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H I G H L I G H T S  

• Determine flexible end-users based on energy level, consistency and variability. 
• Rank the topology based on high resolution 3D models to assess radiation levels based on angle, orientation and structural singularities. 
• Combination of both indicators through and hybrid approach 
• Assessment of suitability and feasibility of potential end-users with PV energy sources.  
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A B S T R A C T   

Recommender systems play a critical role in optimizing building energy consumption by providing personalized 
advice based on data analytics and user preferences. However, the literature highlights the need for systems that 
can justify their recommendations, as many of these systems use non-transparent machine-learning techniques. 
This research introduces two distinct types of indicators with three main goals: to identify patterns of flexible 
consumption behavior using transparent and straightforward methods suitable for remote decision support 
systems, thereby eliminating the need for extensive databases; to evaluate the feasibility of installing solar panels 
on building facades, rooftops, and structures using high-resolution 3D models; and to enhance understanding 
through a quantitative assessment of the feasibility and suitability of integrating renewable energy sources, 
particularly photovoltaic systems. Flexible prosumers are scored by assessing their energy consumption level, 
consistency, and variability through the Flexible Consumption Indicators. Topology Indicators perform a 
quantitative assessment of the feasibility of support surfaces for installing photovoltaic panels, taking into ac
count rooftop pitch angles, orientations, and surrounding and internal structures, identifying those areas exposed 
to sufficient levels of irradiation. This study, which uses actual consumption profiles and similar households' 
buildings 3D models, demonstrates how the proposed indicators can aid identifying users with flexible con
sumption profiles that reside in buildings compatible with renewable energy sources, aiding in decision-making 
process within the energy transition.   

1. Introduction 

Energy consumption in buildings plays a critical role in the overall 
energy landscape and the transition to a sustainable future. Buildings 
account for 40% of global energy consumption [1]. As the world faces 
the challenges of climate change and the need to reduce carbon emis
sions, optimizing energy consumption through Demand Response (DR) 
actions and efficiency in buildings becomes critical, as seen in policies 
such as the European Green Deal [2]. The widespread adoption of solar 

production in buildings [3,4] can substantially decrease CO2 emissions 
associated with electricity generation, contributing to Europe's 
commitment to reducing carbon footprints. As highlighted by [5], 
people willing to change their appliances (energy efficiency) or install 
new devices (automatic DR or photovoltaic (PV) adopters) are also 
ready to change their energy behavior (manual DR). Thus, PV adopters 
and flexible users are interdependent. 

The year 2022 witnessed a remarkable surge in PV energy genera
tion, with a historic increase of 270 TWh (up 26%), culminating in 
nearly 1300 TWh. This notable achievement not only marked the most 
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substantial absolute growth in generation among all renewable energy 
technologies but also surpassed wind power for the first time in history 
[6]. Solar PV and wind installations are projected to more than double 
by 2028 from the levels observed in 2022 (Fig. 1), consistently setting 
new benchmarks throughout the forecast period to approach a capacity 
of nearly 710 GW [6]. The advancement of PV technologies in decar
bonizing the energy landscape is evident as PV has mitigated up to 720 
million metric tons of CO2eq, based on the installed capacity by the 
conclusion of 2019. PV plays a crucial role in reducing global CO2 
emissions, accounting for 1.7% or 2.2% of energy-related emissions and 
5.3% of electricity-related emissions [7]. 

To accelerate the expansion of installed solar PV capacity and 
maximize its utilization, recommender systems play a crucial role 

identifying prosumers with higher prospects evaluating the compati
bility of these energy sources with their comsumption habits and the 
feasibility of integrating PV energy sources on their buildings. 

Recommender systems have emerged as valuable tools for guiding 
changes in building energy consumption decisions [8]– [11]. These 
systems, founded on algorithms and data analytics, provide personalized 
recommendations and strategies for optimizing energy use under energy 
efficiency or cost premises. By analyzing historical data, user prefer
ences, and real-time inputs, recommender systems can inform flexible 
users of the options to minimize energy waste in specific appliances [9], 
reduce costs and improve comfort by changing habits in users [10] 
where the decisions made by flexible energy users are taken as reference 
and recommended to the more static ones. A common practice within 
these systems involves identifying clients who exhibit greater flexibility 
for potential participation in demand response initiatives or for under
taking actions through the utilization of load monitoring techniques. For 
instance, [10] categorizes users with high energy consumption levels 
and low costs as high DR users, while those with the opposite charac
teristics are classified as low DR users. This approach presents two 
drawbacks: the requirement to have knowledge of the end-users' costs 
(not any agent can do it) and a possible miss-classification as high DR of 
a commercial site with high consumption processes that are already set 
in low-price period, and they are not willing to change their behavior. 
According to [12], DR users have an easily predictable energy profile, 
with peaks indicating the periods during which DR activities can be 
implemented. However, peaks can be interpreted as the potential for 
manageable consumption if they do not occur consistently at the same 
time each day. A peak consumption pattern that consistently happens at 
the same time might not indicate a willingness to change its consump
tion behavior. Thus, the challenge is to determine with simple and 
explainable measures that an end-user has a high, consistent level and 
period-variable energy consumption. DR is a key element for the future 
sustainability of the electric system, several indicators are appearing 
about measuring the quality of the dispatch of the service [13,14], but 
there is a lack of DR indicators to determine which clients are suitable 
for these services by Distribution Sistem Operator (DSO), retailers or 
aggregators. 

On the other hand, the topology of a building plays a critical role in 
assessing solar panel installation suitability. Traditionally, the 

Nomenclature 

Abbreviations 
2D/3D Two/Three dimensional 
ALI Amplitude Level Indicator 
DL Deep Learning 
DR Demand Response 
DSO Distribution System Operator 
ECI Energy Consistency Indicator 
ELI Energy Level Indicator 
EVI Energy Variation Indicator 
FEI Feasible Exposure Indicator 
I1 Flexible Consumption Indicator, a total indicator that 

aggregates the five consumption indicators. 
I2 Topology Indicator, a total indicator that aggregates the 

three topology indicators. 
ITOT The final indicator is an aggregation of I1 and I2, which can 

be calculated using a geometric, an arithmetic, or a hybrid 
(mixed) approach combining both methods. 

ML Machine Learning 
NILM Non-intrusive load monitoring 
OI Orientation Indicator 
PV Photovoltaic 

RPI Roof Pitch Indicator 
SDI Standard Deviation Indicator 

Parameters and Variables used in algorithms11 

C Time series containing power consumption (kW) D days 
and T values 

d, D d is an auxiliary variable that indicates the day of set D. 
t, T t is an auxiliary variable that indicates the time of the set T. 
Y[1:D] [1:T] Matrix of power consumption (kW) per day and time 

value 
E[1:D] Vector of energy (kWh) per day 
z Auxiliary variable used to build indicators 
L, H Parameters used to establish levels in the grading of the 

different algorithms. 
M[1:T] Vector of Mean power consumption (kW) per period T 
S[1:T] Vector of Standard deviation of the power consumption 

(kW) per period T 
M Mean of the daily energy (kWh) 
S Standard deviation of the daily energy (kWh) 
Qx[1:T] Vector of the quartile x of the power consumption (kW) per 

period T 
R[1:T] Vector of interquartile ranges of the power consumption 

(kW) per period T  

Fig. 1. Renewable electricity capacity additions by technology and 
segment, 2016–2028. 
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topological features considered in these studies are related to the 
building's area, tilt, orientation, and height [15]. These features deter
mine the level of solar radiation expected. In particular, 3D building 
models are nowadays a reliable approach for studying how topological 
features play a critical role in the levels of solar exposure due to oc
clusions produced between buildings and surrounding elements and 
between structural elements of the same building. Simplified 3D geo
metric models are suitable for studying projected shadows between 
buildings, study of building density, etc. [16]. Still, when studying self- 
occlusions produced by smaller structural elements, these approaches 
require high-resolution 3D Models. 

This research proposes two kinds of indicators whose objective is 
threefold: 1) Flexible consumption indicators, which detect flexible 
energy consumption patterns through explainable and straightforward 
methods to be able to be run in remote recommender systems without 
the need for databases; 2) Topology indicators, which score the suit
ability and eligibility of buildings' facades, roofs and structures for the 
installation of solar panels; 3) The aggregation of both indicators for 
cloud recommender systems, ease the decision-making process and 
interpretability for non-expert end-users. In addition, the first kind of 
indicators could be applied to tag the data used by the training stage of 
Machine Learning (ML) or Deep Learning (DL) based recommender 
systems. The second type assesses suitable areas for installing PV units as 
a percentage of the total property area and the level of radiation 
determined by the topological features and occlusion shades produced 
by surrounding and inner structures. Both sets of indicators are highly 
interesting for any agent (DSOs, generation companies, retailers, energy 
communities, end-users…) for energy usage improvements, studying 
their grids' flexibility, or exploring the potential benefits of installing 
local solar resources in a community. The paper starts with a literature 
review in section II and the definition of the new proposed indicators in 
section III. Section IV presents the datasets from REDREAM H2020 
Project used to evaluate the indicators' results presented in Section V. 
Finally, Section VI concludes the key insights of the proposed set of in
dicators, their limitations and future works. 

2. Literature review 

The reviews [8,11] on these recommender systems analyze the 
future direction on this topic. Those authors highlight the importance of 
explainable systems that justify why these recommendations were trig
gered and their benefits. Other sustainability indicator approaches are 
based on ML techniques [17] like Random forest or Neural Networks 
such as Multi-Layer Perceptrons, presenting a limited interpretability of 
their parameters. Hence, the current primary focus is on explainability, 
as surveys [5] have indicated a lack of understanding among end users 
regarding smart grids and flexibility. 

Research in recommender systems [8] is evolving toward using non- 
intrusive load monitoring (NILM) strategies and implementing this al
gorithm in the edge as a second novelty. NILM avoids sub-metering 
(cost-effective solutions) [18,19] and actions from users (installing 
equipment, sharing tariff…). This means that it could be used in the 
smart meter of the users or even in any meter within the grid owned by 
any agent that has access to power consumption time series data. 
However, most of them use different techniques (ML, DL, Hidden Mar
kov Models) that require a huge amount of labeled data to classify and 
characterize devices and users' consumption habits. The execution of 
large dimensional models usually surpasses the limitations that 
embedded hardware devices present [19], unfollowing the second novel 
point in recommender systems. 

Assessing the effectiveness and efficiency of the photovoltaic setup, 
considering consumption profiles and the topological features of support 
surfaces are critical factors [20,21] in determining suitability and 

feasibility for PV panel installation. Previous studies [22,23] assess the 
effectiveness of PV panels based on primary attributes such as tilt and 
orientation. The feasibility of a photovoltaic panel system is dependent 
not only on its tilt angle and orientation but also on the topological 
features of the support surface, available space, rooftop suitability, and 
the presence of surrounding structures that may have an impact on 
irradiance levels caused by shading effects and occlusions. [24] includes 
bare urban canopy features, spatial information, and building height 
estimations, which are especially relevant for assessing occlusions and 
shade projections on a large scale [25]. Approaches based on Digital 
Elevation Models [26], Hill shade analysis [27] or 3D building models 
obtained from Light Detection And Ranging images [15] and aerial or
thographies [28] allow for substantial improvements in the character
ization of topological features applied to the study of shadow projections 
and occlusions. [29] simulates solar radiation on buildings based on 
bare urban building geometries obtained from GIS data. [16,26] esti
mate solar radiation levels based on 2D building footprints / LiDAR 
images extruded manually as simplified 3D building blocks filtering out 
unwanted objects and including additional geographical information, 
elevation and irradiation seasonality features. [30] proposes a model to 
estimate building heights based on Satellite imagery, including a cate
gorization of building rooftops. [31] proposes a 3D building information 
modeling (3D BIM) reconstructed using computer-aided design (CAD), 
including surrounding context information, especially relevant for 
studying irradiation on surfaces with singularities. Most of these re
searches have primarily focused on analyzing the irradiation perfor
mance of solar panels, with less emphasis on identifying suitable support 
areas. This focus point is attributed mainly to the requirement of high- 
resolution topological building models, often manually created, which 
poses a time-consuming challenge when conducting assessments on a 
large scale. 

Studies like [28] show the complexity behind creating 3D building 
models at urban or neighborhood levels. Some open-source initiatives 
like osgEarth or OpenStreetMap provide mid-low resolution 3D models. 
Others, like Google Maps, provide, under commercial licenses, city-scale 
3D models that include high-resolution topological features of any 
structure (not only buildings). Previous studies like [15,32] have 
already used 2D maps obtained from Google. In May 2023, Google 
announced the experimental release of Photorealistic 3D tiles. One of the 
novelties of this study relies on this cutting-edge technology based on 
high-resolution 3D maps (tiles), allowing for a substantial improvement 
in the detection of unfeasible areas and characterization of topological 
features for the installation of solar panels. Studying light projections 
and shades in buildings with a complex topology becomes an easy task 
for 3D computer graphics tools already tested in applications like 
Solar3D [33] or Blender [34,35]. Blender outperforms the film and 
animation industries, simplifying the simulation of the light behavior 
(radiation) represented as a rendered scene. 

3. Creation of indicators for recommended systems 

3.1. Flexible consumption indicators 

Extensive research has been conducted on the limitations of existing 
tools for classifying flexible clients, highlighting the importance of in
dicators that are easy to comprehend, explainable, and computable on 
remote devices. For those reasons, fundamental statistical indicators are 
utilized to create additional indicators to identify consistent energy 
patterns that are easily predictable but exhibit variability in power 
consumption. In particular, the indicators comprise three main 
categories:  

• Consumption level: The amount of energy demanded by a consumer. 
A higher energy consumption level could mean more energy to be 
offered in markets. This concept can be translated as the greater the 
energy that an individual user can shift, the less necessity there is to 1 In order of appearance in the appendix 
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aggregate multiple users. The Energy Level Indicator (ELI) grades the 
daily energy consumption by different levels.  

• Consumption consistency: These indicators determine the stability of 
the energy usage: if the user is stable in their energy consumption 
habits, the amount of energy is stationary and easy to predict. These 
results could represent the confidence level that this user offers to 
their DR manager. Individuals with unpredictable energy consump
tion profiles and erratic consumption patterns pose an increased risk 
when being evaluated for participation in explicit DR bids within 
markets. Two indicators are considered to measure consistency: the 
Energy Consistency Indicator (ECI) measures the consistency of 
consumption profiles in all hours among days, and the Energy 
Variation Indicator (EVI) assesses the consistency of total energy 
consumption across different days. 

• Consumption variability: This category aims to determine the po
tential for load-shifting in users' consumption patterns without 
needing equipment data or intrusive local monitoring. This approach 
involves analyzing the power fluctuations in each hour of the day by 
examining the interquartile range or its standard deviation to 
determine the Amplitude Level Indicator (ALI) or the Standard De
viation Indicator (SDI), respectively. 

The six indicators introduced here are presented individually in the 
appendix:  

1) Energy Level of Consumption (ELI) 

The first and most straightforward indicator, formulated by algo
rithm 1 in the appendix, for assessing energy usage is the daily mean 
energy consumption, as clients with higher consumption levels are likely 
to be more interested in participating than those with lower consump
tion profiles. The algorithm should be normalized or levelized when 
considering a reduced set of hours to ensure fair comparison and accu
rate analysis. This adjustment can be made by choosing an appropriate 
value for H as a maximum energy reference (e.g., twice the average 
household consumption level) and L as a low energy level resulting from 
minimal consumption. A final remark is that users with higher energy 
consumption levels are generally more suitable candidates for installing 
PV panels, as they can benefit more from solar energy's potential savings 
and environmental impact.  

2) Energy Consistency per period (ECI) 

This indicator assesses the stability and daily variations of end-user 
energy consumption and is formulated in algorithm 2 in the appendix. 
This indicator was previously presented in [12] to score the predict
ability of the baseline consumption of users based on the mean, M, and 
the standard deviation, S, of the power demand in each interval. While it 
is reasonable to rely on a predictable baseline, the limitation of this 
assumption is that users with consumption patterns unrelated to habits, 
who may consume energy at any time of day, such as processes that 
require a specific number of operating hours per day, can be penalized 
when only this indicator is considered.  

3) Energy Level Variation of consumption (EVI) 

This indicator characterizes the consistency of energy usage as the 
standard deviation coefficient of the daily energy demand, and it is 
formulated in algorithm 3 in the appendix. Users are more flexible 
resilient if their total level of energy consumption does not vary among 
days. Thus, a low standard deviation, S, is a desired output. The differ
ence with the previous indicator is that users whose consumption is 
produced at different hours are not penalized. The suggested values here 
are relative to the mean, M, of the daily consumptions based on their 
coefficient of variation S/M < 0.1.  

4) Interquartile Power Range (ALI) 

This indicator is the first (from the list of indicators proposed so far) 
to measure the power variability, and it is formulated in algorithm 3 in 
the appendix. It uses the first and third quartiles to identify the inter
quartile range of the changes, robustly mitigating the impact of outliers 
in the power time series to establish different levels. This indicator is 
evaluated in different time windows to remove the bias of those periodic 
consumptions that take place at the same time each day. The reference 
of a high amplitude level, H, can be set according to power of appliances 
or based on the minimum bid size needed by the DR manager. This value 
is based on expert criteria.  

5) Power Standard Deviation (SDI) 

The second indicator to measure deviations in consumption profiles 

Fig. 2. Workflow for the composition of topology indicators.  
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is based on traditional statistical measures of the standard deviation. 
This can be used to establish levels of power that are considered to be the 
minimum variation. In the same way, the indicator considers multiple 
time windows to remove the scheduled consumptions. The highest 
reference value, H, is related to the high value in the previous indicator. 
For instance, since 95% of data are within two times the standard de
viation of the whole timeseries, the reference value used in algorithm 4 
could be divided by two to obtain a possible H value for this algorithm.  

6) Flexible Consumption Indicator 

The most suitable approach for aggregating all the indicators 
mentioned earlier depends on expert criteria. Among the possible 
aggregating methods, the most common ones are arithmetic and 
geometrical [36]. The main difference is that arithmetic aggregation 
allows for compensations between values, while geometrical does not 
allow for any compensation between indicators with disparate values 
(fungibility issue). Since some of them could be zero, an arithmetic 
average is proposed with indicators 2–3 for consistency and the same 
with indicators 4–5 for variation. Then, a geometric mean is computed 
(See Eq. (1)), including the energy level indicator. All indicators must 
have the same temporal framework (working hours, weekends…). 

Total (I1) = ELI1/3⋅(ECI⋅0,5 + EVI⋅0,5)1/3⋅(ALI⋅0,5 + SDI⋅0,5)1/3 (1)  

3.2. Topology indicators 

The topology of a building is a critical aspect to be assessed and 
studied when it comes to considering the installation of solar panels on 
rooftops and facades. The composition of these indicators follows the 
workflow presented in Fig. 2. 

The workflow starts with five inputs:  

1) Boundaries of property/buildings. This layer is obtained from 
OpenStreetMap. This layer allows for the segmentation of buildings, 
which is crucial for identifying connected structures that cannot be 
visually separated. In case that small variations in terms of scale and 
location of each building when it comes to merging it with input 
layer 2), this layer has to be manually aligned.  

2) High-resolution 3D building models. This layer is obtained from 
Google Maps, and it is the most critical layer. It contains high- 
resolution topological features related to pitch angle, orientation, 
height, discontinuities in the surface, etc. 

2*) High-resolution 3D building models without surface texture.  

3) Sunrise, sunset and sun movement parameters. These parameters 
allow for the 4D simulation (3D + time) of the sun paths in Blender. 
These parameters depend on the region's location and season.  

4) Radiation levels depending on the roof pitch angle. Radiation levels 
based on the pitch angle are obtained from the Photovoltaic 
Geographical Information System (PVGIS) [37]. Those values are 
computed for a costant orientation (South for northern hemisphere 
regions and North for southern hemisphere regions) and normalized 
[0.5–1] based on the maximum radiation according to Eq. (2): 

Rpitch
' = 0.5+ 0.5⋅

Rpitch − Rmin

Rmax − Rmin
(2)  

where Rpitch
' is the normalized radiation value, Rminand Rmaxare the 

minimum and maximum radiations registered, respectively. In cases 
where the steeper the pitch, the higher the radiation, its value is 
assigned to the maximum radiation achieved with a steeper pitch. 
Flat (horizontal) surfaces are considered the “best possible” slope, 
allowing for any slope configuration for the PV modules. 

Normalized radiation levels depending on roof pitch angles for a 

constant roof orientation (South) obtained from PVGIS in a specific 
location (Bath, United Kingdom) are shown in Fig. 3.  

5) Radiation levels depending on the orientation of the supporting 
structure. These values are also obtained from PVGIS. Radiation 
values are computed for slope values fixed to 30◦ and normalized to 1 
using the maximum radiation level register among all orientations 
according to Eq. (3). 

Rorientation
' =

Rorientation

Rmax
(3)   

Normalized radiation levels depending on the roof orientation for a 
constant pitch angle of 30◦ obtained from PVGIS in a specific location 
(Bath, United Kingdom) are shown in Fig. 4. Again, horizontal surfaces 
are deemed the optimal orientation, permitting PV modules to be 

Fig. 3. Normalized radiation levels depending on the roof pitch angle for a 
constant orientation (South). 

Fig. 4. Normalized radiation levels depending on the roof orientation for a 
constant pitch angle of 30◦. 
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installed in any orientation. 
The second stage focuses on identifying topological features and 

rendering them into layers. Layers are matrix information that can be 
visualized as images. In this stage, the following layers are computed:  

6) ID layer. Based on the boundaries of each building, each property 
is tagged with a unique ID. 

7) Orientation layer. Lighting the 3D model with different orienta
tions, it is possible to identify the direction in which the surface 
becomes more enlightened.  

8) Roof pitch layer. It is possible to determine the pitch of a surface 
as the angle at which the surface receives more light by illumi
nating the 3D model at different angles or by through the slope of 
normal vector of the surfaces of the building model.  

9) Elevation layer. The elevation of the 3D model is rendered as an 
OpenEXR image with values between 0 and 1 assigned to the 
lowest and highest points, respectively. This image format allows 
for a high dynamic range to render the height values of the 3D 
model, preserving original shapes and proportions.  

10) Discontinuities layer. Based on the elevation layer, it is possible to 
identify surface discontinuities. Discontinuities represent sharp 
variations (>1 m) in the height of a surface, which can hinder or 
even impede the installation of PV modules. Small regions sur
rounded by discontinuities and regions next to discontinuities are 
considered unsuitable for installing PV modules. Discontinuities 
are obtained as the maximum absolute value of the convolution 
products using four kernels, one per direction. The kernels used 
are shown in (4): 
⎛

⎝
0 1 0
0 0 0
0 − 1 0

⎞

⎠,

⎛

⎝
0 0 0
1 0 − 1
0 0 0

⎞

⎠,

⎛

⎝
1 0 0
0 0 0
0 0 − 1

⎞

⎠,

⎛

⎝
0 0 1
0 0 0
− 1 0 0

⎞

⎠

(4)   

A 3D benchmark is attached to the 3D model in order to test the 
robustness of this approach. This 3D benchmark allows for identifying 
the angle and orientation of the surfaces enlightened from nine orien
tations [Vertical, West, South-West, South, South-East, East, North-East, 
North, North-Weast] and five angles [0◦, 15◦, 30◦, 45◦, 60◦]. The 3D 
benchmark elements are shown in Fig. 5. 

The elements that make up the 3D benchmark are:  

a) Size of reference. The 3D benchmark is upscaled until its central area 
is equal to 100m2 (according to the scale of the 3D model). On top of 
the circular area, an additional squared area of 25m2 and 1 m height 
is added. The benchmark scale is based on the proportions of two 
measures, one in Blender and another in Google Maps. This bench
mark allows for measuring areas (in pixels) and discontinuities 
(vertical variations between surfaces).  

b) Reference orientation and pitch module. Eight modules with five 
pitched tiles each, one for each angle (40 tiles in total) are attached 
around the central area, allowing for measuring the orientation and 
pitch of surfaces.  

c) Artificial light. Surfaces are enlightened with a moving light faced 
toward each orientation and pitch angle (33 light positions in total). 
The maximum reflected light is produced when the artificial light is 
perpendicular to the surface. The elevation of the light (β) corre
sponds to the complementary angle of the pitched tile (α). 

Orientation and pitch angles can be obtained programmatically from 
the 3D mesh rasterizing as an image the normal vector of each face of the 
3D mesh. As the lighting method can be easily reproduced in any 3D 
graphics software, this method was eventually chosen for this purpose. 

The third stage comprises the lighting simulation (sun path) and 
discontinuity assessment. The layers generated in this stage are:  

11) Solar lighting (sun path) sequence. This set of layers includes the 
simulation of shades and occlusions produced during the move
ment of the sun throughout a single day. Sunrise, sunset and 
maximum elevation angles are determined as the mean values of 
maximum and minimum values registered in a specific location 
throughout a year. The sequence is made up of 52 snapshots, 
where first and last snapshots are sunrise and sunset conditions. 
Low exposure areas are those that are enlightened less or equal to 
50% of the snapshots. On the contrary, high-exposure areas are 
those that are enlightened by >50% of the snapshots. The pa
rameters to simulate the sun trajectory in Blender correspond to 
winter trajectories where the angle between sunrise and sunset 
and the elevation are the smallest (most restrictive conditions) as 
shown in Fig. 6.  

12) Feasible exposure levels layer. Combining the results obtained 
from the solar lighting sequence and discontinuity layer allows 
for identifying which surfaces are more suitable for installing PV 
modules due to their high exposure level and lack of disconti
nuities. This layer is the most critical among the three output 
layers (7, 8, and 12) as it determines the total surface that can be 
used for installing PV modules. Areas adjacent to or surrounded 

Fig. 5. 3D Benchmark used to validate the identification of orientation and pitch angles of surfaces.  

Fig. 6. Configuration used to simulate the sun trajectory.  

P. Calvo-Bascones and F. Martín-Martínez                                                                                                                                                                                                



Applied Energy 372 (2024) 123834

7

by discontinuities are classified as unsuitable areas. Unsuitable 
areas are determined through morphological transformations 
such as dilation, erosion, openings, and closings applied to the 
identified discontinuities. 

Three indicators are computed for each building using the informa
tion obtained from layers 7, 8, and 12:  

13) Roof pitch indicator. Computed in a similar way to the previous 
one as shown in Eq. (5): 

RPI =
∑

iNi⋅Ri

Ntotal⋅Rmax
i ∈ [0◦

,15◦

, 30◦

,45◦

,60◦

] (5)   

Where Ni is the number of pixels of a structure with a pitch i, Ri is the 
normalized radiation level corresponding to pitch i, Ntotal is the total 
number of pixels of the structure, and Rmax is the best possible 
normalized radiation level (Rmax= 1) for the best pitch angle with a 
south orientation.  

14) Orientation indicator. Computed as depicted in Eq. (6): 

OI =
∑

iNi⋅Ri

Ntotal⋅Rmax
i ∈ [V,W, SW, S, SE, E,NE,N,NW] (6)   

Where Ni is the number of pixels with an orientation i, Ri is the 
normalized radiation level corresponding to orientation i, Ntotal is the 
total number of pixels of the structure, and Rmax is the best possible 
normalized radiation level (Rmax= 1) for the best orientation, with a 
pitch fixed to 30◦.  

15) Feasible exposure indicator. This indicator quantifies the number 
of pixels that belong to feasible areas with a high exposure rela
tive to the total number of pixels of the structure. It is computed 
as shown in Eq. (7). 

FEI =
Ni

Ntotal
(7)   

Where Ni is the number of pixels of suitable areas with high exposure 
levels and Ntotal is the total number of pixels of the structure. 

The last stage aggregates the three indicators obtained into a single 
composite indicator. As it was done with the flexible indicators, a 
composite indicator regarding the topological features is computed as 
shown in Eq. (8): 

Total (I2) = RPI0.15⋅OI0.15⋅FEI0.7 (8) 

Where I2 is the final score regarding to the topological features, RPI is 
the score for the pitch, OI for the orientation, and FEI for the exposure 
level. Their weights (based on expert criteria) are 0.15, 0.15, and 0.7, 
respectively. 

This study stands out from previous studies on analyzing solar ra
diation levels and feasible surfaces in 3D building models by being the 
first to assess detailed large-scale building models, including an 
exhaustive rooftop characterization and non-structural surrounding 
context. A set of detailed topological features allows for the estimation 
of expected radiation levels on rooftops as well as a comprehensive 
assessment of the available space for the installation of sustainable en
ergy sources. This last aspect was not included in any of the previous 
studies but in this one (See Table I). 

Non-structural surrounding context is crucial for the identification of 
high exposure regions when the building is surrounded by higher ele
ments, an example of this situation is shown in Fig. 7 where a set of 
adjacent trees projects shades over the rooftop of houses located nearby. 

Table I 
Comparison to previous studies for the assessment of topological features of buildings.   

[24] [25] [16] [30] [29] [31] This study Indicator 

Area + Height ✔✔ ✔✔ ✔✔ ✔✔ ✔✔ ✔✔ ✔✔ 

FEI 
Rooftop discontinuities       ✔✔ 
Non-structural surrounding context (e.g. trees…)       ✔✔  

Building + rooftop orientation (coarse) ✔✔ ✔✔ ✔✔ ✔✔ ✔✔ ✔✔ ✔✔ 
OI Rooftop orientation (detailed)      ✔✔ ✔✔  

Rooftop type (coarse features)    ✔✔ ✔✔ ✔✔ ✔✔ 
RPI Rooftop pitch angle      ✔✔ ✔✔ 

Large scale building models ✔✔ ✔✔  ✔✔ ✔✔  ✔✔   

Fig. 7. Example of occlusions produced by non-structural surrounding elements of higher dimension.  
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3.3. Aggregation of flexible and topology indicators 

The last step of this methodology is aggregating the total indicator 
for flexible consumption (I1) and topology indicators (I2). Again, arith
metic and geometric aggregations are considered [36]. The main dif
ference between arithmetic (compensatory) and geometric (non- 
compensatory) aggregations is that compensatory aggregation combines 
multiple attributes using a weighted average, allowing for trade-offs 
between variables. In contrast, non-compensatory aggregation uses a 
minimum or maximum threshold approach, where both indicators must 

be higher than a specific value. Compensatory effects of the three ap
proaches considered (arithmetic, geometric, and hybrid) are depicted in 
Fig. 8. 

Recent studies in composite indicators [38–40] only consider one 
type of aggregation (geometric or arithmetic). For this study, standard 
aggregation methods present limitations. It must be noted that the To
pology index does not allow any type of compensation, whereas the 
Flexible Consumption index is convenient but not crucial to a certain 
extent. 

This assumption requires a hybrid aggregation where compensations 

Fig. 8. Aggregation methods considered for the composition of the final indicator.  

Table II 
User characteristics.  

ID 1 2 3 4 5 6 7 8 9 10 11 12 

Location SP SP IT UK UK IT SP HR UK UK HR SP 
Type Residential Residential Residential Residential Residential Public 

Building 
Office Residential Residential Residential Residential Office  

Fig. 9. Power consumption Timeseries [42].  
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are only considered in those cases where the Topology Indicator (I2) is 
greater than the Flexible indicator (I1). Fig. 11 and Table VI show the 
results obtained through a hybrid aggregation of both indexes equally 
weighted according to Eq. (9): 

Itot =

{
I1

0.5⋅I2
0.5 if

0.5⋅I1 + 0.5⋅I2

I2 < I1
else (9)  

4. Datasets and cases 

Solar and consumption data from the H2020 REDREAM project [41] 
will be used to test the indicators proposed. REDREAM project enables 
flexible consumers and prosumers to participate in the energy market. 
REDREAM has four demo locations: Bath (UK), Valladolid (Spain), 
Gallese (Italy) and Varazdin (Croatia). 

Table II shows the location, type, size and number of usual in
habitants in some of the most active buildings from the project. The 
consumption curves of each of the users are shown in Fig. 9. Different 
lengths of curves can be seen due to the difference in the installation 
date of the smart meters that offer energy information each 15 min. Data 
collection starts on May 29 in cases where it is available [42]. Different 
energy levels can also be observed, being the power level calculated 
from each 15-min energy measurement sample. 

In order to test the flexibility indicators and their relationship with 

the solar indicator to make comprehensive recommendations, different 
time aggregations have been considered (Table III). First, the indicator is 
analyzed during solar hours to determine if the consumption is 
manageable during those periods. Second, since most of the users are 
residential or office, knowing if the users are more flexible in working or 
after work periods during working days can offer interesting results for 
cases where the type is unknown. Finally, a differentiation between 
working days and weekends is conducted. 

The portfolio of users is quite heterogeneous in terms of energy level 
usage. A high daily energy level of 20 kWh was chosen and adjusted 
based on the number of aggregation hours. The low energy level was 
established as 10% of the high level for algorithm 1. The confidence 
level for the algorithm is set in two standard deviations. The high level, 
H, of amplitude and standard deviation for residential and commercial 
levels have been set at 1.5 kW and 0.75 kW, respectively. As proof of 
concept for the topology indicators, twelve buildings with characteris
tics similar to those used in the flexible indicators were selected from 
Bath, England. 

5. Results 

5.1. Flexible consumption indicators 

The case study presented involves twelve anonymized end users from 
the REDREAM project. Each time series has different dates since each 
client starts on a different day, but all of them have more than a week of 
power consumption data in intervals of 15 min to perform this analysis. 

Results of the indicators show the importance of the temporal ag
gregations since each client shows a higher score in different aggrega
tions (Fig. 10). The total indicator (I1) is used to measure the final score 
of each user, although showing each indicator manifests the benefits of 
using different measures. 

Table III 
Temporal aggregation for the flexible indicator cases.  

Aggregation Full 
Week 

Sun No Sun Work After 
Work 

LV SD 

Days L-D L-D L-D L-V L-V L-V S-D 
Hours 0–23 ago- 

19 
0–7,20–23 sep- 

18 
18–24 0–23 0–23  

Fig. 10. Scores for different time aggregations.  
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For instance, users 7 and 12, which are offices, present higher scores 
in work and sunny hours and working days. This fact is logical in the 
case of offices, but some residential users also present these character
istics as users 1, 10. In particular, user 1 is a curious case of residential 
users since it consumes less during afterwork hours than during working 
hours. This fact makes this user, who could be a retired person or remote 
worker, candidate for solar panels since their flexible consumption 
matches those hours, meaning there is potential to adapt their con
sumption to solar generation. 

On the other hand, there are users that their flexibility increases in 
afterwork hours. Here, a distinction can be seen since some of them also 
score high on weekends (5,6). Users 3, 4, and 11, who do not have high 
scores on weekends, may be individuals who spend their weekends in a 
second residence or engage in outdoor activities. The regional context 
seems irrelevant in this case since users from different countries made 
each of these groups. Depending on their energy consumption level, 
those users could be interested in storage systems in combination with 
solar panels. The rest of the users (2,8,9) exhibit low variation indicator 
scores. Despite some aggregations showing energy consistency usage 
patterns, their low-level energy consumption leads to final scores below 
40% for all of them. 

It is crucial to consider the different indicators in order to gain a 
comprehensive understanding of the situation. Relying solely on ELI 
may lead to overlooking significant insights and information. For 
instance, user 10 has high energy consumption levels independently of 
the time aggregation, but other indicators can differ that working days 
from 8 h–24 h have higher flexibility than the rest of the hours. In fact, 

Table IV 
Comparison to previous studies in the field of Flexible Consumption Indicators.  

Ref Methodology/ 
Indicator used 

Advantages of the proposed indicators 

[9] 
Probability-Density- 
Function 

Probability Density-Functions are based on the rest 
of population actions, in this case it would need a 
previous portfolio of flexible clients. In our 
approach, obtain the indicator to make the 
recommendation for installing solar or DR 
opportunities is not portfolio dependent. 

[10] ELI 

Our set of indicators enhanced reliability in 
identifying flexible clients beyond just larger 
clients. 
Only User 7 and 12 that are offices would have been 
classified as flexible, missing 4 or 10, for instance. 

[12] ECI 

The use of the proposed indicators improves the 
identification of flexible consumptions in a wider 
range of users. 
Even in the same category of consistency ECI and 
EVI indicators depict different results in all users. A 
single indicator (ECI) is not enough to categorize 
flexible users. User 8 would be a clear example of 
misclassification. 

[17] ML/DL 

The methods suggested in the prior study are not 
suitable for edge deployment and require a large 
amount of data to start operating. In addition, those 
methods are black boxes. Our methodology has 
been tested with real clients with only a week of 
data.  

Table V 
Results obtained for the topological indicator corresponding to the set of chosen buildings. 
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considering other indicators improves the detection of the moments of 
greater flexibility. This can be seen in the change of ranking order of the 
time aggregations, comparing ELI with Total, in users 1,3,4,5,6,7,8,11 
and 12. In the same way, ECI can have a higher value showing a very 
static behavior as in the case of user 8. In the case of. 

user 8, a valid indicator could be the EVI that is low because has high 
volatility in their energy usage. However, this is not valid in user 9 
where the level of energy usage is constant but the ELI and variations 
(ALI and SDI) are quite low. The SDI indicator always has higher values 
than the ALI indicator and sometimes the ranking order of the temporal 
aggrupation changes as observed in users 2 or 5. 

Main advantages compared with existing literature are shown in 
Table IV. 

5.2. Topology indicators 

Although the results were computed for >1500 buildings [42], only 
twelve are shown in Table V. The results shown in this table are: A) 
Building type*; B) Aerial image of the building; C) Roof pitch angle layer 
(image); D) Roof orientation layer (image); E) Exposure level layer 
(image), where light green pixels are feasible areas to setup PV panels 
with a high solar exposure, dark green pixels are low feasibility areas to 
setup PV panels or areas with a low solar exposure, red pixels are sur
faces with discontinuities greater than one meter; F) Approximate sur
face area; *C) Normalized radiation levels of Fig. 3 corresponding to 
each roof pitch (in color), roof pitch angles distribution and RPI score; 
*D) Normalized radiation levels of Fig. 4 corresponding to each orien
tation (in color), roof orientations distribution and OI score; *E) 

Exposure level distribution and FEI score; TOTAL) Topology Indicator 
score (I2). 

5.3. Aggregation of flexible and topology indicators 

The results obtained for the users involved in this study are shown in 
Fig. 11 and Table VI. It is interesting to observe the case of User 2, with a 
high Topology Indicator score but a low Flexible Indicator score. 
Applying a standard geometric mean, this user would get a 0.49 (not 
recommended for installing PV panels), whereas applying a hybrid ag
gregation, this same user would get a 0.55 (recommended for installing 
PV panels). This case shows a critical scenario in which hybrid aggre
gation might produce a more reasonable result than a standard geo
metric mean. 

6. Conclusion 

This paper targets two audiences. First, for those interested in 
identifying the flexibility potential of a set of users. This methodology 
presents different indicators and discusses why a single indicator is not 
enough to determine a user's flexibility potential. Using these indicators, 
edge technologies with recommender systems could develop local rec
ommendations, and training stages of ML algorithms could also easily 
tag the consumptions they are studying for future recommendations. 
Second, for those interested in calculating the solar potential of an area 
to determine the best feasible locations to install PV panels. Finally, both 
indicators are combined to jointly assess the feasibility and suitability of 
panel installation in a rigorous yet straightforward manner. The aggre
gation of both indicators is the most significant contribution of this 
study, which has not yet been addressed in the literature. The indicators 
proposed can be used in building energy recommender systems, by 
public agencies to enhance transition policies, subsidies for the instal
lation of photovoltaic panels for users with flexible energy consump
tions; companies to develop marketing campaigns among their clients 
offering solar panels, solar panels plus battery systems or different 
tariffs. 

This study comprises a group of twelve users from different locations 
and nature tested through flexibility indicators. The results show how 
flexible end-users are identified and classified using different temporal 
aggrupations. In order to show the potential of this approach, repre
sentative buildings for those consumptions with multiple and diverse 
topologies were assessed through cutting-edge technology: high- 
resolution urban 3D models. Both perspectives are merged into a sin
gle indicator through a hybrid approach (arithmetic-geometric), 
enhancing in a descriptive and intuitive manner the assessment of 

Fig. 11. Comparison of the Total Score using a geometric mean and a hybrid approach.  

Table VI 
Indicator Scores.  

ID Flexible 
I1 

Topology I2 Total Geometric ITOT Total Hybrid ITOT 

1 0.51 0.65 0.58 0.58 
2 0.31 0.78 0.49 0.55 
3 0.64 0.98 0.79 0.81 
4 0.76 0.83 0.79 0.8 
5 0.43 0.7 0.55 0.57 
6 0.42 0.63 0.51 0.53 
7 0.57 0.43 0.5 0.5 
8 0.2 0.56 0.33 0.38 
9 0.19 0.38 0.27 0.29 
10 0.75 0.6 0.67 0.67 
11 0.48 0.67 0.57 0.58 
12 0.44 0.97 0.65 0.71  
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suitability and feasibility of potential end-users of PV energy sources, 
easing the energy transition in urban settings. 

The present study shows two potential limitations. The first is asso
ciated with possible overestimations or imprecise assessments stemming 
from the absence of data or insufficient information. This lack of data 
can be due to low sample rates or missing samples in the load monitoring 
time series that might require additional adjustments in selecting time 
windows, threshold levels, etc., to adjust the assessment according to the 
missing data. The lack of data on the topological evaluation could imply 
that not all available surfaces are appropriate for installing PV panels. 
For instance, a surface must meet some structural requirements that 
cannot be evaluated from satellite images but must be assessed in situ 
and follow the norms and standards established within each respective 
country. 

A second limitation is related to the need of a sub-group analysis to 
adjust parameters or time windows. For instance, when comparing an 
industrial setting with a group of residential consumers, the differences 
among residential clients are smaller due to the use of large values 
corresponding to parameters supporting industrial features. For addi
tional characterizations, a separate analysis can be conducted using the 
same indicators, adjusting the levels as needed. 

One promising future contribution is to consider integrating the 
potential carbon emission reduction associated with green electricity 
usage as part of the current Suitable Indicator. Including this new 
dimension as part of the Suitable Indicator could enhance end-users 
identification more akin to this type of energy source. A second pro
spective research could explore the automated detection of existing PV 
panels by leveraging the enhanced characterization capabilities of the 
High-Resolution 3D models. Fig. 12 shows how 3D models not only 
allow for a better characterization of the topological features but also 
enhance the depiction of the texture of PV panels installed on the rooftop 
of a structure. 

Another potential future research endeavor related to the previous 
one could involve developing a novel composite indicator for evaluating 
Solar PV adoption rates at the regional level based on the PV modules 
detected on rooftops. 

Fig. 13 shows a representation of the concept. This new indicator 
would aid in gauging and quantifying the energy transition within cities 
and regions of a country. 
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Fig. 13. Quantifying Solar PV Adoption at neighborhood level through Automated Identification of PV Panels (conceptual representation).  
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Appendix A. Appendix 

This appendix gathers the algorithms for flexible consumption indicators. 

Algorithm 1. LEVEL: Energy Level Indicator

Algorithm 2. CONSISTENCY: Daily Energy Consistency Indicator

Algorithm 3. CONSISTENCY: Energy Variation Indicator

Algorithm 4. VARIATION: Amplitude Level Indicator 
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Algorithm 5. VARIATION: Standard Deviation Indicator
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[35] Leroux F, Germain M, Clabaut É, Bouroubi Y, St-Pierre T. Improving three- 
dimensional building segmentation on three-Dimensional City models through 
simulated data and contextual analysis for building extraction. ISPRS Int J Geo- 
Information 2024;13(1). https://doi.org/10.3390/ijgi13010020. 

[36] OECD. Handbook on constructing composite indicators. 2008. 
[37] Huld TA, Súri M, Dunlop ED, Albuisson M, Wald L. “Integration of HELIOCLIM-1 

Database Into PV-GIS to Estimate Solar Electricity Potential in Africa,” 20th Eur. 
Photovolt. Sol. Energy Conf. Exhib., no. June 2014, p. 2989. 2005. 

[38] Zhao P, Ali Z, Ahmad Y. Developing indicators for sustainable urban regeneration 
in historic urban areas : Delphi method and analytic hierarchy process ( AHP ). 
Sustain Cities Soc 2023;99, no. September:104990. https://doi.org/10.1016/j. 
scs.2023.104990. 
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