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Abstract
Offshore wind energy offers high generation potential but poses forecasting challenges due to wind variability.
Accurate short-term predictions are essential for intraday electricity market operations. This study benchmarks
traditional and deep learning models—ARIMA, XGBoost, LSTM, GRU—against recent architectures like PatchTST
(Transformer-based) and RMoK (KAN) for 3-hour-ahead offshore wind power forecasting. Using real-world data
from Alpha Ventus and a public Kaggle dataset, results show that modern models consistently outperform
classical ones in accuracy and generalization.

Keywords: Offshore wind, Deep Learning, Time series forecasting, Transformer, KAN, Renewable energy, Intraday
market.

1 Introduction
The problem of accurate forecasting is crucial for integrating renewable energy sources, particularly offshore wind,
which is highly variable yet promising. This thesis builds on previous work by Carlos de los Santos [1] and extends
it by incorporating recent deep learning models such as Transformers and Kolmogorov–Arnold Networks (KAN)
[2]. The main objective is to benchmark the performance of various time series models for short-term wind power
prediction over a 3-hour forecast horizon, which is significant for intraday market operations. The models evaluated
include traditional ones (ARIMA, XGBoost, LSTM, GRU) as well as newer architectures (Transformer, MLP,
KAN). The evaluation focuses on key aspects like forecasting accuracy (MAE), scalability, generalization, and
reproducibility, using open-source implementations.

2 Methodology
This Master’s Thesis compares classical statistical, machine learning, and deep learning methods for forecasting
electricity generation in offshore wind farms using Python, the dominant language for time series analysis. While
traditional models like ARIMA were implemented in R, deep learning libraries like TensorFlow/Keras and Py-
Torch have fragmented the Python ecosystem. The thesis evaluates Python libraries (statsmodels, scikit-learn,
sktime, darts) but highlights their lack of support for advanced deep learning models, addressing this gap with
the Nixtlaverse, a modern set of open-source libraries for time series forecasting which includes:

• StatsForecast for classical models like ARIMA and exponential smoothing,

• MLForecast for integrating machine learning regressors like scikit-learn and XGBoost,

• NeuralForecast for deep learning models such as MLPs, LSTMs, and Transformer-based architectures.

This methodology enables comprehensive and up-to-date benchmarking of both traditional and deep learning models
in a coherent Python framework.

3 Data Description
The workflow followed involves the use of two datasets:



• Alpha Ventus Dataset: Inherited from Carlos de los Santos [1], including data preprocessing and the selection
of relevant variables.

• Public Dataset Available on Kaggle [3]: This work uses a dataset obtained from Kaggle, a widely recognized
platform for open data. Its inclusion allows evaluating the generalization and scalability capabilities of the
developed models in a realistic and replicable environment.

For both datasets, rigorous preprocessing was applied, including missing value imputation, variable normalization,
and the generation of temporal features (lags, moving averages, etc.) to enrich the model inputs. The data was then
split into training, validation, and test sets using a temporal hold-out strategy, maintaining chronological order to
avoid data leakage.

4 Models Compared

Model Type Key Feature
ARIMA Statistical Linear baseline
XGBoost ML Ensemble Gradient Boosting with feature selection
LSTM, GRU Recurrent NN Captures temporal dependencies
PatchTST, TimeXer Transformer Attention-based sequence modeling
NBeats, NHits, TiDE MLP + Seq2Seq Dense temporal encoders
RMoK Kolmogorov Network Mixture of Experts using learnable activation

This paper will focus exclusively on the implementation and results of the new architectures based on Transformers,
MLP, and KAN.

5 Transformer-based Models
Introduction

The Transformer architecture, introduced in the 2017 paper Attention is All You Need [4], revolutionized machine
translation by replacing recurrent models with parallel processing via GPUs. Key innovations include embeddings
with positional encodings and the attention mechanism for better long-range dependency modeling. Additional
features like residual connections and layer normalization improved training stability.

Since 2019, researchers have adapted Transformers for time series forecasting, addressing challenges such as:

• Improving locality: Time series often rely on local patterns, leading to the introduction of convolutional
self-attention for focusing on nearby time points.

• Reducing memory usage: To tackle quadratic scaling, sparse attention mechanisms, such as logarithmic
selection of prior time steps, were proposed for efficiency.

6 Patch-TST model
PatchTST, a Transformer-based model designed for long-term time series forecasting, processes input sequences
as non-overlapping patches to capture local patterns efficiently. By leveraging a patching mechanism inspired by
vision transformers, PatchTST enhances forecasting accuracy while reducing computational complexity.
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Figure 1 : Model Architecture of PatchTST

Implementation and results

The implementation of PatchTST used in this work is the one available in Nixtla’s neuralforecast library [5],
specifically through the PatchTST and AutoPatchTST classes, following the procedure previously described in Section
2 of the Master’s Thesis. The result is available in the models/PatchTST folder of the Github repository created
for this Master’s Thesis .

Along with the fixed values described in Section 2 of the Master’s Thesis, the list of specific hyperparameters
considered in this work is:

Parameter Description
encoder_layers Number of layers in the encoder part of the model
n_heads Number of attention heads in the attention block
hidden_size Number of neurons in the model’s feedforward networks
dropout Dropout rate for the residual connections
head_dropout Dropout rate for the linear layer
attn_dropout Dropout rate for the attention layer
patch_len Length of the input segment (patch)
learning_rate Learning rate

Results for the AV and KaggleWPGD datasets using PatchTST.

The models corresponding to the AV and KaggleWPGD data are found in the Jupyter notebooks named
PatchTST_AV.ipynb and PatchTST_KaggleWPGD.ipynb, respectively. The results of the execution of these models
can be found in the documents PatchTST_AV.html and PatchTST_KaggleWPGD.html, available in the code
repository.

With an input size of 6 hours and a prediction horizon of 3 hours, the predictions shown in Figure 2 are obtained.
The training time for both models (including hyperparameter selection) is approximately 12 minutes. The validation
loop time for the AV dataset is approximately 80 minutes.

Below are the predictions from the PatchTST model, illustrating the prediction evolution over the forecast horizon.
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Figure 2 : Predictions of PatchTST model for the AV and Kaggle dataset

The Mean Absolute Error (MAE) values obtained for the test set predictions are presented in Figures 11 and 12.

• Qualitatively, it can be observed that the model produces reasonably good predictions. However, due to its
architecture, in the case of the AV dataset, it yields results outside the [0, 1] interval to which the original
(normalized) time series values belong. This behavior could be easily corrected through post-processing, but
the best approach would be to modify the model architecture so that the final prediction layer is a sigmoid
layer, naturally producing predictions within the desired interval.

• Most importantly: the PatchTST model does not incorporate the use of exogenous variables as
predictors in its design. For that reason, we have explored a transformer-based model that natively supports
them.

7 TimeXer model
TimeXer, a Transformer-based architecture tailored for long-term time series forecasting, uses cross-channel at-
tention to model dependencies across multiple variables. Its design focuses on capturing inter-series interactions
efficiently, improving performance in multivariate forecasting tasks.

Figure 3 : Model Architecture of TimeXer

Implementation and results TimeXer

For the TimeXer model, we have again used an implementation available in the Nixtla neuralforecast library [5],
through the TimeXer and AutoTimeXer classes, following the procedure described earlier in Section 2 of the Master’s
Thesis. The result is available in the models/TimeXer folder of the GitHub repository.

Along with the fixed values described in Section 2 of the Master’s Thesis, the list of specific hyperparameters
considered in this work is:

Parameter Description
encoder_layers Number of layers in the encoder part of the model
n_heads Number of attention heads in the attention block
hidden_size Number of neurons in the model’s feedforward networks
dropout Dropout rate for the residual connections
head_dropout Dropout rate for the linear layer
attn_dropout Dropout rate for the attention layer
patch_len Length of the input segment (patch)
learning_rate Learning rate
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Results for the AV and KaggleWPGD datasets using TimeXer.

The models corresponding to the AV and KaggleWPGD data are found in the Jupyter notebooks named
TimeXer_AV.ipynb and TimeXer_KaggleWPGD.ipynb, respectively. The results of the execution of these models
can be found in the documents TimeXer_AV.html and TimeXer_KaggleWPGD.html, available in the code
repository.

With an input size of 6 hours and a prediction horizon of 3 hours, the predictions shown in Figure 4 are obtained.
The training time for both models (including hyperparameter selection) is approximately 12 minutes. The validation
loop time for the AV dataset is approximately 80 minutes.

Below are the predictions from the TimeXer model, illustrating the prediction evolution over the forecast horizon.

Figure 4 : Predictions of the TimeXer model for the AV and Kaggle dataset

The Mean Absolute Error (MAE) values obtained for the test set predictions are presented in Figures 11 and 12.

• Qualitatively, it can be seen that the model produces acceptably good predictions. However, due to its
architecture, in the case of the AV dataset, it yields results outside the [0, 1] range to which the values of
the original (normalized) time series belong. This behavior has already been discovered in PatchTST and the
best approach is the same.

• From a computational perspective, a notable increase in the validation cost is observed compared to models like
LSTM or XGBoost. In particular, the KaggleWPGD dataset has been a bottleneck in terms of efficiency, with
validation times exceeding 7 hours. This high load could be due to the intensive use of attention mechanisms
over long windows.

8 MLP-based Models
In recent years, MLP-based architectures have regained popularity in time series forecasting due to their simplicity
and efficiency. Models like TiDE (Time-series Dense Encoder) [6] and N-HiTS (Neural Hierarchical Interpolation
for Time Series) [7] leverage dense layers and hierarchical structures to capture nonlinear relationships and improve
generalization. These models offer competitive performance against more complex architectures like Transformers,
providing a scalable and efficient solution for time series prediction.

9 NHiTS model
N-HiTS (Neural Hierarchical Interpolation for Time Series Forecasting), a deep learning model, uses hierarchical
interpolation and residual learning to capture patterns at multiple temporal resolutions. Its modular architec-
ture enables efficient and accurate long-term forecasting by focusing on different frequency components of the time
series.
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Figure 5 : Model Architecture of N-HiTS

Implementation and results NHiTS

The implementation of N-HITS that we have used is the one available in the Nixtla neuralforecast library [5],
specifically through the NHITS and AutoNHITS classes, following the procedure described earlier in Section 2 of the
Master’s Thesis. The result is available in the models/NHITS folder of the GitHub repository.

Along with the fixed values described in Section 2 of the Master’s Thesis, the list of specific hyperparameters
considered in this work is:

Parameter Description
encoder_layers Number of layers in the encoder part of the model
n_heads Number of attention heads in the attention block
hidden_size Number of neurons in the model’s feedforward networks
dropout Dropout rate for the residual connections
head_dropout Dropout rate for the linear layer
attn_dropout Dropout rate for the attention layer
patch_len Length of the input segment (patch)
learning_rate Learning rate

Results for the AV and KaggleWPGD datasets using NHiTS.

The models corresponding to the AV and KaggleWPGD data are found in the Jupyter notebooks named
NHiTS_AV.ipynb and NHiTS_KaggleWPGD.ipynb, respectively. The results of the execution of these models can be
found in the documents NHiTS_AV.html and NHits_KaggleWPGD.html, available in the code repository.

With an input size of 6 hours and a prediction horizon of 3 hours, the predictions shown in Figure 6 are obtained.
The training time for both models (including hyperparameter selection) is approximately 12 minutes. The validation
loop time for the AV dataset is approximately 80 minutes.

Below are the predictions from the NHiTS model, illustrating the prediction evolution over the forecast horizon.
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Figure 6 : Predictions of the N-HiTS modelfor the AV and Kaggle dataset

The Mean Absolute Error (MAE) values obtained for the test set predictions are presented in Figures 11 and 12.

The N-HiTS model has proven to be effective at modeling complex temporal dynamics due to its hierarchical
architecture based on backcasting/forecasting blocks.

However, this architectural improvement comes with increased computational complexity and greater sensitivity
to hyperparameter selection, which requires careful attention during the tuning process through validation. In
this work, this selection was performed using the AutoNHITS class from the neuralforecast library, which allowed
automating this task and reducing the risk of overfitting.

10 TiDE model
TiDE (Time series Decomposition and Encoding), a model designed for long-term time series forecasting, decom-
poses the input series into trend, seasonality, and residual components. By encoding these components separately,
TiDE improves forecasting accuracy while handling complex patterns and non-stationarities in the data.

Figure 7 : Model Architecture of TiDE

Implementation and results TiDE

The TiDE implementation we used is the one available in Nixtla’s neuralforecast library [5], specifically through
the TiDE and AutoTiDE classes, following the procedure described earlier in Section 2 of the Master’s Thesis. The
result is available in the models/TiDE folder of the GitHub repository.

Along with the fixed values described in Section 2 of the Master’s Thesis, the list of specific hyperparameters
considered in this work is:

Parameter Description
decoder_output_dim Number of units in the dense decoder output layer
hidden_size Number of units in the dense layers
num_encoder_layers Number of encoder layers
num_decoder_layers Number of decoder layers
temporal_decoder_dim Number of units in the temporal decoder dense layers
dropout Dropout rate
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Parameter Description
learning_rate Learning rate

Results for the AV and KaggleWPGD datasets using TiDE.

The models corresponding to the AV and KaggleWPGD data are found in the Jupyter notebooks named
TiDE_AV.ipynb and TiDE_KaggleWPGD.ipynb, respectively. The results of the execution of these models can be
found in the documents TiDE_AV.html and TiDE_KaggleWPGD.html, available in the code repository.

With an input size of 6 hours and a prediction horizon of 3 hours, the predictions shown in Figure 8 are obtained.
The training time for both models (including hyperparameter selection) is approximately 25 minutes. The validation
loop time for the AV dataset is over six hours.

Below are the predictions from the TiDE model, illustrating the prediction evolution over the forecast horizon.

Figure 8 : Predictions of the TiDE model for the AV and Kaggle dataset

The Mean Absolute Error (MAE) values obtained for the test set predictions are presented in Figures 11 and 12.

• Qualitatively, the predictions reflect a good ability to capture the dynamics of the series, both in the short
and medium term.

• Unlike models like PatchTST, TiDE is designed to natively incorporate exogenous variables. This feature is
especially relevant in energy prediction tasks, where additional information (such as weather or operational
data) can be crucial in improving the model’s accuracy.

11 KAN-based Models
RMoK is a time series forecasting model proposed in 2024 as an adaptation of Kolmogorov–Arnold Networks (KAN)
[8]. It leverages a minimal architecture with specialized KAN experts and a gating mechanism, aiming for high
interpretability and efficiency.

Figure 9 : Model Architecture of RMoK

Implementation and results RMoK
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Once again, in this case, we were able to use the RMoK implementation available in Nixtla’s neuralforecast library
[5], which is especially noteworthy for a model published in August 2024. The implementation uses the RMoK and
AutoRMoK classes, similarly to what we have seen in other models, following the procedure described in Section 2 of
the Master’s Thesis. The result is available in the models/RMoK folder of the GitHub repository.

Along with the fixed values described in Section 2 of the Master’s Thesis, the list of specific hyperparameters
considered in this work is:

Parameter Description
taylor_order Order of the Taylor polynomial used
wavelet_function Shape of the wavelet function
dropout Dropout rate
learning_rate Learning rate

Results for the AV and KaggleWPGD datasets using RMoK.

The models corresponding to the AV and KaggleWPGD data are found in the Jupyter notebooks named
RMoK_AV.ipynb and RMoK_KaggleWPGD.ipynb, respectively. The results of the execution of these models can be
found in the documents RMoK_AV.html and RMoK_KaggleWPGD.html, available in the code repository.

With an input size of 6 hours and a prediction horizon of 3 hours, the predictions shown in Figure 10 are obtained.
The training time for both models (including hyperparameter selection) is approximately 14 minutes. The validation
loop time for the AV dataset is two hours.

Below are the predictions from the RMoK model, illustrating the prediction evolution over the forecast horizon.

Figure 10 : Predictions of the RMoK model for the AV and Kaggle dataset.

The Mean Absolute Error (MAE) values obtained for the test set predictions are presented in Figures 11 and 12.

For the AV dataset, the results are comparable to those obtained with TiDE, slightly better in the long term (3h).
Like TiDE, RMoK is designed to natively incorporate exogenous variables, making it a suitable model for complex
contexts where the target variable depends on multiple external factors. This feature gives it a significant advantage
over architectures such as PatchTST, which do not support this integration directly.

12 Results
Results Key Findings from the AV Dataset Analysis

The following figure presents the comparative analysis and applicability assessment based on the AV dataset. This
analysis allows us to evaluate the performance of the different models considered for predicting electricity generation
in offshore wind farms. The results provide a detailed insight into the accuracy and reliability of the models in the
context of this specific dataset.
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Figure 11 : Comparative analysis and applicability assessment MAE for AV Dataset

• Transformer (PatchTST) and KAN-based models (RMoK) clearly outperform classical and recurrent archi-
tectures.

• PatchTST proves to be the most effective model for capturing short-term temporal dependencies (e.g., 1-hour
forecasts), while TiDE and RMoK demonstrate superior performance as the forecasting horizon increases,
making them more suitable for modeling long-term temporal dynamics.

• RMoK stands out for its balance between accuracy and stability, making it a strong candidate for production
environments where robust multi-horizon forecasting is required.

• LSTM and N-BEATS exhibit clear limitations, with performance deteriorating significantly over time.

·

Results and key Findings from the Kaggle Dataset

Figure 12 : Comparative analysis and applicability assessment MAE for Kaggle Dataset

• Transformers (TimeXer and PatchTST) dominate the benchmark on this dataset, achieving the best results
across all forecast horizons. Their extremely low MAE confirms their suitability for clean and complex data.

• RMoK and TiDE prove to be very strong alternatives, especially for tasks where a trade-off between accuracy
and interpretability is important.

• XGBoost and LSTM are clearly outperformed, reinforcing the notion that modeling deep temporal depen-
dencies requires modern architectures.

• The consistency between the AV and Kaggle results strengthens the conclusions of this work and suggests
that advanced models (Transformers and KAN) offer superior generalization capabilities.
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