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Abstract. Using properties of binary quadratic Diophantine equa-

tions, we prove that if r = pmqn, where p, q are distinct odd primes

andm,n are positive integers, then the equation x2−
(
r2 + 1

)
y2 =

r2 has at most one positive integer solution (x, y) with y < r − 1.
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1. Introduction

Let r be a positive integer with r ≥ 2. A. Dujella put forward the

following conjecture.

Conjecture 1.1 (Dujella). The equation

(1.1) x2 −
(
r2 + 1

)
y2 = r2, x, y ∈ Z

has at most one positive integer solution (x, y) with

0 < y < r − 1.

The above conjecture is also called Dujella’s unicity conjecture, and

it is related to some classical problems in number theory (see [5]). It

is rather a difficult problem, and so far only the following cases have

been verified. A. Filipin, Y. Fujita and M. Mignotte [2] proved the

conjecture in the case when r = pm, 2pm or r2 + 1 = p, 2pm, where p
1
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is an odd prime and m is a positive integer. In the case when r = 2p2i

with p an odd prime, there is an exceptional solution (2p3i + pi, pi).

The reader can find more details on exceptional solutions in [5]. A.

Srinivasan [9] showed that the conjecture is true when r = pq, where

p and q are distinct odd primes. We extend this result in our main

theorem given below.

Theorem 1.2. If r = pmqn, where p, q are distinct odd primes and

m,n ∈ N, then Conjecture 1.1 is true.

Note that equation (1.1) has solutions (r, 0) and (r2 − r + 1, r − 1).

Our approach uses the theory of equivalence of solutions of (1.1). Each

equivalence class has a unique fundamental solution (a, b) that satisfies

0 ≤ b < r. Therefore Dujella’s conjecture claims that there is at most

one positive fundamental solution (a, b) with b > 0 other than the one

given above.

2. Binary quadratic forms

In this section we present the basic theory of binary quadratic forms.

An excellent reference is [7], in Sections 4 to 7 and 11 of Chapter 6.

A primitive binary quadratic form F = (a, b, c) of discriminant ∆ is

a function F (x, y) = ax2 + bxy + cy2, where a, b, c are integers with

b2 − 4ac = ∆ and gcd(a, b, c) = 1. Note that the integers b and ∆

have the same parity. All forms considered here are primitive binary

quadratic forms and henceforth we shall refer to them simply as forms.
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Two forms F and F ′ are said to be (properly) equivalent, written as

F ∼ F ′, if for some A =

α β

γ δ

 ∈ SL2(Z) (called a transformation

matrix), we have F ′(x, y) = f(αx + βy, γx + δy) = (a′, b′, c′), where

a′, b′, c′ are given by

(2.1) a′ = F (α, γ), b′ = 2(aαβ + cγδ) + b(αδ + βγ), c′ = f(β, δ).

It is easy to see that ∼ is an equivalence relation on the set of forms of

discriminant ∆. The equivalence classes form an abelian group called

the class group with group law given by composition of forms. The

identity form is defined as the form (1, 0, −∆
4

) or (1, 1, 1−∆
4

), depending

on whether ∆ is even or odd respectively. The inverse of F = (a, b, c)

denoted by F−1, is given by (a,−b, c). In the following definition we

present the formula for composition of forms.

Let F1 = (a1, b1, c1) and F2 = (a2, b2, c2) be two binary quadratic

forms of discriminant ∆.

Definition 2.1 (Composition). Let l = gcd(a1, a2, (b1 + b2)/2) and let

v1, v2, w be integers such that

v1a1 + v2a2 + w(b1 + b2)/2 = l.

If we define a3 and b3 as

a3 =
a1a2

l2
,

b3 = b2 + 2
a2

l

(
b1 − b2

2
v2 − c2w

)
,



4 MAOHUA LE AND A. SRINIVASAN

then the composition of the forms (a1, b1, c1) and (a2, b2, c2) is the form

(a3, b3, c3), where c3 is computed using the discriminant equation.

Note that this gives the multiplication in the class group.

A form F is said to represent an integerN if there exist integers x and

y such that F (x, y) = N . If gcd(x, y) = 1, we call the representation a

primitive one. Observe that equivalent forms primitively represent the

same set of integers, as do a form and its inverse. Note also that if F

and G are in the identity class, then so are F−1 and FG.

We end this section with two elementary observations about forms.

Firstly, a form F represents primitively an integer N if and only if

F ∼ (N, b, c) for some integers b, c. This follows simply by noting that

F (α, γ) = N with gcd(α, γ) = 1 if and only if there exists a trans-

formation matrix A as given above such that (2.1) holds. Secondly, if

b ≡ b′ (mod 2N), then the forms (N, b, c) and (N, b′, c′) are equivalent.

This equivalence follows using the transformation matrix A =

1 δ

0 1


where b′ = b+ 2Nδ.

3. The diophantine equation x2 −Dy2 = N

Let D be a non-square positive integer, and let N be an odd positive

integer with N > 1 and gcd(D,N) = 1. It is well known that the

solutions (x, y) of the equation

(3.1) x2 −Dy2 = N,
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can be put into equivalence classes, where equivalence of solutions is

defined as follows.

Definition 3.1. Two solutions (x, y) and (x′, y′) of x2 −Dy2 = N are

said to be equivalent, written as (x, y) ∼ (x′, y′) if xy′ ≡ yx′ (mod N).

Remark 3.2. The equivalence stated above is usually stated with the

additional condition of xx′ ≡ Dyy′ (mod N). However, this condition

follows from the congruence given in the definition.

The following lemma connects primitive representations of x2−Dy2 =

N and forms that represent N . It is well known and one may refer to [1,

Theorem 4.4, Page 53]. A clear and explicit exposition is also available

in [3] and [4].

Theorem 3.3. Let D be a non-square integer. Let N > 1 be a positive

integer such that gcd(N, 2D) = 1 and suppose that N is primitively

represented by some form of discriminant 4D. Then the following hold,

where all forms are of discriminant 4D.

(1) If A = {(N, b, c) : −N < b < N} and w(N) is the number of

distinct primes dividing N , then |A| = 2w(N).

(2) There is a one-to-one correspondence between the set of equiv-

alence classes of primitive solutions (x, y) of the equation X2−

DY 2 = N and the set A0 = {(N, b, c) ∼ (1, 0,−D);−N < b <

N} of forms in A equivalent to the identity form.

Furthermore, in each equivalence class there is a unique fundamental

solution (u, v) with least non-negative value of v. The following result

gives us an upper bound for v.
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Theorem 3.4. [6, Theorem 4.1] Let N > 1 be an integer. Suppose that

(x0, y0) is the least positive solution of the Pell equation x2−Dy2 = 1.

Then a solution (u, v) with v > 0 of x2 − Dy2 = N is a funda-

mental solution if and only if either 0 < v < y0

√
N/(2(x0 + 1)) or

v = y0

√
N/(2(x0 + 1)) and u =

√
N(x0 + 1)/2.

Corollary 3.5. Let gcd(a, b) = g with b > 0. Then the following are

true.

(1) (a, b) is a fundamental solution of x2 − (1 + r2)y2 = r2 if and

only if b < r.

(2) (a, b) is a fundamental solution of X2 − (1 + r2)Y 2 = r2 if

and only (a/g, b/g) is a primitive fundamental solution of X2−

dY 2 = (r/g)2.

Proof. The fundamental solution of the Pell equation x2−(1+r2)y2 = 1

is (x0, y0) = (2r2 + 1, 2r). Using these values along with N = r2 in

Theorem 3.4 we obtain that a positive solution (u, v) of x2−(1+r2)y2 =

r2 is a fundamental solution if and only if 0 < v < r.

For part 2 we simply note that for the second equation, the upper

bound in the theorem (using N = (r/g)2) is r/g. �

Remark 3.6. From Theorem 3.4 we may re-word Dujella’s conjec-

ture to state that equation (1.1) has at most one positive fundamental

solution (x, y) with 0 < y < r − 1.

Lemma 3.7. [8, Lemma 3.3] Let k = ff ′ be a positive integer such

that 1 < f < k. If x2 − (k2 + 1)y2 = f ′2 for some coprime integers x

and y, then f ′ is not an odd prime power.
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Lemma 3.8. [8, Lemma 3.2] Let d = 1 + r2 and N be an integer such

that 1 < |N | ≤ r. Then there are no primitive solutions to X2−dY 2 =

N .

4. Proof of Theorem 1.2

The proof of Theorem 1.2 is based on the following lemma.

Lemma 4.1. Let d = 1 + r2, with r = pmqn, where p and q are odd

primes, and m and n are positive integers. Then the following are true.

(1) The congruence x2 ≡ d (mod pq) has exactly 4 solutions, namely

±1 and ±l2, for an l2 that satisfies 1 < l2 < pq.

(2) Let f1, f2, g1, g2 be integers such that 0 < f1 < f2 ≤ m and 0 <

g1, g2 ≤ n. Suppose that there are two forms F = (p2f1q2g1 , 2L1, c1)

and G = (p2f2q2g2 , 2L2, c2) equivalent to (1, 0,−d) such that

L1 ≡ ±L2 ≡ ±l2 (mod pq). Then g1 > g2. Moreover L1 ≡ ±L2

(mod p2f1q2g2).

Proof. The first part is a standard result from elementary number the-

ory.

For the second part assume first that L2 ≡ −L1 (mod pq). From the

discriminant equation we have

(4.1) L2
2 ≡ L2

1 ≡ d (mod gcd(p2f1q2g1 , p2f2q2g2)),

and as L2 ≡ −L1 (mod pq), this gives

(4.2) L1 ≡ −L2 (mod gcd(p2f1q2g1 , p2f2q2g2)).
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We now apply the composition algorithm to find FG. If g1 ≤ g2 we

see that the gcd l required in Definition 2.1 is p2f1q2g1 . Hence the first

coefficient of the composition FG is p2(f2−f1)q2(g2−g1). Therefore there is

a primitive representation (x, y) such that x2−dy2 = p2(f2−f1)q2(g2−g1) >

r from Lemma 3.8. It follows on using Lemma 3.8 again for p2f1q2g1

that

r2 ≥ p2f2q2g2 > p2f1q2g1r > r2

a contradiction. Therefore we have g2 < g1, in which case from (4.2)

we have L1 ≡ −L2 (mod p2f1q2g2).

In the case when L2 ≡ L1 (mod pq) we would proceed exactly as

above with the only difference that we would now consider the compo-

sition FG−1, so as to obtain the same gcd in Definition 2.1 as above. �

Proof of Theorem 1.2

We start with the observation that if y > 0 and s = gcd(x, y),

then from Corollary 3.5(2), we have (x, y) is a fundamental solution

of X2 − dY 2 = r2 if and only if (x/s, y/s) is a fundamental primitive

solution of X2−dY 2 = (r/s)2. Moreover, from Lemma 3.7 we have r/s

is not a prime power. Observe that if (x, y) is a fundamental solution,

then so is (−x, y) and these correspond to inverse classes. Therefore it

follows from Theorem 3.3 that every such pair of fundamental solutions

of x2− dy2 = r2 corresponds to a pair of forms (p2fq2g,±2L,C), where

(4.3) 0 < f ≤ m, 0 < g ≤ n and 0 < L < p2fq2g.

Note that the fundamental solutions (±(r2−r+1), r−1) correspond

to the forms (r2,±2,−1).
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From Remark 3.6 to prove Dujella’s conjecture, we may assume on

the contrary, that there are two positive fundamental solutions different

from the one mentioned above. It follows from the discussion above

that we have the forms

F = (p2fq2g, 2L,C), G = (p2f ′q2g′ , 2L′, C ′),

where L and L′ satisfy condition (4.3) (where in the case of L′ we

replace f, g, L by f ′, g′, L′ respectively) and thus

F 6= G or G−1.

From the discriminant equation we have

(4.4) L2 ≡ d ≡ 1 (mod p2fq2g).

From Lemma 4.1(1), we have L ≡ ±1 or ±l2 (mod pq). If L ≡ ±1

(mod pq), then from (4.4) above we have L ≡ ±1 (mod p2fq2g) which

means

(p2fq2g, 2L,C) ∼ (p2fq2g,±2,−p2m−2fq2n−2g) ∼ (1, 0,−d),

where we have used the remark at the end of Section 2. Thus (1, 0,−d)

represents primitively both p2fq2g and −p2m−2fq2n−2g (see last para-

graph of Section 2). This is not possible from Lemma 3.8, if both

these integers are greater than 1 in absolute value, as at least one of

them is less than or equal to r in absolute value. Hence we must have

(f, g) = (m,n) and thus F = (r2, 2,−1) which is contrary to the as-

sumption.
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An identical analysis with L′ yields

(4.5) L ≡ ±L′ ≡ ±l2 (mod pq).

If (f, g) = (f ′, g′) then the discriminant equation gives

L2 ≡ L′2 ≡ 1 (mod p2fq2g).

Combining the above with (4.5) yields

L ≡ ±L′ (mod p2fq2g),

which is not possible because as stated above, F 6= G or G−1 because

of the conditions on L and L′.

Hence we may assume that f < f ′. Then from Lemma 4.1(2) we

have g′ < g and

L′ ≡ −λ1L (mod p2fq2g′),

where λ1 = 1 or −1. We will now compute the composition form FGλ1 .

We have for the gcd l in Definition 2.1

gcd(p2fq2g, p2f ′q2g′ , L+ λ1L
′) = p2fq2g′ .

It follows from Definition 2.1 that

FGλ1 = (p2(f ′−f)q2(g−g′), 2L1, C1),

for some integers L1, C1. If now g− g′ ≤ g′, (i.e. g ≤ 2g′) then we have

a contradiction from Lemma 4.1(2), as f ′ − f < f ′. Assume now that
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g − g′ > g′. Let L′ ≡ −λ2L1 (mod pq). Then

FGλ1+λ2 = (p2fq2(g−2g′), 2L2, C2),

where the required gcd in Definition 2.1 is l = p2(f ′−f)q2g′ . Observe

that the exponent of p in the form displayed above is 2f (the same as

in F ) and the exponent of q is less than the corresponding exponent in

F , which is not possible by Lemma 4.1, and thus the proof is complete.
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