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ABSTRACT: Dual-specificity tyrosine-phosphorylation-regulated kinase 1A
(DYRK1A) is implicated in several human diseases, including DYRK1A
syndrome, cancer, and neurodegenerative disorders such as Alzheimer’s
disease, making it a relevant therapeutic target. In this study, we combine
artificial intelligence with traditional drug discovery methods to design
nontoxic DYRK1A inhibitors. An ensemble QSAR model was used to predict
binding affinities, while a directed message passing neural network evaluated
toxicity. Novel compounds were generated using a hierarchical graph-based
generative model and subsequently refined through molecular docking,
chemical synthesis, and experimental validation. This pipeline led to the
identification of pyrazolyl-1H-pyrrolo[2,3-b]pyridine 1 as a potent inhibitor,
from which a new derivative series was developed. Enzymatic assays
confirmed nanomolar DYRK1A inhibition, and additional assays demon-
strated antioxidant and anti-inflammatory properties. Overall, the resulting compounds exhibit strong DYRK1A inhibition and
favorable pharmacological profiles.

■ INTRODUCTION
Drug discovery, particularly when aiming to address complex
diseases like Alzheimer’s disease (AD) or cancer, relies on a
deep understanding of biological mechanisms and identifying
potential therapeutic targets. Among these, the dual-specificity
tyrosine-phosphorylation-regulated kinase 1A (DYRK1A)
family is notable for its role in supporting fundamental
biological processes and its association with important diseases,
including DYRK1A syndrome, cancer, diabetes,1,2 and neuro-
degenerative disorders such as AD.2,3 This makes DYRK1A an
exciting and promising target to simultaneously tackle multiple
different diseases.
The design of new molecules against a target has

traditionally been addressed using classic design methods,
which face the significant and complex challenges derived from
navigating the vast chemical space to identify compounds that
meet desired properties. In recent years, artificial intelligence
(AI) has emerged as a promising methodology providing tools
for de novo molecule generation, leveraging extensive databases
in conjunction with novel AI generative methods.4−6 By
integrating these approaches, researchers aim to accelerate the
discovery of novel therapeutics. Numerous successful candi-
dates have emerged from similar strategies, garnering wide-
spread interest in the machine learning, statistics, and chemical
design communities.6−10 This interest has been most
pronounced in instances with abundant data, while successful

cases based on limited data sets remain comparatively rare.
Furthermore, most studies focus on proposing promising
molecule candidates based on computational models, with far
fewer extending to full in vitro validation with synthesis and
laboratory measurement of molecular properties. This
limitation is understandable, as such efforts require significant
resources, including access to qualified experts and well-
equipped laboratories.
This paper demonstrates a successful integration of AI-based

techniques for de novo molecule generation to design DYRK1A
inhibitors. Our generative pipeline is validated through
experimental in vitro studies of candidate molecules proposed
to inhibit the DYRK1A enzyme, a promising therapeutic target
for different diseases. Conducted in a small-data regime, this
process employed a range of AI techniques to develop a robust
model for suitable candidate generation. The main candidate
identified was synthesized alongside its derivatives to evaluate
their biological activity. Enzymatic inhibition, anti-inflamma-
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tory effects, and antioxidant capacity were experimentally
confirmed, showcasing highly promising results.

■ AI DE NOVO MOLECULAR DESIGN
Drug development is one of the most complex industrial
processes, typically taking 10−12 years and costing over a
trillion dollars. Around 90% of proposed compounds fail to
gain FDA approval.11 Preclinical testing also relies on
increasing animal use, raising ethical concerns while remaining
a necessary step. The challenge lies in navigating a vast
chemical space (1060) molecules to identify viable drug
candidates.12 Efforts to accelerate this process have focused
on reducing time, costs, and animal testing.13,14 AI has
emerged as a promising tool, facilitating and improving various
aspects of drug discovery.10,15

A key application of AI in drug development is de novo
molecular design, which generates novel molecules with
optimized properties. Recent advances in AI-driven molecular
generation have led to diverse approaches tailored to various
drug discovery tasks. Broadly speaking, these methods can be
mostly categorized into two main types:
1. QSAR models estimate compound properties using
chemical database information, using regression for
continuous values (e.g., affinity, log P, QED) or
classif ication for discrete labels (e.g., toxic vs nontoxic).
Their performance depends on data quantity and
quality. While neural networks16 require large data
sets, public databases and frameworks such as Chem-
prop17 (used in this work) help mitigate these
limitations, enabling the use of advanced predictive
techniques.

2. Generative AI models create new data drawing on
existing data sets, extrapolating from data or expert
knowledge to propose novel compounds in de novo
design. These approaches can be data-heavy (e.g., deep
learning) or data-sparse (e.g., evolutionary methods). We
focus on multitarget generation using methods that
extract insights from small data sets. While integrating
predictive and generative models is effective, our limited
DYRK1A inhibition data required treating both tasks
separately. To address this, we fine-tuned state-of-the-art
models with minimal computational resources to
efficiently design molecular candidates.

■ RELATED WORK IN AI DE NOVO DESIGN
While the concepts behind computer-assisted de novo
molecular design have long been established,18,19 recent
advances have driven unprecedented improvements in the

field. In particular, AI-based methods are increasingly being
applied to accelerate and optimize drug design processes.20

Seminal works on generative models, such as Go ́mez-
Bombarelli et al., have paved the way for future developments,
significantly influencing advancements in QSAR model
formulation.21

Given the rapid expansion of research in this area, an
exhaustive list of references is beyond the scope of this paper
and is better suited for a comprehensive review, such as that by
Pang et al.22 Their work highlights the efficiency of deep
generative models in producing drug-like molecules with
tailored properties. Li et al.23 extended these ideas by
introducing a 3D deep generative model capable of designing
molecules that fit specific target binding sites, successfully
applying it to inhibitors of the SARS-CoV-2 main protease.
Earlier studies18 emphasized the need to consider synthetic

feasibility in molecular design, a challenge increasingly
addressed by AI-driven models incorporating synthetic
accessibility constraints. More recent works24−26 have
demonstrated AI’s potential to accelerate drug discovery by
refining molecular generation and optimizing multiple
pharmacological properties. Collectively, these advances mark
a shift toward generative models that are highly adaptable to
real-world challenges.
On the experimental side, a 2019 study used deep learning

to identify inhibitors of the discoidin domain receptor 1 kinase
(DDR1).24 By leveraging biological activity data and molecular
structures, the study predicted candidate molecules with
DDR1 inhibitory activity, which were subsequently validated
through molecular docking to assess their binding affinity and
structural compatibility. This AI-driven approach significantly
accelerated the discovery of DDR1-targeting therapeutics.
Building on this methodology, our work harnesses AI

tools�including predictive models and generative algo-
rithms�to design nontoxic DYRK1A inhibitors. We integrate
our DYRK1A affinity data set with state-of-the-art approaches,
generating structurally novel molecules that undergo compre-
hensive validation, including protein−ligand docking simu-
lations. After synthesis, these compounds are further evaluated
through enzymatic and cellular assays, ultimately leading to a
family of DYRK1A inhibitors with a strong drug-like profile.
Such extensive validation is uncommon in similar studies,
underscoring the robustness of our approach.

■ RESULTS AND DISCUSSION
The main focus of this work is the design of DYRK1A
inhibitors using AI tools and subsequent experimental
verification. Following the computational design phase, we
synthesize and biologically evaluate the performance of each

Figure 1. Protocol for DYRK1A inhibitors development.
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compound to determine its suitability for this task. This
evaluation includes both in vitro and cellular assays for the
most promising molecules. To approach this systematically, we
propose the protocol detailed in Figure 1, which outlines the
complete process and involves two complementary strategies:
AI de novo design and classical drug development.
Following Figure 1, utilizing our DYRK1A affinity data set,

obtained from the ChEMBL database,27 we constructed and
fitted QSAR predictive models to estimate the properties of
different compounds. By combining this with other public data
sets and available models, we also predicted additional
chemical properties for proposed compounds with unknown
affinity levels, such as their potential toxicity. Similarity and
internal consistency filters were applied to ensure that the
proposed molecules were synthesizable in the laboratory and
distinct from those in pre-existing databases. This entire
process was coupled with a generative model, which was
iteratively refined using the curated selection of candidates to
thoroughly explore the most relevant part of the chemical
space. Please refer to the Experimental Section for additional
experimental details. Next, thousands (104) of candidates were
generated using our generative models and filtered based on
predictions of binding affinity, toxicity, and similarity to known
inhibitors. Approximately the top 5% of the most promising

candidate molecules were retained through this part of the
pipeline. Following a review by expert chemists, the top
candidates underwent molecular docking studies to rank their
potential. Finally, the highest-ranked molecules were hand-
picked, synthesized, and tested in the laboratory.
AI-Assisted De Novo Design of DYRK1A Inhibitors.

QSAR Models for DYRK1A Inhibitors. As mentioned earlier,
the first step in our denovo molecule design process involves
training a model capable of assessing the quality of molecules
based on two primary objectives: DYRK1A inhibition,
measured through their binding affinity, and nontoxicity. The
resulting QSAR model will be key component of the later
generative effort, as it enables more efficient navigation
through the chemical space, guiding the search toward the
most promising candidate regions. This approach estimates
these key properties without requiring each proposed
compound to be explicitly present in the database. The
process was conducted under a low-data regime, as the
available database of affinity values was not large. While this
limitation poses challenges for certain techniques, we view it as
a significant point of interest, as successfully conducting
molecule generation in such a context could pave the way for
similar efforts in other low-data scenarios.

Figure 2. Stacked-bars plot of the frequencies of DYRK1A inhibitors affinity featured in the database by measurement type.

Figure 3. Metric-wise results for each method. Each subfigure title specifies the metric and whether it should be maximized (↑) or minimized (↓).
Individual models that constitute the ensemble are shown to the right of the dashed lines, with a faded appearance for distinction. In general, the
ensemble showcases the best performances overall.
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As a measure for the affinity, we employ several approaches
trained on the primary DYRK1A database. The values for
pChEMBL present in this database are derived from four
different measurement methods (Ki, Kd, IC50 and EC50). This
introduces observable differences between the recorded
pChEMBL values solely caused by the measurement selected,
as illustrated in Figure 2. In this context, we conduct separate
standardization and normalization for different measurements
(for further details, please see the Experimental Section).
To predict the affinity of each compound, we designed an

ensemble model comprising XGBoost,28 support vector
regressors (SVR), k-nearest neighbors (KNN), and a directed
message-passing neural network (DMPNN),17 following
extensive experimental evaluation. While each model per-
formed well individually, integrating these methods into an
ensemble predictor provided more robust and reliable
forecasts. This ensemble model was compared with other
predictive models, including MolCLR,29 a graph neural
network (GNN) pretrained using contrastive learning; sub-
graph pattern GNn (SPGNN),30 another GNN pretrained
with a combination of self-supervised and multitask supervised
tasks; and traditional models such as random forests (RF),
Gaussian processes (GP), and a multilayer perceptron (MLP).
For further details about the models and molecular
representations used, please refer to the section on
Experimental Section.
Figure 3 presents the performance of all models evaluated

using four key metrics: root mean squared error (RMSE),
mean absolute error (MAE), explained variance score (EVS),
and coefficient of determination (R2). As illustrated, the
ensemble consistently delivered superior median performance
across all metrics, with minimal variance across the data set.
Based on these results, this ensemble was chosen as the QSAR
model for this study, followed by a cross-validation procedure
to optimize the combination of hyperparameters and molecular
representations specific to each model. In this implementation,
we maintained homogeneous weights for all the ensemble’s
models. However, further generalizations of this approach
could employ a weighted average for the distinct model’s
predictions that constitute the ensemble, potentially achieving
even higher performance.
Figure 4 provides additional insights by summarizing the

methods through their mean rankings and corresponding
standard deviations, offering a clearer comparison suggesting
the superiority of the ensemble model. Rankings were
constructed by sorting the models based on their predictive
performance for each evaluation metric.

To evaluate the toxicity of the identified compounds, we
employed the directed MPNN from the Chemprop package.17

This state-of-the-art model outputs 12 values, each represent-
ing the probability of a compound belonging to a specific
toxicity class. The model was utilized both as a predictive tool
and a filtering mechanism, requiring each candidate molecule
to be classified as nontoxic across all 12 metrics to qualify as
nontoxic.
Finally, several filters were employed during the generative

process to classify potential candidate molecules as promising
alongside the predictive affinity and toxicity models. In
particular, we included filters to ensure a low similarity of
generated molecules to those in pre-existing data sets, as well
as a consistency check applied to the predictions of the QSAR
ensemble model to improve the robustness of the whole
system. Specifically, if the predictions from each ensemble’s
models differed by more than a specified threshold, the
proposed compound was discarded. This ensured alignment
among the models regarding the predicted affinity value of
promising compounds. This heuristic provided greater stability
during the subsequent generative phases. For further details,
please refer to the description of the screening filters in the
Experimental Section.

Generative Models and De Novo Design. For the
generative process, we explored several models to generate
potential DYRK1A inhibitors, with the models selected
depending on the data availability and chemical viability of
the proposed compounds. In all cases, candidate molecules
were rigorously filtered according to our criteria for binding
affinity, toxicity, and novelty.
The chosen model was the HGG model,31 trained on a data

set of DYRK1A inhibitors. Through an iterative process, it
produced five batches of 104 new molecules. After each
generation, the new molecules were evaluated for binding
affinity, toxicity, and structural similarity to known inhibitors.
Molecules passing these filters were added back to the training
set, and the model was retrained, enabling iterative refinement
of the candidate list over five cycles. We restrict the usage of
this recursive approach to a few iterations (≤5) to avoid
convergence, which may induce a decrease in the diversity of
the outputs after excessive iterations. Empirically, this process
ensured a final set of molecules with high affinity, low toxicity,
and high chemical novelty, resulting in a robust selection of
viable inhibitors. The model consistently generated com-
pounds that met these criteria and demonstrated structural
characteristics aligned with known effective compounds. Expert
chemists reviewing these structures deemed them promising in
terms of chemical properties and drug-likeness. Subsequent
experimental results confirmed these initial assessments,
further validating the effectiveness of the HGG approach.
For additional experimental details, as well as information on
other models evaluated during this step, please refer to the
Experimental Section.
Finally, the top candidates generated by the HGG model

underwent conventional molecular docking calculations to
check their experimental performance.

Molecular Docking of Top Designed Compounds. A
structure-based virtual screening (SBVS) was performed for
∼50 novel inhibitors targeting the ATP-binding zone of the
DYRK1A protein. As control the 4E3 (5t) compound was
redocked into the ATP binding site of the chain A of the
published DYRK1A structure (PDB code 4YLL),32 reproduc-
ing the original pose as the highest ranked posed (rmsd value

Figure 4. Performance ranking of models. The selected ensemble is
highlighted in red (lower is better).
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of 0.715 Å, see Experimental Section). Table 1 shows the top
compounds (rank I-IX) obtained from virtual screening, all of
which score higher than the control (4E3). As additional
information, Table S1 (see Supporting Information) shows the
top 50 molecules resulting from the docking studies.
The inhibitor 4E3 forms bonds with Lys167, Lys188,

Glu239, and Leu241 (Table 1). Remarkably, interactions with
catalytic residues Glu239 and Leu241 are present in 67% of the
compounds I-IX, suggesting their crucial role in ligand binding
typical for the other inhibitors.33 On the other hand, only
compounds II and III interact with the catalytic lysine Lys188.
However, the remaining seven compounds have an arene
oriented toward this catalytic residue.
Significantly, the key hinge interactions are preserved across

several newly synthesized compounds. The conserved hinge
motif in protein kinases, comprising three amino acids, is
defined by their positions relative to the downstream sequence

of the “gatekeeper” residue, designated as gk + 1, gk + 2, and
gk + 3. This motif is well-known for its role in forming
traditional hydrogen bonds with inhibitors.34 In our case, the
reference compound does not exhibit these hydrogen bonds.
In contrast, the novel inhibitors I, III, and VI interact with the
hinge backbone residues Glu239 (gatekeeper + 1) and Leu241
(gatekeeper + 3) (Table 1). Particularly, the ligand’s chemical
moieties interact with the hinge region through three key
hydrogen bonds, the ligand donates an H-bond to the main-
chain carbonyl of gk + 1, while a nitrogen atom accepts an H-
bond from the main-chain amide of gk + 3. The third
interaction occurs when the ligand donates a proton to the
main-chain carbonyl of gk + 3. Compounds I and III exhibit
interactions with the hinge backbone similar to those observed
in the adenine moiety of ATP within the ATP-binding pocket,
involving both canonical and noncanonical hydrogen bonds
(exemplified in Figure 5). Although compound VI also forms

Table 1. Interactions of the Top-10 Ranked Compounds with Residues in the Binding Site of DYRK1A according to
Theoretical Molecular Docking Studiesa

aAHB: aromatic hydrogen bond; HB: hydrogen bond; SBr: salt bridge; HalB: halogen bond.
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hydrogen bonds with gk + 1 (Glu239) and gk + 3 (Leu241),
these interactions are exclusively canonical (Table 1). In
contrast, none of the remaining compounds exhibit these three
specific interactions with the hinge region.
The identification of both canonical and noncanonical

hydrogen bonds aligns with the established mechanism
through which inhibitor scaffolds mimic adenine’s interaction
with the hinge. These scaffolds incorporate hydrogen bond
donors and acceptors that engage with the carbonyl groups of
gk + 1 and gk + 3.35,36 Considering both the docking score and
the hinge hydrogen bond interactions, 3-(3-fluorophenyl)-5-
(1-(1-methylpiperidin-4-yl)-1H-pyrazol-4-yl)-1H-pyrrolo[2,3-
b]pyridine (1) was selected as the top candidate for synthesis
and subsequent biological assays.

■ EXPERIMENTAL DEVELOPMENT AND
VALIDATION

Synthesis of the New Designed Compounds. The 3-(3-
fluorophenyl)-5-(1-(1-methylpiperidin-4-yl)-1Hpyrazol-4-yl)-1H-
pyrrolo[2,3-b]pyridine (1) was selected as the candidate for synthesis
(Figure 6). A literature search for 5-(4-piperidinyl-1H-pyrazolyl)-1H-

pyrrolo[2,3-b]pyridine derivatives yielded only three papers37−39 and
several patents40−45 related to this family of candidates. Based on
these references, a general synthetic procedure was proposed (Scheme
1).
The synthetic methodology for obtaining the target compound

involves two stages. The first one comprises the formation of 3-
fluorophenyl-1H-pyrrolo[2,3-b]pyridine (stage A; Scheme 1), fol-
lowed by the second stage (B), which introduces the 1-(1-
methylpiperidin-4-yl)-1H-pyrazol-4-yl group (also included in
Scheme 1).
Stage A represents a structurally versatile and general synthetic

route for the formation of 3-fluorophenyl-1H-pyrrolo[2,3-b]pyridine
(2). Initial attempts to synthesize compound 2 directly from
compound 3 without protection were unsuccessful. Consequently,
the preparation of 2 was accomplished via through a two-step route:
first, protecting the N-1 position of the pyrrole ring in compound 3 to
yield intermediate 15 (step a), followed by the introduction of the aryl
substituent at position 3 using 2-(3-fluorophenyl)-4,4,5,5-tetramethyl-
1,3,2-dioxaborolane 4 (Scheme 1).

The second stage (B) involves the preparation of 3-fluorophenyl-
1H-pyrazol-4-yl-1H-pyrrolo[2,3-b]pyridine 1 through four-steps. This
sequence includes the initial introduction of the piperidinepyrazolyl
group at position 5 of the pyrrolo[2,3-b]pyridine ring, followed by
methylation of the nitrogen in the piperidinyl group, as outlined in
Scheme 1.
After successfully synthesizing compound 1, a virtual library of 229

potential derivatives was proposed (see Table S2 in the Supporting
Information) to predict their affinity for DYRK1A using our AI-based
QSAR predictive model previously discussed. This virtual library was
designed based on two key criteria: (i) structural variability of
substituents on the phenyl ring and (ii) synthetic accessibility during
step b (stage A; Scheme 1) using commercially available 4,4,5,5-
tetramethyl-1,3,2-dioxaborolanes with different phenyl substituted
groups at position 2. Consequently, the aryl substituted groups at
position 3 of the pyrrolo[2,3-b]pyridine ring consisted of phenyl
groups bearing one to three substituents selected from fluoro, chloro,
methyl, trifluoromethyl, methoxy, nitro, and dimethylamino.
The activities of this virtual chemical library were predicted using

the AI-based QSAR models described above. Most of the proposed
derivatives exhibited affinity at the micro- or sub-μM level (see Table
S2 in the Supporting Information). Analyzing the predicted activity of
this virtual library, it was observed that donor substituents (−OMe, −
Me in para, for example) presented a slightly lower activity. Thus,
electron-withdrawing mono-, di-, and trisubstituted phenyl derivatives
with good scores were chosen. Therefore, along with the initial
compound 1, a representative set of 3-aryl-5-pyrazolyl-1H-pyrrolo-
[2,3-b]pyridine derivatives (5−7) were proposed as potential
candidates. Additionally, the corresponding demethylated precursors
(8−11) were evaluated as potential candidates (Figure 7).
According to stage A (Scheme 1), the first step involves the

protection of position N-1 of 5-bromo-3-iodo-1H-pyrrolo[2,3-
b]pyridine (3) with tosyl chloride. Subsequently, the synthesis of 3-
aryl-1H-pyrrolo[2,3-b]pyridine derivatives (2 and 12−14) was
performed by reacting 1-tosyl-5-bromo-3-iodo-1H-pyrrolo[2,3-b]-
pyridine (15) with the corresponding 2-aryl-4,4,5,5-tetramethyl-
1,3,2-dioxaborolane derivatives (16−18), including 3-methoxy, 3,5-
dichloro, or 2-fluoro-4-methyl-5-methoxy phenyl substituents, using
Pd(dppf)Cl2 as catalyst.
The general synthetic route for the introduction of the 1-(1-

methylpiperidin-4-yl)-1H-pyrazol-4-yl group from 2, 12−14 com-
prises four steps (stage B; Scheme 1). The synthesis of 3-aryl-5-
pyrazolyl-1H-pyrrolo[2,3-b]pyridine derivatives (19−22) was carried
out by reaction 5-bromo-1-tosyl-1H-pyrrolo[2,3-b]pyridine deriva-
tives (2, 12−14) with tert-butyl 4-(4-(4,4,5,5-tetramethyl-1,3,2-
dioxaborolan-2-yl)-1H-pyrazol-1-yl)piperidine-1-carboxylate (23),
using Pd(dppf)Cl2 as a catalyst. The removal of the Boc group then
afforded the corresponding NH-piperidino derivatives (24−27). The
methylpiperazinylpyrrolo[2,3-b]pyridines (28−31) were prepared
from 24−27 by reacting with formaldehyde in formic acid. Finally,
deprotection of the N-1-tosyl group yielded the selected candidates
(1, 5−7).

Figure 5. Interactions of residues gk + 1 (E239) and gk + 3 (L241) in the ATP binding site of DYRK1A structure (PDB 4YLL) with inhibitors. (A)
Hit compound I. (B) Superposition of the reference compound 4E3 (magenta) and the top hit compound I (gray).

Figure 6. Retrosynthesis to access compound 1.
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Last, the preparation of the corresponding NH-piperidinyl
derivatives (8−11) was achieved by deprotection of the N-1-tosyl
group from the piperidin-4-yl-1H-pyrazol-4-yl-pyrrolo[2,3-b]pyridines
(24−27).
The structures of all newly synthesized compounds were confirmed

based on their analytical and spectroscopic data. Detailed
spectroscopic characterization is provided in the Supporting
Information. Specifically, 1H NMR and 13C NMR chemical shifts
are summarized in Tables S3 and S4, with Figures S1−S16 presenting
the corresponding spectra in the Supporting Information.
Biological Assays. Once derivatives 1, 5−11 were synthesized,

their biological evaluation was conducted. The results (see Table 2)
indicate that compound 1, designed using AI tools, exhibits activity at
the nanomolar level. Additionally, the derivatives 5−7, proposed and
predicted by AI-QSAR models, and the corresponding demethylated
also demonstrate significant activity. Notably, compounds 1 and 5,
along with their demethylated analogues 8 and 9, demonstrated IC50
values comparable to the reference compound, harmine. Overall,
there was no significant difference in IC50 values between the
methylated compounds and their demethylated analogues. In
addition, the activity against DYRK1B was also evaluated. It was
observed that in general they are slightly less active, but without a
significant difference. The higher activity observed for DYRK1A is
expected, as the model was fine-tuned specifically for this target, while
activity against DYRK1B arose naturally from the design process. In

principle, we could generate compounds with reduced DYRK1B
activity by explicitly incorporating this criterion into the design

Scheme 1. General Synthetic Route for the Preparation of 3-Arylpyrrolo[2,3-b]pyridine Derivatives 2, 12−14 (Stage A) and
Selected 1-Methylpiperidin-4-yl-1H-pyrazol-4-yl-pyrrolo[2,3-b]pyridine Derivatives 1, 5−7, and Corresponding Demethilated
8−11 (Stage B)

Figure 7. Representative set of 3-aryl-5-pyrazolyl-1H-pyrrolo[2,3-b]pyridine derivatives proposed.

Table 2. Inhibition of DYRK1A (IC50, nM), DYRK1B, and
Oxygen Radical Absorbance Capacity (ORAC, Trolox
Equivalents) of Compounds 1, 5−11

compd R1 R2
IC50 (nM)

a

DYRK1A
IC50 (nM)

a

DYRK1B ORACb

1 3-F Me 41 ± 3 78 ± 3 1.02 ± 0.03
5 3-OMe Me 79 ± 5 119 ± 11 1.25 ± 0.07
6 3,5-diCl Me 459 ± 24 577 ± 49 0.44 ± 0.06
7 2-F, 4-Me,

5-OMe
Me 231 ± 20 174 ± 31 1.3 ± 0.1

8 3-F H 48 ± 3 70 ± 5 1.0 ± 0.1
9 3-OMe H 81 ± 4 109 ± 8 1.3 ± 0.1
10 3,5-diCl H 450 ± 18 566 ± 61 0.55 ± 0.07
11 2-F, 4-Me,

5-OMe
H 165 ± 17 165 ± 30 1.2 ± 0.1

harmine 92 ± 10 147 ± 54
aCompounds were evaluated using ATP (10 μmol/well) and
DYRKtidE (4 μmol/well) as substrate. Experiments were performed
in triplicate. bData are expressed as μmol of trolox equivalents/μmol
of tested compound.
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pipeline�for instance, by applying a DYRK1B filter that discourages
the selection of molecules active against it while preserving strong
affinity for DYRK1A.
Regarding the antioxidant capacity of compounds 1, 5−11, the

ORAC assay revealed values around 1 trolox equivalent for most
compounds, except for the dichlorinated derivatives 6 and 10, which
showed values around 0.5 trolox equivalents. As with the inhibitory
activity, no notable differences were observed between the methylated
compounds and their demethylated analogues (Table 2).
The difference in activity (IC50 and ORAC) between the

methylated derivatives and the corresponding NH derivatives is not
significant. This lack of difference is also observed in the docking
studies, since this group (NH and NMe) does not present significant
interactions.
In addition, an interesting property closely related to AD is the one

that refers to the anti-inflammatory capacity of a drug. Thus, the
compounds were studied using LPS-induced proinflammatory
responses in BV2 microglial cells. First, the toxicity of the compounds
was assessed via an MTT assay. Compounds 6, 7, 10, and 11 were
found to be nontoxic at concentrations up to 10 μM, whereas
compounds 1, 5, 8, and 9 exhibited toxicity at 10 μM but were
nontoxic at 5 μM.
Subsequently, the effect of the compounds on LPS-induced

proinflammatory responses in BV2 microglial cells was investigated.
As Figure 8 illustrates, all compounds reduced LPS-induced NO
production, with compounds 1 and 8 showing the most pronounced
effects. The inhibition was dose-dependent and was particularly strong
for compounds 1 and 5, along with their demethylated analogues 8
and 9 (Figures S17 and S18 in the Supporting Information). These
findings align with the high DYRK1A inhibition observed previously
for these compounds.
Drug-like Properties Prediction. The pharmacokinetic proper-

ties of the newly synthesized compounds were predicted using the
Schrödinger suite. In-silico ADMET/Tox-related parameters were
computed with the QikProp application within the Schrödinger
software,46 which generates a set of physicochemically relevant
descriptors then used to evaluate ADMET/Tox properties. The
ADMET/Tox-compliance score, a drug-likeness parameter, predicts
the pharmacokinetic and toxicological profiles of the ligands, reflects
the number of property descriptors calculated by QikProp that fall
outside the optimal range observed in 95% of known drugs. As can be
appreciated in Table S5 (Supporting Information) all derivatives
exhibited favorable QikProp scores, within the favorable range to be
considered a drug-type.

In addition, the PAMPA assay47 was used to predict the in vitro
permeability of compounds 1, 5−11 and evaluate their brain
penetration by passive diffusion.
The results shown that all the compounds would be able to cross

the blood−brain barrier (BBB) by passive permeation (Table 3)
except the compound 10, which are in the limit of a positive
prediction.

SAS Computational. In order to analyze the experimental results
of the developed derivatives, a docking study was conducted. Table 4
shows the interactions and docking scores of the eight synthesized
derivatives. The first observation is the similar profile of the NH
derivatives and their corresponding methylated counterparts, as they
exhibit the same interactions (Figure 9A). This aligns closely with the
experimental results, which show no significant differences in activity
values between the two groups.
The second conclusion that can be drawn is the difference in

activity observed for derivative 6 (and its NH counterpart) compared
to the rest of the compounds. In the other derivatives, the typical key
hinge interactions with Glu239 and Leu241 are preserved, which
anchor and stabilize the molecules (Figure 9B). However, compound
6 (and 10) lack these interactions, and their poses are markedly
different, significantly impacting their activity (Figure 9C). A possible
explanation for this behavior lies in the combination of high
electronegativity and large volume of the substituent at R2 (3,5-
dichlorophenyl) compared to the other substituents in that position.
To analyze these differences in depth, DFT (density functional

theory) and MD (molecular dynamics) calculations were performed
to obtain a comprehensive set of molecular descriptors, including the
HOMO−LUMO gap, Mulliken charges, NBO interactions, molecular

Figure 8. Antiinflamatory effect of compounds 1 and 5−11 at their maximum dose assayed 5 μM (1, 5, 8 and 9) or 10 μM (6, 7, 10 and 11). BV2
cells were incubated for 24 h with lipopolysaccharide (LPS; 200 ng mL−1) in the absence or presence of inhibitors, and the production of nitrite
was evaluated through Griess reaction. Cells were pretreated with inhibitors for 1 h before lipopolysaccharide (LPS) stimulation. Values represent
the mean and their respective standard deviations from three independent experiments. **: p < 0.01; ***: p < 0.001 versus LPS-treated cells.

Table 3. Predictive Penetration in the CNS in the PAMPA-
BBB Assay of Compounds 1, 5−11

compd R1 R2 BBB predictiona

1 3-F Me CNS+
5 3-OMe Me CNS+
6 3,5-diCl Me CNS+
7 2-F, 4-Me, 5-OMe Me CNS+
8 3-F H CNS+
9 3-OMe H CNS+
10 3,5-diCl H CNS+/−
11 2-F, 4-Me, 5-OMe H CNS+

aData are the mean ± SD of three independent experiments.
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volume and Sterimol parameters (see Supporting Information). The
Morfeus software was used at the GFN2-xTB level to enhance
descriptor collection, facilitating comprehensive structure−activity
relationship analysis.48,49 The studied derivatives exhibited significant
differences in their interaction with protein residues Asp239 and
Leu241. Compounds 1 and 5 displayed nearly identical binding
conformations, as their pyrrolo[2,3-b]pyridine core maintains a
comparable electronic environment. This is due to the meta
positioning of the fluorine (electron-withdrawing) and methoxy
(electron-donating) groups on the phenyl ring, which minimizes their
electronic influence on the core. In contrast, compound 7 adopts a
distinct binding conformation due to steric repulsion, causing a 70°
rotation of the phenyl ring, which alters its orientation at the binding
site (see Supporting Information). NBO analysis further supports
these findings, showing that the lone pair (LP) electron donation
from nitrogen to the conjugated system is stronger in compound 1
(10.34 kcal/mol) than in compound 7 (7.35 kcal/mol), leading to
weaker hydrogen bonding interactions in compound 7 (see Table 5).

Compounds 6 deviates from the trend, exhibiting both steric and
electronic effects due to two chlorine atoms at the meta positions (see
Supporting Information). Its electron donation energy (9.4 kcal/mol)
falls between those of compounds 1 and 7, affecting its binding
interactions. The combined NBO interactions, Sterimol parameters
and docking scores provide a comprehensive understanding of how
substituent effects on the phenyl ring influence the pyrrolo[2,3-

b]pyridine core’s electronic properties, ultimately dictating protein−
ligand binding efficiency.

■ CONCLUSIONS
The objective of this research was to apply a comprehensive range of
AI-based techniques to develop an effective model to generate
candidate compounds with good drug-like properties as DYRK1A
inhibitors. Conducted under a small-data regime, this study utilized a
robust pipeline encompassing de novo molecular generation, AI-QSAR
modeling, expert knowledge integration, and docking studies.
The strategic application of AI tools, including predictive and

generative models, proved highly effective in designing nontoxic
DYRK1A inhibitors within a dual-target drug discovery framework.
An ensemble model comprising XGBoost, support vector regressors,
k-nearest neighbors, and a DMPNN was developed to predict the
binding affinity of each compound, while the DMPNN further
assessed toxicity profiles. For the generative phase, a hierarchical
graph generation model enabled the design of promising DYRK1A
inhibitors, facilitating the identification of molecular structures with
favorable binding affinity, toxicity, and drug-like properties.
Classical docking studies were employed to prioritize candidates for

synthesis and experimental validation. Among these, fluorophenyl-5-
methylpiperidinopyrazolyl-1H-pyrrolo[2,3-b]pyridine 1 emerged as
the top candidate based on its superior docking score and hinge
hydrogen bond interactions. Compound 1 was synthesized and
pharmacologically evaluated, demonstrating potent DYRK1A inhib-
itory activity at the nanomolar level.
Further exploration of this novel compound family resulted in

synthesizing and evaluating derivatives (1, 5−7) and the correspond-
ing demethylated (8−11), all of which exhibited comparable efficacy.
These derivatives also possess additional antioxidant and anti-
inflammatory properties, broadening their therapeutic potential.
In conclusion, this study successfully identified a novel DYRK1A

inhibitor (1) with nanomolar potency using AI-guided methodologies
and established a new family of pyrazolylpyrrolo-[2,3-b]pyridine
derivatives with promising pharmacological profiles, paving the way
for further exploration as potential drugs.

Table 4. Docking Scores and Interactionsa

rank
docking score
(kcal/mol)

Glu239/NHPyrrol
ring

Leu241/N/CHPyridine
ring

Asp247/NPyperidine
ring

Asn292/Pyperidine
ring

Asp307/Pyperidine
ring

1 −13.99 HB HB/AHB HB/SBr
5 −13.826 HB HB/2xAHB HB/SBr
6 −11.724 HB HB HB/SBr
7 −13.664 HB HB/2xAHB HB/SBr
8 −13.674 HB HB/AHB HB/SBr
9 −13.082 HB HB/AHB HB/SBr
10 −10.925 HB HB SBr
11 −13.516 HB HB/2xAHB HB/SBr
aHB: hydrogen bond; AHB: aromatic hydrogen bond; SBr: salt bridge.

Figure 9. Interactions of hinge residues gk + 1 (E239) and gk + 3 (L241). (A) Comparison between the methylated derivative 1 (yellow) and its
corresponding NH counterpart 8 (gray). Interactions of methylated compounds (B) 1 (yellow), 5 (cyan), and 7 (magenta). (C) Interactions of
methylated compound 6 (orange).

Table 5. Main Donations and Contribution (kcal/mol) of
the Electron Density Distribution from the Lone Pairs of
Pyrazole and Pyridine Nitrogen in Different Molecules

interaction compound 1 compound 6 compound 7

LP (Npyrazole) → BD*(π-
system)

10.34 9.40 7.35

LP (Npy) → BD*(π-system) 35.13 35.66 34.34
LP (Npy) → BD*(π-system) 49.84 37.74 33.80
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■ EXPERIMENTAL SECTION
AI-Assisted De novo Design. This section provides a and

detailed account of the complete process undertaken for the de novo
generative models that led to the identification of the proposed
candidate molecules. It includes an outline of the key characteristics of
the data set used, the generative workflow, and additional details
necessary to facilitate the reproduction of similar procedures in
analogous contexts.
Data Sets. Two data sets containing molecules in SMILES format

were utilized in this work:
• The primary data set consists of 1782 active inhibitors
targeting DYRK1A, sourced from the ChEMBL database.27

It includes pharmacological activity data for each molecule
measured using various methods, such as Ki, Kd, IC50 or EC50.
These values are converted to pChEMBL scores, defined as the
negative log10 of the molar concentration.

• The Tox21 data set,50 comprising 12,060 training samples with
12 binary labels representing the outcomes of 12 distinct
toxicological experiments.

AI-Based QSAR Models. We aim to develop new compounds
with high affinity for DYRK1A while maintaining nontoxic profiles,
framing this as a dual-objective problem. To achieve this, we first
construct QSAR models for each property of interest (affinity and
toxicity), enabling us to evaluate the quality of the proposed
molecules.

1. Affinity target: As mentioned earlier, to construct the af f inity
model, we employed the primary DYRK1A database.
Compared to typical data sets used in QSAR model
development, this data set is relatively small, presenting
challenges in achieving high-quality predictions. The
pChEMBL values were derived different measurements, e.g.
Ki, Kd, IC50, and EC50. As shown in Figure 2, these different
measurements require us to conduct standardization and
normalization separately for each measurement type. We use a
Box−Cox transformation,51 and the resulting values were used
for performance assessment. This correction was also
considered when evaluating each model’s performance.

We employed multiple approaches to develop the predictive affinity
model, integrating various molecular representations for each
compound to improve accuracy. This process involved selecting the
most suitable descriptors for each model, tailored to its specific
requirements. The available descriptors were:

• Graph: This representation models a molecule as a graph,52

where atoms are nodes and bonds are edges, effectively
capturing molecular connectivity and structural relationships.

• Morgan (Morgan fingerprints53): Circular fingerprints that
encode the local environment around each atom, capturing
atom neighborhoods. These are widely used for similarity
searches and structure−activity relationship (SAR) analysis.

• Rdkitfpbits:54 A representation using bit vectors that denote
specific substructures and functional groups within a molecule,
enabling rapid identification of molecular features.

• M3C: A frequency-based encoding that quantifies how often
each substructure appears within a molecule. This descriptor
provides a detailed measure of molecular features and is
obtained using the DescriptaStorus package.

• SPGNN-e:30 Learned molecular representations derived from
graph neural networks (GNNs). These representations capture
complex atomic and bonding relationships in a data-driven
manner, enhancing predictive accuracy.

Given the available representations of the data set, we employed
various predictive algorithms to construct our QSAR model. For each
candidate model, multiple combinations of molecular descriptors
were tested, selecting the configuration that yielded the most
favorable results. Hyper-parameter selection was performed using a
grid search with 10-fold cross-validation for each algorithm. The
algorithms tested for constructing the QSAR model were:

• MolCLR:29 A self-supervised learning framework applied to
Graph representations. It leverages large unlabeled data sets to
pretrain graph neural networks through contrastive learning by
maximizing agreement between augmented views of the same
molecule, thereby learning meaningful molecular representa-
tions.

• SPGNN:30 A graph neural network model that operates on
Graph representations, pretrained with tasks at both the node
and graph levels. This approach enhances the model’s ability to
learn detailed structural relationships.

• GP (Gaussian Process): Utilizes M3C representations to
predict molecular properties with uncertainty estimation. This
probabilistic model provides confidence intervals for predic-
tions, making it particularly valuable for small data sets.

• RF (Random Forest): Relies on RDKit fingerprints to predict
molecular properties. It constructs an ensemble of decision
trees, averaging predictions across multiple trees to produce
robust results.

• MLP (Multilayer Perceptron): Combines M3C and RDKit
fingerprints to enhance predictive power. MLP captures
complex relationships by passing the input through multiple
layers of interconnected nodes.

• KNN (K-Nearest Neighbors): Uses a combination of M3C
and SPGNN-e representations to predict molecular properties.
It determines a molecule’s properties by analyzing its closest
neighbors in the data set.

• SVR (Support Vector Regressor): Utilizes both M3C and
RDKit fingerprints for regression-based predictions. SVR
identifies a hyperplane in high-dimensional space that best
fits the data points for accurate property estimation.

• Chemprop:17 A directed message-passing neural network that
uses Graph representations to predict molecular properties. It
computes edge embeddings through message passing and
aggregates them into a molecular embedding for prediction.

• XGBoost (Extreme Gradient Boosting):28 Employs both
Morgan and RDKit representations to deliver highly accurate
and efficient predictions. XGBoost constructs an ensemble of
weak learners using gradient boosting, iteratively refining the
model to improve performance.

Based on the performance metrics shown in Figure 3, we
constructed our primary predictive model as an ensemble consisting
of XGBoost,28 support vector regressors (SVR), K-nearest neighbors
(KNN), and the Chemprop directed message-passing neural net-
work.17 SVR contributed strong regression capabilities by employing
kernel methods to model nonlinear relationships using M3C and
RDKit fingerprints. KNN, combining M3C and SPGNN-e
representations, captured local molecular similarities by predicting
properties based on the nearest neighbors in the data set. XGBoost,
utilizing Morgan and RDKit fingerprints, provided robust and efficient
predictions through its gradient boosting algorithm, which iteratively
and effectively improves weak learners. Finally, Chemprop enhanced
the ensemble with deep learning-based structural insights by
leveraging graph representations and directed message-passing
mechanisms. This diverse combination allowed the ensemble to
produce robust and reliable predictions.

2. Toxicity target: To complete the binary target QSAR model,
we developed a model to predict the toxicity of each
compound. For this task, we utilized the larger Tox21 data
set.50 In this data set, each compound is assessed for toxicity
across 12 biomarkers, such as the aryl hydrocarbon receptor
(AhR) and the estrogen receptor (ER). The selected model is
the directed message-passing neural network, implemented
within the Chemprop package,17 a state-of-the-art algorithm
for molecular property prediction. This model operates on
molecular graphs, passing messages between atoms and bonds
to capture intricate structural relationships and predict
chemical properties.

The output of the model is an array of 12 probability values, each
representing the likelihood (ranging from 0 to 1) of the compound
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belonging to a specific toxicity class. This model is employed both as a
predictive tool and as a filter in the generative process, requiring
candidate molecules to achieve a probability of toxicity below 0.5
across all 12 metrics. This serves as an initial screening step to ensure
that generated compounds do not exhibit toxic traits, thereby aligning
with the desired drug-like properties. While the cutoff at 0.5 has
yielded promising experimental results, stricter thresholds can be
applied for individual toxicity labels if a more conservative approach is
desired.
In addition to the QSAR models, we implemented a similarity

function to enhance the diversity of the proposed molecules.
Specifically, the Tanimoto similarity metric was employed to prevent
the generation of molecules that were overly similar to one another.
For each candidate molecule, its similarity was calculated against all
compounds in the existing database, ensuring that the maximum
similarity value remained below 0.5. This threshold can also be
adjusted to promote an even greater diversity in the exploration of the
chemical space, depending on the specific goals of the study.
Together, these QSAR models collectively predict the properties of

the proposed compounds and form the foundation for the filters used
to screen molecules, which are explicitly detailed in the section on
screening filters.
Generative Models. To generate new candidate molecules, we

primarily relied on pretrained generative models, as these typically
require large data sets for effective training. This approach enabled us
to generate high-quality candidates despite the limited data
availability. Given our specific data set constraints, we repurposed
pre-existing, pretrained approaches to suit our needs. Among the
models considered, the HGG31 proved particularly effective due to its
ability to process complex molecular data and produce viable
molecular structures that met our stringent criteria for affinity,
toxicity, and novelty.
The HGG model is a hierarchical graph encoder-decoder model

that constructs molecu-les using structural motifs as building blocks.
Initially trained on a data set containing SMILES representations of
DYRK1A inhibitors, the model generated five batches of 10,000
molecules, iteratively filtering them for binding affinity, toxicity, and
structural similarity to known inhibitors. Molecules passing all filtering
criteria were reintegrated into the training data set, enabling the
model to retrain and progressively refine the candidate list over the
five iterations. This iterative approach improved the quality of the
final molecule selection, ensuring that each candidate satisfied
stringent standards for chemical properties and drug-likeness. While
applying such a recursive process blindly could raise concerns about
overfitting, in our case, the limited number of iterations ensured the
results remained focused on the relevant regions of the chemical space
for this specific task. Furthermore, expert chemists reviewed the
resulting structures and deemed them both synthetically feasible and
chemically interesting. Subsequent experimental validation confirmed
these initial evaluations, reinforcing the effectiveness of the HGG
model.
For comparison, we briefly explored other models, including

Pocket2Mol,55 an E(3)-equivariant generative network leveraging
protein pocket data, as well as several additional algorithms. These
included genetic algorithms like the reinforced genetic algorithm
(RGA)56 and diffusion models such as DiffSBDD.57 Although some
methods showed potential (e.g., Pocket2Mol) and should be further
explored in extensions of this work, others frequently produced
molecules with less desirable chemical properties, making them
unsuitable for further development.
Finally, the candidates generated by the HGG model underwent

conventional molecular docking calculations, yielding scores that
surpassed those of the reference ligand. The top-scoring molecules
from this process were filtered and ranked using the QSAR ensemble
model, with the top 9 compounds displayed in Table 1.
Screening Filters. To screen the generated molecules, we apply

four different types of filters. When needed, we will refer to the
predictive QSAR models for pChEMBL affinity and toxicity as f pch,
f tox, respectively.

• Affinity filter: Given a molecule G, its predicted affinity
(pChEMBL) must be higher than the third quartile Q3 of our
primary data set:

>f G Q( )pch 3

This ensures that the molecules generated are somewhat promising
candidates for our affinity target.

• Toxicity filter: G must be classified as nontoxic in all 12 toxicity
classes:
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|=
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where p(tox(i)|G) is the estimated probability that the compound G is
deemed toxic in the i-th category i ∈ {1, ..., 12}. As mentioned earlier,
this 0.5 threshold can be changed if a more conservative estimate of
the toxicity of the compounds is needed.

• Similarity filter: We define the similarity between a molecule G
and our primary data set D through

= { }s G T G G( ) max ( , )D G D

where T is the Tanimoto coefficient between two molecules. To
ensure that a molecule G is sufficiently different from the known
inhibitors of the data set, its similarity will have to be less than a
predefined value

<s G( ) 0.5D

Increasing this threshold encourages the model to explore more
diverse regions of the chemical space but comes with an increased risk
of generating nonchemically viable compounds. Conversely, selecting
lower values keeps the model closer to the existing data set,
prioritizing chemically sound candidates. Empirically, a threshold of
0.5 provided a good balance between these two behaviors. However,
depending on the nature of the task and the available data, alternative
threshold values may provide a more suitable exploration of the
chemical space.

• Internal consistency filter: Given a molecule G, the variance of
the predicted affinities in the ensemble model, σens(G), must
not exceed a preset threshold. σthr that is

<G( )ens thr

We consider σthr = 1 for our experiments, although further tests
suggest that larger and more permissive thresholds may also work
well. This helps ensure certain stability regarding the proposed
candidate molecules so no single candidate presents structures that
exploit particular parts of the ensemble model. This highlights one of
the key strengths of the ensemble model in this context. By
incorporating diverse methods within the ensemble, enforcing this
condition makes it challenging for the generative process to propose a
candidate compound that exploits the specific formulation of any
single algorithm. Instead, the compound must perform well across the
other components of the ensemble. Therefore, we consider the
diversity and collective performance of the ensemble model to be a
crucial aspect of our generative process.
Molecular Docking. Molecular docking was implemented with

the following pipeline was applied.
• Ligand Preparation: The conversion from SMILES to SD
format was performed using the structconvert tool in the
Schrödinger module.58 Ligand preparation was conducted
using the LigPrep tool included in the Maestro package.59,60

Progressive levels were generated, encompassing possible
ionization states at physiological pH and potential tautomers.
Final energy minimization was carried out using the OPLS4
force field, with default parameters set for stereoisomers.

• Protein Preparation: Human DYRK1A (PDB code 4YLL)32

underwent preparation for subsequent computational analyses
utilizing Protein Preparation Wizard,61,62 a tool integrated into
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Maestro.60 As part of the protocol, the protein structure
underwent preprocessing, including bond order assignment
and structural adjustments using Prime.63−65 Additionally,
protonation at pH 7 ± 2 was generated using Epik.66,67

Subsequently, optimization of the hydrogen-bonding network
and calculation of residue protonation states at pH 7 were
performed using PROPKA,68 followed by a final restrained
minimization employing the OPLS4 force field.

• Ligand Docking: The centroid of the crystallized ligand in the
catalytic pocket served as the grid center. During grid
generation, a van der Waals radius scaling factor of 1.0 and a
partial charge cutoff of 0.25 were applied. Docking was carried
out using the Glide extra precision mode (XP) within the
Schrodinger software suite,69−73 with no constraints applied.
Default parameters were utilized for ligand settings, including
flexible ligand sampling and the addition of epik state penalties
to the docking score. The final step involved postdocking
minimization using default settings.

• Docking Validation Protocol: To validate the docking protocol
for DYRK1A using the Glide program, we redocked the ligand
4E3 (5t) into the binding site of the crystal structure 4YLL
(Table S6 in Supporting Information).

DFT Calculations. Theoretical calculations were conducted at the
DFT level of theory using the Gaussian 16 software. The structures of
all intermediates were optimized in gas phase at 298 K and 1 atm. The
B3LYP functional, combined with Grimme’s D3 dispersion
correction, was used for these optimizations. The basis set was
applied, consisting of the 6-31+G(d,p) basis set for main-group
elements. Geometry optimizations were performed without imposing
constraints, and the nature of the stationary points was further
assessed through vibrational frequency analysis. As expected, all the
energy minima were confirmed to display only real vibrational
frequencies. Additionally, the software Morfeus (MD) adapted to
operate at the GFN2-xTB level of theory, was utilized to enhance
descriptor collection, ensuring a robust data set for subsequent
analyses (see Supporting Information for references).
Chemistry. Chemistry. Melting points were determined using an

MP70 (Mettler Toledo) apparatus and were uncorrected. 1H NMR
spectra (400 or 500 MHz) and 13C NMR spectra (100 or 125 MHz)
were recorded on BRUKER AVANCE III HD-400 (400 MHz) and
VARIAN SYSTEM-500 (500 MHz) spectrometers and are reported
in ppm on the δ scale. The signal of the solvent was used as a
reference. High-performance liquid chromatography (HPLC) was
performed using a Waters 2695 apparatus with a diode array UV/vis
detector Waters 2996 and coupled to a Waters micromass ZQ using a
Sunfire C18 column (4.6 × 50 mm, 3.5 μm) at 30 °C, with a flow rate
of 0.35 mL/min. The mobile phases used were: CH3CN and 0.1%
formic acid in H2O. Electrospray in positive mode was used for
ionization. The sample injection volume was set to 3 μL of a solution
of 1 mg/mL CH3CN. Gradient conditions, time of gradient (gt) and
time of retention (rt) are specified for each case and a different
gradient elution was specified for each case. Flash chromatography
was performed in an Isolera Prime (Biotage) equipment with a
variable detector, using silica gel 60 (230−400 mesh) cartridges or KP
C18-HS cartridges, both from Biotage. Elemental analyses were
performed on a Heraeus CHN-O Rapid analyzer. Reactions heated by
microwaves were realized in a Biotage Initiator microwave oven
reactor (frequency of 2045 GHz). All compounds are >95% pure by
microanalysis (see Supporting Information). In addition, HPLC
chromatograms of compounds 1, 5−11 have been added in
Supporting Information. Reagents and solvents were purchased
from common commercial suppliers, mostly Scharlau, BLD and
FluoroChem, and were used without further purification. The
compound 5-bromo-3-iodo-1-tosyl-1H-pyrrolo[2,3-b]pyridine (15)
was prepared from the procedure reported in Goodfellow et al.74

General Procedure for the Synthesis of the 5-Bromo-3-(aryl)-1-
tosyl-1H-pyrrolo[2,3-b]pyridine Compounds 2, 12−14. A micro-
wave vial was charged with 5-bromo-3-iodo-1-tosyl-1H-pyrrolo[2,3-
b]pyridine (15), the corresponding aryl-4,4,5,5-tetramethyl-1,3,2-
dioxaborolane (4, 16−18), potassium carbonate (K2CO3) and

[1,1′-bis(diphenylphosphino)ferrocene] dichloropalladium(II)(Pd-
(dppf)Cl2). The vial was sealed with a septum cap and purged with
argon. 1,4-Dioxane and water were added. The mixture was stirred at
rt and bubbled with argon during 5 min. The reaction mixture was
irradiated in a microwave for 2 h at 100 °C. The crude reaction
mixture was diluted with dichloromethane (CH2Cl2) and filtered. The
solvents were evaporated under a vacuum, and the product was
purified by flash chromatography (0−15% EtOAc in hexane).

5-Bromo-3-(3-fluorophenyl)-1-tosyl-1H-pyrrolo[2,3-b]pyridine
(2). From 2-(3-fluorophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane
(4) (53 mg, 0.25 mmol), 5-bromo-3-iodo-1-tosyl-1H-pyrrolo[2,3-
b]pyridine (15) (102 mg, 0.21 mmol), K2CO3 (116 mg, 0.84 mmol,
4% equiv) and Pd(dppf)Cl2 (8.1 mg, 0.011 mmol, 5% equiv), 1,4-
dioxane (3 mL) and H2O (0.5 mL). Yield: (51 mg, 55%). mp 163.8−
164.4 °C. 1H NMR: CDCl3 (400 MHz): δ 8.50 (d, 1H, 6-H); 8.20 (d,
1H, 4-H); 8.09 (d, 2H, Ts); 7.90 (s, 1H, 2-H); 7.47−7.42 (m, 1H,
Ar); 7.34−7.30 (m, 3H, Ar, Ts); 7.26−7.22 (m, 1H, Ar); 7.11−7.06
(m, 1H, Ar); 2.39 (s, 3H, CH3). 13C NMR: CDCl3 (100 MHz): δ
163.3 (d, J = 246 Hz; Ph); 146.1 (C-6); 145.9 (Ts); 145.8 (C-7a);
135.0 (Ts); 134.3 (d, J = 8 Hz; Ph); 131.1 (C-4); 131.0 (d, J = 8 Hz;
Ph); 130.0 (2C, Ts); 128.4 (2C, Ts); 124.5 (C-2); 123.2 (d, J = 3 Hz;
Ph); 122.9 (C-3a); 118.6 (d, J = 2 Hz; C-3); 115.8 (C-5); 115.0 (d, J
= 21 Hz; Ph); 114.4 (d, J = 22 Hz; Ph); 21.8 (CH3). HPLC-MS
(ES+): CH3CN/H2O 60:40−95:5, gt: 5 min; rt: 5.97; [M + H]+, 445/
447.

5-Bromo-3-(3-methoxyphenyl)-1-tosyl-1H-pyrrolo[2,3-b]pyridine
(12). From 2-(3-methoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxabor-
olane (16) (96 mg, 0.42 mmol), 5-bromo-3-iodo-1-tosyl-1H-pyrrolo-
[2,3-b]pyridine (15) (152 mg, 0.32 mmol), K2CO3 (227 mg, 1.64
mmol, 4% equiv) and Pd(dppf)Cl2 (12 mg, 0.016 mmol, 5% equiv),
1,4-dioxane (3 mL) and H2O (0.5 mL). Yield: (133 mg, 58%). mp
165.8−166.3 °C. 1H NMR: CDCl3 (400 MHz): δ 8.48 (d, 1H, 6-H);
8.21 (d, 1H, 4-H); 8.09 (d, 2H, Ts); 7.89 (s, 1H, 2-H); 7.38 (t, 1H,
Ar); 7.29 (d, 2H, Ts); 7.13−7.11 (m, 1H, Ar); 7.07−7.06 (m, 1H,
Ar); 6.94−6.91 (m, 1H, Ar); 3.87 (s, 3H, OCH3); 2.38 (s, 3H, CH3).
13C NMR: CDCl3 (100 MHz): δ 163.2 (d, J = 246 Hz; Ph); 154.6
(CO); 146.3 (C-7a); 145.5 (Ts); 143.3 (C-6); 136.6 (Ind); 135.2
(Ts); 134.9 (d, J = 8 Hz; Ph); 130.8 (d, J = 8 Hz; Ph); 129.8 (2C,
Ts); 128.2 (2C, Ts); 125.1 (C-4); 124.9 (C-2); 124.0 (C-5); 123.8
(Ind); 123.2 (d, J = 3 Hz; Ph); 121.4 (C-3a); 119.7 (Ind); 119.1 (d, J
= 3 Hz; C-3); 114.6 (d, J = 21 Hz; Ph); 114.4 (d, J = 22 Hz; Ph); 80.0
(OC); 59.7 (CH); 32.5 (Pip); 28.5 (5C, 3*CH3, Pip); 24.9 (Pip);
21.7 (CH3). HPLC-MS (ES+): CH3CN/H2O 60:40−95:5, gt: 5 min;
rt = 5.84; [M + H]+, 457/459.

5-Bromo-3-(3,5-dichlorophenyl)-1-tosyl-1H-pyrrolo[2,3-b]-
pyridine (13). From 2-(3,5-dichlorophenyl)-4,4,5,5-tetramethyl-1,3,2-
dioxaborolane (17) (249 mg, 0.91 mmol), 5-bromo-3-iodo-1-tosyl-
1H-pyrrolo[2,3-b]pyridine (15) (400 mg, 0.83 mmol), K2CO3 (573
mg, 4.15 mmol, 5 equiv) and Pd(dppf)Cl2 (32 mg, 0.04 mmol, 5%
equiv), 1,4-dioxane (3 mL) and H2O (0.5 mL). Yield: (297 mg, 72%).
mp 187.6−188.2 °C. 1H NMR: CDCl3 (400 MHz): δ 8.52 (d, 1H, 6-
H); 8.15 (d, 1H, 4-H); 8.10 (d, 2H, Ts); 7.91 (s, 1H, 2-H); 7.42 (d,
2H, Ar); 7.37 (t, 1H, Ph); 7.31 (d, 2H, Ts); 2.40 (s, 3H, CH3). 13C
NMR: CDCl3 (100 MHz): δ 146.4 (C-6); 146.0 (Ts); 145.7 (C-7a);
135.9 (2C, Ph); 135.2 (Ts); 134.8 (Ph); 130.7 (C-4); 130.0 (2C,
Ts); 128.4 (2C, Ts); 128.0 (Ph); 125.8 (2C, Ph); 125.1 (C-2); 122.4
(C-3a); 117.1 (C-3); 115.9 (C-5); 21.8 (CH3). HPLC-MS (ES+):
CH3CN/H2O 80:20−95:5, gt: 5 min; rt = 4.27; [M + H]+, 497.

5-Bromo-3-(2-fluoro-5-methoxy-4-methylphenyl)-1-tosyl-1H-
pyrrolo[2,3-b]pyridine (14). From 2-(2-fluoro-5-methoxy-4-methyl-
phenyl)-4,4,5,5-tetra-methyl-1,3,2-dioxaborolane (18) (149 mg, 0.56
mmol), 5-bromo-3-iodo-1-tosyl-1H-pyrrolo[2,3-b]pyridine (15) (200
mg, 0.41 mmol), K2CO3 (283 mg, 2.05 mmol, 4 equiv) and
Pd(dppf)Cl2 (15 mg, 0.02 mmol, 5% equiv), 1,4-dioxane (3 mL) and
H2O (0.5 mL). Yield: (113 mg, 55%). mp 169.3−169.6 °C. 1H NMR:
CDCl3 (400 MHz): δ 8.48 (d, 1H, 6-H); 8.10 (d, 2H, Ts); 8.06 (t,
1H, 4-H); 7.90 (s, 1H, 2-H); 7.30 (d, 2H, Ts); 7.00 (d, 1H, Ar); 6.85
(d, 1H, Ar); 3.86 (s, 3H, OCH3); 2.39 (s, 3H, CH3); 2.26 (s, 3H,
CH3). 13C NMR: CDCl3 (100 MHz): δ 154.3 (d, J = 2 Hz; Ph);
153.7 (d, J = 239 Hz; Ph); 145.8 (C-6); 145.8 (Ts); 145.5 (C-7a);
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135.0 (Ts); 131.9 (d, J = 5 Hz; C-4); 129.9 (2C, Ts); 128.9 (d, J = 8
Hz; Ph); 128.4 (2C, Ts); 125.7 (d, J = 3 Hz; C-2); 123.6 (C-3a);
118.4 (d, J = 24 Hz; Ph); 116.6 (d, J = 16 Hz; Ph); 115.6 (C-5);
114.3 (C-3); 110.9 (d, J = 4 Hz; Ph); 56.2 (OCH3); 21.8 (CH3); 16.3
(CH3). HPLC-MS (ES+): CH3CN/H2O 60:40−95:5, gt: 5 min; rt =
7.02; [M + H]+, 489/491.

General Procedure for the Synthesis of the tert-Butyl 4-(4-(3-
(aryl)-1-tosyl-1H-pyrrolo[2,3-b]pyridin-5-yl)-1H-pyrazol-1-yl)-
piperidine-1-carboxylate Compounds 19−22. Ȧ microwave vial was
charged with the corresponding 5-bromo derivative (2, 12−14), tert-
butyl 4-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazol-
1-yl)piperidine-1-carboxylate, potassium carbonate (K2CO3) and
[1,1′-Bis(diphenylphosphino)ferrocene]di-chloropalladium(II) (Pd-
(dppf)Cl2). The vial was sealed with a septum cap and purged with
argon. 1,4-Dioxane and water were added. The mixture was stirred at
rt and bubbled with argon during 5 min. The reaction mixture was
irradiated in microwave for 2 h at 100 °C. The crude reaction mixture
was diluted with dichloromethane (CH2Cl2) and filtered. The
solvents were evaporated under a vacuum, and the product was
purified by flash chromatography (0−50% EtOAc in hexane).

tert-Butyl 4-(4-(3-(3-fluorophenyl)-1-tosyl-1H-pyrrolo[2,3-b]-
pyridin-5-yl)-1H-pyrazol-1-yl)piperidine-1-carboxylate (19). From
5-bromo-3-(3-fluoro-phenyl)-1-tosyl-1H-pyrrolo[2,3-b]pyridine (2)
(90 mg, 0.2 mmol), tert-butyl 4-(4-(4,4,5,5-tetramethyl-1,3,2-
dioxaborolan-2-yl)-1H-pyrazol-1-yl)piperidine-1-carboxylate (23)
(87 mg, 0.23 mmol), K2CO3 (126 mg, 0.91 mmol, 4.6 equiv) and
Pd(dppf)Cl2 (8.0 mg, 0.011 mmol, 5% equiv), dioxane (3 mL) and
H2O (0.5 mL). Yield: (116 mg, 94%). mp 106.8−107.2 °C. 1H NMR:
CDCl3 (400 MHz): δ 8.61 (d, 1H, 6-H); 8.13 (d, 2H, Ts); 8.08 (d,
1H, 4-H); 7.89 (s, 1H, 2-H); 7.79 (d, 1H, Ind); 7.73 (d, 1H, Ind);
7.49−7.43 (m, 1H, Ar); 7.40−7.37 (m, 1H, Ar); 7.32−7.29 (m, 3H,
Ar, Ts); 7.11−7.08 (m, 1H, Ar); 4.37−4.28 (m, 3H, Pip); 2.96−2.89
(m, 2H, Pip); 2.38 (s, 3H, CH3); 2.19 (d, 2H, Pip); 2.03−1.93 (m,
2H, Pip); 1.49 (s, 9H, CH3). 13C NMR: CDCl3 (100 MHz): δ 163.2
(d, J = 246 Hz; Ph); 154.6 (CO); 146.3 (C-7a); 145.5 (Ts); 143.3
(C-6); 136.7 (Ind); 135.4 (Ts); 134.9 (d, J = 8 Hz; Ph); 130.8 (d, J =
8 Hz; Ph); 129.8 (2C, Ts); 128.2 (2C, Ts); 125.1 (C-4); 124.9 (C-
5); 124.0 (Ind); 123.2 (C-2); 123.2 (d, J = 3 Hz; Ph); 121.4 (C-3a);
119.7 (Ind); 119.1 (d, J = 2 Hz; C-3); 114.6 (d, J = 21 Hz; Ph); 114.4
(d, J = 22 Hz; Ph); 80.0 (OC); 59.7 (CH); 32.5 (Pip); 24.5 (5C,
3*CH3, Pip); 24.9 (Pip); 21.7 (CH3). HPLC-MS (ES+): CH3CN/
H2O 60:40−95:5, gt: 5 min; rt: 5.77; [M + H]+, 616.

tert-Butyl 4-(4-(3-(3-methoxyphenyl)-1-tosyl-1H-pyrrolo[2,3-b]-
pyridin-5-yl)-1H-pyrazol-1-yl)piperidine-1-carboxylate (20). From
5-bromo-3-(3-methoxyphenyl)-1-tosyl-1H-pyrrolo[2,3-b]pyridine
(12) (150 mg, 0.33 mmol), tert-butyl 4-(4-(4,4,5,5-tetramethyl-1,3,2-
dioxaborolan-2-yl)-1H-pyrazol-1-yl)piperidine-1-carboxylate (23)
(137 mg, 0.36 mmol), K2CO3 (137 mg, 0.99 mmol, 3 equiv) and
Pd(dppf)Cl2 (12.1 mg, 0.017 mmol, 5% equiv), dioxane (3 mL) and
H2O (0.5 mL). Yield: (176 mg, 85%). mp 88.5−89.2 °C. 1H NMR:
CDCl3 (400 MHz): δ 8.59 (d, 1H, 6-H); 8.11 (d, 2H, Ts); 8.08 (d,
1H, 4-H); 7.86 (s, 1H, 2-H); 7.77 (d, 1H, Ind); 7.67 (d, 1H, Ind);
7.41 (t, 1H, Ar); 7.29 (d, 2H, Ts); 7.18 (m, 1H, Ar); 7.11 (m, 1H,
Ar); 6.93 (m, 1H, Ar); 4.34−4.26 (m, 3H, Pip); 3.88 (s, 3H, OCH3);
2.90 (t, 2H, Pip); 2.37 (s, 3H, CH3); 2.18−2.14 (m, 2H, Pip); 2.01−
1.90 (m, 2H, Pip); 1.48 (s, 9H, CH3). 13C NMR: CDCl3 (100 MHz)
δ:160.3 (Ph); 154.7 (CO); 146.5 (C-7a); 145.4 (Ts); 143.2 (C-6);
136.7 (Ind); 135.5 (Ts); 134.1 (Ph); 130.3 (Ph); 129.8 (2C, Ts);
128.2 (2C, Ts); 125.5 (C-4); 124.8 (C-2); 124.0 (C-5); 123.5 (Ind);
121.8 (C-3a); 120.3 (Ph); 120.1 (Ind); 119.9 (C-3); 113.5 (Ph);
113.1 (Ph); 80.1 (OC); 59.8 (CH); 55.6 (OCH3); 32.6 (2C, Pip);
28.6 (5C, 3*CH3, Pip); 21.8 (CH3). HPLC-MS (ES+): CH3CN/H2O
60:40−95:5, gt: 5 min; rt = 5.61; [M + H]+, 628.

tert-Butyl 4-(4-(3-(3,5-dichlorophenyl)-1-tosyl-1H-pyrrolo[2,3-b]-
pyridin-5-yl)-1H-pyrazol-1-yl)piperidine-1-carboxylate (21). From
5-bromo-3-(3,5-dichloro phenyl)-1-tosyl-1H-pyrrolo[2,3-b]pyridine
(13) (182 mg, 0.37 mmol), tert-butyl 4-(4-(4,4,5,5-tetramethyl-
1,3,2-dioxaborolan-2-yl)-1H-pyrazol-1-yl)-piperidine-1-carboxylate
(23) (153 mg, 0.41 mmol), K2CO3 (153 mg, 1.11 mmol, 3 equiv) and
Pd(dppf)Cl2 (14 mg, 0.019 mmol, 5% equiv), dioxane (3 mL) and

H2O (0.5 mL). Yield: (173 mg, 71%). mp 117.2−117.6 °C. 1H NMR:
CDCl3 (400 MHz): δ 8.54 (d, 1H, 6-H); 8.10 (d, 2H, Ts); 8.01 (d,
1H, 4-H); 7.86 (s, 1H, 2-H); 7.79 (s, 1H, Ind); 7.76 (s, 1H, Ind);
7.44 (d, 2H, Ar); 7.27−7.25 (m, 3H, Ts, Ar); 4.34−4.22 (m, 3H,
Pip); 2.89 (br s, 2H, Pip); 2.33 (s, 3H, CH3); 2.13 (d, 2H, Pip);
2.04−1.90 (m, 2H, Pip); 1.46 (s, 9H, CH3). 13C NMR: CDCl3 (100
MHz): δ 154.2 (CO); 145.7 (C-7a); 145.3 (Ts); 143.2 (C-6); 136.3
(Ind); 135.6 (Ts); 135.3 (2C, Ph); 134.8 (Ph); 129.5 (2C, Ts); 128.0
(2C, Ts); 127.2 (Ph); 125.5 (2C, Ph); 125.5 (C-4); 124.9 (C-2);
124.5 (Ph); 124.2 (C-5); 124.1 (Ind); 121.8 (C-3a); 119.1 (Ind);
117.3 (C-3); 79.5 (OC); 59.3 (CH); 32.1 (2C, Pip); 28.2 (3C,
3*CH3); 24.6 (2C, Pip); 21.4 (CH3). HPLC-MS (ES+): CH3CN/
H2O 80:20−95:5, gt: 5 min; rt = 3.95; [M + H]+, 666.

tert-Butyl 4-(4-(3-(2-fluoro-5-methoxy-4-methylphenyl)-1-tosyl-
1H-pyrrolo [2,3-b]pyridin-5-yl)-1H-pyrazol-1-yl)piperidine-1-car-
boxylate (22). From 5-bromo-3-(2-fluoro-5-methoxy-4-methylphen-
yl)-1-tosyl-1H-pyrrolo[2,3-b]pyridine (14) (200 mg, 0.41 mmol),
tert-butyl 4-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyra-
zol-1-yl)piperi-dine-1-carboxylate (23) (170 mg, 0.45 mmol), K2CO3
(170 mg, 1.23 mmol, 3 equiv) and Pd(dppf)Cl2 (14.6 mg, 0.017
mmol, 5% equiv), dioxane (3 mL) and H2O (0.5 mL). Yield: (195
mg, 73%). mp 163.1−163.5 °C. 1H NMR: CDCl3 (400 MHz): δ 8.58
(d, 1H, 6-H); 8.12 (d, 2H, Ts); 7.94 (d, 1H, 4-H); 7.87 (s, 1H, 2-H);
7.75 (s, 1H, Ind); 7.66 (s, 1H, Ind); 7.29 (d, 2H, Ts); 7.00 (d, 1H,
Ar); 6.89 (d, 1H, Ar); 4.33−4.24 (m, 3H, Pip); 3.86 (s, 3H, OCH3);
2.94−2.86 (m, 2H, Pip); 2.37 (s, 3H, CH3); 2.26 (s, 3H, CH3); 2.17−
2.13 (m, 2H, Pip); 2.00−1.89 (m, 2H, Pip); 1.47 (s, 9H, CH3). 13C
NMR: CDCl3 (100 MHz): δ 154.7 (CO); 154.2 (d, J = 2 Hz; Ph);
153.8 (d, J = 239 Hz; Ph); 146.0 (C-7a); 145.5 (Ts); 143.2 (C-6);
136.7 (Ind); 135.4 (Ts); 129.8 (2C, Ts); 128.6 (d, J = 8 Hz; Ph);
128.3 (2C, Ts); 126.1 (d, J = 3 Hz; C-4); 124.9 (d, J = 3 Hz; C-2);
124.7 (C-5); 123.9 (Ind); 122.2 (C-3a); 120.0 (Ind); 118.3 (d, J = 24
Hz, Ph); 117.2 (d, J = 16 Hz; Ph); 114.9 (C-3); 111.1 (d, J = 4 Hz;
Ph); 80.1 (OC); 59.7 (CH); 56.2 (OCH3); 32.5 (2C, Pip); 28.5 (5C,
3*CH3, Pip); 21.8 (CH3); 16.2 (d, J = 1 Hz, CH3). HPLC-MS (ES+):
CH3CN/H2O 60:40−95:5, gt: 5 min; rt = 6.58; [M + H]+, 660.

General Procedure for the Synthesis of the 3-(Aryl)-5-(1-
(piperidin-4-yl)-1H-pyrazol-4-yl)-1-tosyl-1H-pyrrolo[2,3-b]pyridine
Compounds 24−27. Trifluoroacetic acid (TFA) was added to a
solution of the corresponding Boc-protected compound (19−22) in
dichloromethane at rt. The reaction is stirred until the end of the
reaction. The solvent was evaporated under a vacuum. The residue
was suspended in NaHCO3 aq 1 M (10 mL) and the resulting
suspension was cooled to 4 °C (overnight). The final product was
obtained by filtration, washed with water and air-dried.

3-(3-Fluorophenyl)-5-(1-(piperidin-4-yl)-1H-pyrazol-4-yl)-1-tosyl-
1H-pyrrolo [2,3-b]pyridine (24). From tert-butyl 4-(4-(3-(3-fluoro-
phenyl)-1-tosyl-1H-pyrrolo[2,3-b]pyridin-5-yl)-1H-pyrazol-1-yl)-
piperidine-1-carboxylate (19) (106 mg, 0.17 mmol) in CH2Cl2 (10
mL) and TFA (2 mL). Yield: (68 mg, 78%). mp 141.8−142.6 °C. 1H
NMR: CDCl3 (400 MHz): δ 8.61 (d, 1H, 6-H); 8.12 (d, 2H, Tos);
8.06 (d, 1H, 4-H); 7.88 (s, 1H, 2-H); 7.77 (s, 1H, Ind); 7.70 (s, 1H,
Ind); 7.47−7.43 (m, 1H, Ar); 7.39−7.37 (m, 1H, Ar); 7.31−7.28 (m,
3H, Ar, Tos); 7.11−7.06 (m, 1H, Ar); 4.29−4.24 (m, 1H, CH);
3.29−3.24 (m, 2H, Pip); 2.79 (t, 2H, Pip); 2.38 (s, 3H, CH3); 2.22−
2.18 (m, 2H, Pip); 1.98−1.88 (m, 2H, Pip). 13C NMR: Acetone-d6
(100 MHz): δ 164.0 (d, J = 243 Hz; Ph); 146.9 (C-7a); 145.6 (Ts);
143.6 (C-6); 136.9 (Ind); 136.2 (Ts); 136.0 (d, J = 8 Hz; Ph); 131.7
(d, J = 9 Hz; Ph); 130.6 (2C, Ts); 129.0 (2C, Ts); 126.5 (C-5); 125.7
(C-4); 125.6 (C-2); 125.0 (Ind); 124.3 (d, J = 2 Hz; Ph); 121.9 (C-
3a); 119.8 (Ind); 119.7 (d, J = 2 Hz; C-3); 115.0 (d, J = 21 Hz; Ph);
114.6 (d, J = 21 Hz; Ph); 60.2 (CH); 45.6 (2C, Pip); 33.9 (2C, Pip);
21.5 (CH3). HPLC-MS (ES+): CH3CN/H2O 15:85−95:5, gt: 5 min;
rt: 5.09; [M + H]+, 516.

3-(3-Methoxyphenyl)-5-(1-(piperidin-4-yl)-1H-pyrazol-4-yl)-1-
tosyl-1H-pyrrolo [2,3-b]pyridine (25). From tert-butyl 4-(4-(3-(3-
methoxyphenyl)-1-tosyl-1H-pyrrolo[2,3-b]pyridin-5-yl)-1H-pyrazol-
1-yl)piperidine-1-carboxylate (20) (230 mg, 0.37 mmol) in CH2Cl2
(10 mL) and TFA (2 mL). Yield: (192 mg, 98%). mp 121.8−122.3
°C. 1H NMR: CDCl3 (400 MHz): δ 8.59 (d, 1H, 6-H); 8.12−8.09
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(m, 3H, Ts, 4-H); 7.86 (s, 1H, 2-H); 7.76 (d, 1H, Ind); 7.69 (d, 1H,
Ind); 7.41 (t, 1H, Ar); 7.28 (d, 2H, Ts); 7.18 (d, 1H, Ar); 7.12−7.11
(m, 1H, Ar); 6.95−6.92 (m, 1H, Ar); 4.28−4.22 (m, 1H, Pip); 3.88
(s, 3H, OCH3); 3.28−3.23 (m, 2H, Pip); 2.81−2.74 (m, 2H, Pip);
2.37 (s, 3H, CH3); 2.21−2.16 (d, 2H, Pip); 1.98−1.87 (m, 2H, Pip).
13C NMR: CDCl3 (100 MHz): δ 160.3 (Ph); 146.4 (C-7a); 145.4
(Ts); 143.3 (C-6); 136.5 (Ind); 135.5 (Ts); 134.1 (Ph); 130.3 (Ph);
129.8 (2C, Ts); 128.2 (2C, Ts); 125.5 (C-4); 125.0 (C-2); 123.8 (C-
5); 123.5 (Ind); 121.8 (C-3a); 120.3 (Ind); 120.1 (C-3); 119.8 (C-
3); 113.5 (Ph); 113.1 (Ph); 60.1 (CH); 55.5 (OCH3); 45.8 (2C,
Pip); 34.1 (2C, Pip); 21.8 (CH3). HPLC-MS (ES+): CH3CN/H2O
15:85−95:5, gt: 5 min; rt = 4.97; [M + H]+, 528.

3-(3,5-Dichlorophenyl)-5-(1-(piperidin-4-yl)-1H-pyrazol-4-yl)-1-
tosyl-1H-py-rrolo[2,3-b]pyridine (26). From tert-butyl 4-(4-(3-(3,5-
dichlorophenyl)-1-tosyl-1H-pyrro-lo[2,3-b]pyridin-5-yl)-1H-pyrazol-
1-yl)piperidine-1-carboxylate (21) (306 mg, 0.46 mmol) in CH2Cl2
(10 mL) and TFA (2 mL). Yield: (213 mg, 82%). mp 132.9−133.5
°C. 1H NMR: CDCl3 (400 MHz): δ 8.62 (d, 1H, 6-H); 8.12 (d, 2H,
Ts); 8.01 (d, 1H, 4-H); 7.88 (s, 1H, 2-H); 7.78 (s, 1H, Ind); 7.71 (s,
1H, Ind); 7.46 (s, 2H, Ar); 7.37 (s, 1H, Ar); 7.30 (d, 2H, Ts); 4.31−
4.23 (m, 1H, Pip); 3.28−3.23 (m, 2H, Pip); 2.78 (t, 2H, Pip); 2.38 (s,
3H, CH3); 2.21−2.17 (m, 2H, Pip); 1.99−1.90 (m, 2H, Pip). 13C
NMR: CDCl3 (100 MHz): δ 146.2 (C-7a); 145.7 (Ts); 143.8 (C-6);
136.5 (Ind); 135.9 (Ts); 135.8 (2C, Ph); 135.2 (Ph); 129.9 (2C, Ts);
128.4 (2C, Ts); 127.8 (Ph); 125.9 (2C, Ph); 125.3 (C-4); 124.9 (C-
2); 124.3 (C-5); 123.9 (Ind); 121.0 (C-3a); 119.5 (Ind); 117.8 (C-
3); 60.2 (CH); 45.8 (2C, Pip); 34.1 (2C, Pip); 21.8 (CH3). HPLC-
MS (ES+): CH3CN/H2O 15:85−95:5, gt: 5 min; rt = 5.41; [M + H]+,
566/568.

3-(2-Fluoro-5-methoxy-4-methylphenyl)-5-(1-(piperidin-4-yl)-
1H-pyrazol-4-yl)-1-tosyl-1H-pyrro-lo[2,3-b]pyridine (27). From tert-
butyl 4-(4-(3-(2-fluoro-5-methoxy-4-methylphenyl)-1-tosyl-1H-
pyrrolo[2,3-b]pyridin-5-yl)-1H-pyrazol-1-yl)piperidine-1-carboxy-late
(22) (246 mg, 0.37 mmol) in CH2Cl2 (10 mL) and TFA (2 mL).
Yield: (203 mg, 98%). mp 117.9−118.6 °C. 1H NMR: CDCl3 (400
MHz): δ 8.59 (d, 1H, 6-H); 8.12 (d, 2H, Ts); 7.95 (t, 1H, 4-H); 7.88
(s, 1H, 2-H); 7.74 (s, 1H, Ind); 7.68 (s, 1H, Ind); 7.29 (d, 2H, Ts);
7.01 (d, 1H, Ar); 6.90 (d, 1H, Ar); 4.29−4.21 (m, 1H, CH); 3.86 (s,
3H, OCH3); 3.28−3.24 (m, 2H, Pip); 2.78 (td, 2H, Pip); 2.37 (s, 3H,
CH3); 2.27 (s, 3H, CH3); 2.20−2.16 (m, 2H, Pip); 1.95−1.91 (m,
2H, Pip). 13C NMR: CDCl3 (100 MHz): δ 154.2 (d, J = 2 Hz; Ph);
153.8 (d, J = 239 Hz; Ph); 146.0 (C-7a); 145.4 (Ts); 143.2 (C-6);
136.4 (Ind); 135.4 (Ts); 129.8 (2C, Ts); 128.6 (d, J = 8 Hz; Ph);
128.3 (2C, Ts); 126.1 (d, J = 4 Hz; C-4); 124.9 (d, J = 3 Hz; C-2);
124.8 (C-5); 123.7 (Ind); 122.2 (C-3a); 119.8 (Ind); 118.4 (d, J = 23
Hz, Ph); 117.2 (d, J = 16 Hz; Ph); 115.0 (C-3); 111.2 (d, J = 5 Hz;
Ph); 60.0 (CH); 56.2 (OCH3); 45.8 (2C, Pip); 34.0 (2C, Pip); 21.8
(CH3); 16.3 (CH3). HPLC-MS (ES+): CH3CN/H2O 15:85−95:5, gt:
5 min; rt: 5.26; [M + H]+, 560.

General Procedure for the Synthesis of the 3-(Aryl)-5-(1-(1-
methyl-piperidin-4-yl)-1H-pyrazol-4-yl)-1-tosyl-1H-pyrrolo[2,3-b]-
pyridine Compounds 28−31. Over a solution of the corresponding
piperidine derivative (24−27) in formic acid at rt, was added,
dropwise, formaldehyde 37% aqueous. The mixture was stirred and
heated to 70 °C until the end of the reaction. The solvent was
evaporated under a vacuum. A saturated aqueous solution of sodium
carbonate (Na2CO3) was added (to pH = 10) and the obtained
suspension was cooled to 4 °C (overnight). The final product was
obtained by filtration, washed with water and air-dried.

3-(3-Fluorophenyl)-5-(1-(1-methylpiperidin-4-yl)-1H-pyrazol-4-
yl)-1-tosyl-1H-pyrrolo[2,3-b]pyridine (28). From 3-(3-fluorophenyl)-
5-(1-(piperidin-4-yl)-1H-pyrazol-4-yl)-1-tosyl-1H-pyrrolo[2,3-b]-
pyridine (24) (120 mg, 0.23 mmol), formic acid (2 mL) and
formaldehyde 37% aqueous (0.7 mL, 4.4 mmol). Time of reaction: 24
h. Yield: (111 mg, 89%). mp 191.7−192.3 °C. 1H NMR: CDCl3 (400
MHz): δ 8.62 (d, 1H, 6-H); 8.13 (d, 2H, Tos); 8.08 (d, 1H, 4-H);
7.89 (s, 1H, 2-H); 7.79 (s, 1H, Ind); 7.73 (s, 1H, Ind); 7.49−7.43 (m,
1H, Ar); 7.40−7.36 (m, 1H, Ar); 7.32−7.29 (m, 3H, Ar, Tos); 7.11−
7.06 (m, 1H, Ar); 4.20−4.14 (m, 1H, CH); 3.00 (d, 2H, Pip); 2.38 (s,
CH3); 2.34 (s, NCH3); 2.22−2.08 (m, 6H, Pip). 13C NMR: CDCl3

(100 MHz): δ 163.2 (d, J = 245 Hz; Ph); 146.2 (C-7a); 145.4 (Ts);
143.3 (C-6); 136.3 (Ind); 135.2 (Ts); 134.9 (d, J = 8 Hz; Ph); 130.8
(d, J = 9 Hz; Ph); 129.8 (2C, Ts); 128.2 (2C, Ts); 125.1 (C-4); 125.0
(C-2); 123.7 (C-5); 123.6 (Ind); 123.2 (d, J = 3 Hz; Ph); 121.4 (C-
3a); 119.6 (Ind); 119.1 (d, J = 3 Hz; C-3); 114.6 (d, J = 21 Hz; Ph);
114.3 (d, J = 22 Hz; Ph); 59.3 (CH); 54.7 (2C, Pip); 46.0 (NCH3);
32.6 (2C, Pip); 21.7 (CH3). HPLC-MS (ES+): CH3CN/H2O 15:85−
95:5, gt: 5 min; rt = 5.09; [M + H]+, 530.

3-(3-Methoxyphenyl)-5-(1-(1-methylpiperidin-4-yl)-1H-pyrazol-
4-yl)-1-tosyl-1H-pyrrolo[2,3-b]pyridine (29). From 3-(3-methoxy-
phenyl)-5-(1-(piperidin-4-yl)-1H-pyrazol-4-yl)-1-tosyl-1H-pyrrolo-
[2,3-b]pyridine (25) (120 mg, 0.23 mmol), formic acid (2 mL), and
formaldehyde 37% aqueous (0.7 mL, 4.4 mmol). Time of reaction: 18
h. Yield: (111 mg, 89%). mp 147.9−148.6 °C. 1H NMR: CDCl3 (400
MHz): δ 8.60 (d, 1H, 6-H); 8.13−8.08 (m, 3H, Ts, 4-H); 7.87 (s, 1H,
2-H); 7.77 (s, 1H, Ind); 7.71 (s, 1H, Ind); 7.41 (t, 1H, Ar); 7.29 (d,
2H, Ts); 7.19 (d, 1H, Ar); 7.13 (s, 1H, Ar); 6.94 (d, 1H, Ar); 4.19−
4.13 (m, 1H, Pip); 3.88 (s, 3H, OCH3); 3.01−2.98 (m, 2H, Pip); 2.37
(s, 3H, CH3); 2.34 (s, NCH3); 2.22−2.07 (m, 6H, Pip). 13C NMR:
CDCl3 (100 MHz): δ 160.2 (Ph); 146.4 (C-7a); 145.3 (Ts); 143.2
(C-6); 136.4 (Ind); 135.4 (Ts); 134.0 (Ph); 130.2 (Ph); 129.8 (2C,
Ts); 128.2 (2C, Ts); 125.4 (C-4); 124.9 (C-2); 123.7 (C-5); 123.4
(Ind); 121.8 (C-3a); 120.3 (Ph); 120.0 (Ind); 119.8 (C-3); 113.4
(Ph); 113.1 (Ph); 59.3 (CH); 55.4 (OCH3); 54.7 (2C, Pip); 46.1
(NCH3); 32.7 (2C, Pip); 21.7 (CH3). HPLC-MS (ES+): CH3CN/
H2O 15:85−95:5, gt: 5 min; rt = 5.11; [M + H]+, 542.

3-(3,5-Dichlorophenyl)-5-(1-(1-methylpiperidin-4-yl)-1H-pyra-
zol-4-yl)-1-tosyl-1H-pyrrolo[2,3-b]pyridine (30). From 3-(3,5-di-
chlorophenyl)-5-(1-(piperidin-4-yl)-1H-pyrazol-4-yl)-1-tosyl-1H-
pyrrolo[2,3-b]pyridine (26) (120 mg, 0.21 mmol), formic acid (5
mL), and formaldehyde 37% aqueous (2 mL, 4.4 mmol). Time of
reaction: 28 h. Yield: (103 mg, 84%). mp 113.8−114.5 °C. 1H NMR:
CDCl3 (400 MHz): δ 8.61 (d, 1H, 6-H); 8.12 (d, 2H, Ts); 8.01 (d,
1H, 4-H); 7.88 (s, 1H, 2-H); 7.77 (s, 1H, Ind); 7.70 (s, 1H, Ind);
7.46 (d, 2H, Ar); 7.37 (t, 1H, Ar); 7.30 (d, 2H, Ts); 4.22−4.13 (m,
1H, Pip); 3.01−2.98 (m, 2H, Pip); 2.38 (s, 3H, CH3); 2.34 (s, 3H,
NCH3); 2.22−2.10 (m, 6H, Pip). 13C NMR: CDCl3 (100 MHz): δ
146.2 (C-7a); 145.7 (Ts); 143.8 (C-6); 136.5 (Ind); 135.9 (Ts);
135.8 (2C, Ph); 135.2 (Ph); 129.9 (2C, Ts); 128.4 (2C, Ts); 127.8
(Ph); 125.9 (2C, Ph); 125.4 (C-4); 124.9 (C-2); 124.3 (C-5); 124.0
(Ind); 121.0 (C-3a); 119.5 (Ind) 117.8 (C-3); 59.5 (CH); 54.8 (2C,
Pip); 46.2 (NCH3); 32.8 (2C, Pip); 21.8 (CH3). HPLC-MS (ES+):
CH3CN/H2O 15:85−95:5, gt: 5 min; rt = 5.47; [M + H]+, 580/582.

3-(2-Fluoro-5-methoxy-4-methylphenyl)-5-(1-(1-methylpiperi-
din-4-yl)-1H-py-razol-4-yl)-1-tosyl-1H-pyrrolo[2,3-b]pyridine (31).
From 3-(2-fluoro-5-methoxy-4-methylphenyl)-5-(1-(piperidin-4-yl)-
1H-pyrazol-4-yl)-1-tosyl-1H-pyrrolo[2,3-b]pyridine (27) (103 mg,
0.18 mmol), formic acid (5 mL) and formaldehyde 37% aqueous
(2 mL, 4.4 mmol). Time of reaction: 18 h. Yield: (90 mg, 87%). mp
113.9−114.6 °C. 1H NMR: CDCl3 (400 MHz): δ 8.58 (d, 1H, 6-H);
8.12 (d, 2H, Ts); 7.94 (t, 1H, 4-H); 7.88 (s, 1H, 2-H); 7.73 (s, 1H,
Ind); 7.66 (s, 1H, Ind); 7.29 (d, 2H, Ts); 7.01 (d, 1H, Ar); 6.90 (d,
1H, Ar); 4.17−4.12 (m, 1H, CH); 3.86 (s, 3H, OCH3); 2.99−2.96
(m, 2H, Pip); 2.37 (s, 3H, CH3); 2.33 (s, NCH3); 2.27 (s, 3H, CH3);
2.19−2.07 (m, 6H, Pip). 13C NMR: CDCl3 (100 MHz): δ 154.2 (d, J
= 1 Hz; Ph); 153.8 (d, J = 239 Hz; Ph); 146.0 (C-7a); 145.4 (Ts);
143.2 (C-6); 136.4 (Ind); 135.4 (Ts); 129.9 (2C, Ts); 128.6 (d, J = 8
Hz; Ph); 128.3 (2C, Ts); 126.1 (d, J = 5 Hz; C-4); 124.9 (d, J = 3 Hz;
C-2); 124.8 (C-5); 123.6 (Ind); 122.2 (C-3a); 119.9 (Ind); 118.4 (d,
J = 24 Hz, Ph); 117.3 (d, J = 16 Hz; Ph); 115.0 (C-3); 111.2 (d, J = 5
Hz; Ph); 59.4 (CH); 56.2 (OCH3); 54.8 (2C, Pip); 46.2 (NCH3);
32.8 (2C, Pip); 21.8 (CH3); 16.3 (CH3). HPLC-MS (ES+): CH3CN/
H2O 15:85−95:5, gt: 5 min; rt = 5.28; [M + H]+, 574.

General Procedure for the Synthesis of the 3-(Aryl)-5-(1-(1-
methylpipe-ridin-4-yl)-1H-pyrazol-4-yl)-1H-pyrrolo[2,3-b]pyridine
Compounds 1, 5−11. A solution of the corresponding tosyl
derivative (24−31) in 0.4 M NaOH methanolic solution was stirred
at room temperature until the end of the reaction. The solvent was
evaporated under a vacuum. Water was added and the obtained

Journal of Medicinal Chemistry pubs.acs.org/jmc Article

https://doi.org/10.1021/acs.jmedchem.5c00512
J. Med. Chem. 2025, 68, 10346−10364

10359

pubs.acs.org/jmc?ref=pdf
https://doi.org/10.1021/acs.jmedchem.5c00512?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


suspension was cooled to 4 °C (overnight). The final product was
obtained by filtration, washed with water and air-dried.

3-(3-Fluorophenyl)-5-(1-(1-methylpiperidin-4-yl)-1H-pyrazol-4-
yl)-1H-pyrro-lo[2,3-b]pyridine (1). From 3-(3-fluorophenyl)-5-(1-(1-
methylpiperidin-4-yl)-1H-pyrazol-4-yl)-1-tosyl-1H-pyrrolo[2,3-b]-
pyridine (28) (55 mg, 0.1 mmol) and 0.4 M NaOH methanolic
solution (20 mL). Time of reaction: 2 h. Yield: (32 mg, 90%). mp
234.6−235.8 °C. 1H NMR: DMSO-d6 (400 MHz): δ 11.99 (br s, 1H,
NH); 8.56 (d, 1H, 6-H); 8.41 (d, 1H, 4-H); 8.38 (s, 1H, 2-H); 8.00
(s, 1H, Ind); 7.96 (s, 1H, Ind); 7.59−7.47 (m, 3H, Ar); 7.07 (t, 1H,
Ar); 4.14−4.10 (m, 1H, CH); 2.87 (d, 2H, Pip); 2.21−2.31 (s, 3H,
CH3); 2.08−1.98 (m, 6H, Pip). 13C NMR: DMSO-d6 (100 MHz): δ
162.8 (d, J = 242 Hz; Ph); 147.9 (C-7a); 141.0 (C-6); 137.6 (d, J = 8
Hz; Ph); 135.7 (Ind); 130.7 (d, J = 9 Hz; Ph); 125.2 (C-2); 124.9
(Ind); 123.3 (C-4); 122.2 (d, J = 1 Hz; Ph); 121.7 (C-5); 119.8
(Ind); 117.1 (C-3a); 113.1 (d, J = 2 Hz; C-3); 112.6 (d, J = 21 Hz;
Ph); 112.1 (d, J = 21 Hz; Ph); 58.3 (CH); 54.2 (2C, Pip); 45.8
(NCH3); 32.1 (2C, Pip). HPLC-MS (ES+): CH3CN/H2O 20:80−
95:5, gt: 5 min; rt = 4.15; [M + H]+, 376.

3-(3-Methoxyphenyl)-5-(1-(1-methylpiperidin-4-yl)-1H-pyrazol-
4-yl)-1H-pyrro-lo[2,3-b]pyridine (5). From 3-(3-methoxyphenyl)-5-
(1-(1-methylpiperidin-4-yl)-1H-pyrazol-4-yl)-1-tosyl-1H-pyrrolo[2,3-
b]pyridine (29) (75 mg, 0.14 mmol) and 0.4 M NaOH methanolic
solution (40 mL). Time of reaction: 4 h. Yield: (42 mg, 85%). mp
134.9−135.4 °C. 1H NMR: CDCl3 (400 MHz): δ 11.73 (br s, 1H,
NH); 8.71 (d, 1H, 6-H); 8.32 (d, 1H, 4-H); 8.28 (d, 1H, Ind); 7.83
(d, 1H, 2-H); 7.51 (d, 1H, Ind); 7.40 (t, 1H, Ar); 7.27 (d, 1H, Ar);
7.21 (s, 1H, Ar); 6.88 (d, 1H, Ar); 4.36−4.28 (m, 1H, Pip); 3.89 (s,
3H, OCH3); 3.15−3.11 (m, 2H, Pip); 2.55−2.45 (m, 5H, NCH3,
Pip); 2.31−2.20 (m, 4H, Pip). 13C NMR: CDCl3 (100 MHz): δ 160.2
(Ph); 148.6 (C-7a); 141.6 (C-6); 136.6 (Ph); 135.9 (Ind); 130.1
(Ph); 124.7 (C-2); 123.8 (Ind); 123.4 (C-4); 122.2 (C-5); 121.3
(Ph); 119.8 (Ind); 118.6 (C-3a); 116.3 (Ph); 111.6 (C-3); 113.1
(Ph); 111.6 (Ph); 59.7 (CH); 55.5 (OCH3); 55.1 (2C, Pip); 46.0
(CH3); 32.6 (2C, Pip). HPLC-MS (ES+): CH3CN/H2O 20:80−95:5,
gt: 5 min; rt = 4.12; [M + H]+, 388.

3-(3,5-Dichlorophenyl)-5-(1-(1-methylpiperidin-4-yl)-1H-pyra-
zol-4-yl)-1H-py-rrolo[2,3-b]pyridine (6). From 3-(3,5-dichlorophen-
yl)-5-(1-(1-methylpiperidin-4-yl)-1H-pyrazol-4-yl)-1-tosyl-1H-
pyrrolo[2,3-b]pyridine (30) (62 mg, 0.11 mmol) and 0.4 M NaOH
methanolic solution (20 mL). Time of reaction: 4 h. Yield: (28 mg,
64%). mp 219.8−220.5 °C. 1H NMR: DMSO-d6 (400 MHz): δ 12.13
(br s, 1H, NH); 8.56 (br s, 1H, 6-H); 8.36 (br s, 2H, 4-H, Ind); 8.07
(s, 1H, 2-H); 7.99 (s, 1H, Ind); 7.78 (br s, 2H, Ar); 7.44 (s, 1H, Ar);
4.13 (br s, 1H, CH); 3.32 (br s, 2H, Pip); 2.87 (br s, 2H, Pip); 2.21
(br s, 2H, Pip); 2.03 (br s, 5H, Pip, NCH3). 13C NMR: DMSO-d6
(100 MHz): δ 147.9 (C-7a); 141.3 (C-6); 138.9 (Ph); 135.8 (Ind);
134.6 (2C, Ph); 126.4 (C-2); 125.1 (Ph); 124.8 (Ind); 124.4 (2C,
Ph); 123.2 (C-4); 122.0 (C-5); 119.6 (Ind); 116.8 (C-3a); 111.6 (C-
3); 58.3 (CH); 54.2 (2C, Pip); 45.8 (NCH3); 32.1 (2C, Pip). HPLC-
MS (ES+): CH3CN/H2O 15:85−95:5, gt: 5 min; rt = 4.71; [M + H]+,
426/428.

3-(2-Fluoro-5-methoxy-4-methylphenyl)-5-(1-(1-methylpiperi-
din-4-yl)-1H-py-razol-4-yl)-1H-pyrrolo[2,3-b]pyridine (7). From 3-
(2-fluoro-5-methoxy-4-methylphenyl)-5-(1-(1-methylpiperidin-4-yl)-
1H-pyrazol-4-yl)-1-tosyl-1H-pyrrolo[2,3-b]pyridine (31) (66 mg,
0.12 mmol) and 0.4 M NaOH methanolic solution (20 mL). Time
of reaction: 4 h. Yield: (40 mg, 83%). mp 226.8−227.5 °C. 1H NMR:
DMSO-d6 (400 MHz): δ 11.93 (br s, 1H, NH); 8.55 (d, 1H, 6-H);
8.31 (s, 1H, Ind); 8.17 (t, 1H, 4-H); 7.93 (s, 1H, Ind); 7.72 (s, 1H, 2-
H); 7.15−7.11 (m, 2H, Ar); 4.15−4.07 (m, 1H, CH); 3.87 (s, 3H,
OCH3); 2.86 (d, 2H, Pip); 2.20 (s, 3H, CH3); 2.20 (NCH3); 2.08−
1.96 (m, 6H, Pip). 13C NMR: DMSO-d6 (100 MHz): δ 153.6 (d, J =
1 Hz; Ph); 152.8 (d, J = 235 Hz; Ph); 147.4 (C-7a); 140.9 (C-6);
135.5 (Ind); 125.9 (d, J = 5 Hz; C-2); 125.1 (d, J = 5 Hz; Ph); 124.7
(Ind); 123.6 (d, J = 4 Hz; C-4); 121.3 (C-5); 119.8 (Ind); 119.6 (d, J
= 7 Hz; Ph); 118.0 (C-3a); 117.6 (d, J = 14 Hz; Ph); 111.2 (d, J = 4
Hz; Ph); 108.5 (C-3); 59.3 (CH); 55.8 (OCH3); 54.2 (2C, Pip); 45.8
(NCH3); 32.1 (2C, Pip); 15.7 (CH3). HPLC-MS (ES+): CH3CN/
H2O 15:85−95:5, gt: 5 min; rt = 4.52; [M + H]+, 420.

3-(3-Fluorophenyl)-5-(1-(piperidin-4-yl)-1H-pyrazol-4-yl)-1H-
pyrrolo[2,3-b]py-ridine (8). From 3-(3-fluorophenyl)-5-(1-(piperidin-
4-yl)-1H-pyrazol-4-yl)-1-tosyl-1H-pyrrolo [2,3-b]pyridine (24) (48
mg, 0.09 mmol) and 0.4 M NaOH in MeOH (20 mL). Time of
reaction: 70 min. Yield: (28 mg, 89%). mp 146.8−147.6 °C. 1H
NMR: DMSO-d6 (400 MHz): δ 12.02 (br s, 1H, NH); 8.56 (d, 1H,
6-H); 8.41 (d, 1H, 4-H); 8.36 (s, 1H, Ind); 7.99 (s, 1H, Ind); 7.96 (s,
1H, 2-H); 7.65 (d, 1H, Ar); 7.60−7.57 (m, 1H, Ar); 7.51−7.45 (m,
1H, Ar); 7.09−7.04 (m, 1H, Ar); 4.24−4.16 (m, 1H, CH); 3.07−3.03
(m, 2H, Pip); 2.63−2.56 (m, 2H, Pip); 2.02−1.98 (m, 2H, Pip);
1.88−1.78 (m, 2H, Pip). 13C NMR: DMSO-d6 (100 MHz): δ 162.8
(d, J = 244 Hz; Ph); 147.9 (C-7a); 141.0 (C-6); 137.6 (d, J = 8 Hz;
Ph); 135.6 (Ind); 130.7 (d, J = 9 Hz; Ph); 125.2 (C-2); 124.7 (Ind);
123.3 (C-4); 122.2 (d, J = 2 Hz; Ph); 121.8 (C-5); 119.7 (Ind); 117.1
(C-3a); 113.0 (d, J = 3 Hz; C-3); 112.5 (d, J = 22 Hz; Ph); 112.1 (d, J
= 21 Hz; C-3); 59.4 (CH); 45.2 (2C, Pip); 33.7 (2C, Pip). HPLC-
MS (ES+): CH3CN/H2O 20:80−95:5, gt: 5 min; rt = 1.68; [M + H]+,
362.

3-(3-Methoxyphenyl)-5-(1-(piperidin-4-yl)-1H-pyrazol-4-yl)-1H-
pyrrolo[2,3-b]pyridine (9). From 3-(3-methoxyphenyl)-5-(1-(piper-
idin-4-yl)-1H-pyrazol-4-yl)-1-tosyl-1H-pyrrolo[2,3-b]pyridine (25)
(50 mg, 0.09 mmol) and 0.4 M NaOH in MeOH (20 mL). Time
of reaction: 70 min. Yield: (25 mg, 74%). mp 246.8−247.3 °C. 1H
NMR: DMSO-d6 (400 MHz): δ 11.91 (br s, 1H, NH); 8.55 (d, 1H,
6-H); 8.40−8.34 (m, 2H, 4-H, Ind); 7.97 (m, 1H, 2-H); 7.87 (s, 1H,
Ind); 7.38−7.36 (m, 2H, Ar); 7.26 (s, 1H, Ar); 6.86−6.83 (m, 1H,
Ar); 4.23−4.16 (m, 1H, CH); 3.89 (s, 3H, CH3); 3.15−3.03 (m, 2H,
Pip); 2.63−2.60 (m, 2H, Pip); 2.12−1.96 (m, 4H, Pip). 13C NMR:
DMSO-d6 (100 MHz): δ 159.9 (Ph); 147.9 (C-7a); 141.2 (C-6);
136.6 (Ph); 135.7 (Ind); 130.2 (Ph); 124.9 (C-2); 124.6 (Ind); 123.6
(Ph); 121.8 (C-4); 119.9 (C-5); 119.1 (Ind); 117.6 (C-3a); 114.5
(Ph); 111.9 (Ph); 111.6 (C-3); 59.4 (CH); 55.3 (OCH3); 45.1 (2C,
Pip); 33.6 (2C, Pip). HPLC-MS (ES+): CH3CN/H2O 20:80−95:5,
gt: 5 min; rt = 4.03; [M + H]+, 374.

3-(3,5-Dichlorophenyl)-5-(1-(piperidin-4-yl)-1H-pyrazol-4-yl)-1H-
pyrrolo[2,3-b]pyridine (10). From 3-(3,5-dichlorophenyl)-5-(1-(pi-
peridin-4-yl)-1H-pyrazol-4-yl)-1-tosyl-1H-pyrrolo[2,3-b]pyridine
(26) (80 mg, 0.14 mmol) and 0.4 M NaOH in MeOH (20 mL).
Time of reaction: 4 h. Yield: (31 mg, 71%). mp 271.1−271.9 °C. 1H
NMR: DMSO-d6 (400 MHz): δ 12.08 (br s, 1H, NH); 8.56 (d, 1H,
6-H); 8.36 (d, 1H, 4-H); 8.34 (s, 1H, Ind); 8.07 (s, 1H, 2-H); 7.99 (s,
1H, Ind); 7.78 (d, 2H, Ar); 7.44 (s, 1H, Ar); 4.23−4.17 (m, 1H,
CH); 3.05 (d, 2H, Pip); 2.59 (t, 2H, Pip); 1.99 (d, 2H, Pip); 1.84−
1.80 (m, 2H, Pip). 13C NMR: DMSO-d6 (100 MHz): δ 148.0 (C-7a);
141.3 (C-6); 138.9 (Ph); 135.7 (Ind); 134.6 (2C, Ph); 126.5 (C-2);
124.9 (Ph); 124.7 (Ind); 124.4 (2C, Ph); 123.2 (C-4); 122.0 (C-5);
119.6 (Ind); 116.9 (C-3a); 111.5 (C-3); 59.4 (CH); 45.2 (2C, Pip);
33.7 (2C, Pip). HPLC-MS (ES+): CH3CN/H2O 15:85−95:5, gt: 5
min; rt = 4.69; [M + H]+, 412/414.

3-(2-Fluoro-5-methoxy-4-methylphenyl)-5-(1-(piperidin-4-yl)-
1H-pyrazol-4-yl)-1H-pyrrolo[2,3-b]pyridine (11). From 3-(2-fluoro-
5-methoxy-4-methyl phenyl)-5-(1-(piperidin-4-yl)-1H-pyrazol-4-yl)-
1-tosyl-1H-pyrrolo[2,3-b]pyridine (27) (70 mg, 0.12 mmol) and 0.4
M NaOH in MeOH (20 mL). Time of reaction: 4 h. Yield: (37 mg,
75%). mp 247.9−248.5 °C. 1H NMR: DMSO-d6 (400 MHz): δ 11.96
(br s, 1H, NH); 8.56 (d, 1H, 6-H); 8.29 (s, 1H, Ind); 8.17 (t, 1H, 4-
H); 7.92 (s, 1H, Ind); 7.72 (s, 1H, 2-H); 7.15−7.13 (m, 2H, Ar);
4.22−4.14 (m, 1H, CH); 3.87 (s, 3H, OCH3); 3.04 (d, 2H, Pip); 2.59
(t, 2H, Pip); 2.20 (s, 3H, CH3); 1.98 (d, 2H, Pip); 1.86−1.76 (m, 2H,
Pip). 13C NMR: DMSO-d6 (100 MHz): δ 153.6 (d, J = 1 Hz; Ph);
152.8 (d, J = 235 Hz; Ph); 147.4 (C-7a); 141.0 (C-6); 135.4 (Ind);
125.8 (d, J = 4 Hz; C-2); 125.1 (d, J = 8 Hz; Ph); 124.5 (Ind); 123.6
(d, J = 4 Hz; C-4); 121.4 (C-5); 119.7 (Ind); 119.6 (d, J = 15 Hz,
Ph); 118.0 (C-3a); 117.6 (d, J = 14 Hz; Ph); 111.2 (d, J = 4 Hz; Ph);
108.6 (C-3); 59.3 (CH); 55.8 (OCH3); 45.2 (2C, Pip); 33.6 (2C,
Pip); 15.7 (CH3). HPLC-MS (ES+): CH3CN/H2O 15:85−95:5, gt: 5
min; rt = 4.49; [M + H]+, 406.
Biological Studies. Inhibition of Human DYRK1A Kinase. The

ADP-Glo+ DYRK1A/DYRK1B Kinase Enzyme Systems from
Promega (no. catalog VA7425 AND VA7428, respectively) was
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used to screen compounds for activity against DYRK1A AND
DYRK1B. ATP and other reagents were purchased from Sigma-
Aldrich (St. Louis, MO). The assays were performed in a buffer
solution using 96-well plates. The compound to be tested (5 μL, 40
μM dissolved in 4% DMSO) was added to each well followed by ATP
(5 μL, final concentration in the well 10 μM), DYRKtidE (5 μL, 4 μg/
well) and the enzyme (5 μL, 25 ng/well). It was then allowed to
incubate for 60 min at room temperature and ADP-Gloreagent (20
μL) was added allowing it to incubate again for 40 min at room
temperature. After the incubation, the kinase detection agent (40 μL)
was added and allowed to incubate for 30 min at room temperature.
Finally, the luminescence was recorded using a FLUOstar Optima
(BMG Labtechnologies GmbH, Offenburg, Germany) multimode
reader. The inhibition activities were calculated based on the
maximum activity measured in the absence of an inhibitor.
Experiments were performed in triplicate. Dose−response curves for
IC50 determination of DYRK1A and DYRK1B of harmine and
compounds 1, 5−11 are shown in the Supporting Information.

Cell Culture. The mouse microglial BV2 cell line was propagated
using DMEM, 10% FBS, 1% streptomycin−penicillin, under
humidified 5% CO2 and 95% air. On attaining semiconfluence, cells
were treated with 400 ng/mL of LPS for 24 h. Some cultures were
pretreated for 1 h with the different compounds at several
concentrations ranging from 1 to 10 μM. After treatment, cultures
were processed for cell viability and nitrite production. Experiments
were performed in triplicate. BV2 cells, microglial cells derived from
C57/BL6 murine. These cells were immortalized using the v-raf/v-
myc carrying J2 retrovirus, resulting in a stable cell line. The cells are
commercially available from https://www.cytion.com/BV2-Cells/
305156.

Cell Viability. Cell viability was determined using the MTT assay,
which measures the reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) to formazan crystals. Briefly, the
MTT solution (2 mg/mL) was added to each well and incubated at
37 °C for 2 h. After removing the culture medium, 100 μL of dimethyl
sulfoxide was added to each well to dissolve the formazan. The optical
density was measured at 532 nm using a microplate reader. The
absorbance of the control group was considered as 100% of the cell
viability.

Nitrite Determination. The assessment of NO production involved
quantifying nitrite levels, one of the end products of NO oxidation,
through a procedure based on the diazotization of nitrite by sulfanilic
acid (Griess reaction). Upon reaching semiconfluence, cells were
exposed to 400 ng/mL of LPS for 24 h. Before this, certain cultures
were pretreated with various compounds at concentrations ranging
from 0.5 to 10 μM. Following a 24-h incubation period, 50 μL
aliquots of the samples were combined with 50 μL of Griess reagent
in 96-well plates, and the mixture was allowed to incubate at room
temperature for 10 min. The absorbance of the resulting mixture was
then measured at 520 nm using a microplate reader.

Measurement of the Antioxidant Effect of the Compounds. The
antioxidant activity of the newly synthesized compounds was assessed
using the oxygen radical absorbance capacity (ORAC) in vitro
assay75. The FLUOstar Optima plate reader (BMG Labtech GmbH,
Offenburg, Germany) was employed, with excitation at 485 nm and
emission at 520 nm. 2,2′-Azobis(amidinopropane) dihydrochloride
(AAPH), (±)-6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic
acid (trolox), and fluorescein (FL) were procured from Sigma-
Aldrich. The assay was conducted in 75 mM phosphate buffer (pH =
7.4) with a final reaction volume of 200 μL. Each well of black 96-well
plates contained 25 μL of the antioxidant sample and 150 μL of
fluorescein (10 nM). After preincubation at 37 °C for 30 min, 25 μL
of a 240 mM AAPH solution was rapidly added using a multichannel
pipet. Fluorescence measurements were taken every 90 s for 90 min,
with the plate agitated before each reading. The compounds were
tested at four concentrations (10−1 μM). A blank containing FL and
AAPH in phosphate buffer, as well as four concentrations of trolox
(10−1 μM) served as controls. All reactions were performed in
duplicate, with at least three independent tests per compound. Data
were exported for analysis, plotting absorbance versus time. The area

under the fluorescence decay curve (AUC) was calculated for each
sample. ORAC values were derived from the AUC values and
expressed as Trolox equivalents.75

PAMPA−BBB Assay. The brain penetration of active compounds
was assessed using a parallel artificial membrane permeability assay
(PAMPA).47 Eleven drugs with known blood−brain barrier (BBB)
permeability�Hydrocortisone, testosterone, imipramine, piroxicam,
promazine, clonidine, desipramine, ofloxacin, aldosterone, verapamil,
and caffeine�were included in each experiment to validate the
analysis.
The compounds were dissolved in a 70/30 PBS pH = 7.4 buffer/

ethanol solution at a concentration that ensured appropriate
absorbance values in the UV−vis light spectrum. A 5 mL volume of
these solutions was filtered using PDVF membrane filters (30 mm
diameter, 0.45 μ m pore size).
The acceptor 96-well microplate (MultiScreen 96-well Culture

Tray clear, Merck Millipore) was filled with 200 μL of PBS/ethanol
(70/30). The donor 96-well filtrate plate (Multiscreen IP Sterile Plate
PDVF membrane, 0.45 μ m pore size, Merck Millipore) was coated
with 4 μL of porcine brain lipid (Spectra 2000) in dodecane (20 mg
mL−1).
After 5 min, 200 μL of each compound solution were added. The

donor plate was then carefully placed onto the acceptor plate to form
a “sandwich,” which was left undisturbed for 3 h at 25 °C. During this
time, the compounds diffused from the donor plate through the brain
lipid membrane into the acceptor plate.
After incubation, the donor plate was removed. The concentrations

of the compounds and commercial drugs were determined by
measuring absorbance in the donor wells (before incubation) and the
acceptor wells (after incubation) using a CLARIOstar microplate
reader (BMG LABTECH). Each sample was analyzed at five
wavelengths in four replicates and two independent experiments.
The permeability coefficient (Pe) of each drug, in centimeters per

second, was calculated using the following formula
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where Vd and Vr are the volumes of the donor and receptor solutions
(0.2 cm3), s is the membrane area (0.2642 cm2), t is the incubation
time (3 h = 10,800 s), Ar is the absorbance of the receptor plate after
the experiment, and Ad is the absorbance in the donor compartment
before incubation. The results obtained for quality control drugs were
compared with permeability data from the literature. The linear
correlation between experimental and literature permeability values
was used to classify compounds as those capable of crossing the BBB
by passive permeation (CNS+, correlating with a bibliographic Pe > 4)
and those that cannot (CNS−, correlating with a bibliographic Pe <
2). Compounds that correlate with reported Pe values between 2 and
4 × 10−6 cm s−1 are classified as CNS+/−.
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Mendes Schuler, M. C. G.; Gonçalves, A. E.; Paula Dalmagro, A.;
André Cazarin, C.; Gomes Ferreira, L. L.; de Oliveira, A. S.; et al.
DYRK1A Inhibitors and Perspectives for the Treatment of
Alzheimer’sDisease. Curr. Med. Chem. 2023, 30, 669−688.
(4) Vanhaelen, Q.; Lin, Y.-C.; Zhavoronkov, A. The advent of
generative chemistry. ACS Med. Chem. Lett. 2020, 11, 1496−1505.
(5) Gangwal, A.; Ansari, A.; Ahmad, I.; Azad, A. K.; Kumarasamy,
V.; Subramaniyan, V.; Wong, L. S. Generative artificial intelligence in
drug discovery: basic framework, recent advances, challenges, and
opportunities. Front. Pharmacol. 2024, 15, 1331062.
(6) Yan, C.; Grabowska, M. E.; Dickson, A. L.; Li, B.; Wen, Z.;
Roden, D. M.; Michael Stein, C.; Embí, P. J.; Peterson, J. F.; Feng, Q.;
Malin, B. A.; Wei, W. Q. Leveraging generative AI to prioritize drug
repurposing candidates for Alzheimer’s disease with real-world clinical
validation. npj Digit. Med. 2024, 7, 46.
(7) Ballarotto, M.; Willems, S.; Stiller, T.; Nawa, F.; Marschner, J. A.;
Grisoni, F.; Merk, D. De novo design of nurr1 agonists via fragment-
augmented generative deep learning in low-data regime. J. Med. Chem.
2023, 66, 8170−8177.
(8) Prado-Romero, D. L.; Gómez-García, A.; Cedillo-González, R.;
Villegas-Quintero, H.; Avellaneda-Tamayo, J. F.; López-López, E.;
Saldívar-González, F. I.; Chávez-Hernández, A. L.; Medina-Franco, J.
L. Consensus docking aid to model the activity of an inhibitor of
DNA methyltransferase 1 inspired by de novo design. Front. Drug Des.
Discov. 2023, 3, 1261094.
(9) Wang, X.; Gao, C.; Han, P.; Li, X.; Chen, W.; Rodríguez Patón,
A.; Wang, S.; Zheng, P. PETrans: De novo drug design with protein-
specific encoding based on transfer learning. Int. J. Mol. Sci. 2023, 24,
1146.
(10) Hasselgren, C.; Oprea, T. I. Artificial intelligence for drug
discovery: Are we there yet? Annu. Rev. Pharmacol. Toxicol. 2024, 64,
527−550.
(11) Zhou, S.; Johnson, R. Pharmaceutical Probability of Success;
Alacrita: London, UK, 2019.
(12) Polishchuk, P. G.; Madzhidov, T. I.; Varnek, A. Estimation of
the size of drug-like chemical space based on GDB-17 data. J.
Comput.-Aided Mol. Des. 2013, 27, 675−679.
(13) Sharma, T.; Padhy, I.; Sahoo, C. R. Drug Repurposing and
Computational Drug Discovery; Apple Academic Press, 2023; pp 27−
58.

Journal of Medicinal Chemistry pubs.acs.org/jmc Article

https://doi.org/10.1021/acs.jmedchem.5c00512
J. Med. Chem. 2025, 68, 10346−10364

10362

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Simo%CC%81n+Rodri%CC%81guez+Santana"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
mailto:srsantana@icai.comillas.edu
mailto:srsantana@icai.comillas.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Nuria+E.+Campillo"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-9948-2665
mailto:nuria.campillo@csic.es
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Eduardo+Gonza%CC%81lez+Garci%CC%81a"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0009-0005-4717-5371
https://orcid.org/0009-0005-4717-5371
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Pablo+Varas"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Pedro+Gonza%CC%81lez-Naranjo"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Eugenia+Ulzurrun"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Guillermo+Marcos-Ayuso"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-9443-578X
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Concepcio%CC%81n+Pe%CC%81rez"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Juan+A.+Pa%CC%81ez"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="David+Rios+Insua"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jmedchem.5c00512?ref=pdf
https://doi.org/10.1016/j.pharmthera.2015.03.004
https://doi.org/10.1016/j.pharmthera.2015.03.004
https://doi.org/10.1016/j.pharmthera.2015.03.004
https://doi.org/10.1016/j.ejmech.2021.114062
https://doi.org/10.1016/j.ejmech.2021.114062
https://doi.org/10.2174/0929867329666220620162018
https://doi.org/10.2174/0929867329666220620162018
https://doi.org/10.1021/acsmedchemlett.0c00088?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsmedchemlett.0c00088?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.3389/fphar.2024.1331062
https://doi.org/10.3389/fphar.2024.1331062
https://doi.org/10.3389/fphar.2024.1331062
https://doi.org/10.1038/s41746-024-01038-3
https://doi.org/10.1038/s41746-024-01038-3
https://doi.org/10.1038/s41746-024-01038-3
https://doi.org/10.1021/acs.jmedchem.3c00485?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jmedchem.3c00485?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.3389/fddsv.2023.1261094
https://doi.org/10.3389/fddsv.2023.1261094
https://doi.org/10.3390/ijms24021146
https://doi.org/10.3390/ijms24021146
https://doi.org/10.1146/annurev-pharmtox-040323-040828
https://doi.org/10.1146/annurev-pharmtox-040323-040828
https://doi.org/10.1007/s10822-013-9672-4
https://doi.org/10.1007/s10822-013-9672-4
pubs.acs.org/jmc?ref=pdf
https://doi.org/10.1021/acs.jmedchem.5c00512?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(14) Khan, J.; Singla, R. K. Bioinformatics Tools for Pharmaceutical
Drug Product Development. Indo Global J. Pharm. Sci. 2022, 12,
281−294.
(15) Paul, D.; Sanap, G.; Shenoy, S.; Kalyane, D.; Kalia, K.; Tekade,
R. K. Artificial intelligence in drug discovery and development. Drug
Discovery Today 2021, 26, 80.
(16) Schwaller, P.; Laino, T.; Gaudin, T.; Bolgar, P.; Hunter, C. A.;
Bekas, C.; Lee, A. A. Molecular transformer: a model for uncertainty-
calibrated chemical reaction prediction. ACS Central Sci. 2019, 5,
1572−1583.
(17) Heid, E.; Greenman, K. P.; Chung, Y.; Li, S.-C.; Graff, D. E.;
Vermeire, F. H.; Wu, H.; Green, W. H.; McGill, C. J. Chemprop: A
Machine Learning Package for Chemical Property Prediction. J. Chem.
Inf. Model. 2024, 64, 9−17.
(18) Hartenfeller, M.; Schneider, G. De novo drug design. Methods
Mol. Biol. 2010, 672, 299−323.
(19) Hartenfeller, M.; Schneider, G. Enabling future drug discovery
by de novo design. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011, 1,
742−759.
(20) Gallego, V.; Naveiro, R.; Roca, C.; Rios Insua, D.; Campillo, N.
E. AI in drug development: a multidisciplinary perspective. Mol. Div.
2021, 25, 1461−1479.
(21) Gómez-Bombarelli, R.; Wei, J. N.; Duvenaud, D.; Hernández-
Lobato, J. M.; Sánchez-Lengeling, B.; Sheberla, D.; Aguilera-
Iparraguirre, J.; Hirzel, T. D.; Adams, R. P.; Aspuru-Guzik, A.
Automatic chemical design using a data-driven continuous repre-
sentation of molecules. ACS Cent. Sci. 2018, 4, 268−276.
(22) Pang, C.; Qiao, J.; Zeng, X.; Zou, Q.; Wei, L. Deep Generative
Models in De Novo Drug Molecule Generation. J. Chem. Inf. Model.
2023, 64, 2174−2194.
(23) Li, Y.; Pei, J.; Lai, L. Structure-based de novo drug design using
3D deep generative models. Chem. Sci. 2021, 12, 13664−13675.
(24) Zhavoronkov, A.; Ivanenkov, Y. A.; Aliper, A.; Veselov, M. S.;
Aladinskiy, V. A.; Aladinskaya, A. V.; Terentiev, V. A.; Polykovskiy, D.
A.; Kuznetsov, M. D.; Asadulaev, A.; et al. Deep learning enables rapid
identification of potent DDR1 kinase inhibitors. Nat. Biotechnol. 2019,
37, 1038−1040.
(25) Méndez-Lucio, O.; Baillif, B.; Clevert, D.-A.; Rouquié, D.;
Wichard, J. De novo generation of hit-like molecules from gene
expression signatures using artificial intelligence. Nat. Commun. 2020,
11, 10.
(26) Maziarka, Ł.; Danel, T.; Mucha, S.; Rataj, K.; Tabor, J.;
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