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 A B S T R A C T

This paper proposes a novel single-level robust mathematical approach to model the Renewable-only Virtual 
Power Plant (RVPP) bidding problem in the simultaneous day-ahead and secondary reserve markets. In 
existing single-level models in the literature, different uncertainties are modeled separately, without explicitly 
considering their interactions, leading to worst-case energy scenarios. In this study, the flexible worst-case 
profit of RVPPs due to uncertainties related to electricity prices, Non-dispatchable Renewable Energy Sources
(ND-RES) production, and flexible demand is captured. In order to find the flexible worst-case profit in a 
single-level model, the relationship between price and energy uncertainties leads to non-linear constraints, 
which are finely linearized. Simulation results show the superiority of the proposed robust model compared to 
alternatives found in the literature in terms of computational efficiency, without compromising the quality of 
results. Moreover, ND-RES and demand uncertainties exert a greater influence on the RVPP trading strategy 
and profitability compared to uncertainties in electricity prices. Specifically, for the studied RVPP, the sold 
and purchased energy decrease by 52% and increase by 74.2%, respectively, when only ND-RES and demand 
uncertainties are considered, as opposed to the case where solely uncertainties related to day-ahead and 
secondary reserve market prices are taken into account.
1. Introduction

1.1. Motivation

The penetration of ND-RES has experienced a remarkable growth 
in the last decades. However, the stochastic nature of these sources 
implies that ND-RES are less reliable when it comes to predictable and 
controllable power injection over a given period of time [1]. This makes 
ND-RES participation in the energy and SRM difficult, as failure to 
meet with the contracted energy and reserve in the market will lead 
to penalties if not suspension from future market activities. However, 
by integrating multiple portfolios of ND-RES and other flexible assets 
as an RVPP, the performance and competitiveness of ND-RES in these 
markets can be significantly improved [2].

The viability of RVPP depends on its economic performance, re-
lated to benefits and costs. Different markets bring different benefits 
according to the bidding/offering ability of RVPP and its ability to 
provide what is promised [3]. However, in addition to the internal 
uncertainties of RVPP units in their production and demand, there are 
various external uncertainties in the markets, such as the energy and 
reserve electricity price uncertainties, and also the combination of these 
uncertainties may affect the final profit of RVPP [4]. Therefore, the 

∗ Corresponding author.
E-mail address: hnemati@comillas.edu (H. Nemati).

development of bidding approaches for RVPP participation in different 
markets taking into account the characteristics of RVPP units, market 
rules, and internal and external uncertainties has at most important for 
RVPP operators and researchers [5].

1.2. Background

Aligned with the European initiatives to expand ND-RES penetra-
tion and reduce greenhouse gas emissions [6], this study examines 
the operational strategies and market participation of an RVPP con-
sisting solely of ND-RES and flexible demand. By aggregating and 
internally balancing the stochastic fluctuations of ND-RES, the RVPP 
enables more reliable market participation while optimizing its col-
lective generation output. The proposed RVPP framework presents a 
viable and competitive approach to enhancing the profitability and 
integration of ND-RES into electricity markets. With its ability to 
coordinate multiple units and effectively manage uncertainties, the 
RVPP can participate in multiple markets, offering a diverse range 
of products. Other frameworks, such as energy hubs [7–9], also offer 
a way to coordinate multiple energy sources and enhance system 
flexibility, though this work specifically focuses on the RVPP approach.
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Nomenclature

This subsection presents the notation and nomenclature used in 
the remainder of the paper.

General Notation Concepts

• An uncertain parameter with a tilde symbol denotes the 
median value in the forecast distribution, representing a 
point where half of the observations are lower (𝐴̃);

• the hat/inverse hat symbol on uncertain parameters signi-
fies the greatest positive/negative permitted deviation from 
the forecast’s median (𝐴̂, 𝐴̌);

• parameters with an upper/lower bar represent their 
upper/lower bounds of parameter 𝐴 (𝐴̄, 

̄
𝐴);

• upward/downward arrows indicate up/down direction of 
regulation in variables and parameters (𝑎↑, 𝐴↑/𝑎↓, 𝐴↓).

Indexes and Sets
𝑑 ∈ D Set of demands
𝑝 ∈ P Set of daily load profiles
𝑟 ∈ R Set of Non-dispatchable Renewable Energy 

Sources (ND-RES)
𝑡 ∈ T Set of time periods
𝛯DA+SR Set of decision variables of Day-ahead Mar-

ket (DAM) and Secondary Reserve Market
(SRM)

Parameters

𝐶𝑅
𝑟 Operation and maintenance costs of 

ND-RES 𝑟 (e/MWh)
𝐶𝑑,𝑝 Cost of load profile 𝑝 of demand 𝑑 (e)
𝐸𝑑 Energy consumption of demand 𝑑 through-

out the planning horizon (MWh)
𝑀 Very big positive value (e)
𝑃𝑑 Power consumption of demand 𝑑 (MW)
𝑃𝑟 Power production of ND-RES 𝑟 (MW)
𝑃𝑑,𝑝,𝑡 Profile 𝑝 of demand 𝑑 prediction during 

period 𝑡 (MW)
𝑃𝑟,𝑡 ND-RES 𝑟 production prediction during 

period 𝑡 (MW)
𝑅𝑑 Ramp rate of demand 𝑑 (MW/hour)
𝑅SR
𝑟(𝑑) Secondary Reserve (SR) ramp rate of 

ND-RES 𝑟 (demand 𝑑) (MW/min)
𝑇 SR Required time for SR action (min)
𝛥𝑡 Duration of periods (h)
𝛤DA∕SR DAM/SRM price uncertainty budget (–)
𝛤𝑟(𝑑) ND-RES 𝑟 production (demand 𝑑) uncer-

tainty budget (–)
𝜅 User-defined parameter to set the limit of up 

reserve traded in the SRM as a percentage 
of total power capacity of Renewable-only 
Virtual Power Plant (RVPP) (%)

𝜀 Very small positive value (e)
𝜚𝑡 Coefficient to calculate the ratio of down-

to-up reserve requested by the Transmission 
System Operator (TSO) during period 𝑡 (%)
2 
𝛽𝑑,𝑡 Percentage of flexibility of demand 𝑑 during 
period 𝑡 (%)

𝜆DA∕SR𝑡 DAM/SRM price prediction during period 𝑡
(e/MWh/e/MW)

Continuous Variables
𝑝DA𝑡 Total traded power by RVPP in the DAM 

during period 𝑡 (MW)
𝑝DA𝑟(𝑑),𝑡 Production of ND-RES 𝑟 (consumption of 

demand 𝑑) in the DAM during period 𝑡
(MW)

𝑟SR𝑡 Total SR traded by RVPP for different TSO 
calls on conditions during period 𝑡 (MW)

𝑟SR𝑟(𝑑),𝑡 SR provided by ND-RES 𝑟 (demand 𝑑) for 
different TSO calls on conditions during 
period 𝑡 (MW)

𝑦(′)DA𝑡 RVPP profit affected by DAM negative (pos-
itive) price uncertainty during period 𝑡
(e)

𝑦SR𝑡 RVPP profit affected by SRM price uncer-
tainty during period 𝑡 (e)

𝑦𝑟(𝑑),𝑡 RVPP profit (cost) affected by ND-RES 𝑟
production (demand 𝑑) uncertainty during 
period 𝑡 (e)

𝜂(′)DA𝑡 Dual variable to model the negative (pos-
itive) price uncertainty of DAM during 
period 𝑡 (e)

𝜂SR𝑡 Dual variable to model the price uncertainty 
of SRM during period 𝑡 (e)

𝜂𝑟(𝑑),𝑡 Dual variable to model the ND-RES 𝑟 pro-
duction (demand 𝑑) uncertainty during 
period 𝑡 (e)

𝜈DA∕SR Dual variable to model the price uncertainty 
of DAM/SRM (e)

𝜈𝑟(𝑑) Dual variable to model the ND-RES 𝑟 pro-
duction (demand 𝑑) uncertainty during 
period 𝑡 (e)

Binary Variables
𝑢𝑑,𝑝 Indicator of selection of profile 𝑝 of demand 

𝑑 (–)
𝜒 (′)𝐷𝐴
𝑡 1/0 variable if DAM negative (positive) 

price robust constraint is active/inactive 
during period 𝑡 (–)

𝜒𝑆𝑅
𝑡 1/0 variable if SRM price robust constraint 

is active/inactive during period 𝑡 (–)
𝜒𝑟(𝑑),𝑡 1/0 variable if ND-RES 𝑟 (demand 𝑑) robust 

constraint is active/inactive during period 𝑡
(–)

Electricity markets are generally divided into three main categories: 
long-term, short-term, and Real-time Market (RTM) (continuous mar-
ket). Long-term electricity markets operate on time horizons ranging 
from weeks to years and primarily focus on large-scale planning and 
investment. Key participants include major electricity producers, TSOs, 
regulators, and investors. Transactions in these markets are typically 
conducted through electricity purchase agreements, capacity contracts, 
and bilateral deals [10]. In contrast, short-term electricity markets 
cover trading periods from a few hours to several days, ensuring system 
operation and supply–demand balance. These markets involve a diverse 
set of participants, including large and small-scale power producers, 
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retailers, major consumers, demand response providers, and balance-
responsible entities. Short-term trading mechanisms mainly rely on 
competitive auctions or pre-delivery market pools for electricity, capac-
ity, and ancillary services [11]. Lastly, RTM optimization allows power 
units to dynamically adjust their operations in response to sub-hourly 
fluctuations in demand and renewable energy generation [12].

Given the relatively small scale of the RVPP analyzed in this study 
compared to the overall power system, the primary focus is thus on 
short-term electricity market bidding within a 24-hour horizon, rather 
than long-term market participation. As the main objective of this study 
is to evaluate the viability of RVPP, the analysis concentrates on two 
key short-term markets: the DAM and the SRM, while RTM participa-
tion is not considered. Moreover, although environmental aspects are 
not explicitly included in the objective function, the proposed model 
enhances the economic viability of RVPP, which predominantly relies 
on ND-RES. Consequently, by increasing the feasibility and compet-
itiveness of RVPP, this approach indirectly contributes to economic 
efficiency and supports carbon neutrality goals in the power grid.

1.3. Literature review

Many papers in the literature use mathematical optimization mod-
els to capture different uncertainties associated with Virtual Power 
Plant (VPP) due to ease of implementation, convergence to the global 
optimum, and computational efficiency of these models [13]. In this 
context, Robust Optimization (RO) programming is an efficient way 
to deal with different sets of uncertainties that vary in their possible 
values. The goal of RO is to find the worst case of the optimization 
problem to minimize the negative impact of uncertainties on the solu-
tion [14]. However, the definition of the worst case can vary depending 
on how the optimization is implemented, whether it is single-level or 
multi-level, and can lead to different solutions in each approach. The 
authors in [9,12,15–25] develop a single-level optimization problem 
for the VPP market bidding problem to find the worst case of energy 
of ND-RES. The paper in [9] investigates the optimal scheduling of a 
renewable-oriented energy hub that integrates electrical, thermal, and 
cooling systems. A novel entropic Conditional Value at Risk (CVaR) 
approach is employed to account for various uncertainties, includ-
ing electrical, thermal, and cooling demand fluctuations, as well as 
market price and ND-RES production uncertainties. The study in [12] 
introduces a continuous-time method for energy hub scheduling in 
the DAM and RTM energy and reserve dispatch. An Information Gap 
Decision Theory (IGDT) algorithm is utilized to model wind power 
uncertainties for both discrete-time and continuous-time approaches, 
with a comparative analysis provided. The study [15] employs a Mixed 
Integer Linear Programming (MILP) RO method to model VPP partic-
ipation in energy and reserve markets. Uncertainties in demand and 
ND-RES are represented via bounded intervals, with robustness budgets 
adjusting the conservatism of the optimization model. The paper [16] 
formulates a multi-objective optimization model for VPPs, aiming to 
maximize operational revenue while minimizing carbon emissions and 
risk. The risk-averse strategy based on CVaR leverages RO to address 
uncertainties in demand, wind generation, and solar Photovoltaic (PV) 
output. In [17], a single-level model is used to formulate the DAM par-
ticipation of a VPP, which includes a wind farm, demand, and Electrical 
Energy Storage (ESS). The model accounts for symmetric uncertainties 
in electricity prices and wind production using confidence bounds. The 
authors of [18] investigate a multi-energy VPP for energy and reserve 
scheduling, incorporating the capacity market, DAM, Ancillary Service 
Market (ASM), and Natural Gas Market (NGM). Uncertainties in PV unit 
production are addressed through an RO model, while market price 
uncertainties are represented using Probability Density Function (PDF). 
In [19], a two-stage stochastic RO problem is introduced to handle 
multiple uncertainties, including DAM electricity prices, ND-RES pro-
duction, and demand within a virtual energy hub comprising industrial 
energy hubs and customers. The study in [20] proposes a single-level 
3 
model for a VPP that includes ND-RES, ESS, and demand. A light RO 
approach is used to reduce the conservatism of RO and account for the 
uncertainties of ND-RES and load. The paper [21] presents a single-
level RO model for RVPP participation in sequential energy and reserve 
markets, addressing the asymmetry of energy and reserve prices and 
defining the robustness budget over global scheduling horizons rather 
than individual time periods. The study in [22] introduces an RO model 
for a VPP incorporating power-to-hydrogen facilities to participate in 
both the DAM and RTM. Uncertainties in market electricity prices 
and wind power are addressed using an MILP framework. In [23], 
the optimal bidding strategy for electricity market participation of an 
RVPP, which includes ND-RES and dispatchable loads, is examined us-
ing a Mixed Integer Non-linear Programming (MINLP) approach based 
on IGDT. The work in [24] proposes a multi-objective optimization 
approach for a virtual energy hub that includes a data center and elec-
tric vehicles. A Stochastic Optimization (SO)-RO approach is utilized 
to model uncertainties in ND-RES, electricity demand, and electricity 
prices. In [25], a regret-based RO approach is proposed to model 
various uncertain parameters in the RVPP problem using economic 
factors rather than the inherent nature of the uncertainties.

The main advantages of the mentioned single-level RO program-
ming in [9,12,15–25] are the possibility to consider multiple uncertain-
ties, simplicity of implementation, global optimality, and calculation 
efficiency. However, a simplified definition of the worst case of energy 
for the severe scenarios is implemented. In fact, the worst case of 
energy defined for ND-RES in the above papers does not lead to the 
worst condition of profit, considering the possibility of different values 
of electricity prices. For instance, in a case where the electricity price 
is low in a certain period, even though the energy of a ND-RES can 
deviate significantly in this period, the resulting loss for RVPP might 
not be significant compared to a period with much higher electricity 
price and average or low energy deviation.

Multi-level RO models provide more flexibility to find the actual 
worst-case of the VPP bidding problem compared to single-level mod-
els. This is due to the definition of a new level for the optimization 
problem that models the behavior of uncertain parameters (both elec-
tricity price and energy uncertainties). Therefore, the objective function 
of this level can be defined to find the worst case of energy or profit of 
VPP. In addition, another level for the problem can be included to de-
fine the corrective or remedial actions after the occurrence of uncertain-
ties. The literature on multi-level models proposes mathematical tech-
niques, including RO [26–28], Adaptive RO (ARO) [29], SO-RO [30], 
Stochastic ARO (SARO) [4,31], Distributionally RO (DRO) [32–34], 
data-driven methods [35,36], and Stackelberg game [37] to account 
for various uncertainties. In [26], an RO approach is introduced to 
aggregate distribution systems as a VPP in the DAM, considering un-
certainties in ND-RES and the dispatch order of the TSO. An enhanced 
Column & Constraint Generation (C&CG) algorithm, incorporating pe-
riod decomposition and a connection method, is proposed to reduce 
the computational time of the RO problem. The work in [27] presents 
a bidding strategy for a VPP that integrates responsive-based electric 
vehicles to balance economic and environmental goals. A two-stage 
RO approach is employed to account for uncertainties in wind power, 
solar PV power, and load. In [28], the optimal scheduling of a VPP 
is investigated by considering the controllability of electric vehicles. 
A two-stage max–min–max RO approach is introduced to account for 
uncertainties in ND-RES and electric vehicles, with the C&CG algorithm 
used to solve the optimization problem. The study in [29] focuses 
on the participation of an aggregator, incorporating flexible resources 
and demands, across various energy and flexibility markets. In [30], a 
three-level model is used to capture source-side and load-side uncer-
tainties of a multi-energy VPP through adjustable RO and clustering 
algorithms, respectively. The participation of a VPP in the DAM for 
both energy and reserve trading is modeled using a SARO problem 
in [4]. A modified Benders decomposition approach is developed to 
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solve the proposed multi-level SARO model. Similarly, a SARO prob-
lem is presented in [31]. The first level of the optimization problem 
maximizes the worst-case expected profit of the VPP, while the second 
level minimizes the expected profit to model the worst-case uncertain-
ties in wind generation and reserve deployment requests. The third 
level implements operational decisions following the first-level market 
participation and second-level uncertainty realizations to maximize the 
VPP’s expected profit. In [32], a two-stage DRO framework is proposed 
for DAM and RTM scheduling of a VPP that includes ESS and elec-
tric vehicles. A tri-level optimization approach is employed to model 
uncertainties in ND-RES, and an enhanced nested C&CG algorithm is 
developed to solve the optimization problem. The paper [33] presents 
a two-stage RO approach based on data-driven methods for a rural 
VPP, incorporating carbon-green certificates. Uncertainties in wind and 
solar PV production are managed using the strong duality theorem and 
the C&CG algorithm. The study in [34] introduces a bi-level model 
for a price-maker VPP, where the first level focuses on minimizing 
the VPP cost, and the second level aims to minimize the social cost 
of market. Uncertainties in wind unit production are addressed using 
a DRO approach. The paper in [35] proposes a data-driven interval 
approach for a VPP participating in the DAM and RTM. A two-stage 
interval RO model, leveraging an improved C&CG algorithm, is adopted 
to handle uncertainties in ND-RES production, demand consumption, 
and electricity prices. The paper in [36] formulates the bidding problem 
of a VPP in the energy market using a two-stage stochastic MILP ap-
proach, with uncertainties in ND-RES and demand response addressed 
through a data-driven RO (sample RO) method. In [37], a multi-period 
Stackelberg game approach is introduced for RTM participation of VPP. 
The proposed method leverages the heat storage capabilities of power 
to heat demands to mitigate wind power fluctuations by dynamically 
adjusting price ceilings based on supply–demand balance. The main 
limitations of the multi-level approaches in general, and in the above 
works in particular, are the complexity of programming and the fact 
that the size of the problem grows with the number of iterations in the 
solving procedure. In addition, they usually imply long computational 
times, which can compromise applications such as sensitivity analysis. 
In contrast, our proposed model utilizes a single-level MILP approach, 
which simplifies the optimization process by eliminating the need for 
iterative master–slave problem solving. This reduction in complexity 
allows for faster computation and more straightforward implementa-
tion, making it easier to scale and apply to various real-world scenarios. 
The single-level structure also ensures that the problem size does not 
increase significantly, leading to more efficient solving procedures and 
shorter solution times compared to multi-level models.

1.4. Approach and contributions

Table  1 compares different aspects of the reviewed literature with 
this paper. To overcome the challenges and difficulties of implementing 
a multi-level optimization model, and to minimize the computational 
burden of the problem for real-world, practical applications, this paper 
proposes a flexible worst-case profit of RVPP against uncertainties by 
means of a novel single-level MILP problem. The uncertainties that 
characterize the problem include energy and ancillary service mar-
ket prices, ND-RES generation, and flexible demand contribution. To 
account for the impact of such uncertainties in the problem (and in 
particular, their couplings), the methodology proposed builds on the 
works in [17,21,38], and by developing on the idea from the Big-M 
method [39]. The proposed implementation of robust constraints al-
lows capturing the relationship between different uncertain parameters 
in the objective function and constraints of the optimization problem, 
finding the exact worst case profit of RVPP. In this process, defining 
the relationships and couplings between uncertain parameters leads 
necessarily to non-linear constraints, which are thoroughly linearized 
by using well-established methods.

The contributions of this paper are thus twofold:
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• Flexible Worst-Case Profit Robustness Modeling in a Single-Level 
MINLP Framework: While single-level classical RO models exist in 
the literature [17–19,21–24], the proposed model in this paper 
introduces a new approach to handle multiple uncertainties and 
their interactions. In most existing single-level models, uncertain-
ties related to electricity prices and energy (including ND-RES 
production and demand) are modeled separately, without explic-
itly considering their interactions. This separate treatment often 
results in the selection of worst-case energy scenarios that do 
not actually correspond to the worst-case profit scenarios for 
the RVPP. As a result, using these classical single-level methods 
prevents the RVPP operator from providing optimal and reliable 
bidding strategies across different markets. To address this short-
coming, the proposed model adopts a flexible RO approach based 
on the worst-case selection of the RVPP’s profit, rather than fo-
cusing only on energy robustness. This profit-oriented robustness 
framework allows the RVPP to participate simultaneously in the 
DAM and SRM, while effectively capturing the impact of uncer-
tainties in prices, energy production, and demand consumption, 
as well as their interactions. 

• Handling the Non-linear Couplings Between Different Uncertainties:
The proposed approach in this paper addresses how different 
types of uncertainties in the objective function and constraints in-
teract with each other within the optimization framework. Model-
ing these interactions leads to non-linear constraints, particularly 
when capturing the joint impact of price and energy uncertainties 
on the RVPP’s profit in a single-level model. In the existing 
literature, these types of interactions are typically handled by 
multi-level models [4,31,35], which are often complex, computa-
tionally demanding, and difficult to implement. In contrast, the 
proposed model captures these interactions between uncertain 
parameters through an exact linearization of the initial MINLP 
problem, ensuring a mathematically equivalent MILP formula-
tion. By addressing the interactions between uncertainties within 
a single-level MILP model, the proposed approach represents a 
novel contribution that provide an effective and practical solu-
tion for RVPP bidding strategies across different markets in the 
presence of several uncertainties. 

1.5. Paper organization

The reminder of the paper is organized as follows. A conceptual 
comparison of energy and profit robustness approaches is presented 
in Section 2. The proposed single-level robust bidding problem of 
RVPP for DAM and SRM participation is formulated in Section 3. An 
illustrative example is given in Section 4 to show the performance of 
the proposed robust model in finding the flexible worst-case profit. The 
simulation results are presented in Section 5. Finally, the conclusions 
are drawn in Section 6.

2. Comparing energy and profit robustness

Fig.  1 shows the structure of a deterministic RVPP bidding prob-
lem and a comparison between the energy and the profit robustness 
approaches. The top pane of this figure shows the deterministic RVPP 
problem. The left lower pane of this figure represents the energy ro-
bustness problem presented in [21]. The right lower pane of this figure 
shows the profit robustness problem presented in this paper. In the 
deterministic approach, a single value (usually the median or average) 
of the forecast data is considered to solve the optimization problem. 
The constraints are related mainly to the operation of the RVPP units, 
and supply–demand balance [3]. When considering the uncertainties, 
depending on whether the uncertainties affect the objective function or 
the constraints of the optimization problem, different sets of constraints 
need to be defined in each of the RO approaches. The uncertainties re-
lated to the energy/reserve electricity price affect the objective function 
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Table 1
Comparison of proposed approach in this paper and literature.
 Ref. Market Uncertainty Uncertainty Profit Computational Method & solution
 DAM SRM Price ND-RES Load couplings robustness efficiencya  
 [15] 3 3 × 3 3 × × High Single-level, RO, MILP  
 [16] 3 3 × 3 3 × × High Single-level, CVaR-RO, MILP  
 [17] 3 × 3 3 × × × High Single-level, RO, MILP  
 [18] 3 3 3 3 × × × High Single-level, RO, PDF, MILP  
 [19] 3 3 3 3 3 × × High Single-level, SO-RO, MILP  
 [20] 3 × × 3 3 × × Medium Single-level, Light RO, Non-linear  
 [21] 3 3 3 3 3 × × High Single-level, RO, MILP  
 [22] 3 × 3 3 × × × High Single-level, RO, MILP  
 [23] 3 × 3 3 × × × High Single-level, IGDT, PDF, MINLP  
 [24] 3 × 3 3 3 × × Medium–High Single-level, SO-RO, MILP  
 [26] 3 × × 3 × × 3 High Multi-level, RO, C&CG, MILP  
 [27] 3 × × 3 3 × 3 Low–Medium Multi-level, RO, C&CG, MILP  
 [28] 3 × × 3 × × 3 Low–Medium Multi-level, RO, C&CG, MILP  
 [29] 3 3 × 3 3 × 3 Low–Medium Multi-level, ARO, MILP  
 [30] 3 × × 3 3 × 3 Low–Medium Multi-level, SO-RO, C&CG, MILP  
 [4] 3 3 3 3 × 3 3 Low–Medium Multi-level, SARO, MILP  
 [31] 3 3 3 3 × 3 3 Low–Medium Multi-level, SARO, C&CG, MILP  
 [32] 3 × × 3 × × 3 High Multi-level, DRO, C&CG, MILP  
 [33] 3 × × 3 × × 3 Medium–High Multi-level, DRO, C&CG, MILP  
 [34] 3 × × 3 × × × High Bi-level, DRO, MILP  
 [35] 3 × 3 3 3 × 3 Medium Multi-level, Data-driven, RO, C&CG, MINLP 
 [36] 3 × × 3 3 × × Medium Bi-level, Data-driven, SO-RO, MILP  
 This paper 3 3 3 3 3 3 3 High Single-level, RO, MILP  
a High: under 60 s; Medium–High: between 1 and 10 min; Medium: between 10 and 30 min; Low–Medium: between 30 and 90 min; Low: over 90 min.
Fig. 1. A comparison between the energy and profit robustness approaches.
of the optimization problem, whereas the uncertainties associated with 
the ND-RES generation and demand consumption affect the constraints.

In the energy robustness approach, those periods that result in more 
deviation of the energy/reserve electricity price variance multiplied by 
the total traded energy/reserve of RVPP are selected as the worst-case 
scenarios of the electricity price [21]. In the energy robustness con-
straints, the periods that have higher deviation of energy are selected 
as the worst case of ND-RES production or demand regardless of the 
electricity price.

In the profit robustness approach proposed in this paper and for 
the uncertain parameters in the objective function of the optimization 
problem (energy/reserve electricity price), the worst case is defined 
according to the final value of the energy/reserve electricity price by 
means of binary variables. The final value of the energy electricity 
price is also used to calculate the worst case of profit/cost of each 
unit (uncertainty of ND-RES and demand in the constraints of the op-
timization problem). For this purpose, the final energy electricity price 
5 
is multiplied by the energy variable of ND-RES/demand and is limited 
by the profit reduction effect due to ND-RES/demand uncertainty.

In the following section, the proposed profit robustness approach is 
formulated as a single-level optimization problem. In Section 4, these 
two approaches are compared using an illustrative example.

3. Profit robustness formulation

3.1. Price robustness (objective function)

The objective function of simultaneous RVPP participation in the 
DAM and SRM, as well as the associated robust constraints, are pre-
sented in this section.

The objective function (1) maximizes the benefits of RVPP in the 
DAM and SRM. The first and second lines of (1) calculate the expected 
RVPP incomes from bidding in the DAM and from up and down SR pro-
vision, respectively, considering the corresponding robustness cost of 
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asymmetric electricity price uncertainties. The third line in (1) defines 
the operation costs of ND-RES, and the costs of selecting a particular 
load profile. Note that including variables 𝑦DA𝑡 , 𝑦′𝐷𝐴

𝑡 , 𝑦SR,↑𝑡 , and 𝑦SR,↓𝑡  in 
the objective function is one of the main differences between the pro-
posed model and the common approach to model the price robustness 
in the literature [17,21]. By means of these variables, the final value of 
the DAM/SRM electricity price and the traded energy/reserve of RVPP 
are used to calculate the worst-case scenarios.
max

𝛯DA+SR

∑

𝑡∈T

[

𝜆̃DA𝑡 𝑝DA𝑡 𝛥𝑡 − 𝑦DA𝑡 − 𝑦′DA𝑡
]

+
∑

𝑡∈T

[

𝜆̃SR,↑𝑡 𝑟SR,↑𝑡 + 𝜆̃SR,↓𝑡 𝑟SR,↓𝑡 − 𝑦SR,↑𝑡 − 𝑦SR,↓𝑡

]

−
∑

𝑡∈T

∑

𝑟∈R
𝐶𝑅
𝑟 𝑝

DA
𝑟,𝑡 𝛥𝑡 −

∑

𝑑∈D

∑

𝑝∈P
𝐶𝑑,𝑝𝑢𝑑,𝑝 (1)

3.1.1. DAM electricity uncertain constraints
The set of constraints (2) is related to the uncertainties of the 

DAM electricity price and are written by developing the approach 
in [17,21,38] and elaborating on the Big-M method [39].

Constraint (2a) determines the DAM electricity price in each time 
period according to the condition of binary variables 𝜒DA

𝑡  and 𝜒 ′DA
𝑡 , 

which are related to the negative and positive price volatility, respec-
tively. Constraints (2b) and (2c) model the impact of the absolute 
value of negative and positive price volatility on profit reduction when 
the electricity price deviates from its median to its worst condition. 
Constraints (2d) and (2e) set a lower bound for the profit reduc-
tion variables 𝑦DA𝑡  and 𝑦′DA𝑡  due to the negative and positive price 
uncertainty, respectively. When the binary variable 𝜒DA

𝑡
(

𝜒 ′DA
𝑡

) is 1, 
constraint (2d) (constraint (2e)) is active. Depending on whether RVPP 
sells or buys electricity on the market, the worst DAM price conditions 
occur at the price values 𝜆̃DA𝑡 − 𝜆̌DA𝑡  and 𝜆̃𝐷𝐴

𝑡 + 𝜆̂DA𝑡 , respectively.
The dual variables 𝜂𝐷𝐴

𝑡  and 𝜂′DA𝑡 , related to the negative and positive 
deviations of the electricity price, are logically constrained by (2f) 
and (2g), respectively, based on the active or non-active status of 
the periods to comply with the robustness budget defined in (2j). 
Constraints (2h) and (2i) define the lower and upper bounds for the 
differences between the possible profit reductions (due to the negative 
price deviation 𝜆̌𝐷𝐴

𝑡 𝑝𝐷𝐴
𝑡 𝛥𝑡 and the positive price deviation −𝜆̂𝐷𝐴

𝑡 𝑝𝐷𝐴
𝑡 𝛥𝑡) 

and the dual variable 𝜈DA. According to these constraints, the possible 
profit reductions must be greater than or equal to the dual variable 𝜈DA
for those periods that the electricity price fluctuates to its worst case. 
Constraints (2h) and (2i) are thus essential to avoid selecting incorrect 
periods for the worst case of profit deviations, especially when other 
uncertain parameters such as ND-RESs production and demand (see 
Sections 3.3 and 3.4) affect the total power traded by RVPP (𝑝𝐷𝐴

𝑡 ). 
The robustness budget 𝛤𝐷𝐴 in (2j) is a user-defined parameter that 
determines the number of periods in which the electricity price can 
deviate to its worst condition. Thus, 𝛤𝐷𝐴 is a particularly relevant 
parameter in this model for achieving flexible robustness: the higher 
𝛤𝐷𝐴, the worse the bidding scenario becomes. Constraint (2k) prevents 
positive and negative electricity price deviations in the same period. 
Constraints (2l) and (2m) define the nature of positive dual variables 
and binary variables, respectively. The use of two binary variables to 
define the negative and positive price deviations and the implementa-
tion of constraints (2h) and (2i) to avoid illogical condition for the price 
deviations is another significant improvement compared to previous 
robust formulations in the literature [17,21]. 
𝜆𝐷𝐴
𝑡 = 𝜆̃𝐷𝐴

𝑡 − 𝜆̌𝐷𝐴
𝑡 𝜒𝐷𝐴

𝑡 + 𝜆̂𝐷𝐴
𝑡 𝜒 ′𝐷𝐴

𝑡 , ∀𝑡 (2a)

𝜈𝐷𝐴 + 𝜂𝐷𝐴
𝑡 ≥ 𝜆̌𝐷𝐴

𝑡 𝑝𝐷𝐴
𝑡 𝛥𝑡 , ∀𝑡 (2b)

𝜈𝐷𝐴 + 𝜂′𝐷𝐴
𝑡 ≥ −𝜆̂𝐷𝐴

𝑡 𝑝𝐷𝐴
𝑡 𝛥𝑡 , ∀𝑡 (2c)

𝑦𝐷𝐴
𝑡 ≥ 𝜈𝐷𝐴 + 𝜂𝐷𝐴

𝑡 −𝑀(1 − 𝜒𝐷𝐴
𝑡 ) , ∀𝑡 (2d)

𝑦′𝐷𝐴
𝑡 ≥ 𝜈𝐷𝐴 + 𝜂′𝐷𝐴

𝑡 −𝑀(1 − 𝜒 ′𝐷𝐴
𝑡 ) , ∀𝑡 (2e)

𝜀(𝜒𝐷𝐴) ≤ 𝜂𝐷𝐴 ≤ 𝑀(𝜒𝐷𝐴) , ∀𝑡 (2f)
𝑡 𝑡 𝑡
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𝜀(𝜒 ′𝐷𝐴
𝑡 ) ≤ 𝜂′𝐷𝐴

𝑡 ≤ 𝑀(𝜒 ′𝐷𝐴
𝑡 ) , ∀𝑡 (2g)

−𝑀(1 − 𝜒𝐷𝐴
𝑡 ) ≤ 𝜆̌𝐷𝐴

𝑡 𝑝𝐷𝐴
𝑡 𝛥𝑡 − 𝜈𝐷𝐴 ≤ 𝑀(𝜒𝐷𝐴

𝑡 ) , ∀𝑡 (2h)

−𝑀(1 − 𝜒 ′𝐷𝐴
𝑡 ) ≤ −𝜆̂𝐷𝐴

𝑡 𝑝𝐷𝐴
𝑡 𝛥𝑡 − 𝜈𝐷𝐴 ≤ 𝑀(𝜒 ′𝐷𝐴

𝑡 ) , ∀𝑡 (2i)
∑

𝑡∈T
(𝜒𝐷𝐴

𝑡 + 𝜒 ′𝐷𝐴
𝑡 ) = 𝛤𝐷𝐴 , (2j)

𝜒𝐷𝐴
𝑡 + 𝜒 ′𝐷𝐴

𝑡 ≤ 1 , ∀𝑡 (2k)

𝜈𝐷𝐴, 𝜂𝐷𝐴
𝑡 , 𝜂′𝐷𝐴

𝑡 , 𝑦𝐷𝐴
𝑡 , 𝑦′𝐷𝐴

𝑡 ≥ 0 , ∀𝑡 (2l)

𝜒𝐷𝐴
𝑡 , 𝜒 ′𝐷𝐴

𝑡 ∈ {0, 1} , ∀𝑡 (2m)

3.1.2. SRM price uncertain constraints
The set of constraints (3) related to the uncertainty in the up and 

down SRM price is defined similarly to (2). The main difference is that 
for both up and down SRM price, only the negative SRM price devia-
tions due to uncertainty are evaluated in (3a) and (3b), respectively. 
This is due to the fact that the positive SRM price deviations usually 
result in more benefit for RVPP. Therefore, the maximum possible 
profit deviations 𝜆̌𝑆𝑅,↑𝑡 𝑟𝑆𝑅,↑𝑡  and 𝜆̌𝑆𝑅,↓𝑡 𝑟𝑆𝑅,↓𝑡  are calculated based on the 
negative upward and downward SRM price deviations 𝜆̌𝑆𝑅,↑𝑡  and 𝜆̌𝑆𝑅,↓𝑡
in constraints (3c) and (3d), respectively. Note that, in some cases, a 
positive deviation in the SRM price may have a negative impact on 
the objective function. For instance, in a deceptive solution where the 
SRM price increases, the RVPP may choose to provide less energy to 
allocate more capacity for reserve provision, which might not be as 
profitable as energy trading. Alternatively, if the RVPP does not have 
sufficient energy in real-time to meet its reserve obligations, bidding 
for additional reserve (driven by a higher SRM price) could lead to 
penalties for the RVPP. Constraints (3e) and (3f) establish a lower 
bound for the profit reduction due to the uncertainty in the up and 
down SRM prices, respectively. Constraints (3g) and (3h) define the 
bounds for the dual variables 𝜂𝑆𝑅,↑𝑡  and 𝜂𝑆𝑅,↓𝑡 , which correspond to 
the up and down SRM electricity prices, respectively. Constraints (3i) 
and (3j) set the bounds for the differences between the possible profit 
reductions due to up and down SRM price deviations and the dual 
variables 𝜈𝑆𝑅,↑ and 𝜈𝑆𝑅,↓, respectively. The robustness budgets 𝛤𝑆𝑅,↑

and 𝛤𝑆𝑅,↓ for up and down SRM price uncertainty are assigned in (3k) 
and (3l), respectively. Finally, the nature of the positive dual variables 
and binary variables is determined by (3m) and (3n), respectively. 
𝜆𝑆𝑅,↑𝑡 = 𝜆̃𝑆𝑅,↑𝑡 − 𝜆̌𝑆𝑅,↑𝑡 𝜒𝑆𝑅,↑

𝑡 , ∀𝑡 (3a)

𝜆𝑆𝑅,↓𝑡 = 𝜆̃𝑆𝑅,↓𝑡 − 𝜆̌𝑆𝑅,↓𝑡 𝜒𝑆𝑅,↓
𝑡 , ∀𝑡 (3b)

𝜈𝑆𝑅,↑ + 𝜂𝑆𝑅,↑𝑡 ≥ 𝜆̌𝑆𝑅,↑𝑡 𝑟𝑆𝑅,↑𝑡 , ∀𝑡 (3c)

𝜈𝑆𝑅,↓ + 𝜂𝑆𝑅,↓𝑡 ≥ 𝜆̌𝑆𝑅,↓𝑡 𝑟𝑆𝑅,↓𝑡 , ∀𝑡 (3d)

𝑦𝑆𝑅,↑𝑡 ≥ 𝜈𝑆𝑅,↑ + 𝜂𝑆𝑅,↑𝑡 −𝑀(1 − 𝜒𝑆𝑅,↑
𝑡 ) , ∀𝑡 (3e)

𝑦𝑆𝑅,↓𝑡 ≥ 𝜈𝑆𝑅,↓ + 𝜂𝑆𝑅,↓𝑡 −𝑀(1 − 𝜒𝑆𝑅,↓
𝑡 ) , ∀𝑡 (3f)

𝜀(𝜒𝑆𝑅,↑
𝑡 ) ≤ 𝜂𝑆𝑅,↑𝑡 ≤ 𝑀(𝜒𝑆𝑅,↑

𝑡 ) , ∀𝑡 (3g)

𝜀(𝜒𝑆𝑅,↓
𝑡 ) ≤ 𝜂𝑆𝑅,↓𝑡 ≤ 𝑀(𝜒𝑆𝑅,↓

𝑡 ) , ∀𝑡 (3h)

−𝑀(1 − 𝜒𝑆𝑅,↑
𝑡 ) ≤ 𝜆̌𝑆𝑅,↑𝑡 𝑟𝑆𝑅,↑𝑡 − 𝜈𝑆𝑅,↑ ≤ 𝑀(𝜒𝑆𝑅,↑

𝑡 ) , ∀𝑡 (3i)

−𝑀(1 − 𝜒𝑆𝑅,↓
𝑡 ) ≤ 𝜆̌𝑆𝑅,↓𝑡 𝑟𝑆𝑅,↓𝑡 − 𝜈𝑆𝑅,↓ ≤ 𝑀(𝜒𝑆𝑅,↓

𝑡 ) , ∀𝑡 (3j)
∑

𝑡∈T
𝜒𝑆𝑅,↑
𝑡 = 𝛤𝑆𝑅,↑ , (3k)

∑

𝑡∈T
𝜒𝑆𝑅,↓
𝑡 = 𝛤𝑆𝑅,↓ , (3l)

𝜈𝑆𝑅,↑, 𝜈𝑆𝑅,↓, 𝜂𝑆𝑅,↑𝑡 , 𝜂𝑆𝑅,↓𝑡 , 𝑦𝑆𝑅,↑𝑡 , 𝑦𝑆𝑅,↓𝑡 ≥ 0 , ∀𝑡 (3m)

𝜒𝑆𝑅,↑
𝑡 , 𝜒𝑆𝑅,↓

𝑡 ∈ {0, 1} , ∀𝑡 (3n)

3.2. Supply–demand and traded constraints

The supply–demand balancing constraint of RVPP units is defined 
in (4a). All RVPP units are assumed to be connected to a single node. 
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The variable 𝑟𝑆𝑅𝑡  related to the total traded reserve of RVPP and the 
variables 𝑟𝑆𝑅𝑟,𝑡  and 𝑟𝑆𝑅𝑑,𝑡  related to the reserve of RVPP units are defined 
according to different reserve activation scenarios similar to [21]. 
Constraints (4b) and (4c) assign the upper and lower bounds of traded 
energy and reserve by RVPP, respectively. Constraint (4d) defines the 
proportion of down and up reserve requested by TSO. The up reserve 
provided is limited by (4e) to a fraction of the total capacity of the 
generating units of RVPP. 
∑

𝑟∈R
(𝑝𝐷𝐴

𝑟,𝑡 + 𝑟𝑆𝑅𝑟,𝑡 ) −
∑

𝑑∈D
(𝑝𝐷𝐴

𝑑,𝑡 − 𝑟𝑆𝑅𝑑,𝑡 ) = 𝑝𝐷𝐴
𝑡 + 𝑟𝑆𝑅𝑡 , ∀𝑡 (4a)

𝑝𝐷𝐴
𝑡 + 𝑟𝑆𝑅,↑𝑡 ≤

∑

𝑟∈R
𝑃𝑟 , ∀𝑡 (4b)

−
∑

𝑑∈D
𝑃𝑑 ≤ 𝑝𝐷𝐴

𝑡 − 𝑟𝑆𝑅,↓𝑡 , ∀𝑡 (4c)

𝑟𝑆𝑅,↑𝑡 = 𝜚𝑡𝑟
𝑆𝑅,↓
𝑡 , ∀𝑡 (4d)

𝑟𝑆𝑅,↑𝑡 ≤ 𝜅
∑

𝑟∈R
𝑃𝑟 , ∀𝑡 (4e)

3.3. ND-RES profit robustness

The profit robustness formulation of ND-RES is given in (5). Con-
straint (5a) is the lower bound on the ND-RES output power. Con-
straint (5b) sets the ND-RES output through the median forecast gener-
ation of ND-RES 𝑃𝑟,𝑡 and the possible negative power deviation 𝜒𝑟,𝑡𝑃𝑟,𝑡
(active when 𝜒𝑟,𝑡 = 1). The binary variable 𝜒𝑟,𝑡 is determined according 
to the profit robustness constraints (5c)–(5j) proposed in this work. 
Constraint (5c) limits the profit of ND-RES for each time period by con-
sidering the robustness of the problem against uncertain parameters of 
ND-RES production. The upper bound of this constraint is computed as 
the median profit minus the profit reduction due to the negative devi-
ation of power forecast of ND-RES, 𝑦𝑟,𝑡. The median profit is calculated 
by multiplying the electricity price 𝜆𝐷𝐴

𝑡  and the median production of 
ND-RES minus the provided up reserve, both multiplied by the time 
period duration (𝑃𝑟,𝑡−𝑟

𝑆𝑅,↑
𝑟,𝑡 )𝛥𝑡. Constraint (5c) is a non-linear expression 

that is linearized in Section 3.5. Constraint (5d) assigns the upper 
bound of the dual variable 𝑦𝑟,𝑡 to the negative profit deviation 𝜆𝐷𝐴

𝑡 𝑃𝑟,𝑡𝛥𝑡
of each ND-RES due to uncertainty. To model the flexible worst-case 
scenarios of profit reduction for each ND-RES, only negative power 
deviations are considered in this constraint, since positive deviations 
will usually benefit the RVPP. Constraint (5e) determines the lower 
bound of the dual variable 𝑦𝑟,𝑡 according to the dual variables 𝜈𝑟 and 𝜂𝑟,𝑡, 
and the condition of the binary variable 𝜒𝐷𝐴

𝑟,𝑡 . Constraint (5f) assigns the 
lower bound of the sum of the dual variables 𝜈𝑟 and 𝜂𝑟,𝑡 to the maximum 
profit reduction for each ND-RES in each time period. According to 
constraint (5g), the dual variable 𝜂𝑟,𝑡 is defined based on the active 
or non-active status of the profit reduction due to the robustness of 
the production of ND-RES. Constraint (5h) defines the profit robustness 
budget for each ND-RES. Constraints (5i) and (5j) define the nature of 
the positive dual variables and the binary variables, respectively. 

̄
𝑃𝑟 ≤ 𝑝𝐷𝐴

𝑟,𝑡 − 𝑟𝑆𝑅,↓𝑟,𝑡 , ∀𝑟, 𝑡 (5a)

𝑝𝐷𝐴
𝑟,𝑡 + 𝑟𝑆𝑅,↑𝑟,𝑡 = 𝑃𝑟,𝑡 − 𝜒𝑟,𝑡𝑃𝑟,𝑡 , ∀𝑟, 𝑡 (5b)

𝜆𝐷𝐴
𝑡 𝑝𝐷𝐴

𝑟,𝑡 𝛥𝑡 ≤ 𝜆𝐷𝐴
𝑡 (𝑃𝑟,𝑡 − 𝑟𝑆𝑅,↑𝑟,𝑡 )𝛥𝑡 − 𝑦𝑟,𝑡 , ∀𝑟, 𝑡 (5c)

𝑦𝑟,𝑡 ≤ 𝜆𝐷𝐴
𝑡 𝑃𝑟,𝑡𝛥𝑡 , ∀𝑟, 𝑡 (5d)

𝑦𝑟,𝑡 ≥ 𝜈𝑟 + 𝜂𝑟,𝑡 −𝑀(1 − 𝜒𝑟,𝑡) , ∀𝑟, 𝑡 (5e)

𝜈𝑟 + 𝜂𝑟,𝑡 ≥ 𝜆𝐷𝐴
𝑡 𝑃𝑟,𝑡𝛥𝑡 , ∀𝑟, 𝑡 (5f)

𝜀𝜒𝑟,𝑡 ≤ 𝜂𝑟,𝑡 ≤ 𝑀𝜒𝑟,𝑡 , ∀𝑟, 𝑡 (5g)
∑

𝑡∈T
𝜒𝑟,𝑡 = 𝛤𝑟 , ∀𝑟 (5h)

𝜈𝑟, 𝜂𝑟,𝑡, 𝑦𝑟,𝑡 ≥ 0 , ∀𝑟, 𝑡 (5i)

𝜒 ∈ 0, 1 , ∀𝑟, 𝑡 (5j)
𝑟,𝑡 { }
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3.4. Demand cost robustness

The demand cost robust formulation is illustrated in (6), which is 
based on the deterministic model presented in [40]. Constraint (6a) 
assigns the demand for each period to predefined demand profiles, 
taking into account the median and positive demand forecasts. Only 
positive demand deviations are considered for the worst-case cost 
robustness scenarios, since the negative demand deviations (i.e., lower 
consumption) usually result in lower costs for RVPP. Constraint (6b) 
ensures that the algorithm selects only one demand profile among 
several profiles. When the binary variable 𝜒𝑑,𝑡 in (6a) for a certain 
period is 1, the possible positive deviation of the demand becomes 
active. The binary variable 𝜒𝑑,𝑡 is determined according to the cost 
robustness constraints (6c)–(6h) proposed in this work. Constraint (6c) 
sets the lower bound on the cost of buying electricity from DAM 
to meet demand, which equals the cost of buying electricity for the 
median demand forecast 𝜆𝐷𝐴

𝑡
∑

𝑝∈P (𝑃𝑑,𝑝,𝑡𝑢𝑑,𝑝)𝛥𝑡 plus the additional cost 
of positive demand fluctuation due to uncertainty represented by the 
dual variable 𝑦𝑑,𝑡. The additional cost of buying electricity for pos-
itive demand fluctuation due to uncertainty 𝜆𝐷𝐴

𝑡
∑

𝑝∈P (𝑃𝑑,𝑝,𝑡𝑢𝑑,𝑝)𝛥𝑡 is 
assigned as the upper bound of the dual variable 𝑦𝑑,𝑡 by constraint (6d). 
On the other hand, the lower bound of the dual variable 𝑦𝑑,𝑡 is given 
by constraint (6e) to find the worst cases of demand cost robustness. 
The dual variables 𝜈𝑑 and 𝜂𝑑,𝑡 are logically constrained in (6f) and (6g) 
to determine those periods that positive demand deviations lead to 
the worst cost robustness scenarios. Constraint (6h) assigns the user-
defined parameter of the robustness budget 𝛤𝑑 to set the number of 
periods allowed for positive deviations in demand due to cost robust-
ness. Constraints (6i) and (6j) confine the demand up reserve according 
to the percentage of downward demand flexibility and the minimum 
possible demand, respectively. Constraints (6k) and (6l) are similarly 
defined to limit the down reserve considering the opposite direction 
of demand flexibility and the maximum possible demand. The worst 
conditions of ramp-up and ramp-down in two consecutive periods con-
sidering the reserve activation are defined in constraints (6m) and (6n), 
respectively. The capability of demand to provide up and down reserve 
is defined by constraints (6o) and (6p), respectively. Constraint (6q) 
limits the minimum energy that each demand should use for the entire 
period. Constraints (6r) and (6s) describe the nature of positive dual 
variables and binary variables, respectively. 
𝑝𝐷𝐴
𝑑,𝑡 =

∑

𝑝∈P
(𝑃𝑑,𝑝,𝑡𝑢𝑑,𝑝 + 𝜒𝑑,𝑡𝑃𝑑,𝑝,𝑡𝑢𝑑,𝑝) , ∀𝑑, 𝑡 (6a)

∑

𝑃∈P
𝑢𝑑,𝑝 = 1 , ∀𝑑 (6b)

𝜆𝐷𝐴
𝑡 𝑝𝐷𝐴

𝑑,𝑡 𝛥𝑡 ≥ 𝜆𝐷𝐴
𝑡

∑

𝑝∈P
(𝑃𝑑,𝑝,𝑡𝑢𝑑,𝑝)𝛥𝑡 + 𝑦𝑑,𝑡 , ∀𝑑, 𝑡 (6c)

𝑦𝑑,𝑡 ≤ 𝜆𝐷𝐴
𝑡

∑

𝑝∈P
(𝑃𝑑,𝑝,𝑡𝑢𝑑,𝑝)𝛥𝑡 , ∀𝑑, 𝑡 (6d)

𝑦𝑑,𝑡 ≥ 𝜈𝑑 + 𝜂𝑑,𝑡 −𝑀(1 − 𝜒𝑑,𝑡) , ∀𝑑, 𝑡 (6e)

𝜈𝑑 + 𝜂𝑑,𝑡 ≥ 𝜆𝐷𝐴
𝑡

∑

𝑝∈𝑃
(𝑃𝑑,𝑝,𝑡𝑢𝑑,𝑝)𝛥𝑡 , ∀𝑑, 𝑡 (6f)

𝜀𝜒𝑑,𝑡 ≤ 𝜂𝑑,𝑡 ≤ 𝑀𝜒𝑑,𝑡 , ∀𝑑, 𝑡 (6g)
∑

𝑡∈T
𝜒𝑑,𝑡 = 𝛤𝑑 , ∀𝑑 (6h)

𝑟𝑆𝑅,↑𝑑,𝑡 ≤
̄
𝛽𝑑,𝑡

∑

𝑝∈P
(𝑃𝑑,𝑝,𝑡𝑢𝑑,𝑝) , ∀𝑑, 𝑡 (6i)

𝑟𝑆𝑅,↑𝑑,𝑡 ≤ 𝑝𝐷𝐴
𝑑,𝑡 −

̄
𝑃𝑑 , ∀𝑑, 𝑡 (6j)

𝑟𝑆𝑅,↓𝑑,𝑡 ≤ 𝛽𝑑,𝑡
∑

𝑝∈P
(𝑃𝑑,𝑝,𝑡𝑢𝑑,𝑝) , ∀𝑑, 𝑡 (6k)

𝑟𝑆𝑅,↓𝑑,𝑡 ≤ 𝑃𝑑 − 𝑝𝐷𝐴
𝑑,𝑡 , ∀𝑑, 𝑡 (6l)

(𝑝𝐷𝐴
𝑑,𝑡 + 𝑟𝑆𝑅,↓𝑑,𝑡 ) − (𝑝𝐷𝐴

𝑑,(𝑡−1) − 𝑟𝑆𝑅,↑𝑑,(𝑡−1)) ≤ 𝑅̄𝑑𝛥𝑡 , ∀𝑑, 𝑡 (6m)

(𝑝𝐷𝐴 + 𝑟𝑆𝑅,↓ ) − (𝑝𝐷𝐴 − 𝑟𝑆𝑅,↑) ≤ 𝑅 𝛥𝑡 , ∀𝑑, 𝑡 (6n)
𝑑,(𝑡−1) 𝑑,(𝑡−1) 𝑑,𝑡 𝑑,𝑡 ̄ 𝑑



H. Nemati et al. Energy 328 (2025) 136421 
𝑟𝑆𝑅,↑𝑑,𝑡 ≤ 𝑇 𝑆𝑅
̄
𝑅𝑆𝑅
𝑑 , ∀𝑑, 𝑡 (6o)

𝑟𝑆𝑅,↓𝑑,𝑡 ≤ 𝑇 𝑆𝑅𝑅̄𝑆𝑅
𝑑 , ∀𝑑, 𝑡 (6p)

̄
𝐸𝑑 ≤

∑

𝑡∈T
(𝑝𝐷𝐴

𝑑,𝑡 𝛥𝑡 − 𝑟𝑆𝑅,↑𝑑,𝑡 ) , ∀𝑑 (6q)

𝜈𝑑 , 𝜂𝑑,𝑡, 𝑦𝑑,𝑡 ≥ 0 , ∀𝑑, 𝑡 (6r)

𝜒𝑑,𝑡 ∈ {0, 1} , ∀𝑑, 𝑡 (6s)

3.5. Coping with non-linear constraints

This section discusses the transformation from the non-linear terms 
in sets of Eqs. (5) and (6) to obtain a single-level MILP formulation with 
an exact solution (i.e. it is not a linear approximation).

The electricity price variable 𝜆𝐷𝐴
𝑡  is modeled by Eq.  (2a). The

Eq.  (2a) represents different possible values for the electricity price 
depending on the status of the binary variables 𝜒𝐷𝐴

𝑡  and 𝜒 ′𝐷𝐴
𝑡 . These 

binary variables are determined based on the worst-case scenario of the 
uncertain parameter for electricity price in the objective function of the 
optimization problem. Therefore, there are three possible combinations 
for the value of the electricity price. If 𝜒𝐷𝐴

𝑡 = 𝜒 ′𝐷𝐴
𝑡 = 0 for a specific 

period, that period is not the worst case, and 𝜆𝐷𝐴
𝑡 = 𝜆̃𝐷𝐴

𝑡 . If the RVPP 
operator acts as an energy seller during a specific period and that 
period represents the worst case, we have 𝜒𝐷𝐴

𝑡 = 1 and 𝜒 ′𝐷𝐴
𝑡 = 0. 

In this scenario, the lower bound of the electricity price is given by 
𝜆𝐷𝐴
𝑡 = 𝜆̃𝐷𝐴

𝑡 − 𝜆̌𝐷𝐴
𝑡 . Lastly, if the RVPP operator acts as an energy buyer 

in a specific period and that period is the worst case, we have 𝜒𝐷𝐴
𝑡 = 0

and 𝜒 ′𝐷𝐴
𝑡 = 1. In this case, the price is obtained as the upper bound 

value 𝜆𝐷𝐴
𝑡 = 𝜆̃𝐷𝐴

𝑡 + 𝜆̂𝐷𝐴
𝑡 . The electricity price variable 𝜆𝐷𝐴

𝑡  is used 
in Eqs. (5) and (6), which are related to the uncertain constraints of 
ND-RES and demand, to model the profit robustness formulation. By 
substituting the electricity price from Eq.  (2a) into the constraints (5) 
and (6), nonlinear terms appear in the form of the multiplication of 
binary and continuous variables, as well as the product of two binary 
variables. These nonlinear terms need to be replaced with their exact 
equivalent linear constraints.

In this regard, Fig.  2 represents the general formulation presented 
in [39] for converting nonlinear equations arising from the multipli-
cation of two variables (at least one of them being of binary nature) 
into a linear format. For the multiplication of a binary variable and 
a continuous variable, 𝑥 ⋅ 𝑦, two new positive variables, 𝑦𝑄 and 𝑦𝐴, 
need to be introduced to represent the final result of 𝑥 ⋅ 𝑦. These 
two new positive variables must be constrained by the values of 𝜀
and 𝑀 , depending on the status of the binary variable 𝑥. For the 
multiplication of two binary variables, 𝑥 ⋅ 𝑢, a new binary variable, 𝑧, 
must be introduced. The value of 𝑧 should be less than or equal to each 
of the binary variables 𝑥 and 𝑢, and additionally, 𝑧+ 1 must be greater 
than or equal to the sum of 𝑥 + 𝑢. In the following sections, the above 
methods are used to obtain the exact equivalent linear formulation of 
the nonlinear terms in (5) and (6).

3.5.1. ND-RES non-linear constraints
The set of Eqs. (5) contains two non-linear terms on the left and 

right hand sides of (5c) due to the multiplication of the electricity 
price variable 𝜆𝐷𝐴

𝑡  and the continuous variables 𝑝𝐷𝐴
𝑟,𝑡  and 𝑟𝑆𝑅,↑𝑟,𝑡 . By 

substituting the electricity price from constraint (2a) into the non-
linear terms, the profit robustness constraint (5c) can be rewritten 
as (7a). In Eq.  (7a), the non-linear terms 𝜆̌𝐷𝐴

𝑡 𝜒𝐷𝐴
𝑡 (𝑝𝐷𝐴

𝑟,𝑡 + 𝑟𝑆𝑅,↑𝑟,𝑡 )𝛥𝑡 and 
𝜆̂𝐷𝐴
𝑡 𝜒 ′𝐷𝐴

𝑡 (𝑝𝐷𝐴
𝑟,𝑡 + 𝑟𝑆𝑅,↑𝑟,𝑡 )𝛥𝑡 are multiplications of binary and continuous 

variables. Note that discrete rather than continuous values for the 
electricity price in (2a) is relevant to the robustness concept, since the 
flexible worst-case scenarios always occur in the boundary values of the 
electricity price. Finally, the non-linear equation (7a) can be replaced 
by the set of linear constraints (7b)–(7h) using the method in [39].

The auxiliary variables 𝑝𝐷𝐴,𝑄
𝑟,𝑡  and 𝑝𝐷𝐴,𝐴

𝑟,𝑡  with the same possible 
lower and upper bounds as the term 𝑝𝐷𝐴+𝑟𝑆𝑅,↑ are defined to determine 
𝑟,𝑡 𝑟,𝑡

8 
Fig. 2. Big-M method [39] to linearize multiplication of binary and continuous 
variables and binary and binary variables.

the final result of the non-linear term 𝜆̌𝐷𝐴
𝑡 𝜒𝐷𝐴

𝑡 (𝑝𝐷𝐴
𝑟,𝑡 +𝑟𝑆𝑅,↑𝑟,𝑡 )𝛥𝑡. When the 

binary variable 𝜒𝐷𝐴
𝑡  related to the negative electricity price deviation 

is 1, Eqs. (7c)–(7e) set 𝑝𝐷𝐴,𝑄
𝑟,𝑡 = 𝑝𝐷𝐴

𝑟,𝑡 + 𝑟𝑆𝑅,↑𝑟,𝑡  and 𝑝𝐷𝐴,𝐴
𝑟,𝑡  = 0. On 

the other hand, for 𝜒𝐷𝐴
𝑡  = 0, Eqs. (7c)–(7e) lead to 𝑝𝐷𝐴,𝑄

𝑟,𝑡  = 0 and 
𝑝𝐷𝐴,𝐴
𝑟,𝑡 = 𝑝𝐷𝐴

𝑟,𝑡 + 𝑟𝑆𝑅,↑𝑟,𝑡 . Similarly, the auxiliary variables 𝑝′𝐷𝐴,𝑄
𝑟,𝑡  and 𝑝′𝐷𝐴,𝐴

𝑟,𝑡
in Eqs. (7f)–(7h) can define the final result of the non-linear term 
𝜆̂𝐷𝐴
𝑡 𝜒 ′𝐷𝐴

𝑡 (𝑝𝐷𝐴
𝑟,𝑡 + 𝑟𝑆𝑅,↑𝑟,𝑡 )𝛥𝑡 in (7a). Therefore, the linear Eqs. (7b)–(7h) 

can replace the non-linear constraint (7a). Note that since auxiliary 
variables 𝑝𝐷𝐴,𝑄

𝑟,𝑡  and 𝑝𝐷𝐴,𝐴
𝑟,𝑡  represent the final results of the variable 

𝑝𝐷𝐴
𝑟,𝑡 + 𝑟𝑆𝑅,↑𝑟,𝑡  and the binary variable 𝜒𝐷𝐴

𝑡 , they have the same bounds as 
𝑝𝐷𝐴
𝑟,𝑡 + 𝑟𝑆𝑅,↑𝑟,𝑡 . Therefore, the value of M in the Big-M method in Eq.  (7) 
is exact and equal to the upper bound of 𝑝𝐷𝐴

𝑟,𝑡 + 𝑟𝑆𝑅,↑𝑟,𝑡  (𝑃𝑟,𝑡). 

𝜆̃𝐷𝐴
𝑡 (𝑝𝐷𝐴

𝑟,𝑡 + 𝑟𝑆𝑅,↑𝑟,𝑡 )𝛥𝑡 − 𝜆̌𝐷𝐴
𝑡 𝜒𝐷𝐴

𝑡 (𝑝𝐷𝐴
𝑟,𝑡 + 𝑟𝑆𝑅,↑𝑟,𝑡 )𝛥𝑡

+ 𝜆̂𝐷𝐴
𝑡 𝜒 ′𝐷𝐴

𝑡 (𝑝𝐷𝐴
𝑟,𝑡 + 𝑟𝑆𝑅,↑𝑟,𝑡 )𝛥𝑡 ≤ 𝜆𝐷𝐴

𝑡 𝑃𝑟,𝑡𝛥𝑡 − 𝑦𝑟,𝑡 , ∀𝑟, 𝑡 (7a)

𝜆̃𝐷𝐴
𝑡 (𝑝𝐷𝐴

𝑟,𝑡 + 𝑟𝑆𝑅,↑𝑟,𝑡 )𝛥𝑡 − 𝜆̌𝐷𝐴
𝑡 𝑝𝐷𝐴,𝑄

𝑟,𝑡 𝛥𝑡 + 𝜆̂𝐷𝐴
𝑡 𝑝′𝐷𝐴,𝑄

𝑟,𝑡 𝛥𝑡 ≤ 𝜆𝐷𝐴
𝑡 𝑃𝑟,𝑡𝛥𝑡 − 𝑦𝑟,𝑡 , ∀𝑟, 𝑡 (7b)

𝑝𝐷𝐴,𝑄
𝑟,𝑡 = 𝑝𝐷𝐴

𝑟,𝑡 + 𝑟𝑆𝑅,↑𝑟,𝑡 − 𝑝𝐷𝐴,𝐴
𝑟,𝑡 , ∀𝑟, 𝑡 (7c)

̄
𝑃𝑟𝜒

𝐷𝐴
𝑡 ≤ 𝑝𝐷𝐴,𝑄

𝑟,𝑡 ≤ 𝑃𝑟,𝑡𝜒
𝐷𝐴
𝑡 , ∀𝑟, 𝑡 (7d)

̄
𝑃𝑟(1 − 𝜒𝐷𝐴

𝑡 ) ≤ 𝑝𝐷𝐴,𝐴
𝑟,𝑡 ≤ 𝑃𝑟,𝑡(1 − 𝜒𝐷𝐴

𝑡 ) , ∀𝑟, 𝑡 (7e)

𝑝′𝐷𝐴,𝑄
𝑟,𝑡 = 𝑝𝐷𝐴

𝑟,𝑡 + 𝑟𝑆𝑅,↑𝑟,𝑡 − 𝑝′𝐷𝐴,𝐴
𝑟,𝑡 , ∀𝑟, 𝑡 (7f)

̄
𝑃𝑟𝜒

′𝐷𝐴
𝑡 ≤ 𝑝′𝐷𝐴,𝑄

𝑟,𝑡 ≤ 𝑃𝑟,𝑡𝜒
′𝐷𝐴
𝑡 , ∀𝑟, 𝑡 (7g)

̄
𝑃𝑟(1 − 𝜒 ′𝐷𝐴

𝑡 ) ≤ 𝑝′𝐷𝐴,𝐴
𝑟,𝑡 ≤ 𝑃𝑟,𝑡(1 − 𝜒 ′𝐷𝐴

𝑡 ) , ∀𝑟, 𝑡 (7h)

3.5.2. Demand non-linear constraints
The demand robust cost formulation proposed in (6) includes non-

linear terms in (6a), (6c), (6d), and (6f). The non-linear term 𝜆𝐷𝐴
𝑡 𝑝𝐷𝐴

𝑑,𝑡 𝛥𝑡
in (6c) can be linearized in the same way as in (7) by introducing 
new auxiliary variables. In addition, each of the non-linear terms 
∑

𝑝∈P (𝜒𝑑,𝑡𝑃𝑑,𝑝,𝑡𝑢𝑑,𝑝) in (6a), and, by including the expanded term of 
the electricity price 𝜆𝐷𝐴

𝑡  from constraint (2a), the non-linear terms 
𝜆𝐷𝐴
𝑡

∑

𝑝∈P (𝑃𝑑,𝑝,𝑡𝑢𝑑,𝑝)𝛥𝑡 in (6c), and 𝜆𝐷𝐴
𝑡

∑

𝑝∈P (𝑃𝑑,𝑝,𝑡𝑢𝑑,𝑝)𝛥𝑡 in (6d) and 
(6f) includes only the multiplication of two binary variables. To lin-
earize these binary multiplication terms, three new binary variables 
𝑧𝑑,𝑝,𝑡, 𝑤𝑑,𝑝,𝑡, 𝑤′

𝑑,𝑝,𝑡 are introduced as the final result of binary multiplica-
tions of 𝜒𝑑,𝑡𝑢𝑑,𝑝, 𝜒𝐷𝐴

𝑡 𝑢𝑑,𝑝, and 𝜒 ′𝐷𝐴
𝑡 𝑢𝑑,𝑝, respectively. Furthermore, the 

set of linear constraints (8) is added to (6), which simulate the possible 
results of multiplying two binary variables by the newly defined binary 
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Table 2
RVPP units and DAM electricity price forecast data.
 Time ND-RES1 ND-RES2 Demand DAM price
 𝑃𝑟,𝑡 𝑃𝑟,𝑡 𝑃𝑟,𝑡 𝑃𝑟,𝑡 𝑃𝑑,𝑡 𝑃𝑑,𝑡 𝜆̃𝐷𝐴

𝑡 𝜆̂𝐷𝐴
𝑡 𝜆̌𝐷𝐴

𝑡 [MW] [MW] [MW] [MW] [MW] [MW] [e/MWh] [e/MWh] [e/MWh] 
 1 5 2 0 0 5 2 4 1 1  
 2 5 3 4 2 15 5 8 2 3  
 3 10 5 15 5 12 4 6 3 4  
 4 10 4 12 4 20 3 10 5 2  
 5 15 6 6 3 20 6 6 3 1  
variables 𝑧𝑑,𝑝,𝑡, 𝑤𝑑,𝑝,𝑡, 𝑤′
𝑑,𝑝,𝑡. 

𝑧𝑑,𝑝,𝑡 ≤ 𝜒𝑑,𝑡 , ∀𝑑, 𝑝, 𝑡 (8a)

𝑧𝑑,𝑝,𝑡 ≤ 𝑢𝑑,𝑝 , ∀𝑑, 𝑝, 𝑡 (8b)

𝑧𝑑,𝑝,𝑡 + 1 ≥ 𝜒𝑑,𝑡 + 𝑢𝑑,𝑝 , ∀𝑑, 𝑝, 𝑡 (8c)

𝑤𝑑,𝑝,𝑡 ≤ 𝜒𝐷𝐴
𝑡 , ∀𝑑, 𝑝, 𝑡 (8d)

𝑤𝑑,𝑝,𝑡 ≤ 𝑢𝑑,𝑝 , ∀𝑑, 𝑝, 𝑡 (8e)

𝑤𝑑,𝑝,𝑡 + 1 ≥ 𝜒𝐷𝐴
𝑡 + 𝑢𝑑,𝑝 , ∀𝑑, 𝑝, 𝑡 (8f)

𝑤′
𝑑,𝑝,𝑡 ≤ 𝜒 ′𝐷𝐴

𝑡 , ∀𝑑, 𝑝, 𝑡 (8g)

𝑤′
𝑑,𝑝,𝑡 ≤ 𝑢𝑑,𝑝 , ∀𝑑, 𝑝, 𝑡 (8h)

𝑤′
𝑑,𝑝,𝑡 + 1 ≥ 𝜒 ′𝐷𝐴

𝑡 + 𝑢𝑑,𝑝 , ∀𝑑, 𝑝, 𝑡 (8i)

Finally, by substituting the linear equivalent of non-linear con-
straints (5) and (6) with (7) and (8), problem (1)–(6) can be written as 
an MILP problem solvable with available MILP solvers such as CPLEX.

4. Profit robustness example

This section presents a simple illustrative example to show the 
performance of the proposed profit robust formulation in finding the 
worst-case profit robustness scenarios by considering the asymmetry of 
the DAM electricity price. The example provides a detailed description 
of how the worst cases of the electricity price deviations affect the worst 
cases of energy deviations. This illustrative example is particularly 
relevant as it highlights how the proposed profit robustness approach 
fundamentally differs from traditional energy robustness approaches in 
the literature, which typically focus only on energy worst-case selec-
tion. By explicitly demonstrating how price and energy uncertainties 
interact to shape profit robustness, this section helps the reader clearly 
understand the novelty of the proposed model before moving to the 
full-scale case study. This step-by-step demonstration also enhances the 
transparency and interpretability of the proposed approach, which is 
essential for first-time introduction of this modeling framework.

4.1. Defining illustrative example

In this context, an RVPP with two ND-RES and one demand in a 
sample period of 5 h is considered. The forecast bounds of production 
and demand of the RVPP units and the DAM electricity price are given 
in Table  2. Five cases are defined below to compare different conditions 
for the values of energy and price uncertainty budgets and to compare 
the results of the proposed model in [21]:

Case 1: Deterministic case with no deviations on electricity price, 
ND-RES production, and demand (i.e., 𝛤𝐷𝐴 = 𝛤𝑟 = 𝛤𝑑 = 0);
Case 2: Only the DAM electricity price uncertainty is considered. 
It is assumed that the values of the DAM electricity price can 
deviate from the median to the worst case values in three periods 
(i.e., 𝛤𝐷𝐴 = 3 and 𝛤𝑟 = 𝛤𝑑 = 0);
Case 3: Only the uncertainty of ND-RES units energy and demand 
is considered. It is assumed that the production values of ND-RES 
1 and ND-RES 2 and the demand can deviate from the median to 
the worst case values in three, one, and two periods, respectively 
(i.e., 𝛤𝐷𝐴 = 0 and 𝛤 = 3, 𝛤 = 1, and 𝛤 = 2);
𝑟1 𝑟2 𝑑
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Case 4: Both price and energy uncertainties are considered. The 
electricity price, the production of ND-RES 1 and ND-RES 2, and 
the demand values can deviate from the median to the worst case 
values (𝛤𝐷𝐴 = 3 and 𝛤𝑟1 = 3, 𝛤𝑟2 = 1, and 𝛤𝑑 = 2).
Case 5: The energy robustness problem presented in [21] is 
solved for the same uncertainty budgets as in Case 4.

4.2. Results of illustrative example

Fig.  3 shows the final results of DAM electricity price, ND-RES 
energy, and demand for different cases proposed in this example. The 
final values of the above variables, corresponding to the whole period 
in each hour, are shown by different bars in this figure. If the value 
of a variable is equal to the median of the forecast (solid black line 
in the figure), it means that the corresponding period is not selected 
as the worst case. Fig.  4 shows the values of the dual variables 𝑦(′)𝐷𝐴

𝑡
and 𝑦𝑟(𝑑),𝑡 related to the profit/cost affected by different uncertainties 
for all defined cases except for Case 5. Note that, in the model in [21], 
these variables are either not defined or defined for energy robustness; 
therefore, the comparison is only provided for the first four cases.

Case 1:

The RVPP obtains a profit of e56 by bidding its median values of 
ND-RES production according to Fig.  3. The final values for the DAM 
electricity price are also obtained as the median values as the length 
of all bars is equal to the median. As shown in Fig.  4, due to not 
considering the robustness, all dual variables 𝑦(′)𝐷𝐴

𝑡  and 𝑦𝑟(𝑑),𝑡 are equal 
to zero, since the problem is a deterministic optimization one.

Case 2:

In Case 2, the RVPP profit in the DAM is -e12, where the negative 
value means that the cost of buying electricity to meet demand is 
higher than the profit obtained by selling electricity on the market. The 
algorithm chooses periods 3 and 4 for the negative price fluctuation 
and period 2 for the positive price fluctuation. Therefore, the final 
electricity prices in periods 3 and 4 (2) are decreased (increased) to 
their minimum (maximum) values compared to Case 1.

Note that the maximum possible profit reduction in each period 
can be calculated by finding the maximum value of 𝜆̌𝐷𝐴

𝑡 𝑝𝐷𝐴
𝑡 𝛥𝑡 for 

the negative price deviation and −𝜆̂𝐷𝐴
𝑡 𝑝𝐷𝐴

𝑡 𝛥𝑡 for the positive price 
deviation. Therefore, the algorithm correctly identifies the periods that 
lead to the worst cases of profit reduction due to price uncertainty.

Case 3:

In Case 3, the RVPP profit in the DAM is -e166. The maximum 
possible profit reduction for each period can be calculated by 𝜆𝐷𝐴

𝑡 𝑃𝑟,𝑡𝛥𝑡
for ND-RES and the maximum possible cost increase for demand can be 
calculated by 𝜆𝐷𝐴

𝑡 𝑃𝑑,𝑡𝛥𝑡. The worst cases of profit reductions for ND-RES 
1 occur in periods 3, 4, and 5, whereas for ND-RES 2 this occurs in 
period 4. The worst cases of demand cost occur in periods 2 and 5, 
resulting in maximum demand in these periods. It can be easily verified 
that the algorithm correctly selects the worst periods in terms of profit 
reduction for ND-RES or cost increase for demand.



H. Nemati et al. Energy 328 (2025) 136421 
Fig. 3. Final values of DAM electricity price and RVPP units output energy in different case studies. 
Case 4:

The RVPP profit in the DAM is -e279. This case shows one of the 
significant differences between the proposed model and the models in 
the literature [21] (by comparing the black (Case 4) and white (Case 
5) bars), where instead of selecting the periods with higher energy 
reductions, the proposed algorithm selects the periods that result in 
higher profit reductions. For instance, the worst case of ND-RES 2 
production occurs in period 4 with profit reduction of e60 and energy 
reduction of 4 MW. However, the period 3 with the highest amount of 
energy deviation (5 MW) in Case 5 is selected as the worst case.

Case 5:

In Case 5, those periods that result in more deviations of ND-RES 
production and demand are selected as the worst cases. Moreover, the 
worst cases of electricity price deviations are determined according to 
the final values of ND-RES production and demand. For example, for 
ND-RES 1 in Fig.  3, periods 3, 4, and 5 exhibit the highest energy 
deviation and are selected as the worst-case scenarios. For demand, 
hours 2 and 5 are chosen as the worst-case scenarios with the highest 
positive deviation in energy. For the DAM electricity price, deviations 
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to higher values occur in periods 2 and 5, while a deviation to a 
lower value occurs in period 3, which are the worst-case scenarios. 
Considering the different selection of worst-case periods for Cases 4 
and 5, the RVPP obtains a profit of -e279 in the former, which is 
lower than the profit of -e223 obtained in Case 5. Note that the profit 
obtained is for bidding in the market and is different from the actual 
profit after clearing the market. Suppose the RVPP uses the bidding 
strategy proposed in this paper, even though its profit is lower. In 
this condition, it reduces the risk of significant losses and penalties 
(e.g., due to buying energy in real time or penalties for the energy 
it promised to provide but cannot) for not considering the actual 
worst cases. Moreover, the results indicate that the energy robustness 
approach cannot fully cope with the actual worst cases for both energy 
(ND-RES production and demand) and price uncertainty. On the con-
trary, the profit robustness approach proposed in this paper considers 
the worst cases of profit/cost deviations for ND-RES/demand instead of 
the maximum energy deviation. As a final remark, illustrative results 
indicate that the proposed algorithm accurately selects the worst-case 
profit for different uncertainty budgets, and shows better performance 
in finding the worst-case scenarios compared to the model in [21]. 
These finding will be thoroughly analyzed in successive sections.
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Fig. 4. The profit/cost dual variables affected by different uncertainties in different case studies.
5. Simulation results

This section presents the simulation results of the proposed single-
level robust bidding model for different case studies. Simulations are 
performed on a Dell XPS with an i7-1165G7 2.8 GHz processor and 
16 GB of RAM using the CPLEX solver in GAMS 39.1.1.

5.1. Data

The RVPP is located in southern Spain and includes a wind farm, 
two solar PV plants, and a flexible demand. The production forecast 
data of the wind farm and the solar PV plants, representing a sample 
day of the spring season in Spain, are taken from [41,42]. The solar 
PV plants and the wind farm each have a rated capacity of 50 MW 
and operating costs of 5 e/MWh and 10 e/MWh, respectively. These 
values are selected since they represent typical commercial-scale re-
newable energy projects in Spain, making them relevant for real-world 
applications. Additionally, using standard capacities ensures that the 
results are comparable with existing studies and industry practices. 
Although the simulations are performed for these specific units, the 
model is general and can accommodate units with different capacities. 
A residential aggregator profile for the flexible demand is considered 
according to [40]. The demand owner allows a 10% tolerance for 
additional demand flexibility, which is allocated for the possible SR 
provision. All energy forecast data related to RVPP units is shown in 
Fig.  5. The price forecast data for DAM and SRM are taken from the 
Red Eléctrica de España (REE) website, and are shown in Fig.  6 for 
illustration purposes [43]. Table  3 summarizes the above data and 
other RVPP data used in the simulations.

This section also evaluates the computational efficiency of the pro-
posed model by considering a larger RVPP with a higher number (26) 
of units. This RVPP includes 12 PV plants, 11 wind farms, and 3 
demands. The data for these units are generated by introducing specific 
modifications compared to the units in the original RVPP described 
above.

5.2. Case studies

Three case studies are performed to analyze the performance of 
the proposed model. In the first case study, different values for all 
uncertain parameters related to the DAM and SRM electricity prices, 
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ND-RES energy, and demand are considered to show the behavior of 
the proposed model in different uncertain environments. In the second 
case, by means of an out-of-sample assessment, the bidding approach 
of this paper is compared with two models in the literature. In the 
third case, the computational performance of the proposed model is 
evaluated for the larger RVPP comprising 26 units.

The detailed description of the input parameters for the above cases 
is highlighted below:

Case 1: The behavior of the proposed model is evaluated by con-
sidering different combinations of uncertain parameters related to 
the DAM and SRM electricity prices, ND-RES energy, and demand.

∙ Case 1.1: Deterministic case (𝛤𝐷𝐴∕𝑆𝑅 = 𝛤𝑟 = 𝛤𝑑 = 0);
∙ Case 1.2: Only the uncertainties of the energy of the ND-RES 
units and the demand are considered (𝛤𝐷𝐴∕𝑆𝑅 = 0 and 
𝛤𝑟 = 𝛤𝑑 = 5);

∙ Case 1.3: Only the DAM and SRM electricity price uncer-
tainties are considered (𝛤𝐷𝐴∕𝑆𝑅 = 5 and 𝛤𝑟 = 𝛤𝑑 =
0);

∙ Case 1.4: Both DAM and SRM electricity price and energy 
uncertainties are considered (𝛤𝐷𝐴∕𝑆𝑅 = 𝛤𝑟 = 𝛤𝑑 = 5);

∙ Case 1.5: A sensitivity analysis is performed by considering 
DAM and SRM electricity price and energy uncertainties for 
𝛤𝐷𝐴∕𝑆𝑅 = 𝛤𝑟 = 0, 1, 2,… , 9, 𝛤𝑑 = 0.

∙ Case 1.6: A sensitivity analysis is conducted to evaluate the 
performance of the proposed model under high-uncertainty 
conditions, considering uncertainty deviations as defined in 
Section 5.1, as well as 50% and 100% higher deviations.

∙ Case 1.7: A comprehensive sensitivity analysis is performed 
to evaluate operational profit and simulation time for differ-
ent combinations of uncertainty budgets related to DAM and 
SRM electricity prices and energy uncertainties (𝛤𝐷𝐴∕𝑆𝑅 =
0 − 24, 𝛤𝑟 = 0 − 24, 𝛤𝑑 = 0 − 24).

Case 2: The results of the proposed model for 𝛤𝐷𝐴∕𝑆𝑅 = 𝛤𝑟 =
0, 1, 2,… , 9, 𝛤𝑑 = 0 are compared with models in [21,31] using an 
out-of-sample assessment.
Case 3: The computational performance of the proposed model is 
compared for RVPP with 4 and 26 units for 𝛤𝐷𝐴∕𝑆𝑅 = 𝛤𝑟 = 𝛤𝑑 =
0, 1, 2,… , 9.
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Fig. 5. The energy forecast data.
Table 3
RVPP units data.
 PVs Wind farm Demand RVPP

 𝑃𝑟 ̄
𝑃𝑟 𝐶𝑅

𝑟 𝑃𝑟 ̄
𝑃𝑟 𝐶𝑅

𝑟 𝑃𝑑 ̄
𝑃𝑑 ̄

𝐸𝑑 𝐶𝑑,𝑝 𝛽𝑑,𝑡 𝜅 𝑇 𝑆𝑅

 [MW] [MW] [e/MWh] [MW] [MW] [e/MWh] [MW] [MW] [MWh] [e/MWh] [%] [%] [min] 
 50 0 5 50 0 10 150 0 900 0 10 20 15  
5.2.1. Case 1
Fig.  6 shows the RVPP traded energy and reserve versus the elec-

tricity price for Cases 1.1 through 1.4. The positive and negative bars 
in the upper figure show that RVPP is a seller or buyer of energy on 
the market. The positive and negative bars in the lower figure show 
the traded up and down reserve of RVPP. The general results for all 
cases show that between hours 8–11, when the demand is high and 
the production of ND-RES units is not enough to supply all demand, 
the RVPP is an energy buyer in the electricity market. Between hours 
12–15, although the demand is high, the production and demand of 
RVPP are approximately equal, and RVPP does not trade too much 
energy in most cases. However, in these hours the consideration of 
different uncertain parameters in Cases 1.1 through 1.4 has a significant 
effect on the energy trading direction of RVPP (whether RVPP is a seller 
or a buyer of energy). Between hours 16–19, as the demand decreases, 
the RVPP becomes a seller of energy in most of the cases. The results 
for traded SR shows that between hours 9–20, that RVPP has high 
production, it provides more up and down SR to the market.

The total sold energy of RVPP in Cases 1.2 through 1.4 is decreased 
by 52.0%, 0%, and 51.7%, respectively, compared to Case 1.1, whereas 
the total bought energy of RVPP is increased by 74.2%, 0%, and 
66.3%, respectively. The total up (down) SR provided by RVPP in Cases 
1.2 through 1.4 is decreased by 0 (0)%, 2.2 (1.5)%, and 7.5 (7.1)%, 
respectively, compared to Case 1.1.

The results for each case study show that in the deterministic case 
(Case 1.1) and in the hours when RVPP is an energy seller in the 
market, RVPP usually sells more energy and reserve than in Cases 1.2 
and 1.4. However, if RVPP is an energy buyer, the energy bought 
in Case 1.1 is usually less than in Cases 1.2 and 1.4. The reason is 
that in the deterministic case, the RVPP always takes an optimistic 
approach because it does not consider any uncertain parameter. In Case 
1.2, considering the energy deviation of ND-RES and demand results 
in a lower amount of energy sold and a higher amount of electricity 
purchased from the market compared to Case 1.3, where only DAM 
and SRM electricity price uncertainties are considered. According to 
the comparison of Cases 1.1 and 1.3, considering only the electricity 
price uncertainty results in a lower amount of purchased energy only 
in some hours, e.g. hour 10, compared to Case 1.1. The reason is that 
this hour is one of the hours in which the electricity price goes to its 
worst case. Therefore, the RVPP prefers to supply its demand with its 
production and also to provide less SR. In other hours (except hours 
1–6 and 12 with small differences) there are not too many differences 
between RVPP traded energy in Cases 1.3 and 1.1. The reason is that 
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although the electricity price goes to the worst cases in some hours 
in Case 1.3, the RVPP must supply its demand or it can sell energy 
to the market with lower benefit. Considering all energy and price 
uncertainties in Case 1.4 results in a different bidding approach in some 
hours (e.g., hours 9, 10, 12, 14, and 15) compared to Case 1.2, which 
considers only energy uncertainty. Hours 9, 10, and 14 are exactly the 
hours where the worst cases of electricity price occur, forcing the RVPP 
to increase or decrease its bid amount. Note that the worst cases of DAM 
electricity price occur in hours 8–11 and 14 (which are different from 
the worst cases of electricity price in Case 1.3).

Fig.  7 shows the sensitivity analysis of RVPP decisions related to 
traded energy and reserve in Case 1.5. The decision variability is calcu-
lated by taking the standard deviation of RVPP decisions for 𝛤𝐷𝐴∕𝑆𝑅 =
𝛤𝑟 = 0, 1, 2,… , 9, 𝛤𝑑 = 0. The figure allows the operator to gain a 
more comprehensive understanding of the decisions made by the RVPP 
in each hour, taking into account the different uncertainty budgets. 
The hours in which RVPP decisions related to bought energy, sold 
energy, up reserve, and down reserve are more affected are represented 
by triangle, times, square, and circle signs, respectively. The results 
show that modifying the uncertainty budgets has negligible impact on 
the decisions of RVPP in the first eight hours, represented by very 
small dots. Although the variability of the RVPP decisions related to 
the bought energy is observed in a greater number of hours than its 
decisions variability related to the sold energy, it is typically observed 
that the standard deviation of the bought energy is lower than that of 
the sold energy. The standard deviation of the provided reserve is lower 
than that of energy. This is because it is usually beneficial for RVPP to 
provide the highest amount of requested reserve in most of the hours.

Fig.  8 presents the operational profit and simulation time for the 
original uncertainty bounds defined in Section 5.1 across different 
combinations of uncertainty budgets (black lines), for cases where 
uncertain parameters deviate 50% above the defined bounds (orange 
lines), and for cases where uncertain parameters deviate 100% above 
the defined bounds (blue lines).

The results show that an increase in ND-RES uncertainty bounds 
has a greater impact on the operational profit of the RVPP com-
pared to other uncertainty bounds individually. Furthermore, when 
all uncertainties are considered, increasing the uncertainty bounds by 
100% can significantly reduce the operational profit of the RVPP. This 
analysis highlights the importance of properly assigning the bounds 
of uncertain parameters in the proposed approach. Additionally, the 
simulation time in Fig.  8 demonstrates that the proposed approach 
remains computationally efficient under high-uncertainty conditions. 
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Fig. 6. RVPP traded energy and reserve versus electricity price in different case studies.
Fig. 7. Standard deviation of traded energy and reserve of RVPP for all 𝛤𝐷𝐴∕𝑆𝑅 = 𝛤𝑟 = 0, 1, 2,… , 9, 𝛤𝑑 = 0 in each period.
The simulation time remains below 140 s for different combinations 
of uncertainty budgets and uncertainty deviation bounds.

Fig.  9 illustrates the operational profit and simulation time for 
different combinations of uncertainty budgets related to DAM and SRM 
electricity prices, ND-RES production, and demand consumption. The 
figure presents results when some uncertainty budgets — those related 
to ND-RES production, demand consumption, and DAM and SRM prices 
— are set to zero, while others vary from 0 to 24 (black lines). 
Furthermore, Fig.  9 provides results when electricity price uncertainty 
parameters are fixed at higher values (4, 8, 16, and 24), and the uncer-
tainty budgets related to ND-RES production and demand consumption 
increase from 0 to 24 (orange lines). Additionally, it shows the case 
where ND-RES production and demand consumption are fixed at higher 
values (4, 8, 16, and 24), while the uncertainty budgets for DAM and 
SRM prices increase from 0 to 24 (blue lines).

The results for operational profit show that, in general, increasing 
the uncertainty budget leads to a sharper decrease in operational profit 
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at lower uncertainty levels until it reaches a saturation point, typically 
between uncertainty budgets of 9 and 15 for different combinations 
of selected uncertainty budget parameters. The results also indicate 
that ND-RES production uncertainty has a greater impact on the op-
erational profit of the RVPP compared to electricity prices and demand 
uncertainties, as all RVPP production comes from ND-RES units. Fur-
thermore, when all uncertainties are considered simultaneously, the 
decrease in operational profit is more significant than when each 
uncertainty is accounted independently.

The results for simulation time show that, in general, increasing the 
uncertainty budgets — by allowing more combinations for selecting 
worst-case scenarios — initially leads to an increase in simulation time, 
followed by a decrease. However, the figure indicates that the compu-
tational time for all combinations of uncertainty budgets remains at a 
highly acceptable level, staying below 80 s. This efficiency makes the 
approach suitable for RVPP market participation and enables several 
sensitivity analyses to be performed before submitting the final bid.
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Fig. 8. Operation profit and simulation time for different uncertainty conditions and different uncertainty budgets in Case 1.6.
5.2.2. Case 2
Fig.  10 compares the results of an out-of-sample assessment for 

the proposed model and models in [21,31] for different values of 
uncertainty budgets between 0 and 9. In the figure, 𝛱𝑎𝑣 represents 
the operating profit (no penalization applied), 𝐾𝑎𝑣 is the penalization 
cost for not complying with the energy bid, and the net profit of 
RVPP is represented by 𝛱𝑎𝑣 − 𝐾𝑎𝑣. In [21], the energy robustness 
approach is adopted. The authors in [31] use a multi-level optimization 
problem which implements an RO approach to model the ND-RES units 
uncertainties, and an SO to capture the electricity price uncertainties. 
Therefore, the uncertainty budget in Fig.  10 for model [31] refers only 
to the production of ND-RES units. To model the price uncertainty in 
their SO model, 200 scenarios are considered according to the REE 
website [43]. For the out-of-sample assessment, 1000 scenarios are 
generated based on the hourly distributions of uncertain parameters 
related to the DAM and SRM electricity prices and ND-RES production. 
The Weibull distribution, with its ability to model different degrees 
of skewness and tails, is used to generate scenarios to better capture 
the asymmetric behavior of uncertain parameters. Note that an equal 
value for all time periods, such as in [21,31], can be considered for 
the penalty cost. However, the penalty cost related to the energy that 
is not provided is set to three times the DAM median price forecast in 
this paper. In this way, the deviation in the hours when the electricity 
price is higher leads to more penalty for RVPP.

The net profit of RVPP for uncertainty budget 0 in the proposed 
model and model [21] is the same as the deterministic components 
in both models are the same. However, the model in [31] results in 
a lower value of net profit for uncertainty budget 0 compared to the 
proposed model and [21] due to the use of a different reserve provision 
strategy. In this paper and in [21], the production plus the reserve 
provided by each RVPP unit is limited by the maximum production 
of each unit, while in [31] this constraint is not defined and only the 
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reserve provision limit by the entire RVPP is considered. Therefore, for 
an uncertainty budget of 0, using the proposed model or the model 
in [21] results in a lower energy bid in the DAM in several hours 
compared to [31]. By increasing the uncertainty budget, the proposed 
model leads to a higher net profit obtained compared to model [21]. 
The better results in terms of net profit by using the model [31] 
compared to the proposed model is, to some extent, expected. This 
is due to the use of a more sophisticated approach to find the worst 
case of uncertainties of ND-RES production, and the consideration of 
the possibility of rescheduling the RVPP units in the third level of 
the model [31]. However, the proposed model shows a closely aligned 
results compared to [31] even in some cases the obtained results in 
the proposed model are better than model in [31] (see e.g. results for 
uncertainty budgets 0, 3, 4, and 5).

To provide a more detailed comparison of the performance of the 
proposed model and the model in [31] in the DAM and SRM, as well 
as their ability to handle uncertainty, Fig.  11 is provided. This figure 
shows the traded energy and reserve of the RVPP under different values 
of uncertainty budgets. It can be observed that as the uncertainty 
budget increases, the sold energy of the RVPP decreases while the 
bought energy increases in the proposed model (solid lines). This occurs 
because the RVPP operator adopts a more conservative strategy to 
participate in the market, ensuring it can supply its demand. A similar 
trend is observed for the traded energy of the RVPP in the model 
from [31], where less energy is sold when the RVPP acts as a seller 
and more energy is purchased when it acts as a buyer. By comparing 
the results, it can be seen that although there are some differences 
in traded energy at certain hours, both models provide similar and 
effective bidding strategies in the DAM. The results for the traded 
reserve of the RVPP indicate that in certain hours (10, 12–15, 20, 22, 
and 23), the up and down reserves provided in the proposed model 
are lower than those in the model from [31], particularly at hours 
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Fig. 9. Operation profit and simulation time for different uncertainty budgets in Case 1.7.
Fig. 10. The out-of-sample assessment for proposed model and the models in [21,31] (𝛤𝐷𝐴∕𝑆𝑅 = 𝛤𝑟 = 0, 1, 2,… , 9, 𝛤𝑑 = 0).
10, 13, 14, and 20. This difference arises because the proposed model 
explicitly considers the technical capabilities of RVPP units in providing 
reserve, whereas the model in [31] neglects most of the technical 
constraints related to reserve provision and instead applies a general 
reserve bound for the RVPP. Additionally, the reserve provision in the 
proposed model is influenced by changes in the uncertainty budget. 
This is because variations in the uncertainty budget not only impact 
the energy output of the units but also affect their reserve provision 
accordingly. However, this relationship is not captured in [31], where 
a constant up and down reserve is maintained across all uncertainty 
budget levels.

From the computational standpoint in Case 2, the simulation time 
of different cases of the model [21] is less than 2 s due to the simplified 
approach to identify the worst case of the optimization problem. The 
simulation time of the model proposed in this paper is less than 30 s 
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in all cases, which meets the acceptable criteria for the RVPP bidding 
problem when, e.g., different strategies need to be analyzed and com-
pared before submitting the bid to the market operator. The simulation 
time of the model [31] reaches between 10 to 90 min. In summary, 
the proposed approach demonstrates outstanding computational perfor-
mance against more intricate approaches such as [31], while providing 
results that compete in terms of profits with the model in [31] and 
reducing the risk of penalization compared with [21].

5.2.3. Case 3
Table  4 compares the operation profit and simulation time of the 

proposed bidding model for RVPP with 4 and 26 units. The number of 
equations, continuous variables, and binary variables in the simulations 
for RVPP with 4 units are, respectively, 3668, 2251, and 337. On the 
other hand, for the case of the 26-unit RVPP, these numbers are, 16558, 
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Fig. 11. RVPP traded energy and reserve for the proposed model and the model in [31] (𝛤𝐷𝐴∕𝑆𝑅 = 𝛤𝑟 = 3, 6, 9, 𝛤𝑑 = 0).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

Table 4
Operation profit and simulation time for RVPP with 4 and 26 units.
 Uncertainty Operation profit [ke] Simulation time [s]
 budget [–] 4-unit 26-unit 4-unit 26-unit  
 0 1.4 76.1 0.1 0.1  
 1 −1.8 51.2 0.1 1.1  
 2 −4.1 34.1 0.7 30.8  
 3 −6.8 18.9 2.2 36.9  
 4 −9.2 2.8 3.6 48.0  
 5 −11.1 −9.5 2.6 59.7  
 6 −13.0 −18.7 2.6 101.8  
 7 −14.2 −27.0 4.7 172.2  
 8 −15.2 −34.9 5.7 171.3  
 9 −16.0 −41.1 4.8 110.3  

10339, and 1491. The results demonstrate that the proposed model
exhibits a moderate simulation time for an RVPP with a high number
of units. As the uncertainty budget is increased for the RVPP with 26
units, the computational time initially increases and then decreases.
This is due to the fact that for a certain range of uncertainty budget,
the optimization problem must identify the worst case by taking into
account more combinations for variability of uncertain parameters.
The maximum simulation time is around 3 min, and occurs for an
uncertainty budgets of 7 and 8. Furthermore, a trend comparable to
that observed in Case 2 for the operation profit of the RVPP is evident,
whereby an increase in the uncertainty budget is associated with a
decline in the operation profit. The proposed single-level model thus
shows outstanding scalability for larger problems. We remark, as a
reference, the 90 min of the multi-level problem considered in Case
2 above for a 4-unit RVPP. This feature, combined with the detailed
information that can only be obtained from comprehensive sensitiv-
ity analysis (see Fig.  7), makes the proposed methodology a notably
powerful tool for RVPP operators in their decision making.

Two additional factors — objective function value and optimality
gap during the simulation — have been included in Fig.  12 to evaluate
the effectiveness of the proposed model. The marked points in this
 

16 
figure indicate the objective function value and the optimality gap at 
different iterations of the solver. The results show that for both the 
4-unit and 26-unit RVPP, the optimality gap is efficiently reduced, 
and the objective function value rapidly approaches the final optimal 
value. For example, in most cases, the optimality gap for the 4-unit 
and 26-unit RVPP falls below 1% in less than one second and 100 s, 
respectively. This demonstrates the stability of the proposed model in 
finding optimal solutions across different uncertainty budgets.

5.3. Remarks

The findings in Sections 4 and 5 are summarized in this section.
(1) The tradeoff between simplicity and accuracy. While a single-level 

MILP model is used to model the RVPP bidding in different markets, 
the results in the illustrative example of Section 4 show that the 
flexible worst case of different uncertain parameters associated with 
the electricity price as well as ND-RES and demand is obtained for the 
case where the combination of all uncertainties are considered or each 
set of uncertainties is considered.

(2) Providing an exact linearization model. The linearization method 
in this paper is developed for the case that different uncertainties in 
the objective function and constraints affect each other. The results 
obtained in Section 4 show that when all uncertainties are considered, 
which results in changing the worst condition, the proposed approach 
effectively finds the worst case.

(3) Ability to perform comprehensive sensitivity analysis in an effi-
cient time. The RVPP operator must perform the sensitivity analysis 
with respect to the uncertainty budget to find its appropriate level 
of conservatism. The results presented for an RVPP with 26 units in 
Section 5 show the applicability of the proposed approach in real-world 
applications.

(4) Hours with higher decision variability. This paper presents a new 
graph that represents the most sensitive hours in terms of traded energy 
and reserve of RVPP. The results of Section 5 show that the traded 
energy of RVPP has higher deviations for different uncertainty budgets 
compared to the traded reserve of RVPP.
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Fig. 12. Objective function and optimality gap versus simulation time for RVPP with 4 and 26 units.
(5) The effectiveness of the bidding approach considering different mar-
ket clearing scenarios. The out-of-sample assessment is performed in 
Section 5 to compare the results of the model presented in this pa-
per with models in the literature. The results show that the pro-
posed approach provides competitive solutions in compared to more 
sophisticated approaches.

6. Conclusion

In this paper, a novel, computationally efficient, single-level robust 
bidding method for RVPPs is proposed to capture multiple uncertainties 
and their couplings, including DAM and SRM electricity prices as 
well as ND-RES production and demand consumption. The non-linear 
couplings between different uncertainties in the objective function and 
constraints of the optimization problem are addressed by developing an 
accurate linear model based on the Big-M method. The obtained results 
show that the uncertainty of ND-RES and demand has the highest 
impact on the bidding approach of RVPP compared to the electricity 
price uncertainty. Furthermore, the sensitivity analysis shows that the 
RVPP operator can significantly increase its net profit by considering 
even a low or median value for the risk measure parameter (uncertainty 
budget).

As a final remark, the proposed single-level MILP model offers 
significantly improved computational efficiency compared to multi-
level optimization models available in the literature. By avoiding the 
need to explicitly solve iterative nested or hierarchical optimization 
problems, the proposed framework achieves faster solution times, mak-
ing it more suitable for practical large-scale applications. In addition to 
faster computation, the proposed formulation offers a simpler and more 
straightforward implementation, enhancing its practical value for RVPP 
operators participating in simultaneous markets under uncertainty. The 
comparisons conducted in the simulations show that the proposed 
model produces results closely aligned with those obtained from multi-
level models, while requiring significantly less computational time. 
This confirms that the proposed approach successfully balances accu-
racy and computational efficiency, making it well-suited for real-world 
operational environments. 
17 
The model proposed is not exempt from some limitations. The 
model assumes that the RVPP is a price-taker in the market, which 
may limit its applicability in scenarios where the RVPP has significant 
market power. Additionally, the model focuses primarily on short-term 
market participation, particularly in the DAM and SRM, and does not 
account for long-term planning or RTM dynamics.

In this regard, future research could explore the incorporation of 
long-term planning horizons and RTM participation to enhance the 
adaptability of the RVPP to dynamic market conditions. Additionally, it 
would be beneficial to integrate environmental and sustainability con-
siderations, potentially through multi-objective optimization, to create 
a more holistic model. Another potential area for further investigation 
is the integration of hybrid models that combine robust optimization 
with other uncertainty modeling techniques, such as stochastic pro-
gramming, to better capture complex risk profiles and system behaviors 
under extreme conditions. Finally, extending the current approach 
to integrate more flexible resources, such as hydrogen, hydropower, 
biomass, concentrated solar power plant, and ESS, as well as mul-
tiple energy sources and their associated uncertainties, appears as a 
promising direction for future research.
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