω ≥ 0;∀t ∈ T, ∀ω ∈ Ω. (5g)

Equations (5a) define the energy evolution in the VB used
to represent the EV aggregation. Constraints (5b) and (5c)
respectively limit the charging and discharging power levels.
Constraints (5d) define the net power bought in the intraday
market as the power bought minus the power sold in this
market. Constraints (5e) limit the energy levels. Constraints
(5f) impose bounds on the net power bought in the day-ahead
and intraday markets. Lastly, constraints (5g) ensure that the
power bought and sold in the intraday market are non-negative
variables.

Note that constraints (5b), (5c), and (5e) include slack
variables hPC

tω , hPD
tω , hE,max

tω , and hE,min
tω . These slack variables

are used to guarantee the feasibility of the problem and are
penalized in objective function (2a) using a large-enough
positive constant M .

III. PROBLEM SOLUTION

The stochastic ARO problem (2) is solved using the CCGA
[27]. This algorithm decomposes problem (2) into a master
problem and a subproblem. The master problem determines the
day-ahead bidding decisions, while the subproblem identifies
the worst-case uncertainty realizations and corrective actions
in the intraday market, based on the day-ahead bidding de-
cisions set by the master problem. Then, the master problem
and the subproblem are iteratively solved until convergence.

The formulations of the master problem and the subproblem,
along with the steps and the flowchart of the algorithm, are
presented in the following subsections.

A. Master problem

The master problem is formulated below:

min
ΦM

∑
ω∈Ω

πω

∑
t∈T

λDA
tω pDA

tω ∆t + θ (6a)

subject to:
Constraints (2b)-(2e), (6b)

θ ≥
∑
ω∈Ω

πω

∑
t∈T

(
λID
tωp

ID
tων′∆t +M

(
∆t

(
hPC
tων′ + hPD

tων′

)
+ hE,max

tων′ + hE,min
tων′

))
;∀ν′ ≤ ν, (6c)

etων′ = e(t−1)ων′ +
(
pDA,+
tω + pID,+

tων′

)
ηC∆t

−
(
pDA,−
tω + pID,−

tων′

)
∆t/η

D + e
IO,(ν′)
tω ;∀t ∈ T,

∀ω ∈ Ω,∀ν′ ≤ ν, (6d)

pDA,+
tω + pID,+

tων′ ≤ p
C,max,(ν′)
tω + hPC

tων′ ;∀t ∈ T, ∀ω ∈ Ω,

∀ν′ ≤ ν, (6e)

pDA,−
tω + pID,−

tων′ ≤ p
D,max,(ν′)
tω + hPD

tων′ ;∀t ∈ T, ∀ω ∈ Ω,

∀ν′ ≤ ν, (6f)

pIDtων′ = pID,+
tων′ − pID,−

tων′ ;∀t ∈ T, ∀ω ∈ Ω,∀ν′ ≤ ν, (6g)

e
min,(ν′)
tω − hE,min

tων′ ≤ etων′ ≤ e
max,(ν′)
tω + hE,max

tων′ ;∀t ∈ T,

∀ω ∈ Ω,∀ν′ ≤ ν, (6h)

P ≤ pDA
tω + pIDtων′ ≤ P ;∀t ∈ T, ∀ω ∈ Ω,∀ν′ ≤ ν, (6i)

pID,+
tων′ , p

ID,−
tων′ ≥ 0;∀t ∈ T, ∀ω ∈ Ω,∀ν′ ≤ ν, (6j)

where set ΦM =
{
ΦFL; θ; etων′ , hE,max

tων′ , hE,min
tων′ , hPC

tων′ , hPD
tων′ ,

pIDtων′ , pID,+
tων′ , pID,−

tων′ , ∀t ∈ T , ∀ω ∈ Ω, ∀ν′ ≤ ν
}

includes the
optimization variables of problem (6).

The objective function (6a) comprises the worst-case costs
associated with the day-ahead and the intraday markets, with
the latter approximated through variable θ. Constraints (6c)
bound the value of θ using the worst-case costs of the intraday
market corresponding to the uncertainty realizations obtained
at previous iterations, denoted as ν′. Constraints (6d)-(6j) are
an extension of constraints (5) from the first iteration to the
current one.

Note that symbols from the master problem (6) with
the superscript (ν′) are associated with values obtained by
the subproblem at iteration ν′. Hence, third-level variables
etων′ , hE,max

tων′ , hE,min
tων′ , hPC

tων′ , hPD
tων′ , pIDtων′ , pID,+

tων′ , and pID,−
tων′

are linked to the uncertainty realizations e
IO,(ν′)
tω , e

max,(ν′)
tω ,

e
min,(ν′)
tω , pC,max,(ν′)

tω , and p
D,max,(ν′)
tω , which are obtained by

the subproblem at iteration ν′. This is also explained in the
steps of the algorithm presented in Section III-C.

This article has been accepted for publication in IEEE Transactions on Industry Applications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIA.2025.3587193

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSIDAD PONTIFICIA DE COMILLAS. Downloaded on July 10,2025 at 05:51:53 UTC from IEEE Xplore.  Restrictions apply. 



7

B. Subproblem

The subproblem is formulated below:

max
ΦSL∈Υ

min
ΦTL

∑
ω∈Ω

πω

∑
t∈T

(
λID
tωp

ID
tω∆t +M

(
∆t

(
hPC
tω + hPD

tω

)
+ hE,max

tω + hE,min
tω

))
(7a)

subject to:

etω = e(t−1)ω +
(
p
DA,+,(ν)
tω + pID,+

tω

)
ηC∆t

−
(
p
DA,−,(ν)
tω + pID,−

tω

)
∆t/η

D + eIOtω : αtω;∀t ∈ T,

∀ω ∈ Ω, (7b)

p
DA,+,(ν)
tω + pID,+

tω ≤ pC,max
tω + hPC

tω : βtω;∀t ∈ T,

∀ω ∈ Ω, (7c)

p
DA,−,(ν)
tω + pID,−

tω ≤ pD,max
tω + hPD

tω : ρtω;∀t ∈ T,

∀ω ∈ Ω, (7d)

pIDtω = pID,+
tω − pID,−

tω : γtω;∀t ∈ T, ∀ω ∈ Ω, (7e)

emin
tω − hE,min

tω ≤ etω ≤ emax
tω + hE,max

tω : δtω, ϕtω;∀t ∈ T,

∀ω ∈ Ω, (7f)

P ≤ p
DA,(ν)
tω + pIDtω ≤ P : τtω, µtω;∀t ∈ T, ∀ω ∈ Ω, (7g)

pID,+
tω , pID,−

tω , hPC
tω , hPD

tω , hE,max
tω , hE,min

tω ≥ 0;∀t ∈ T,

∀ω ∈ Ω, (7h)

where sets ΦSL and ΦTL include the optimization variables of
problem (7).

The subproblem (7) is a bi-level problem whose constraints
correspond to the constraints of the second- and third-level op-
timization problems of (2). Constraints (7b)-(7g) are followed
by a colon and the corresponding dual variables.

Note that symbols from the subproblem (7) with the
superscript (ν) are associated with values obtained by the
master problem at iteration ν. Hence, variables involved in
the subproblem are linked to the bidding decisions p

DA,(ν)
tω ,

p
DA,+,(ν)
tω , and p

DA,−,(ν)
tω obtained by the master problem at

iteration ν. The reader is referred to Section III-C for more
details.

The bi-level problem (7) can be recast as an equivalent
single-level problem by replacing the third-level optimization
problem with its dual problem, as shown in [35] for the sub-
problem of the CCGA. For example, the single-level problem
equations associated with the third-level primal variables pIDtω
are the following:

γtω + τtω − µtω = πωλ
ID
tω∆t;∀t ∈ T, ∀ω ∈ Ω. (8)

The resulting single-level problem is a non-linear pro-
gramming problem, where the non-linear terms comprise the
products of continuous second-level decision variables and
continuous third-level dual variables in the objective function.
These non-linear terms can be exactly linearized, transform-
ing the single-level subproblem into a mixed-integer linear
programming problem that can be solved using commercial
branch-and-cut solvers. Further details about the resulting
single-level subproblem have been omitted here due to space
limitations but provided in [34].

C. Algorithm

The master problem (6) and the equivalent single-level ver-
sion of the subproblem (7) are iteratively solved considering
the CCGA [27], whose flowchart is provided in Fig. 2 and
described below:

1) Set the iteration counter ν to 0, the convergence toler-
ance ϵ to a given value, the lower bound LB to −∞,
and the upper bound UB to ∞.

2) Obtain the solution of the master problem (6), which
provides, among other variables, the optimal net power
bought in the day-ahead electricity market, pDA∗

tω .
3) Update the lower bound:

LB = zM∗, (9)

where zM∗ is the optimal objective function value of the
master problem (6).

4) Set pDA,(ν)
tω to pDA∗

tω , pDA,+,(ν)
tω to pDA,+∗

tω , and p
DA,−,(ν)
tω

to pDA,−∗
tω , where pDA∗

tω , pDA,+∗
tω , and pDA,−∗

tω are respec-
tively the optimal values of variables pDA

tω , pDA,+
tω , and

pDA,−
tω obtained in Step 2).

5) Obtain the solution of subproblem (7) that includes,
among other variables, the worst-case realization of
uncertain variables eIO∗tω , emax∗

tω , emin∗
tω , pC,max∗

tω , and
pD,max∗
tω .

6) Update the upper bound:

UB =
∑
ω∈Ω

πω

∑
t∈T

λDA
tω pDA∗

tω ∆t + zS∗, (10)

where zS∗ is the optimal objective function value of the
subproblem (7).

7) Check if |(UB− LB) /LB| < ϵ. If so, the algorithm
stops. Otherwise, continue with Step 8).

8) Update the iteration counter ν to ν + 1.
9) Set eIO,(ν)

tω to eIO∗tω , emax,(ν)
tω to emax∗

tω , emin,(ν)
tω to emin∗

tω ,
p
C,max,(ν)
tω to pC,max∗

tω , and p
D,max,(ν)
tω to pD,max∗

tω .
10) Continue with Step 2).

IV. CASE STUDY

The stochastic ARO problem is tackled using the CCGA
over a one-day planning horizon, which led to hourly bidding
curves. The data of this case study are provided in [34],
including driving requirements of the VB, the input and output
energy of EVs arriving to and departing from their grid-
connected parking slots, the charging and discharging power
limits, the maximum and minimum energy limits, the forecast
and maximum deviation values of the uncertain parameters
modeled using ARO, and the values of the uncertain param-
eters and the probabilities associated with the scenarios. A
Gigabyte MR91-FS0 with 768 GB of RAM and 2 Intel Xeon
Gold 6258R at 2.7 GHz is used to run the simulations by
applying CPLEX 22.1.1.0 [36] under GAMS 46.2.0 [37].

Next, several analyses are performed. First, the impact
of the uncertainty level on the bidding curves and the EV
aggregator’s cost are evaluated in Section IV-A. Then, the al-
gorithm’s performance of the previous simulations is assessed
in Section IV-B. Lastly, the bidding curves and the cost of the
EV aggregator are analyzed by modifying: i) the size of the
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Set ν ← 0.
Initialize LB = −∞, UB =∞.

Solve the master problem (6).
Obtain pDA∗

tω , pDA,+∗
tω , pDA,−∗

tω .

Update LB using equation (9).

Set pDA,(ν)
tω ← pDA∗

tω , pDA,+,(ν)
tω ← pDA,+∗

tω ,
p
DA,−,(ν)
tω ← pDA,−∗

tω .

Solve the subproblem (7). Obtain eIO∗
tω ,

emax∗
tω , emin∗

tω , pC,max∗
tω , pD,max∗

tω .

Update UB using equation (10).

∣∣UB−LB
LB

∣∣ < ϵ END

Update ν ← ν + 1.

Set eIO,(ν)
tω ← eIO∗

tω , emax,(ν)
tω ← emax∗

tω ,
e
min,(ν)
tω ← emin∗

tω , pC,max,(ν)
tω ← pC,max∗

tω ,
p
D,max,(ν)
tω ← pD,max∗

tω .

YES

NO

Fig. 2. Column-and-constraint generation algorithm: flowchart.

uncertainty set, ii) the size of the EV aggregator, iii) the price
variability of the electricity markets, and iv) the participation
of the EV aggregator in the intraday electricity market.

A. Analysis of the uncertainty level

The influence of the uncertainty level associated with the
ARO approach on the bidding curves of the EV aggregator
is analyzed by applying the CCGA for different values of
the uncertainty budget Γ, namely, 0, 6, 12, 18, and 24. Note
that the uncertainty budget influences the uncertain variables
through some constraints of the uncertainty set, such as
constraints (4d) for uncertain variables eIOtω .

For example, Fig. 3 illustrates the bidding curve for hour
6, revealing clear differences under the various uncertainty
budgets analyzed. In particular, the power bought generally
increases with higher uncertainty level when the market price
is high, but this does not occur for all prices. For instance,
this tendency is not satisfied by the bidding curves for prices
around $86/MWh, since they do not follow a clear pattern.
This counterintuitive result may be explained by the fact that
the entire day is considered in the objective function of the
problem, i.e., due to strategic decisions associated with the
inter-temporal operation of the VB. Moreover, in the last step
of the curves, the power bought is maximum in the case
without uncertainty about the driving requirements of EVs
since the market price is low. In this case, since there is

no uncertainty, the aggregator could purchase a large amount
of energy if the price is low, as there is no risk of being
unable to store it due to the perfect knowledge of the EV
arrival/departure pattern. This also occurs, for instance, at the
two last steps of the bidding curves for hour 19 illustrated in
Fig. 4.

Fig. 3. Bidding curves for hour 6 and different uncertainty budgets.

Fig. 4. Bidding curves for hour 19 and different uncertainty budgets.

Furthermore, Fig. 5 shows that in hour 9 the net power
bought may be negative or positive depending on the day-
ahead electricity market price; specifically, the EV aggregator
sells power when the market price is high and buys power
when the price is low. Observe that the amount of power sold
in the day-ahead electricity market decreases as the uncertainty
budget increases. This trend is not unique to the bidding curves
of hour 9, as it also appears, for instance, in the bidding
curves for hour 17 shown in Fig. 6. This matches the results
shown in Figs. 3 and 4, i.e., the EV aggregator adopts a more
conservative strategy when the uncertainty level associated
with driving requirements increases. This more conservative
behavior is evident, for instance, in Figs .5 and 6. These figures
show that under high prices and no uncertainty, more energy
is sold since there is no risk of falling short to meet the EVs’
needs. However, as uncertainty increases, even with very high
prices, the aggregator opts not to sell so much.

Furthermore, Fig. 7 shows that the higher the value of the
uncertainty budget, the greater the optimal objective function
value of the stochastic ARO problem. This finding is consistent
since more conservative uncertainty levels lead to higher
operating cost and lower profit for the EV aggregator. It is
worth mentioning that the impact of increasing the uncertainty
budget on the cost of the EV aggregator decreases as higher
uncertainty levels are analyzed. In other words, the differences
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Fig. 5. Bidding curves for hour 9 and different uncertainty budgets.

Fig. 6. Bidding curves for hour 17 and different uncertainty budgets.

of the EV aggregator’s cost at low uncertainty levels are more
significant than the differences at high uncertainty levels.

Fig. 7. Evolution of the EV aggregator’s cost for different values of the
uncertainty budget.

B. Analysis of the algorithm’s performance

Next, the algorithm’s performance for the previous sim-
ulations is analyzed in terms of the number of iterations,
computational times, and the upper and lower bounds of the
CCGA.

Fig. 8 shows that the convergence of the CCGA is attained
in 32 or less iterations across the different uncertainty levels
analyzed. Moreover, the computational times of the CCGA,
the master problem, and the subproblem are shown in Fig.
9. Observe that the maximum computational time is approx-
imately 6 min. In addition, the main computational burden
of the algorithm is associated with the subproblem across all
the evaluated uncertainty levels. Note that the evolution of
the iteration count and the computational time of the CCGA
follow the same pattern.

Fig. 8. Iterarations needed to attain the convergence of the CCGA for different
values of the uncertainty budget.

Fig. 9. Computational time of the CCGA, the master problem, and the
subproblem for different values of the uncertainty budget.

Additionally, Fig. 10 provides the evolution of the com-
putational time for the master problem and the subproblem
across iterations of the CCGA with Γ = 3. Observe that the
computational time of the subproblem stabilizes around 10 s
for different values of the uncertainty budget. In contrast, the
computational time of the master problem increases as the
number of iterations increases. This pattern is consistent since
the number of variables and constraints of the subproblem
remains constant as the CCGA progresses, whereas the number
of variables and constraints of the master problem increases
with each iteration.

Fig. 10. Evolution of the computational time of the master problem and the
subproblem for iterations of the CCGA and Γ = 3.

Regarding the convergence of the CCGA, Fig. 11 illustrates
the evolution of the upper and lower bounds over iterations
of the algorithm with Γ = 3. Note that although 32 iter-
ations are needed to attain the convergence of the CCGA,
relative small differences among the bounds are attained before
the convergence. Moreover, the lower bound evolves as a
monotonically increasing function, while the upper bound
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does not necessarily follow a monotonically decreasing trend.
This behavior is logical since the lower bound is related
to the optimal objective function of the master problem, in
which more variables and constraints are iteratively added. In
contrast, the upper bound is computed in equation (10) as the
sum of the day-ahead electricity-market cost and the optimal
objective function value of the subproblem, where additional
constraints are not included as the CCGA advances.

Fig. 11. Evolution of the upper and lower bounds of the CCGA for iterations
of the algorithm and Γ = 3.

C. Additional analyses
Lastly, additional simulations are conducted to analyze the

impact of different conditions on the results of the stochastic
ARO problem under study.

1) Analysis of the uncertainty set’s size: the uncertainty
set’s size is adjusted by modifying the maximum deviations
allowed for the uncertain variables from their forecast values.
In particular, the maximum deviations of 5%, 10%, and 15%
are evaluated. Note that the second case corresponds to the
base case, i.e., the results of Sections IV-A and IV-B, as
detailed in the data provided in [34]. Fig. 12 shows the evo-
lution of the EV aggregator’s cost across different uncertainty
levels and sizes of the uncertainty set. As expected, higher
maximum deviations lead to greater costs. Furthermore, Figs.
13 and 14 show the bidding curves for hours 1 and 13 with
Γ = 12. Observe that increases in the maximum deviation
of the uncertain variables from their forecast values lead to
results similar to those associated with higher values of the
uncertainty level. Specifically, this results in decreases in the
power sold when the price is high and increases/decreases in
the power bought for high/low prices.

Fig. 12. Evolution of the EV aggregator’s cost for different values of the
uncertainty budget and sizes of the uncertainty set.

Fig. 13. Bidding curves for hour 1, Γ = 12 and different sizes of the
uncertainty set.

Fig. 14. Bidding curves for hour 13, Γ = 12 and different sizes of the
uncertainty set.

2) Analysis of the EV aggregator’s size: the problem is
solved assuming that the aggregator manages 10 times the
number of EVs within the aggregation in the base case, i.e.,
the power and energy data are scaled by a factor of 10.
Additionally, maximum deviations of 5% are evaluated. Fig.
15 shows the evolution of the EV aggregator’s cost across
different uncertainty levels, considering that it manages 10
times more EVs than in the base case. As expected, the costs
obtained are approximately 10 times the costs of the blue
curve shown in Fig. 12, i.e., those linked to the 5% maximum
deviation. Furthermore, Fig. 16 shows the bidding curves for
hour 13 and different uncertainty budgets. It is worth noting
that the steps in these bidding curves correspond to power
levels approximately 10 times greater than those of the blue
bidding curve shown in Fig. 14. This confirms that the EV
aggregator’s size directly impacts on both the cost and the
bidding curves.

Fig. 15. Evolution of the EV aggregator’s cost for different values of the
uncertainty budget and a larger size of the EV aggregator.
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Fig. 16. Bidding curves for hour 13, different uncertainty budgets, and a
bigger size of the EV aggregator.

3) Analysis of the price variability: the problem is solved
using an alternative set of day-ahead and intraday prices
scenarios. Specifically, two different cases are evaluated:
one where price variability is reduced by 50% and another
where it is increased by 25% relative to the base case.
Fig. 17 shows the evolution of the EV aggregator’s cost
across different uncertainty levels and sets of prices. Observe
that an increase/decrease in the price variability leads to a
decrease/increase in the EV aggregator’s cost with respect to
the base case results. This behavior is logical, as higher price
variability offers more opportunities for the EV aggregator to
purchase energy at low prices and sell at high prices, thereby
reducing overall costs. Moreover, Figs. 18 and 19 show the
bidding curves for hour 9 under different uncertainty budgets
and levels of price variability. Observe that the number of
steps of the bidding curves is reduced/increased when the price
variability decreases/increases compared to the base case,
shown in Fig. 5.

Fig. 17. Evolution of the EV aggregator’s cost for different values of the
uncertainty budget and the price variability.

Fig. 18. Bidding curves for hour 9, different uncertainty budgets, and price
variability decreased by 50%.

Fig. 19. Bidding curves for hour 9, different uncertainty budgets, and price
variability increased by 25%.

4) Analysis of an EV aggregator that does not participate
in the intraday electricity market: the problem is solved by
imposing that the power bought and sold in the intraday market
should be equal to 0, i.e., the EV aggregator only participates
in the day-ahead electricity market. This means that the EV
aggregator cannot take corrective actions after the worst-case
uncertainty realization of the EVs’ driving requirements is
known. Fig. 20 shows the evolution of the EV aggregator’s cost
across different uncertainty levels considering that it does not
participate in the intraday electricity market. Observe that the
costs are significantly higher than those obtained in the base
case, shown in Fig. 7. In particular, these increases in the costs
are linked to slack variables hPC

tω , hPD
tω , hE,max

tω , and hE,min
tω ,

whose optimal values are different from 0. These results prove
that the day-ahead bidding decisions of the EV aggregator
may lead to unfeasible situations if it cannot take corrective
actions after the day-ahead bidding curves are determined. It is
worth highlighting that the participation of the EV aggregator
in the intraday electricity market is one of the contributions
of this work in comparison with previous models, such as
[21], in which corrective action cannot be made after the EVs’
driving needs are known. These simulations show, therefore,
the superiority of the proposed approach over previous works.
Note that the slack variables are all null for Γ = 1. The cost of
the EV aggregator is equal to $17500 in this case, and the cost
obtained in the base case for Γ = 1 is equal to $13500. Hence,
even if the solution is feasible, the participation of the EV
aggregator in the intraday electricity market reduces its cost
in comparison with the case in which it can only participate
in the day-ahead electricity market.

Fig. 20. Evolution of the EV aggregator’s cost for different values of the
uncertainty budget and no participation in the intraday electricity market.
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V. CONCLUSIONS

This paper proposes a stochastic ARO model for the bid-
ding strategy problem of an aggregator managing a set of
EVs that participates in the day-ahead and intraday markets.
The uncertainties in market prices and driving needs of EV
users are modeled through scenarios and confidence bounds,
respectively. Using scenarios to model uncertain market prices
is effective due to the existence of robust forecasting tools and
its null impact on the feasibility of the problem. However,
modeling uncertain driving requirements using scenarios may
result in infeasible solutions if the actual realizations deviate
from the scenarios considered. In contrast, the feasibility of
the problem is guaranteed if confidence bounds, provided that
the actual realizations of the uncertain variables lie within the
considered confidence intervals. The robustness of the model
can be controlled using the so-called uncertainty budget, which
has a great impact on the resulting bidding curves.

Simulation results show that adopting a more conservative
solution generally leads to increases/decreases in the power
bought/sold in the day-ahead electricity market. Nevertheless,
this trend does not hold across all prices within the bidding
curve, which make the proposed model instrumental to prevent
the EV aggregator from the submission of suboptimal bidding
curves. Additional simulations show that modeling the partici-
pation of the EV aggregator in the intraday electricity market,
which was not considered in previous works based on a two-
level RO approach, allows reducing its cost and prevents it
from unfeasible schedules derived from the market clearing.
Moreover, the good performance of the algorithm for all the
simulations conducted motivates the future development of
more complex and realistic tools based on the proposed model.

In particular, future work will explore the following ideas:

1) Compensation for battery degradation. Note that the pro-
posed model uses EV batteries without accounting for
the increased costs associated with battery degradation.
The batteries’ life will be reduced if EVs are employed
as a tool to buy and sell energy in the markets. This
means that it should be determined what kind of tariff
would sufficiently compensate EV owners for offering
the management of their batteries to the aggregator.
Therefore, a more realistic approach is needed to prop-
erly estimate the costs of the EV aggregator.

2) Enhancement in uncertainty representation. Advanced
methodologies for addressing uncertainty will be exam-
ined, including the utilization of ellipsoidal uncertainty
sets. This will require the development of a new solution
approach to efficiently address the resulting computa-
tionally challenging problem.

3) Comparison with a risk-averse SP model in case there is
enough data to characterize the probability distributions
of driving patterns. The differences between the pro-
posed model and a risk-averse SP model should be eval-
uated by performing out-of-sample simulations. Note
that the risk-averse SP model would involve modeling
the uncertainty in the driving needs of the EVs through a
set of scenarios, and the conditional value-at-risk could
be used as a risk measure.
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