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Abstract—This paper examines the impact of Synchronous
Compensators (SC) on the stability of grid-following Inverter-
Based Resources (IBRs), with a particular focus on the role of
reactive power. Full-order simulation models of a commercial
SC and a doubly-fed induction generator as the study model to
represent the most complex IBR, are used. Using the short-circuit
ratio (SCR) as the key index, the study confirms that the Phase-
Locked Loop (PLL) in the IBR is crucial for system stability and
shows that the reactive power injected by the SC plays a non-
negligible role. It is shown that the main effect of the SC in the
small-signal stability aspect is the Thévenin impedance seen by
the PLL at the connection point, which, in the case of the SC, is
the subtransient impedance and the SC reactive power. This idea
is used to calculate the PLL eigenvalues movement easily. A new
simple linear approximation model is proposed to estimate the
correct SCR value for stability purposes considering the reactive
power effect, as it is shown that the classical SCR measure does
not fully capture the impact of the reactive power on the system
stability.

Index Terms—Synchronous compensator, short-circuit ratio,
reactive power, IBR stability, PLL stability.

NOMENCLATURE

A. Parameters and variables

E
′′
0 SC subtransient internal voltage

x
′′
d SC direct-axis subtransient reactance
QSC SC supplied reactive power
xt Transformer short-circuit reactance
rl Transmission line resistance
xl Transmission line reactance
cl Transmission line capacitance
KQ Slope in the linear relationship between

SCRstSC and QSC
KPLL Part of KQ that is due to the effect of the

PLL
R2 Coefficient of determination
λPLL Eigenvalue associated with PLL stability
SCRNET SCR at the PCC considering only the grid

line impedance
SCRNETlimit Minimum SCR limit for network stability
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SCRPCC SCR at the PCC including grid line
impedance and SC impedance

SCRSC SCR contribution from the SC
SCR0 SCRSC estimation with QSC = 0
SCRICC

SC SCR contribution from the SC based on its
short-circuit current

SCRPLL red SCR for PLL stability based on a reduced
model

SCRstSC Stability SCR contribution from SC

B. Terms

CSCR Composite Short-Circuit Ratio
FOS Full Order Simulations
gSCR Generalized Short-Circuit Ratio
GSIM Grid Strength Impedance Matrix
HVDC-LCC HVDC Line-Commutated Converter
HVDC-VSC HVDC Voltage-Source Converter
IBR Inverter-Based Resources
MSG Multipole Synchronous Generator
MIPES Multi-Infeed Power Electronic System
PCC Point of Common Coupling
PLL Phase-Locked Loop
PV Photovoltaic Generation
RES Renewable Energy Sources
RMSE Root Mean Square Error
SC Synchronous Compensator
SCR Short-Circuit Ratio
SDSCR Site-Dependent Short-Circuit Ratio
VS Voltage Stability
WSCR Weighted Short-Circuit Ratio

I. INTRODUCTION

DECARBONIZATION is increasing the integration of
renewable energy sources (RESs) into the power grid in

the current global energy landscape. Synchronous generation is
being replaced by RES worldwide to mitigate the dependence
on fossil fuels.

The integration of RES is typically made through inverter-
based resources (IBRs) at grid connection. IBR poses two
main challenges in terms of inertia provision and stability,
which is strongly related to short-circuit current and line
impedances. Regarding inertia provision, the absence of a
physical rotating mass in IBR systems makes it impossible
to provide physical inertia to the connected system, although
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provision of virtual inertia from some kind of energy storage
system is possible [1], [2]. Regarding short-circuit current,
inverters are electronic devices constructed with semicon-
ductors, which makes them weak to current overload. The
conventional current limit for an inverter is approximately 1.1-
1.2 times the rated current [3], [4]. This typically results in
IBR systems with a very low short circuit ratio (SCR), which
is a typical measure of system strength [3].

Synchronous compensators (SCs) have merged as a promis-
ing solution to tackle the challenges imposed by the high
penetration of RES. SCs are synchronous generators that
can not provide active power in steady-state but can deliver
transient active power by extracting energy stored in the
rotating mass, providing inertia to the system. In addition,
SC can enhance the system stability, providing reactive power
compensation. Moreover, the SC is able to withstand an
overcurrent 3-5 times its rated current [5], [6], making it
an ideal choice for systems requiring an increased SCR.
Note that, unlike conventional hydropower or thermal power
plants, synchronous compensators do not provide active power
control, as no prime mover supplies driving torque. This makes
them different in their role in maintaining grid stability. This
work focuses on SCs as facilitators for the integration of RES
into the grid, particularly when there is a deficiency of SCR
that the system operator defines as a requirement.

SCR provision from SC in power systems is well docu-
mented in previous studies [3], [4], [7]–[13]. It has been stud-
ied both from the small-signal [7] and from large-signal [9],
[10] perturbation analysis points of view. This paper focuses
on the stability of grid-following RES and the role of SCs
in enhancing stability through the SCR contribution. Grid-
following systems invariably include phase locked loop (PLL)
mechanisms, which are crucial for their operation. This pa-
per, in accordance with the previous literature, will confirm
through detailed simulations in Section III that PLL plays
a fundamental role in the stability of the system, and will
assess the contribution of a commercial SC to the stability by
the eigenvalue root-locus analysis using as reference index the
SCR at the connection point. It will be shown that the effect of
the SC is shifting the PLL root locus. In addition, the effect
of the SC reactive power on the stability of the system is
explored, showing that it is affected in a not negligible way.

Full-order simulations of large-scale electrical systems re-
quire significant effort and time. One of the devices that can
be modeled with different levels of complexity is the SC. A
fully SC detailed model is used in [3] to determine the optimal
location of SC in weak grids to ensure short-circuit capability
along the system. Similarly, a complete order model is also
used in [4], [11], [12] for optimal location of SC in weak
grids for SCR improvements and different purposes. However,
when the SCR is the main focus of analysis, the SC can be
modeled only with the subtransient impedance x

′′
d behind a

voltage source E
′′
0 [13], as shown in Fig. 1.

The subtransient impedance model is used in [8] where the
optimal location of SC in weak grids is analyzed. In this paper,
this simple subtransient impedance model is confirmed in
Section IV to be a very good choice to estimate the new SCR,
and a simple procedure is proposed to easily calculate the

E''0

x''d

Fig. 1. Subtransient impedance model [13]

new PLL eigenvalues. However, when the SC reactive power
is considered, this simple subtransient impedance model fails
to capture the effect of the reactive power, both on the short-
circuit current and stability. In addition, it is proved that the
SCR, as a measure of the short-circuit current, does not capture
the complete effect of the reactive power on the PLL stability.
Therefore, in Section IV, two different simple linear models
based on the subtransient impedance model are proposed to
estimate the SCR when SC reactive power is considered. One
for the SCR as a measure of the short-circuit current, and
another one for the SCR as a reference index for stability.

The key contributions of this work are summarized as
follows:

• It is shown that the reduced synchronous compensator
(SC) model based on the subtransient impedance can
accurately predict the position of the PLL eigenvalues of
the DFIG, but only when the SC reactive power injection
is zero.

• A linear model is proposed to calculate the SCR contri-
bution of the SC in terms of short-circuit current, taking
into account the SC reactive power injection operating
point.

• A simplified simulation model is derived to validate the
proposed linear model based only on the PLL dynamics
of the system with the generators modeled as current
sources.

• The proposed models allow for an accurate prediction of
the eigenvalue locations of the IBR when an SC is con-
nected, without requiring full-order simulation models.

The proposed model offers a simplified yet accurate method
to estimate PLL stability, which is critical for the overall
stability of the IBR-base power system, avoiding full-order
simulations of the SC and maintaining sufficient accuracy
for practical applications with reduced computational cost.
For clarity, the full-order models of the doubly-fed induction
generator (DFIG) and the SC, including their control systems,
have been included in the appendices.

This paper is organized as follows. Section II discusses the
definition of the SCR and presents several of its variations. In
Section III, the small-signal stability of the system is analyzed
as a function of the SCR for different reactive power operating
points of the SC, using full-order simulations. Section IV
focuses on the calculation of the SCR contribution from the SC
from different perspectives and proposes a simplified model
to estimate this contribution for stability analysis purposes.
Section V presents the main conclusions of the paper.
Appendix A provides the parameters used in the DFIG model,
and Appendix B includes the commercial SC model used in
the simulations.
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II. SHORT-CIRCUIT RATIO DISCUSSION

Short-circuit ratio (SCR) is a crucial concept in the study
of power system stability. Currently, the value of the SCR
is commonly accepted by system operators to determine the
strength of a system [14]–[16]. The SCR can be viewed from
two distinct perspectives. On one hand, the SCR can be seen
as the physical response of a power system to a short-circuit
fault. In case of a voltage dip at a point in the network, the SCR
measures the ability to supply current at that point where
the fault occurs so that the voltage profile of the network
is altered as little as possible [17]. In an electrical system,
where generators are connected to a point of common coupling
(PCC), the SCR is defined as in [18], [19]:

SCRPCC =
SPCC
Pn

(1)

where SPCC is the network short-circuit power at the PCC
prior to the RES connection in MVA, and Pn is the nominal
active power of the RES in MW.

By choosing the nominal apparent power (Sn) of the RES
as the base power of the per-unit (pu) system (the numerical
value of Sb = Pn), and assuming that the voltage at the PCC
is maintained at 1.0 pu, and that the DFIG is connected to the
infinite grid through a single transmission line with impedance
xl the SCR in per-unit terms simplifies to [18]:

SCRPCC =
1

xl
(2)

Then, SCR represents the equivalent admittance of the system
in per-unit at the PCC. As will be shown in this study, the SCR
plays a critical role in determining the stability of systems with
grid-following IBRs.

On the other hand, the SCR can also be viewed from the
perspective of system robustness and strength, through small-
signal stability analysis [20]–[26]. In this context, the SCR
is used to assess the stability margins of the system, which
provide a measure of the system’s ability to maintain stability
in the face of small disturbances or perturbations. Analyz-
ing the SCR from the small-signal perspective will identify
potential weaknesses in the system and improve its stability.
As will be shown in this paper, both perspectives (SCR as
a measurement of short-circuit capability and the SCR as a
measurement of stability) give different results for the SCR
when the reactive power operating point is considered.

Modern electrical networks contain a significant amount
of IBR penetration, and the controls of these IBR systems
become relevant in the stability of the electrical system. The
definition of SCR in (1) does not take into account the
dynamics of the converter controls, which might cause an
overestimation of the system’s strength and stability. Varia-
tions of the SCR definition given in (1) arise to include the
challenges imposed by the controls of electronic converters.
The weighted short circuit ratio (WSCR) weights the SCR by
the size of each IBR connected to the PCC [22]. The composite
short circuit ratio (CSCR) takes into consideration the nominal
power of the IBR and the short circuit power provided by
the rest of the elements [18], [23]. The site-dependent short

circuit ratio (SDSCR), proposed by [24], takes into consider-
ation the SCR dynamics interaction among items connected
to the grid. Finally, a concept proposed in [25] is the so-
called generalized short-circuit ratio (gSCR), which quantifies
the power grid strength in a multi-infeed power electronic
system (MIPES). Among all definitions, the common factor
lies in the SCR reduction when IBRs generation increases
in a system. While the SCR is widely used as an indicator
of system strength, alternative methods have been proposed
to analyze the stability of power electronic systems more
comprehensively. Notably, the concept of voltage stiffness
(VS) introduced by [27], and the grid strength impedance
matrix (GSIM) proposed by [28] offer dynamic perspectives
that account for the control interactions within inverter-based
resources. However, the classical SCR is the parameter that
network operators use to allow access to the grid for new
installations [14]–[16]. In fact, given an SCR for which the
system is stable, if the SCR increases, the stability increases,
and vice-versa [26]. For this reason, classical SCR is widely
used and it is the one used in this paper.

III. FULL-ORDER STABILITY ANALYSIS INCLUDING SC
REACTIVE POWER OPERATING POINT

A. System description and procedure

First, as shown in Fig. 2 (a), the IBR is connected to an
ideal network through a transmission line and the line length is
increased to find the stability limit of the IBR connected to the
PCC. Then, the SCR seen by the IBR at the PCC, SCRPCC ,
is calculated. In this first case, it is the contribution of the
network through the transmission line at the PCC. If the line
resistance is neglected (3) [18], [19], [29]:

SCRPCC = SCRNET ≈ 1

xl(pu)
(3)

where xl is the line reactance in the per unit system of the
power system. The SCRNET will be used as the reference
index for the stability analysis. Then, as shown in Fig. 2 (b),
the SC is connected to the system at the PCC to analyze how
stability is improved.

RES can be of various types. Typically, RES are connected
to the grid through IBRs. Figure 3 shows three simplified
illustrations of renewable generation models: a DFIG, a mul-
tipole synchronous generator (MSG) and a photovoltaic (PV)
module. If the converter connected to the grid side is a grid-
following converter, the current control is made with respect
to the grid voltage, and therefore there is a PLL. The typical
structure of the PLL is shown in Fig. 4.

In addition, in all of them, there is a DC side and an
AC side. In Fig. 3b, the dynamics of the two AC sides are
decoupled from each other due to the DC-link bus. In Fig. 3c,
the dynamics from the PV side are decoupled from the AC side
through the DC-link bus. This decoupling does not occur in the
DFIG, where the dynamics of both converters influence each
other through the stator-rotor of the induction machine. Given
this additional interaction between the converters on both sides
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Fig. 2. One-line diagram of the system under study. a) base case of an
IBR connected to the network through a transmission line and b) the SC is
connected to the PCC.

PLL

Grid DFIG

(a)
Grid

MSGPLL

(b)
Grid

PV
PLL

(c)

Fig. 3. Simplified models of grid-following inverter-based resources renew-
able energy sources. a) DFIG model, b) MSG model and c) PV model

of the DC-link bus, it has been decided to use the DFIG as
the study model to represent the most complex RES.

The DFIG is connected through an equivalent trans-
former sum of the low-to-medium-voltage transformer and
the medium-to-high-voltage transformer. Values of 6% and
9% will be taken for their short-circuit impedances, respec-
tively. The DFIG model is taken from [30]. The doubly-fed
induction machine is implemented with a full-order model.
Four controllers are implemented, taken from [31]: The grid-
side converter is responsible for maintaining the DC-link bus
voltage and for keeping the reactive power commanded to
0 to reduce the converter loading [32], [33]. The rotor side
converter controls the optimum electromagnetic torque by a q-

+ kP +
kI
s

+
ωe
s

dq

abc

0 - ∆ω ω

ω0(pu)

θe

vq

vabc

Fig. 4. Phase locked loop block diagram

axis current control-loop and the stator reactive power by a d-
axis current control-loop, set to 0 so that the DFIG only injects
active power to the grid. The DFIG is generating nominal
power, i.e., PDFIG = 1pu. DFIG model and controllers are
described in Appendix A.

The SC is placed at the PCC through a 10% impedance
transformer. The SC full machine model and the transmission
lines are taken from [13]. The SC model values come from a
commercial SC, which can be found in Appendix B.

The π-model has been adopted for the transmission line,
having a reactance (xl) of 0.001 pu/km, a resistance (rl) of
10% the line reactance, and a susceptance (cl) of 0.0005 pu/km
at each terminal.

The system begins with a short line (L = 50km), and
the line length is increased, i.e., the SCR is reduced. As the
system’s topology is changed at every iteration, modal analysis
computation and the power flow are computed at every line
distance change. Eigenvalues are computed at each line length
to verify the system’s stability.

B. Base case: analysis without SC

There is a variety of research on small-signal stability
analysis of IBR without SC and the relationship with the
SCR [26], [34]–[36]. In all of them, the PLL control-loop
gains are modified to obtain the eigenvalues location for
several specific SCRs. In [26], a multi-infeed power electronic
system (MIPES) with several converters connected to the grid
is analyzed. It is concluded that the PLL control-loop can
cause instability issues in the system when the short circuit
ratio is decreased. In [34], a high-voltage direct current -
line commutated converter (HVDC-LCC) system is studied,
concluding that the PLL can cause instability issues under
weak-grid scenarios. A similar conclusion can be found in [35]
where a high-voltage direct current - voltage source converter
(HVDC-VSC) is taken as the system under study. In [36],
a DFIG system is analyzed for two SCR cases, obtaining a
similar conclusion, although there is no clear assignation of
the eigenvalues obtained and the subsystems associated with
them.

As mentioned earlier, a different approach is adopted in this
paper: the PLL control-loop gain is kept constant and the line
length is increased (the SCR is decreased).

The model considered as the base case in this paper is the
connection between the grid and the DFIG through a transmis-
sion line with no SC installed. The line impedance is increased
from 50 km (SCRNET = 20) to 200km (SCRNET = 5).
Results are shown in Fig. 5.

The minimum SCR that the DFIG can withstand under the
specified control configuration is SCRNETlimit = 10.3 (red
triangles in Fig. 5):

SCRNETlimit =
1

xl
=

1

97.5km · 0.001pu/km = 10.3 (4)

It is worth noting that the minimum SCR could potentially
be further reduced through appropriate tuning of the DFIG
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control loops. However, in this work, the focus remains
on evaluating the role of the synchronous compensator in
supporting the DFIG at a specific operating point without
altering the existing control parameters.

SCR = 10.3

L = 97.5km

PLL

RSC 
Torque Control

Voltage Loop
DC-link Control

PLL & RSC Q Control

RSC Torque Control & 
DC-link Control

Ψs
dq

Fig. 5. Root-locus for the base case without SC when the SCR is varied from
20 (crosses, 50km) to 5 (circles, 200km)

By computing the system’s participation factors using the
definition in [37], the eigenvalues can be associated with the
different DFIG subsystems, as shown in Fig. 5. In accordance
with the literature, the eigenvalues that make the system
unstable are the ones associated with the PLL subsystem [26],
[34]–[36]. This is a very important fact because the PLL, as
shown in Fig. 3, is common to all RES in which a PLL control-
loop is needed.

To further support the generalization of the proposed method
to other RES, Fig. 6 compares the stability behavior of the
DFIG and an MSG system. Both systems use a PLL, and the
simulation demonstrates that the PLL is the primary source
of instability as the transmission line length increases. Since
the MSG is based on a full-converter topology, it is expected
that this behavior can also extend to other full-converter-based
systems, such as PV systems. While the results suggest that the
proposed method can generalize to other RES, a more detailed
validation for specific models exceeds the scope of this work.
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Fig. 6. Comparison of DFIG and MSG stability as the transmission line length
increases from 50 km (SCR = 20) to 105 km (SCR = 9.5) demonstrating the
PLL is the casue of the system instability.

C. Analysis with SC producing no reactive power

The same process is carried out but with the SC connected at
the PCC first injecting no reactive power using a SC full-order
model (see Appendix B). Fig. 7 shows the system’s root-locus
when the SCRNET is varied from 20 (crosses, 50km) to 5
(circles, 200km) when the SC is connected to the system. Note
that although the SC contributes to the SCR at the PCC:

SCRPCC = SCRNET + SCRSC (5)

the SCR at the PCC is calculated as in (2) because it is
intended to use the impedance line value as a reference index
for both cases, with no SC and with SC.

PLL

SC ωr, θr 
SC Ψkd

q1

SC AVR SC Ψkd
q2,Ψf

d

Fig. 7. Root-locus for the base case without SC and with SC injecting no
reactive power when the SCR is varied from 20 (crosses, 50km) to 5 (circles,
200km)

As shown in Fig. 7, the location of the PLL eigenvalues
moves to the left side of the stability plane, making the system
much more stable. In fact, the value of the SCRNET for
stability increases from 10.3 to 14.3. Note that the new root-
locus is almost the same as the base case without SC but
shifted to the left (i.e., to the more stable region). This fact
will be used in Section IV-B to propose a simple method
based on the SC SCR contribution to estimate the new PLL
eigenvalues from the original root-locus without SC when an
SC is connected to the system.

D. Impact of SC on stability and the SCR considering SC
reactive power operating point

The same process is carried out, but now with the SC
injecting or absorbing certain amount of reactive power. Fig. 8
shows the root-locus for three reactive power injections of
the SC. It can be seen in Fig. 8 that the complex pair of
eigenvalues related to the DFIG PLL are affected by the
SC reactive power injection. It can be observed that, for
the operating points in which the SC injects reactive power,
Qsc > 0, the eigenvalues associated with the PLL are more
damped and better stability limits are obtained. And the
opposite when Qsc < 0. In fact, the SCRNET = 14.25 when
Qsc = 0, reduces to SCRNET = 12.95 for Qsc = −0.5
pu, and increases to SCRNET = 15.95 when Qsc = 1pu.

This article has been accepted for publication in IEEE Transactions on Energy Conversion. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TEC.2025.3578132

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



6

-1200 -1000 -800 -600 -400 -200 0 200 400

Real part (1/s)

-1000

-500

0

500

1000

Im
ag
in
ar
y
p
ar
t
(r
ad
/s
)

Without SC
With SC and Q = 0
With SC and Q = 0.5pu
With SC and Q = -0.5pu

Fig. 8. Root-locus in a DFIG without and with the SC with different reactive
power operating point conditions when the SCR is varied from 20 (crosses,
50km) to 5 (circles, 200km)

This will be shown in terms of the SC SCR contribution in
Section IV. Note that even with Qsc = −0.5 pu in Fig. 8, the
PLL eigenvalues are more stable than without the SC.

The root-locus when Qsc ̸= 0, although not identical, is
very similar to the base case with no SC but shifted more or
less to the left (depending on the reactive power). For this
reason, the same method to estimate the new PLL eigenvalues
proposed in section IV-B for the case with Qsc = 0 is still
applicable to the case in which Qsc ̸= 0 in section IV-C.

IV. ESTIMATION OF THE SC SCR CONTRIBUTION
CONSIDERING SC REACTIVE POWER

The SC SCR contribution to the system from the stability
point of view, SCRstSC , is calculated from the detailed sim-
ulations as the difference between the SCR with the SC
installed (SCRNETfinal) and the SCR when the SC is not
installed (SCRNETini):

SCRstSC = SCRNETfinal − SCRNETini (6)

This method of calculating the SC SCR contribution to the
system will allow comparing the results from the detailed sim-
ulations with the results obtained using the classical SC SCR
contribution based on the short-circuit current, SCR0

SC . As
will be shown, SCR0

SC , will differ from the SCRstSC when
reactive power injection is considered. A flowchart is shown
in Fig. 9 explaining the procedure to calculate the SCR when
the system becomes unstable when the SC is installed.

A case study is selected based on Fig. 5. Starting from the
base case without SC where the DFIG becomes unstable, i.e.,
SCRNETini = 10.3 (L = 97.5km), the aim is to determine
SCRNETfinal when the commercial SC described in the
Appendix B is installed.

A. Classical SCRSC estimation with QSC = 0: SCR0
SC

The current response in a short-circuit at a SC terminals
can be classified into three stages: the subtransient, transient,
and steady-state stages. In the subtransient stage, the stator

START

Compute SCRNETini of IBR without SC

Increase line length 3km

Compute power flow

Initialize generators

Linearize the complete
model: Compute eigenvalues

System stable?

Finish: SCRNETini obtained

Line length = 50km
(SCR = 20)

No

Yes

Calculate
limit

Compute SCRNETfinal connecting
an SC to the system?

Compute Stability improvement
of IBR with SC → SCRstSC

Full order model?

Calculate limit SCRNET

SCRstSC = SCRNETini − SCRNET

SCRstSC =
1

x
′′
d + xt

+KQ ·QSC

SCRNETfinal = SCRNETini + SCRstSC

FinishSCRNETfinal = SCRNETini

Yes

Yes No

No

Fig. 9. Flowchart illustrating the SCR stability evaluation process for IBR
systems with and without SC.

flux linkages are assumed to be constant. Only the damping
circuits effect is considered in this stage, as they impact the
subtransient current response the most [13].

Typically, when the SCR is the main concern in the simu-
lation study, the SC model is reduced to the d-axis subtransient
impedance, as in Fig. 1, neglecting the effect of the stator
resistance. Therefore, the SCR contribution of a SC is usually
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expressed only with the d-axis subtransient impedance x
′′
d , and

taking E
′′
0 = 1 [8], [13], [38]:

SCRIccSC

∣∣∣∣
QSC=0

= SCR0
SC =

E
′′
0

x
′′
d

∣∣∣∣∣
E

′′
0 =1

=
1

x
′′
d

(7)

As the SC is connected to the PCC through a transformer, (7)
is rewritten as:

SCRIccSC

∣∣∣∣
QSC=0

= SCR0
SC =

1

x
′′
d + xt

(8)

In the case study developed in Subsection III-D, starting
from an SCRNETini = 10.3, by substituting the value of
the subtransient impedance and the transformer impedance
from Appendix B into equation (8), it is found that the SCR
contribution from the SC at the PCC using the subtransient
model (SCR0

SC) is:

SCR0
SC =

1

x
′′
d + xt

=
1

0.15 + 0.1
= 4 (9)

From Subsection III-D, with the SC full-order model and
QSC = 0, the SCRNETfinal = 14.25 and therefore
SCRstSC = SCRNETfinal − SCRNETini = 14.25 − 10.3 =
3.95.

Comparing the value obtained with the full-order model,
3.95, with the value calculated using (9), the error is just 1%.
This indicates that SCR0

SC is a very accurate estimator of
SCRstSC when QSC = 0.

B. PLL Root-locus estimation using SCR0
SC

If the IBR root-locus for the base case without the SC is
known in terms of the SCRNET (by increasing the line length,
as in Fig. 5), the SCR0

SC value given by (8) can be used
to estimate the location of the new eigenvalues in case of
installing an SC next to the IBR neglecting the effect of the
SC reactive power on the SCR. This can be accomplished
without the need to repeat simulations, including the full-order
SC model. If the IBR root-locus without the SC is in a look-up
table form, as in Table I, the new root-locus estimation when
an SC is installed, is carried out by shifting between rows in
the table due to the fact that the root-locus with SC is the
same as the base case without SC but shifted to the left to the
more stable region (see Fig. 7). It should be noted that, by
introducing the SC into the system, the SCRPCC seen from
the DFIG is increased, meaning that the impedance seen from
the DFIG is reduced.

As an example, let us consider from the base case (with
no SC), the point in which the DFIG becomes unstable:
row a in Table I, SCRPCCini = SCRNETini = 10.3,
point a in Fig. 10 (Fig. 5 is reproduced in Fig. 10 for
ease of explanation). By (9) the new DFIG eigenvalue loca-
tion can be accurately estimated just by calculating the new
SCRPCCfinal = SCRPCCini+SCR0

SC = 10.3+4 = 14.3,

TABLE I
LOOK-UP TABLE OF EIGENVALUES FOR FIGS. 10 AND 11.

Row Line (km) SCR λ1 λ2 · · · λn

1 50 20 λ11 λ12 · · · λ1n

...
...

...
...

...
...

...
b † 70 14.3 λb1 λb2 · · · λbn

...
...

...
...

...
...

...
a † 97 10.3 λa1 λa2 · · · λan

...
...

...
...

...
. . .

...
m 200 5 λm1 λm2 . . . λmn

† Dark blue represents the root-locus without SC, and
light red represents root-locus estimation when the SC
is installed.

and then looking up in the table the new SCR (row b in
Table I, SCR = 14.3, point b in Fig. 10).

As the eigenvalue yielding to unstable operation is mostly
related to the PLL control-loop (λPLL), Fig. 11 shows the real
part of the eigenvalue λPLL in terms of the SCR. When the
SC is not installed, the SCR limit value can be obtained when
Real(λPLL) = 0 (point a in Fig. 11). If the commercial SC
is installed, SCR = 14.3, and the new λPLL eigenvalue can
be obtained just by looking for the new SCR = 14.3 in the
curve with no SC, point b in Fig. 11. There is no need to
calculate a new curve from a detailed simulation with the SC
installed. Note that point b is more stable than point a
because Real(λPLL) < 0.

To validate this fact, the results for the full-order model
simulation with the commercial SC are shown in the dashed
line in Fig. 11. Note that the value of the SCR that has to
be used now in Fig. 11 has to be the SCRNETini = 10.3
and not the SCRPCCfinal = 14.3 because simulation results
are tabulated for the SCRNET . That is to say, the SCR in
Fig. 11 is the one associated with the line impedance (line
length) to which the SC is to be connected. It can be seen
that at SCR = 10.3, point c has the same real part as point
b , meaning that, as can be seen in Fig. 10, corresponds to

the same PLL eigenvalues. In addition, and as expected, the
system can operate in the stable region for greater line lengths
(point d , SCRNET = 6.3), when the SC is installed next
to the IBR.

Time-domain simulations have also been performed to show
the contribution of the SC to the stability of the system in
the time domain. These simulations apply a 1% step change
at t = 1s in the infinite grid output frequency to which the
DFIG (and SC) are connected. The results of two experiments
are presented in Fig. 12:

• First experiment: The DFIG is simulated without the SC
under two conditions:

– When the SCR is high (SCR = 13.5, line impedance
= 0.074 pu), demonstrating that the DFIG remains
stable.

– When the SCR is low (SCR = 9.5, line impedance =
0.105 pu, being the stability limit 10.3, as described
in (4)), demonstrating that the DFIG becomes unsta-
ble.
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b a
a

SCRini = 10.3

SCRfinal = 14.3

SCRSC
0 = 4

PLL

cb

c

Fig. 10. Root-locus for the case without SC when the SCR is varied from
20 (crosses, 50km) to 5 (circles, 200km).

c

ad

b

Fig. 11. Real part of the eigenvalue mostly related to the PLL-control-loop
for the base case without SC and with SC producing no reactive power when
the SCR is varied from 20 (50 km) to 5 (200 km).

• Second experiment: The DFIG is simulated with the
SC providing QSC = 0. With a SCR = 9.5 (line
impedance of 0.105 pu), the DFIG becomes stable due
to the contribution of the SC.

1 1.5 2 2.5 3

Time (s)

0.95

1

1.05

!
D

F
I
G

P
L
L

(p
u
)

DFIG with SCR = 13.5 (xl = 0:074pu)
DFIG with SCR = 9.5 (xl = 0:105pu)
DFIG and SC with SCR = 9.5 (xl = 0:105pu)

Fig. 12. Output frequency of the DFIG’s PLL under different SCR with and
without SC with QSC = 0.

These time-domain results visually confirm the stabilizing
effect of the SC under weak grid conditions, even with no
reactive power injection.

An important conclusion derived from the analysis in
Fig. 11, is that the effect of installing an SC is to reduce
the apparent length line and the apparent line impedance
that is seen by the PLL control-loop. In this example, from
an actual line length of 97.5 km (SCRNETini = 10.3),

xl = 1/10.3 = 0.097pu to 70.2 km (SCRNETfinal = 14.3),
xl = 1/14.3 = 0.07pu. This change in the impedance value
seen by the PLL control-loop is easily explained in terms of
SCRPCC when the SCR is seen as the equivalent admittance
of the system at the PCC as shown in (2): the new impedance
is just the parallel of the line impedance, xl, and (x

′′
d + xt).

Figure 13 shows the proposed equivalent circuit representing
the Thévenin impedance seen from the IBR to easily calculate
the impedance seen from the PLL control-loop, accounting for
the line impedance and the SC subtransient and transformer
impedances when no SC reactive power is considered.

PCC
DFIG

xl xt, SC+xd
''

Fig. 13. Equivalent circuit representing the Thévenin impedance seen from
the IBR model.

This figure explains why the root-locus of the system with
no SC is so similar to the system with SC: from the point
of view of the PLL, there is no such a SC connected to the
PCC but just a change in the impedance value. This technique
and this conclusion could be easily generalized and applied
to any generator/device, not only to a SC. For instance, a
STATCOM may also be modeled as a Thévenin in a small-
signal linearization process. In addition, as will be shown in
Section IV-C, an additional virtual impedance will be included
in the circuit model to account for the SC reactive power
operating point.

C. Estimation of the SCRSC including QSC

As it has been shown in Section III-D, SC reactive power
injection, QSC , affects system stability and the SCRstSC value.
However, SCR0

SC does not consider QSC . If the reactive
power operating point of the SC is taken into account with
the SC full order model, SCRstSC ranges from 2.98 to 6.05,
when QSC ranges from -0.5pu to 1pu, and SCR0

SC does not
account for this change (see the second and fifth columns of
Table II). Although from the conclusions drawn in the last
part of IV-B, the Thévenin impedance seen by the PLL is a
key factor in the stability of the system, it is not the only one
that affects stability. Clearly, the reactive power in the PCC
plays a role. This is explained by the fact that the PLL tries
to track the voltage space vector at the terminals of the IBR,
and voltage quality and voltage stability closely depend on
reactive power.
SCR0

SC estimation given by (7) can be improved con-
sidering the effect of QSC on the value of E

′′
0 (instead of

considering E
′′
0 = 1 as it is done in (7)). For a given QSC , and

because the SC does not produce steady-state active power,
iSCd = QSC and iSCq = 0 in the dq SC reference frame,
assuming vPCC = vd,PCC + jvq,PCC = 0 + j1pu due to the
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dq-axis voltage alignment. E
′′
0 is the pre-disturbance value of

the internal voltage given by [13]:

E
′′
0

∣∣∣
t=0−

= |vPCC + jx
′′
d · iSCd | = 1 + x

′′
d ·QSC (10)

Then, SCRSC can be estimated by:

SCRIccSC =
E

′′
0

x
′′
d

=
1

x
′′
d

+Qsc (11)

and including the transformer impedance between the SC and
PCC,

SCRIccSC =
1

x
′′
d + xt

+Qsc = SCR0
SC +Qsc (12)

Eq. (12) indicates that the SCR should increase or decrease
approximately linearly (approximately because (12) is derived
from a simplified model), with the value of QSC with a slope
of 1.

Full-order simulations removing the DC transient for the
commercial SC of Appendix B have been carried out to obtain
the exact SCRIccSC value when a short-circuit occurs at the
SC terminals (after the SC transformer impedance (xt = 0.1
pu)), making SCRIccSC = |I⃗| (modulus of the stator space
vector current) in the first instants. It can be seen in Fig. 14
that real short-circuit current contribution from the SC can be
accurately captured by (12). In addition, Fig. 14 includes the
full-order simulation results for SCRstSC using the commercial
SC described in Appendix B. As can be observed, the SCRstSC
varies approximately linearly with QSC according to the
mathematical deduction given in (12), but with a different
slope: 2.05 instead of 1 (see Fig. 15). This means that, although
short-circuit current including reactive power correction, i.e.
SCRIccSC , is very well estimated by (12), it fails to include the
whole effect of the QSC on the PLL stability (see the third
and fifth columns of Table II).

-0.5 0 0.5 1

QSC(pu)

2

3

4

5

6

S
C

R
I
cc

S
C

SCRIcc
SC full-order simulation

SCRIcc
SC = 1=x\

d + QSC

SCRst
SC full-order simulation

Fig. 14. First instants SC short-circuit current contribution at different
SC reactive power operating points. Results for SCRst

SC is shown for
comparison.

Different polynomial interpolations of varying orders have
been analyzed using the full-order simulation results. Among
them, a quadratic interpolation of the form given in (13) shows

an excellent fit, with a coefficient of determination of R2 =
0.99 and a root mean square error (RMSE) of 0.067.

SCRstSC = SCR0
SC +KQ1 ·QSC +KQ2 ·Q2

SC (13)

These results suggest that the functional relationship be-
tween SCRstSC and QSC is likely to follow a quadratic form.
This functional structure is further supported by the simulation
results shown later, using a simplified simulation model with
a generic IBR.

In addition, a linear interpolation also provides a strong fit,
with a coefficient of determination of R2 = 0.96 and a root
mean square error (RMSE) of 0.195. Both interpolation results,
along with the full-order simulation reference, are depicted in
Fig. 15.

-0.5 0 0.5 1

QSC (puSC)

2

3

4

5

6

S
C

R
st S
C

SC Complete model
SCRst

SC = 4.00 + 2.05QSC

SCRst
SC = 4.00 + 2.35QSC {0.62Q2

SC

Fig. 15. SCR contribution of a full-order model reactive power injection is
varied from -0.5pu to 1pu with a linear and a quadratic approximation.

Taking the linear approximation as a practical and suf-
ficiently accurate approximation of the full-order model as
suggested by the former results, (12) is modified to:

SCRstSC = SCR0
SC + KQ︸︷︷︸
KQ = 1 +KPLL

· QSC (14)

where SCR0
SC is given by (8), and KQ would mainly depend

on the PLL parameters, with KQ = 2.05 the value obtained
from a linear interpolation of the full-order simulation results
for the specific typical parameters used in this paper. Note
that KQ includes the effect of the increase in the short-circuit
current provided by the SC due to the QSC (slope 1 in (12)),
and an additional (virtual) short-circuit current due to the
interaction of the QSC with the PLL (KPLL), that in this
specific case is as much as KPLL = 1.05 (as will be later
demonstrated with the simulation model provided in Fig. 19).

Different experiments have been carried out to validate
the generality of the linear approximation of SCRstSC given
by (14). First, the subtransient impedance x

′′
d has been mod-

ified for three cases: x
′′
d = 0.15 (base case), x

′′
d = 0.2 and

x
′′
d = 0.25, as usual values of x

′′
d range between 0.15 pu and

0.3 pu [13]. The simulation results are shown in Fig. 16. Linear
approximations using (14) and R2 values for different x

′′
d can

be found in Fig. 16 legend.
From the linear approximations in Fig. 16, it can be

calculated that, by increasing ∆x
′′
d = 33.3% and 66.6%,

This article has been accepted for publication in IEEE Transactions on Energy Conversion. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TEC.2025.3578132

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



10

-0.5 0 0.5 1

QSC (puSC)

2

4

6

8

S
C

R
st S
C

SC Complete model x
00

d = 0:15
SCRst

SC = 4.00 + 2.05QSC , [R2 = 0.96]

SC Complete model x
00

d = 0:2
SCRst

SC = 3.33 + 2.11QSC , [R2 = 0.97]

SC Complete model x
00

d = 0:25
SCRst

SC = 2.86 + 2.05QSC , [R2 = 0.93]

Fig. 16. SCR contribution of a full-order model with 3 different x
′′
d values

and reactive power injection is varied from -0.5pu to 1pu.

∆KQ = −2.38% and −5.91%, respectively. Therefore, it
is verified that the slope is little affected by x

′′
d . To further

validate the accuracy of (14) in predicting the SCR contribu-
tion of the synchronous compensator, additional simulations
were conducted to analyze the impact of x′′d on the SCR for
different values of QSC . The results of these simulations are
presented in Fig. 17. As shown in Fig. 17, the SCR values
obtained using (14) closely match those obtained through
Full-Order Simulations (FOS). This consistency demonstrates
the capability of (14) to provide reliable predictions of the
SC’s impact on system stability without the need to carry out
complex full-order simulations.

0.15 0.2 0.25 0.3

x
00

d

0

2

4

6

8

10

S
C

R
st S
C

SCRst
SC at QSC = !0:5pu using FOS

SCRst
SC at QSC = 0pu using FOS

SCRst
SC at QSC = 0:5pu using FOS

SCRst
SC at QSC = 1pu using FOS

SCRst
SC at QSC = !0:5pu using (14)

SCRst
SC at QSC = 0pu using (14)

SCRst
SC at QSC = 0:5pu using (14)

SCRst
SC at QSC = 1pu using (14)

Fig. 17. Comparison of the Full-Order Simulation (FOS) versus equation (14)
for obtaining SCRst

SC for different values of QSC with x′′
d varying from 0.15

pu to 0.3 pu.

In addition, as x
′′
d is relevant for computing SCR0

SC , several
simulations have been carried out to analyze the effect of x

′′
d on

the accuracy of the estimation of SCR0
SC . Results are shown

in Fig. 18. As can be seen, estimating SCR0
SC using (8) yields

0.15 0.2 0.25 0.3

x
00

d

2

3

4

5

S
C

R
0 S
C

-2

0

2

4

6

S
C

R
0 S
C

E
rr

o
r
[%

]

SCRst
SC at QSC = 0 using the full order simulation

SCRst
SC using (8)

Error

Fig. 18. Full-order model SCRst
SC simulation with QSC = 0, SCR0

SC
using (8) and relative error with x′′

d varying from 0.15 pu to 0.3 pu.

to an error below 5%. The absolute error is 4.2% when x
′′
d =

0.29 and −1.4% when x
′′
d = 0.15.

To check that the former results may apply to other RES
different from a DFIG, a simplified simulation model with a
generic IBR has been developed to analyze the PLL stability
while maintaining the essential dynamics of the system. This
model accounts for the dynamics of inductances, capacitors,
and the PLL, while the generating units are represented
as current sources with first-order dynamics responses. The
simplified system model is shown in Fig. 19.

VPCC

Vgrid

QSC

CIBR

VIBR xt
IBR xl rl

PIBR
2
cl

2
cl

Fig. 19. One-phase diagram of the simplified model used for the simulation
analysis of the PLL stability. Generators are configured as current-sourced to
generalize the results to any IBR.

The system consists of a generic IBR connected to the PCC
through a transformer with an impedance xIBR

t that has been
set to j0.15pu. The PCC is connected to an infinite bus via
a transmission line with impedance zl = rl + jxl, where
rl = 0.1 · xl. A current source, representing the reactive
power injection from the SC into the PCC with a first-order
approximation to represent the sub-transient time constant, that
has been set to 30 ms (see Table IV), with QSC varying from
-0.5pu to 1.0pu. The IBR injects active power PIBR = 1 pu
and no reactive power (QIBR = 0) with a first-order time
constant to reflect the dynamics from the torque control-loop,
as reflected by τwr in the low-pass filter in the torque control-
loop in Fig. 25 (see Table III). This time constant has been
set to a 100 ms. The IBR voltage space-vector, V⃗ IBR, can be
computed by solving the system in Fig. 19.

The PLL measures the voltage V⃗ IBR and adjusts its angle
θPLL to align the d-axis with this voltage (vIBR

q = 0). The angle
computed by the PLL control with respect to the angle at the
PCC is graphically shown in Fig. 20, being ω0 the system
base frequency. It should be noted that the space-vector V⃗ IBR

would be aligned in steady-state with the d-axis of the IBR
imposed by the PLL (dIBR) so that vIBR

q = V IBR sin(θPLL).
The dynamics of the PLL are given by:

θ̇PLL = ωPLL = ωref +Kpv
IBR
q +Ki

∫
vIBR
q dt. (15)

and substituting vIBR
q :

θ̇PLL = ωPLL = ωref +Kp

(
V IBR sin(θPLL)

)

+Ki

∫ (
V IBR sin(θPLL)

)
dt.

(16)

For each operational point of the SC, characterized by
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dPCC

qPCC

d
IBR

q
IBR

θPLL

V
IB

R
ω0

vPCC
d

vPCC
q

v
IBR
dv

IBR
q

Fig. 20. Angle transformation from the angle at the PCC to the angle
measured in the IBR capacitor (V IBR

c ).

different values of QSC , the maximum transmission line length
beyond which the system becomes unstable is analyzed. This
analysis is carried out using numerical methods. The procedure
involves determining the transfer function of the system, where
the input is QSC and the output is the IBR voltage measured
by the PLL, V⃗ IBR. By analyzing the system eigenvalues as
the line length increases, the critical SCR (SCRcritical) is
identified for each QSC value. Then, by considering the critical
SCR when there is no contribution from the SC (SCRQSC=0

critical),
i.e. when QSC = 0, the SCR of the reduced system for the
PLL stability analysis (SCRPLLred ) can be computed as in (17),

SCRPLLred = SCRcritical − SCRQSC=0
critical (17)

From this critical SCR (SCRPLLred ), the results are interpo-
lated using both quadratic and linear fits as shown in Fig. 21.
Results of the linear and quadratic fits are shown in the legend
of Fig. 21. As with the FOS, the quadratic fit shows excellent
accuracy, with a coefficient of determination of R2 = 0.99
and a root mean square error (RMSE) of 0.01. The linear fit
also performs well, achieving R2 = 0.95 and RMSE = 0.108.
Note that the simplified system model of Fig. 19 gives a value
of KPLL = 1.01, and from FOS, the value obtained was 1.05
(i.e. an error of less than 4%), validating this simplified system
simulation model as a simple alternative to FOS to calculate
KPLL and other related issues. The complete similarity of
Fig. 15 for FOS for a DFIG and Fig. 21 for the simplified
simulation model with a generic IBR in Fig. 19, demonstrates
the likely generality of the results for any RES that utilize a
PLL control-loop.

These results suggest that KQ is not significantly influenced
by the SC model connected to the PCC. In particular, the
subtransient impedance x

′′
d of the SC does not have a signif-

icant impact on KQ. Therefore, this value can be considered
constant for a given IBR system, which has been found to
be KQ = 2.05 in the particular case of the typical parameter
values used for the PLL in this paper. This value has been
observed to depend primarily on the parameters related to the
PLL. This relationship and the effect of the reactive power
that the IBR may produce in the system is beyond the scope

-0.5 0 0.5 1

QSC

-2

-1

0

1

S
C

R
P

L
L

re
d

Mathematical SCRPLL
red limit

Linear -t: SCRPLL
red = 1:01 "QSC

Cuadratic -t: SCRPLL
red = !0:53Q2

SC + 1:34QSC

Fig. 21. SCR limit due to PLL unstability from the simulation results of the
reduced system of Fig. 19. Linear and cuadratic approximations are fitted to
the obtained data.

of this paper and will be explored in detail in a subsequent
paper.

Fig. 22 shows the proposed equivalent circuit representing
the Thévenin impedance seen from the IBR to easily calculate
the impedance seen from the PLL control-loop, as in Fig. 13,
but adding the effect of the SC reactive power contribution. As
can be seen, by placing a parallel impedance of 1/(KQ ·Qsc),
the impedance seen by the PLL control-loop is modified.

PCC

xl xt, SC+xd
''

KQ·QSC

1
DFIG

Fig. 22. Equivalent circuit representing the Thévenin impedance seen from
the IBR model including a virtual impedance considering the SC reactive
power operating point.

As in Section IV-B for QSC = 0, Fig. 23 and Fig. 24
shows the real part of the eigenvalue λPLL in terms of the
SCR when the SC injects QSC = −0.5pu and QSC = 0.5pu,
respectively. The same procedure as described in Section IV-B
is followed, but now (14) is used to estimate the value of the
SCR to obtain the new root-locus of the system when the SC
is introduced. Note that points a , b , c and d have the
same meaning as explained in Section IV-B. In this example,
SCRstSC = 2.98 and therefore, SCR = 13.3 for QSC =
−0.5pu and SCRstSC = 5.03 and therefore, SCR = 15.3 for
QSC = 0.5pu. As shown in Table II, the error is 14% for
QSC = −0.5pu and 1% for QSC = 0.5pu when estimating
SCRstSC compared to using the full-order model simulations.

To clarify the steps involved in the estimation of the SCR
in the presence of an SC providing or absorbing reactive
power, a flowchart is presented in Fig. 9. The process be-
gins by computing the initial SCRNETini (point a in
Figs. 10, 11, 23 and 24) of the DFIG without the SC, obtained
from full-order simulations. Then, to determine the new SCR
if an SC is installed in the system can be computed with two
methods:

• Full-order simulations (FOS) incorporating all system
dynamics

• Linear approximation proposed in this paper, based
on (14).

This article has been accepted for publication in IEEE Transactions on Energy Conversion. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TEC.2025.3578132

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



12

c

a
d

b
Estimation 

error 

Fig. 23. Real part of the eigenvalue mostly related to the PLL-control-loop
for the base case without SC and with SC producing QSC = −0.5pu reactive
power when the SCR is varied from 20 (50 km) to 5 (200 km).
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error 

Fig. 24. Real part of the eigenvalue mostly related to the PLL control-loop
for the base case without SC and with SC producing QSC = 0.5pu reactive
power when the SCR is varied from 20 (50 km) to 5 (200 km).

If the FOS method is used, the SCR at which the sys-
tem becomes unstable is obtained (SCRNET , point d in
Figs. 10, 11, 23 and 24). Then, to compute SCRNETfinal,
the difference between SCRNETini and SCRNET (SCRstSC)
needs to be added to SCRNET . If the proposed model
in (14) is used, SCRNETfinal is obtained by considering the
subtransient reactance of the SC, the impedance of the SC
connection transformer, and an additional term proportional to
QSC . Finally, SCRNETfinal is calculated by adding SCRstSC
to the initial SCRNETini of the DFIG prior to installing the
SC. If no SC is added to the system, the total SCR remains
equal to SCRNETini, i.e., the SCR at which the IBR becomes
unstable without the SC.

TABLE II
SCRSC VALUES WITH DIFFERENT MODELS AND QSC .

QSC SCR0
SC SCRIcc

SC SCRst
SC SCRSC

(puSC ) FOS

−0.5 4.00 (53%)† 3.50 (34%) 2.98 (14%) 2.61

0.0 4.00 (1%) 4.00 (1%) 4.00 (1%) 3.95

0.5 4.00 (-19%) 4.50 (9%) 5.03 (1%) 4.96

1.0 4.00 (-30%) 5.00 (-12%) 6.05 (6%) 5.69

† The estimation error compared to the full-order simulation
(FOS) is shown in parentheses next to each value.

V. CONCLUSIONS

It has been confirmed that in a grid-following IBR, in which
the PLL is essential, the PLL in the IBR is the main actor in
the stability of the system. In addition, it has been shown that
the root-locus of the IBR PLL depends mainly on the SCR
value seen by the IBR. But also depends on the reactive power
injected by the SC in a less, but not negligible, important way.

As the SCR at the PCC is a direct value of the admittance
at the PCC, it has been shown that the main effect of the SC,
and any other generation source that can be modeled from
the small-signal point of view as a Thévenin, is to reduce the
Thévenin impedance seen by the PLL at the PCC. In the case
of the SC, the subtransient impedance, x

′′
d (plus the impedance

of the connection transformer), is the SC impedance to con-
sider both for short-circuit current estimation and for stability
purposes. This idea is used to easily recalculate the PLL
eigenvalues movement when an SC is connected.

When the SC reactive power, QSC , is not considered,
the classical SCR, SCR0

SC , accurately estimates both, the
SC short-circuit current and the equivalent admittance at
the PCC. However, when QSC is considered, the SC short-
circuit current and the equivalent admittance at the PCC
are affected differently. To accurately estimate the equivalent
admittance at the PCC for stability purposes at different QSC ,
a new SCR linear function of the reactive power is proposed:
SCRstSC = SCR0

SC +KQ ·QSC . A new Thévenin model has
been proposed in accordance with this linear model. Results
suggest that KQ is not significantly influenced by the SC
model connected to the PCC. In particular, the subtransient
impedance x

′′
d of the SC does not have a significant impact

on KQ. Therefore, this value can be considered constant for
a given IBR system, which has been found to be KQ ≊ 2 in
the particular case of the typical parameter values used for the
PLL in this paper. This value has been observed to depend
primarily on the parameters related to the PLL.

While the proposed linear model is simple and effective,
it does have some limitations. First, it has been developed
and validated using a simplified system composed of a single
DFIG and one synchronous compensator. This is useful for
isolating key dynamic interactions, but it does not fully capture
the complexity of realistic multi-infeed networks. Future work
should validate and extend the proposed methodology to larger
systems with multiple IBRs. Second, this study makes use of
a linear approximation of a nonlinear (quadratic) relationship
that closely fits the observed data. Future work could focus
on the derivation of the coefficient KPLL of the linear
approximation, as a function of the known system parameters.

APPENDIX A
DOUBLY-FED INDUCTION GENERATOR MODEL

In this appendix, all the data related to the differential
equations modeling the DFIG (taken from [30]) and the block
diagrams of the control schemes used in this paper (taken
from [31]) are provided.
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A. DFIG Electromagnetic Equations

The stator and rotor voltage differential equations are de-
fined by

vsd = Rs isd +
1

ω0

dψsd
dt

− ωs ψsq

vsq = Rs isq +
1

ω0

dψsq
dt

+ ωs ψsd

vrd = Rr ird +
1

ω0

dψrd
dt

− (ωs − ωr)ψrq

vrq = Rr irq +
1

ω0

dψrq
dt

+ (ωs − ωr)ψrd

(18)

where vsd and vsq are the stator voltage components in the
dq axes, vrd and vrq are the rotor voltage components; isd,
isq , ird, and irq are the corresponding stator and rotor currents;
ψsd, ψsq , ψrd, and ψrq represent the stator and rotor magnetic
flux linkages; Rs and Rr are the stator and rotor resistances;
ω0 is the base angular frequency; ωs is the synchronous speed;
and ωr is the rotor speed.

The flux-current relations are given by

ψsd = Ls isd + Lm ird

ψsq = Ls isq + Lm irq

ψrd = Lr ird + Lm isd

ψrq = Lr irq + Lm isq

(19)

where Ls and Lr are the self-inductances of the stator and
rotor, respectively, and Lm is the mutual inductance.

The stator and rotor inductances are expressed as

Ls = Lσs + Lm

Lr = Lσr + Lm
(20)

with Lσs and Lσr being the leakage inductances of the stator
and rotor.

The equations of the GSC output filter are given by

vad = −Ra iad −
1

ω0

dψad
dt

+ ωs ψaq − vsd

vaq = −Ra iaq −
1

ω0

dψaq
dt

− ωs ψad

(21)

where vad and vaq are the filter voltage components in the
dq axes; iad and iaq are the filter currents; ψad and ψaq are
the flux linkages in the filter inductor; and Ra is the filter
resistance.

Finally, the inductor flux is defined by

ψad = La iad

ψaq = La iaq
(22)

where La is the filter inductance.

B. DFIG electromechanical equations

The rotor swing equation is defined by

2Hωs
dωslip

dt
= Tm − Te (23)

being Tm and Te the mechanical torque applied to the shaft
and the electrical torque extracted from the shaft, calculated
as

Te = ψqridr − ψdriqr (24)

and being the slip frequency ωslip

ωslip =
ωs − ωr
ωs

(25)

C. DFIG rotor and grid side converter controllers

The DFIG controllers are taken from [31]. The rotor-side
converter (RSC) and grid-side converter (GSC) controllers are
shown in Fig. 25 and Fig. 26, respectively. It should be noted
that a reference frame solid to the stator-flux is considered.
Therefore, in order to transform the rotor currents and voltages
dq-axis to the stator-flux reference frame:

[
xrd
xrq

]
=

[
cosϕ − sinϕ
sinϕ cosϕ

]

︸ ︷︷ ︸
T

[
xrd
xrq

]ψx

(26)

being ϕ calculated as

ϕ = arctan
ψsd
ψsq

(27)

and the stator-flux module ψs =
√
ψ2
sd + ψ2

sq and

σ = Lr − L2
m

Ls
(28)

APPENDIX B
SYNCHRONOUS COMPENSATOR MODEL

In this section, all the data related to the differential
equations and automatic voltage regulator (AVR) of the syn-
chronous compensator are provided [13].

A. SC Electromagnetic Equations

The per unit stator voltage equations are defined as

ed =
1

ω0

dψd
dt

− ψq ωr −Ra id

eq =
1

ω0

dψq
dt

+ ψd ωr −Ra iq

(29)
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+ KQs
p +

KQs
i

s
T−1 + Kcc,rsc

p +
Kcc,rsc
i

s
+ TQ∗

s

Qs

i∗dr (idr)
ψs,∗

(idr)
ψs

(v̂dr)
ψs,∗

ωslipωsLrσ(irq)
ψs

(vrd)
ψs,∗ v∗rd

φ φ

- - -

+ KTe
p +

KTe
i

s
T−1 + Kcc,rsc

p +
Kcc,rsc
i

s
+ T

KTe
opt u2

1

τwr · s+ 1

Te

i∗qr (iqr)
ψs,∗

(iqr)
ψs

(v̂qr)
ψs,∗

ωslipωsLr

(
σ(ird)

ψs + (1− σ)
ψs
Lm

)

(vqr)
ψs,∗ v∗qr

T ∗
e

ωr
ωr,sω2

r,s

- - -

Fig. 25. Rotor side converter controllers block diagrams

+ KVdc
p +

KVdc
i

s
+ Kcc,gsc

p +
Kcc,gsc
i

s
+V ∗

dc

Vdc

i∗da

ida

v̂∗da

ωsLaiaq

vsd

v∗da

- -
-

+ K
Qgsc
p +

K
Qgsc

i

s
+ Kcc,gsc

p +
Kcc,gsc
i

s
+Q∗

gsc

Qgsc

i∗qa

iqa

v̂∗qa

ωsLaiad

v∗qa

- - -
-

Fig. 26. Grid side converter controllers block diagrams

TABLE III
DOUBLY FED INDUCTION GENERATOR PARAMETERS

Parameter Description Value [pu]

Rs stator resistance 0.00734

Lσs stator leakage inductance 0.1178

Rr rotor resistance 0.01225

Lσr rotor leakage inductance 0.15349

Lm magnetizing inductance 4.709

ra output filter resistance 0.1

La output filter inductance 1

c DC-link capacitance 0.0555

h inertia 3.3 [s]

Lt transformer inductance 0.15

rt transformer resistance 0.015

cf output filter capacitance 0.11

BWcc current controllers bandwidth 1500 [rad/s]

BWPLL PLL bandwidth 35% BWcc

KTe
opt Optimal torque gain 0.5896

BWv voltage control bandwidth 10% BWcc

ζ controllers damping 1/
√
2

where ed and eq are the stator voltage components in the
d and q axes, respectively; ψd and ψq are the stator flux
linkages; id and iq are the stator currents; ω0 is the base
angular frequency; ωr is the rotor (electrical) speed; and Ra
is the stator resistance.

The per unit rotor voltage equations are given by

efd =
1

ω0

dψfd
dt

+Rfd ifd

0 =
1

ω0

dψ1d

dt
+R1d i1d

0 =
1

ω0

dψ1q

dt
+R1q i1q

0 =
1

ω0

dψ2q

dt
+R2q i2q

(30)

where efd is the rotor field voltage, ψfd is the rotor field flux
linkage, and ifd is the rotor field current; Rfd is the rotor field
resistance; ψ1d, ψ1q , and ψ2q are the flux linkages associated
with the damping rotor windings, with i1d, i1q , and i2q being
the corresponding damping rotor currents; and R1d, R1q , and
R2q are the resistances of these windings.

The stator and rotor per unit flux linkage equations are
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defined as

ψd = − (Lad + Ll) id + Lad ifd + Lad i1d

ψq = − (Laq + Ll) iq + Laq i1q + Laq i2q

ψfd = Lffd ifd + Lfld i1d − Lad id

ψ1d = Lfld ifd + L11d i1d − Lad id

ψ1q = L11q i1q + Laq i2q − Laq iq

ψ2q = Laq i1q + L22q i2q − Laq iq

(31)

where Lad and Laq are the stator mutual inductances in the d
and q axes, respectively; Ll is the stator leakage inductance;
Lffd is the rotor field winding self-inductance, and Lfld is
the mutual inductance between the rotor field winding and
the first d-axis damping winding; L11d and L11q are the self-
inductances associated with the first damping rotor winding,
and L22q is the self-inductance associated with the second
damping rotor winding.

Finally, a simplifying transformation is applied to the in-
ductance expressions:

Lfd = Lffd − Lfld

L1d = L11d − Lfld

L1q = L11q − Laq

L2q = L22q − Laq

(32)

where Lfd, L1d, L1q , and L2q are the simplified excitation and
damping rotor inductances. The relation between the electro-
magnetic parameters to the classical parameters definition can
be expressed as below. For the d-axis windings,

Lfd = Lad ·
L′
d − Lσl
Ld − L′

d

, rfd =
Lad + Lfd
T ′
d0 · ω0

,

Lkd =
(L′

d − Lσl) · (L′′
d − Lσl)

L′
d − L′′

d

,

rkd =
Lkd + L′

d − Lσl
T ′′
d0 · ω0

,

T ′
d = T ′

d0 ·
L′
d

Ld
.

(33)

and for the q-axis windings,

Lkq1 = Laq ·
L′
q − Lσl

Lq − L′
q

, rkq1 =
Laq + Lkq1
T ′
q0 · ω0

,

Lkq2 =
(L′

q − Lσl) · (L′′
q − Lσl)

L′
q − L′′

q

,

rkq2 =
Lkq2 + L′

q − Lσl

T ′′
q0 · ω0

,

T ′′
q = T ′′

q0 ·
L′′
q

L′
q

.

(34)

with
Ld = Lad + Lσl,

Lq = Laq + Lσl
(35)

It should be noted that, as the stator frequency is equal to
the base frequency, the per unit reactance (x) and the per unit
inductance (L) are equal, i.e. the inductances relate directly to
the reactances in Table IV.

B. Synchronous compensator electromechanical equations

The rotor swing equation in per-unit for a synchronous
machine is given by:

2H
dωr
dt

= Tm − Te (36)

where Tm and Te represent the mechanical torque applied to
the shaft and the electrical torque extracted from the shaft,
respectively. The electrical torque is calculated as:

Te = ψqid − ψdiq (37)

where ψd and ψq are the flux linkages in the direct and quadra-
ture axes, respectively, and id and iq are the corresponding
stator currents.

C. SC automatic voltage regulator model

In this work, it has been adopted the automatic voltage
regulator (AVR) shown in Fig. 27. The differential equations
used to model the electromagnetic and electromechanical
dynamics for the synchronous machine are taken from [13].

+
KA

1 + TAs

1 + TCs

1 + TBs

Ke

1 + Tes

1

1 + TRs

vref
−

vmeas

Efd

Fig. 27. Automatic voltage regulator used
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