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 A B S T R A C T

This paper investigates the joint participation of Renewable-only Virtual Power Plants (RVPPs) in the energy 
and reserve markets while considering the imbalance costs in the balancing market. Existing research on robust 
optimization typically relies on the well-known parameter called the uncertainty budget to define the level of 
conservatism. However, this parameter is not defined based on economic factors but rather on the nature of 
each uncertainty. This work introduces a regret-based flexible robust optimization problem to address this 
gap, accounting for various sources of uncertainty in energy and reserve prices, as well as the production 
of non-dispatchable renewable energy sources and demand consumption. The concept of average regret is 
developed and implemented through a set of mixed-integer linear constraints to help the RVPP operator gain 
relevant economic insights regarding this parameter. Simulation results demonstrate the applicability of the 
regret-based robust optimization formulation in determining an interpretable level of conservatism against 
different uncertainties.
1. Introduction

1.1. Motivation

The urgent need to combat climate change in search of a greener, 
more sustainable environment, is compelling countries around the 
world to embrace Renewable Energy Sources (RESs). However, as the 
penetration of RESs in the grid increases, the system operators and the 
renewable units face significant challenges in terms of operation and 
market participation [1]. This is mainly due to the unpredictability of 
Non-dispatchable Renewable Energy Sourcess (ND-RESs) production, 
resulting in volatile energy output of these units. To cope with the 
volatility of ND-RESs production and to avoid penalties in the elec-
tricity markets, operating several ND-RESs in different geographical 
locations as Renewable-only Virtual Power Plant (RVPP) is an effective 
way by taking advantage of the portfolio effect. The RVPP can bid a 
smoother profile of production than each individual ND-RES, leading 
to more income and less penalties [2].

The main income of RVPP comes from participation in the energy 
market due to its high liquidity [3]. The RVPP would also allow 
stochastic ND-RESs to compensate for their inherent power output vari-
ations, which could ease the participation in reserve markets and the 
subsequent provision of reserves [4]. However, the scheduled energy 
and reserve of RVPP is never guaranteed, as various events can lead 
to mismatches between scheduled and finally traded energy/reserve. 
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Such events may be directly related to the RVPP (e.g., technical mal-
function of units, unexpected low wind and cloudy days) or external 
to the RVPP (e.g. the loss of a line which may require redispatch of 
assets to avoid line congestion/overload, or changes in the secondary 
reserve set points from the Transmission System Operator (TSO)) [5]. 
The Balancing Market (BAM) is designed to compensate the energy 
imbalance that may happen after the gate-closure of an energy market 
until the beginning of the delivery horizon of the subsequent session. 
This market is called by TSO if the expected hourly deviation reaches 
a determined value. Therefore, deciding the participation of RVPP in 
different energy and reserve markets, taking into account the imbalance 
effects in the BAM, is essential and needs to be carefully evaluated by 
researchers and engineers.

1.2. Literature review

Dealing with several sources of uncertainty in the optimization 
problem of RVPP bidding on electricity markets is thus necessary. This 
is because the deviation of uncertain parameters from their predicted 
values can lead to significant consequences, such as penalties, loss of 
profit, and exclusion from the market due to failure to deliver the 
promised bids to the market. In this regard, the Robust Optimization
(RO) method is an effective approach to deal with different
https://doi.org/10.1016/j.ijepes.2025.110594
Received 23 October 2024; Received in revised form 31 January 2025; Accepted 5
142-0615/© 2025 The Authors. Published by Elsevier Ltd. This is an open access art
c-nd/4.0/ ). 
 March 2025
icle under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by- 

https://www.elsevier.com/locate/ijepes
https://www.elsevier.com/locate/ijepes
https://orcid.org/0000-0001-6331-5331
https://orcid.org/0000-0001-5749-0678
mailto:hnemati@comillas.edu
https://doi.org/10.1016/j.ijepes.2025.110594
https://doi.org/10.1016/j.ijepes.2025.110594
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


H. Nemati et al. International Journal of Electrical Power and Energy Systems 167 (2025) 110594 
Nomenclature

General Notation Concepts
∙ An uncertain parameter with a tilde symbol denotes 

the median value in the forecast distribution, repre-
senting a point where half of the observations are 
lower (𝐴̃);

∙ The hat/inverse hat symbol on uncertain parameters 
signifies the positive/negative permitted deviation 
from the forecast’s median (𝐴̂, 𝐴̌);

∙ Parameters with an upper/lower bar represent their 
upper/lower bounds (𝐴̄, 

̄
𝐴);

∙ Upward/downward arrows indicate up/down direc-
tion of regulation in variables and parameters (𝑎↑, 
𝐴↑/𝑎↓, 𝐴↓).

Indexes and Sets
𝑑 ∈ D Set of demands
𝑝 ∈ P Set of daily load profiles
𝑟 ∈ R Set of Non-dispatchable Renewable Energy Sourcess

(ND-RESs)
𝑡 ∈ T Set of time periods
𝑧 ∈ Z Set of segments of PDF of uncertain parameters
𝛯𝐷𝐴+𝑆𝑅 Set of decision variables of DAM and SRM
Parameters

𝐶𝑟 Operation and maintenance costs of ND-RES 𝑟
[e/MWh]

𝐶𝑑,𝑝 Cost of load profile 𝑝 of demand 𝑑 [e]
𝐸𝑑 Energy consumption of demand 𝑑 throughout the 

planning horizon [MWh]
𝐽𝑧,𝑡 Probability of segment 𝑧 of PDF of RVPP output en-

ergy considering the negative deviation during time 
period 𝑡

𝐽 (′)𝐷𝐴
𝑧,𝑡 Probability of segment 𝑧 of PDF of DAM price con-

sidering the negative (positive) deviation during time 
period 𝑡  [%]

𝐽𝑆𝑅
𝑧,𝑡 Probability of segment 𝑧 of PDF of SRM price con-

sidering the negative deviation during time period 𝑡
[%]

𝐾 (′)𝐷𝐴
𝑧,𝑡 The difference between the value of each segment of 

PDF of DAM electricity price considering the negative 
(positive) deviation from the median value during 
time period 𝑡 [e/MWh]

𝐾𝑆𝑅
𝑧,𝑡 The difference between the value of each segment of 

PDF of SRM electricity price considering the negative 
deviation from the median value during time period 𝑡
[e/MW]

𝑀 Big positive value [e]
𝑃𝑑 Power consumption of demand 𝑑 [MW]
𝑃𝑟 Power production of ND-RES 𝑟 [MW]
𝑃𝑑,𝑝,𝑡 Profile 𝑝 of demand 𝑑 value during period 𝑡 [MW]
𝑃𝑟,𝑡 ND-RES 𝑟 production forecast during period 𝑡 [MW]
𝑃 (′)
𝑡 Net power traded by RVPP when RVPP is energy 

seller (buyer) during time period 𝑡 [MW]
𝑃 𝐹
𝑧,𝑡 The value of segment 𝑧 of PDF of RVPP output energy 

during time period 𝑡  [MW]
𝑅𝑆𝑅
𝑟(𝑑) Secondary reserve ramp rate of ND-RES 𝑟 (demand 𝑑) 

[MW/min]
2 
𝑅𝑆𝑅
𝑡 Secondary reserve provided by RVPP during time 

period 𝑡 [MW]
𝑅𝑒𝑔(′)𝑀𝑎𝑥,𝐷𝐴 Maximum regret related to DAM electricity price 

when RVPP is energy seller (buyer) [e]
𝑅𝑒𝑔𝑀𝑎𝑥,SR Maximum regret related to SRM price [e]
𝑅𝑒𝑔𝑀𝑎𝑥 Maximum regret related to output energy of RVPP 

[e]
𝑇 𝑆𝑅 Required time for secondary reserve action [min]
𝑍𝑡 Penalty cost of not providing energy during time 

period 𝑡 [e/MWh]
𝛽𝑑,𝑡 Percentage of flexibility of demand 𝑑 during period 

𝑡 [%]
𝛤 User-defined per unit value of maximum possible 

RVPP output energy regret (assigned by the user) 
[p.u]

𝛤 (′)𝐷𝐴 User-defined per unit value of maximum possible 
DAM regret when RVPP is energy seller (buyer) in 
the market (assigned by the user) [p.u]

𝛤𝑆𝑅 User-defined per unit value of maximum possible 
SRM regret (assigned by the user) [p.u]

𝛥𝑡 Duration of periods [hour]
𝜀 Small positive value [e]
𝜅 User-defined parameter to set the limit of up re-

serve traded in the SRM as a percentage of total 
power capacity of RVPP [%]

𝜆𝐷𝐴∕𝑆𝑅
𝑡 DAM/SRM price forecast during period 𝑡

[e/MWh]/[e/MW]
𝜚𝑡 Coefficient to calculate the ratio of down-to-up 

reserve requested by the Transmission System 
Operator (TSO) during period 𝑡 [%]

Continuous Variables
𝑝𝐷𝐴
𝑡 Total power traded (positive for selling and nega-

tive for buying) by RVPP in the DAM during period 
𝑡 [MW]

𝑝𝑟(𝑑),𝑡 Production of ND-RES 𝑟 (consumption of demand 
𝑑) during period 𝑡 [MW]

𝑝(′)𝑄(𝐴)
𝑟(𝑑),𝑡 Auxiliary variable to linearize the multiplication of 

binary and continuous variables [MW]
𝑝𝐷𝐴,𝑄(𝐴)
𝑡 Auxiliary variable to calculate the net traded en-

ergy for a net seller (buyer) RVPP when the DAM 
price is at its median [MW]

𝑟𝑆𝑅𝑡 Total secondary reserve traded by RVPP for dif-
ferent TSO calls on conditions during period 𝑡
[MW]

𝑟𝑆𝑅𝑟(𝑑),𝑡 Secondary reserve provided by ND-RES 𝑟 (demand 
𝑑) for different TSO calls on conditions during 
period 𝑡 [MW]

𝑟𝑆𝑅,𝑄(𝐴)
𝑡 Auxiliary variable to calculate the traded reserve of 

RVPP when the SRM price is at its median/worst 
case [MW]

𝑦(′)𝐷𝐴
𝑡 RVPP profit affected by DAM negative (positive) 

price uncertainty during period 𝑡 [e]
𝑦𝑆𝑅𝑡 RVPP profit affected by SRM price uncertainty 

during period 𝑡 [e]
𝑦𝑟(𝑑),𝑡 RVPP profit (cost) affected by ND-RES 𝑟 production 

(demand 𝑑) uncertainty during period 𝑡 [e]
𝜂(′)𝐷𝐴
𝑡 Dual variable to model the negative (positive) price 

uncertainty of DAM during period 𝑡 [e]
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𝜂𝑆𝑅𝑡 Dual variable to model the price uncertainty of SRM 
during period 𝑡 [e]

𝜂𝑟(𝑑),𝑡 Dual variable to model the ND-RES 𝑟 production 
(demand 𝑑) uncertainty during period 𝑡 [e]

𝜈𝐷𝐴∕𝑆𝑅 Dual variable to model the price uncertainty of 
DAM/SRM [e]

𝜈𝑟(𝑑) Dual variable to model the ND-RES 𝑟 production 
(demand 𝑑) uncertainty during period 𝑡 [e]

𝜌𝐷𝐴,𝑄(𝐴)
𝑧,𝑡 Auxiliary variable to calculate the positive (negative) 

difference between the total RVPP energy and reserve 
bid in the market minus the value obtained from the 
segment 𝑧 of PDF of RVPP output energy [MW]

Binary Variables
𝑢𝑑,𝑝 Indicator of selection of profile 𝑝 of demand 𝑑 [-]
𝜄𝐷𝐴
𝑡 Binary variable that is 1 if RVPP is energy seller in 

the market, and 0 otherwise [-]
𝜄𝑧,𝑡 Binary variable that is 1 if total energy plus up reserve 

bid of RVPP is higher than the value of segment 𝑧 of 
PDF of RVPP output energy during time period 𝑡, and 
0 otherwise [-]

𝜒 (′)𝐷𝐴
𝑡 Binary variable that is 1 if DAM negative (positive) 

price robustness constraints are active during period 
𝑡, and 0 otherwise [-]

𝜒𝑆𝑅
𝑡 Binary variable that is 1 if SRM price robustness 

constraints are active during period 𝑡, and 0 otherwise 
[-]

𝜒𝑟(𝑑),𝑡 Binary variable that is 1 if ND-RES 𝑟 (demand 𝑑) 
robust constraints are active during period 𝑡, and 0 
otherwise [-]

uncertainties, since it covers the wide range of uncertain parameter 
deviations, provides feasible results, and is extremely efficient in terms 
of computational time [6]. However, the main drawback of RO is that 
the results obtained tend to be overly conservative. In this regard, Bert-
simas [7] proposed a flexible RO method that allows the user to adjust 
its level of conservatism towards uncertain parameters by defining a 
new control parameter, called uncertainty budget, in the problem. This 
parameter represents the number of hours that the uncertain parameter 
deviates from its predicted value to its worst condition. This idea was 
then further developed to implement flexible RO for different Virtual 
Power Plant (VPP) bidding problems in different markets [8–11]. The 
flexible RO has also been used in [6,12–18] to account for demands 
uncertainty, ND-RESs production uncertainty, and/or electricity market 
price uncertainty in the VPP bidding optimization models.

In [8], the Day Ahead Market (DAM) participation of a VPP, in-
cluding wind farm, demand, and Energy Storage System (ESS), is 
formulated using a single-level model that incorporates confidence 
bounds for symmetric uncertainties. A stochastic RO approach is pre-
sented in [9] to model VPP participation in the DAM and real-time 
markets, allowing for corrective actions after uncertainties occur, thus 
providing increased flexibility. Similarly, the participation of RVPP 
in energy and reserve markets is studied in [10] using the same 
methodology. The work in [11] introduces a robust Stackelberg game 
approach for VPP energy management in both the DAM and real-
time market, accounting for uncertainties in electricity prices and RES 
production. In [12], a Mixed Integer Linear Programming (MILP) RO 
approach is used to model the bidding problem for a VPP consisting of 
hydro pumped storage and RES units in energy and reserve markets. A 
multi-objective model that accounts for profitability, risk, and carbon 
emissions for VPP participation in energy markets is proposed in [13]. 
The single-level robust optimization framework in [14] models RVPP 
3 
participation in sequential energy and reserve markets, considering 
asymmetric uncertainties. Further, a two-stage stochastic RO frame-
work is proposed in [15] for virtual energy hubs participating in DAM, 
local energy, real-time, and natural gas markets. In [16], a multi-energy 
VPP is studied for energy and reserve scheduling in the capacity and 
natural gas markets, incorporating uncertainties in electricity prices 
and Photovoltaic (PV) unit capacity. The paper [17] proposes a single-
period light RO model for optimizing DAM participation under wind 
generation uncertainty and varying reserve regimes. The study in [18] 
employs a RO framework to investigate a multi-energy VPP that inte-
grates electrical and thermal (heating and cooling) devices, along with 
water resources, to deliver balancing and grid support services.

A significant issue in the existing literature is that the VPP operator 
needs a monetary interpretation of value of the uncertainty budget to 
solve the optimization problem. Furthermore, multiple uncertainties 
must be considered in the optimization problem, and determining the 
uncertainty budget for each of these uncertainties is not an easy task. 
The results obtained in [6,8–18] show that, expectedly, by increasing 
the uncertainty budgets, the VPP adopts more conservative strategies 
in the market, which results in lower bidding profit. However, the VPP 
operator still does not easily know how to assign specific values to 
uncertainty budgets, and what such values imply. In fact, the provided 
results can be misleading, since they do not show the consequences of 
each decision when the uncertainties become known, and only consider 
the expected profit of VPP in the market, which is obviously at its 
highest value for null uncertainty budget (deterministic case without 
uncertainty).

Alternatively to the criterion of minimizing the maximum robust 
cost used in [6,8–18], the problem can be set to minimize the maximum 
regret cost [19–22]. In this context, regret is defined as the loss felt by 
the decision maker with respect to the use of alternative decisions when 
uncertainties unfold. Maximum regret minimization is thus a method for 
decision makers who do not have the probability of events or are not 
interested in this information. In [19], a min–max regret problem is 
solved by a relaxation process for the linear programming problems. 
The paper in [20] develops a mixed-integer min–max regret formula-
tion to account for the uncertain coefficients in the objective function 
of the problem. The paper in [21] develops an iterative solution to 
account for the uncertainties of investment cost and fuel cost in the 
objective function by using min–max regret criteria in the strategic 
energy planning problem. In [22], a two-stage min–max regret-based 
model is proposed to model the VPP scheduling in the DAM by consid-
ering the power deviations in the BAM. The RO is used to capture the 
uncertainties in the electricity price and wind unit production for some 
specific uncertainty budgets.

However, the decisions made in a min–max regret problem tend to 
also be overly conservative, as they aim to prevent any single scenario 
from causing significant regret. A solution to alleviate the potentially 
unsatisfactory results of the min–max regret problem can be obtained 
by minimizing the average regret [23–26]. The average regret can be 
defined as the sum of lost costs by considering the probability of alternative 
decisions. Hence, minimizing the average regret avoids selecting overly 
conservative solutions. In [23], a cooperative framework between VPPs 
and Electric Vehicle (EV) charging stations is proposed to maximize the 
benefits of the multi-stakeholder system. The expected maximum regret 
of the EV charging demands and its associated electricity price in the 
charging station problem, as well as the expected maximum regret of 
the renewable production of VPP are minimized by two stochastic min–
max regret problems. In [24], a hierarchical stochastic min–max regret 
algorithm is proposed to account for the uncertainties of electricity 
price, wind production, and reserve deployment. The worst case of 
expected regret with respect to wind production in different scenarios 
is minimized in the optimization problem. However, identifying the 
expected regret in multiple scenarios and in the hierarchical structure 
of the min–max problem proposed in [23,24] is challenging in both 
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modeling and computation. In [25], a multi-objective model consider-
ing both economic and risk measures is proposed for scheduling and 
bidding strategy of VPP in the energy market. A stochastic p-robust 
optimization model is used to capture the uncertainties of ND-RESs 
production, load, and electricity price. In this algorithm, the maximum 
value of the relative regret in all scenarios is confined in each itera-
tion until the optimization problem becomes infeasible. In [26], the 
stochastic p-robust optimization method is used to consider different 
uncertainties related to electricity price and ND-RESs production of a 
generation company participating in the energy and reserve markets. 
However, the methodologies suggested in [25,26] require iterative 
solutions to stochastic programming, which limits their practical appli-
cation due to high computational burden especially for a high or even a 
moderate number of scenarios. Additionally, although the p-parameter 
plays a critical role in the optimization outcomes, defining its value and 
the step reduction in each iteration is quite difficult.

The papers described above minimize the maximum expected regret 
for multiple scenarios in the stochastic programming, which usually 
implies high computational time, especially for a large number of 
scenarios. To address this issue, the use of scenario reduction methods 
to keep the problem tractable is widely used in the stochastic pro-
gramming. However, these methods may lead to less accurate regret 
computation, since the expected regret in their model is for reduced 
scenarios, and the regretful scenarios are good targets for removal in 
the scenario reduction process. Considering the aforementioned gaps 
and the advantages of the RO approach, this paper develops a novel 
modeling approach to account for the average regret in the RO for 
RVPP bidding problem. The profit-minimizing nature of uncertainties is 
modeled by the flexible RO approach, and the average regret associated 
with each uncertain parameter is modeled in the constraints of the 
optimization problem. In this way, while the average regret of RVPP 
operator decisions is controlled in the RO, the problem remains highly 
tractable, unlike the stochastic programming. Moreover, the conser-
vatism level of the problem is controlled by the monetized user-defined 
parameters, which represent a per-unit value of the maximum regret 
cost instead of the uncertainty budget used in the literature. This is ben-
eficial because it allows the user to determine the parameter based on 
a monetized value rather than based on several characteristics related 
to uncertain parameters, such as the type of uncertainty, deviations of 
uncertain parameters, type of markets, type of units, and so on.

1.3. Paper contributions

In this paper, the concept of average regret cost is implemented 
in the RO of RVPP bidding in the electricity markets by a set of 
mixed-integer constraints. The average regret for a decision of RVPP 
is defined as the weighted sum of the loss differences between the 
corresponding solution and other potential solutions associated with 
the Probability Density Function (PDF) of the uncertain parameter. The 
RVPP operator controls its desired average regret cost with respect 
to uncertain parameters associated with DAM and Secondary Reserve 
Market (SRM) electricity price and the total output energy of RVPP. In 
this way, a new control parameter, more tangible in terms of economic 
factors, is used to determine the level of conservatism of RVPP instead 
of the using the uncertainty budget. The RO problem then assigns the 
corresponding flexible worst case of the uncertain parameters based 
on the level of conservatism determined by the RVPP operator. The 
robust counterparts of the uncertain terms in the objective function and 
constraints of the optimization problem are obtained by developing the 
idea recently proposed by the authors in [6].

The contributions of this paper are outlined below:

• Average-regret-based robust optimization framework: The average 
regret associated with different decisions regarding the electricity 
and reserve prices, as well as the bidding energy and reserve of 
the RVPP operator in electricity markets, is modeled by a set 
4 
of mixed-integer constraints in the RO problem. The proposed 
framework ensures the tractability of the MILP problem solu-
tions while enhancing the computational efficiency compared to 
average regret stochastic programming in the literature. 

• Economic evaluation of conservatism levels for RVPP operation: The 
proposed uncertainty modeling assists the RVPP operator to eval-
uate its level of conservatism based on economic factors (different 
regret costs) in the optimization problem. This is an improvement 
over most papers in the literature that use RO methods, where 
the VPP operator usually defines the RO parameter, called the 
uncertainty budget, based on the number of hours that uncertain 
parameters deviate from the median to the worst case. 

• Simplified and monetized selection of a level of conservatism: The 
proposed regret-based approach simplifies the determination of 
input parameters for RO problems. Rather than requiring the op-
erator to determine different uncertainty budgets for each RVPP 
unit and electricity price while accounting for the operator’s level 
of conservatism and various technical characteristics (e.g., pro-
duction availability hours and fluctuation levels), the framework 
greatly simplifies this process by allowing the operator to specify 
a desired level of conservatism directly in terms of costs. The 
optimization problem then accounts for the characteristics of 
individual units, allowing for a more structured solution. 

1.4. Paper organization

The remainder of this paper is organized as follows. The proposed 
regret-based flexible RO model for RVPP bidding on electricity markets 
is described and formulated in Section 2. In this section, the determin-
istic formulation for RVPP market participation is developed, then the 
RO and the regret-based constrained are implemented. The simulation 
results are presented and discussed in Section 3. The simulations are 
performed to find the necessary level of conservatism of RVPP against 
different uncertain parameters. Finally, main conclusions and future 
work directions are drawn in Section 4.

2. Regret-based flexible robust formulation

In this section, the regret-based flexible RO formulation proposed 
in this paper for the RVPP bidding problem in the DAM and SRM by 
considering the BAM is presented. In Section 2.1, the RVPP problem 
structure is described. In Section 2.2, the deterministic problem is 
formulated by considering only a single value for uncertain parameters. 
Section 2.3 then presents the robust formulation for the uncertain 
parameters in the objective function of the optimization problem. In 
Section 2.4, the robust counterpart for the uncertain parameters related 
to ND-RESs and demands in the constraints of the optimization problem 
is presented. Finally, the main contribution of the paper, the average-
regret-based RO framework, is proposed and formulated in Sections 2.5
and 2.6, where the constraints related to average regret are defined 
as an MILP problem to assist the RVPP operator in determining the 
appropriate level of conservatism in decision making.

2.1. Problem description

Fig.  1 illustrates the proposed RVPP bidding framework. The RVPP 
operator is tasked with optimizing both the energy and reserve dispatch 
of RVPP units and their market participation. The objective function of 
RVPP operator is to maximize the RVPP benefits in the DAM and SRM, 
while accounting for the operational costs of the RVPP units [27]. In 
the deterministic optimization problem (i.e., all parameters and input 
data are fixed and known), the RVPP operator considers the technical 
constraints of its units to ensure feasible energy and reserve provisions 
in the market. For simplicity and without loss of generality, all RVPP 
units are assumed to be connected to a single bus. Therefore, the traded 
energy and reserve of RVPP must be constrained by the capacity of the 
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Fig. 1. The schematic of the proposed regret-based flexible robust approach.
point of common coupling with the main network. This approximation 
is reasonable as the focus is on optimizing the bidding strategy of the 
RVPP in the electricity and reserve markets, rather than modeling the 
internal network dynamics. Since the operational characteristics of the 
RVPP units are considered at the aggregate level for market participa-
tion, the interactions between units within the internal network are less 
relevant for the bidding optimization process. This assumption is safe 
to apply in the context of market bidding, where the main objective 
is to determine optimal bidding strategies, and the internal network 
structure has minimal impact on these decisions. However, in real-time 
market operations, considering the network becomes more relevant, 
as internal network dynamics can significantly affect the operation of 
units and guaranteeing the provision of offered energy and reserve. 
If uncertainties related to DAM and SRM electricity prices, ND-RES 
production, and demand are considered, the impact of variations in 
these parameters on the objective function and constraints of the 
optimization problem must be addressed.

Coping with a wide range of exogenous and endogenous uncer-
tainties [28] is essential to enhance the RVPP’s competitiveness in 
electricity markets. Such uncertainties can significantly impact the 
DAM and SRM participation of the RVPP, thereby influencing its ex-
pected benefits. The RO approach is well-suited for addressing multiple 
uncertainties simultaneously in electricity market problems, as it con-
siders the bounds of uncertain parameters rather than relying on their 
exact PDF [12,13,15]. In this paper, the uncertain parameters affect 
both the objective function and the constraints of the optimization 
problem. Therefore, additional constraints should be incorporated into 
the optimization model, depending on whether the uncertainty influ-
ences the objective function or the constraints. The RVPP operator can 
control its level of conservatism against these uncertainties if a flexible
RO problem is implemented [7]. This control comes in the form of the 
5 
so-called uncertainty budgets. These parameters represent the number of 
hours during which the uncertain parameter deviates from its predicted 
value to its worst-case condition and must be defined for each uncertain 
parameter. The flexible RO approach, by considering the worst case of 
energy, demonstrates a high capability to address different uncertainties 
in the RVPP bidding optimization models [14,16,17]. The worst-case 
profit approach identifies the worst case of the optimization problem 
when various uncertainties in the objective function and constraints 
interact with each other [6,29,30]. However, in both the worst-case 
energy and worst-case profit approaches, the RVPP operator must define 
multiple uncertainty budgets as input parameters for each solution, 
considering the different characteristics of uncertainties, units, and 
electricity markets. The remainder of this section formulates the regret-
based flexible RO framework proposed in this paper to automatically 
define the uncertainty budgets in the problem according to the level 
of conservatism sought by the user. This is achieved by limiting the 
estimated average regret associated with the penalty costs of RVPP 
energy deviations in the BAM, as well as the regret costs arising from 
DAM and SRM price fluctuations.

The necessary information for solving the proposed optimization 
problem includes the technical features and forecast data of RVPP 
units, data related to capacity of interconnection bus between the RVPP 
and the network, and market data such as electricity price forecasts 
and reserve requirements provided by the TSO. Once the optimization 
problem is solved, the RVPP submits offers/bids of energy and reserve 
before DAM and SRM gate closure. To maximize RVPP market par-
ticipation, this paper assumes zero-price bids, leveraging the fact that 
RVPP units rely on renewable resources, have near-zero marginal costs, 
and their production volume is small compared to the energy volume 
cleared in those markets. The Market Operator (MO) is responsible for 
clearing the DAM based on energy offers/bids from various partici-
pants. The TSO assigns the required reserve for each SRM participant, 
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including the RVPP. This paper assumes all possible scenarios for up 
reserve activation, down reserve activation, and no reserve activation 
in the power dispatch of RVPP units. Consequently, the optimization 
problem yields a feasible solution for any reserve activation scenario 
in real-time, as requested by the TSO. Once the energy and reserve 
offers/bids of RVPP are accepted, the results are communicated to 
the RVPP, which then coordinates the internal dispatch of its units 
accordingly.

2.2. Deterministic formulation

This section presents the deterministic formulation of RVPP for 
the simultaneous DAM and SRM participation. The deterministic for-
mulation assumes that forecasts of electricity and reserve prices, and 
stochastic energy sources such as wind production and solar irradiation, 
are exact [14]. The idea is to develop the base formulation here and 
then in the following sections to add the uncertainties of different 
parameters to the model.

2.2.1. Deterministic objective function
The deterministic objective function, as defined in (1), seeks to 

maximize the benefits of RVPP in the DAM and SRM.

max
𝛯𝐷𝐴+𝑆𝑅

∑

𝑡∈T

[

𝜆̃𝐷𝐴
𝑡 𝑝𝐷𝐴

𝑡 𝛥𝑡 + 𝜆̃𝑆𝑅,↑𝑡 𝑟𝑆𝑅,↑𝑡 + 𝜆̃𝑆𝑅,↓𝑡 𝑟𝑆𝑅,↓𝑡

]

−
∑

𝑡∈T

∑

𝑟∈R
𝐶𝑟𝑝𝑟,𝑡𝛥𝑡 −

∑

𝑑∈D

∑

𝑝∈P
𝐶𝑑,𝑝𝑢𝑑,𝑝 (1)

The first term of (1) determines the expected RVPP incomes from 
bidding in the DAM, up SRM, and down SRM. The second and third 
terms in (1) calculate the operational costs of ND-RESs, and the costs 
associated with the selection of load profiles, respectively.

2.2.2. Supply–demand balance constraint
The equality constraint related to the supply–demand balancing of 

energy and reserve for RVPP units is described in (2).

∑

𝑟∈R
(𝑝𝑟,𝑡 + 𝒓𝑆𝑅𝑟,𝑡 ) −

∑

𝑑∈D
(𝑝𝑑,𝑡 − 𝒓𝑆𝑅𝑑,𝑡 ) = 𝑝𝐷𝐴

𝑡 + 𝒓𝑆𝑅𝑡 , ∀𝑡 (2)

The reserve activation scenarios are considered for all possible up 
reserve activation, down reserve activation, and no reserve activation 
in real-time by use of defining general variables 𝒓𝑆𝑅𝑡 = {𝑟𝑆𝑅,↑𝑡 ,−𝑟𝑆𝑅,↓𝑡 , 0}, 
𝒓𝑆𝑅𝑟,𝑡 = {𝑟𝑆𝑅,↑𝑟,𝑡 ,−𝑟𝑆𝑅,↓𝑟,𝑡 , 0}, and 𝒓𝑆𝑅𝑑,𝑡 = {𝑟𝑆𝑅,↑𝑑,𝑡 ,−𝑟𝑆𝑅,↓𝑑,𝑡 , 0}.

2.2.3. Trade constraints
The traded energy and reserve of RVPP need to be constrained 

according to the capacity of the interconnection bus and the TSO 
request for reserve according to (3).

𝑝𝐷𝐴
𝑡 + 𝑟𝑆𝑅,↑𝑡 ≤

∑

𝑟∈R
𝑃𝑟 , ∀𝑡 (3a)

−
∑

𝑑∈D
𝑃𝑑 ≤ 𝑝𝐷𝐴

𝑡 − 𝑟𝑆𝑅,↓𝑡 , ∀𝑡 (3b)

𝑟𝑆𝑅,↑𝑡 = 𝜚𝑡𝑟
𝑆𝑅,↓
𝑡 , ∀𝑡 (3c)

𝑟𝑆𝑅,↑𝑡 ≤ 𝜅
∑

𝑟∈R
𝑃𝑟 , ∀𝑡 (3d)

The upper and lower limits of total traded energy plus reserve by 
RVPP is constrained by Eqs. (3a) and (3b), respectively. The requested 
down-to-up reserve by TSO is limited by constraint (3c). The traded 
up reserve of RVPP is confined to a ratio of the maximum production 
capacity of RVPP by constraint (3d).
6 
2.2.4. ND-RESs constraints
ND-RESs, such as PV and wind units, can provide both upward and 

downward reserves in electricity markets, depending on their technical 
capabilities and regulatory conditions [31,32]. Upward reserve can be 
provided when ND-RESs operate at a curtailed level under normal 
conditions and then increase their generation during reserve activation. 
On the other hand, downward reserve can be offered by reducing 
their output power from the current operational level. The ND-RESs 
constraints by considering the reserve provision are formulated in (4).

̄
𝑃𝑟 ≤ 𝑝𝑟,𝑡 − 𝑟𝑆𝑅,↓𝑟,𝑡 , ∀𝑟, 𝑡 (4a)

𝑝𝑟,𝑡 + 𝑟𝑆𝑅,↑𝑟,𝑡 = 𝑃𝑟,𝑡 , ∀𝑟, 𝑡 (4b)

𝑟𝑆𝑅,↑𝑟,𝑡 ≤ 𝑇 𝑆𝑅𝑅̄𝑆𝑅
𝑟 , ∀𝑟, 𝑡 (4c)

𝑟𝑆𝑅,↓𝑟,𝑡 ≤ 𝑇 𝑆𝑅
̄
𝑅𝑆𝑅
𝑟 , ∀𝑟, 𝑡 (4d)

The lower and upper bounds for the output energy and reserve of 
ND-RESs, using the minimum and median production, are defined in 
constraints (4a) and (4b), respectively. The up and down reserve pro-
vided by ND-RESs are constrained in Eqs. (4c) and (4d), respectively.

2.2.5. Demands constraints
The constraints (5) are flexible demands constraints by taking the 

idea from the deterministic approach proposed in [33].

𝑝𝑑,𝑡 =
∑

𝑝∈P
(𝑃𝑑,𝑝,𝑡𝑢𝑑,𝑝) , ∀𝑑, 𝑡 (5a)

∑

𝑝∈P
𝑢𝑑,𝑝 = 1 , ∀𝑑 (5b)

𝑟𝑆𝑅,↑𝑑,𝑡 ≤
̄
𝛽𝑑,𝑡𝑝𝑑,𝑡 , ∀𝑑, 𝑡 (5c)

𝑟𝑆𝑅,↑𝑑,𝑡 ≤ 𝑝𝑑,𝑡 − ̄
𝑃𝑑 , ∀𝑑, 𝑡 (5d)

𝑟𝑆𝑅,↑𝑑,𝑡 ≤ 𝑇 𝑆𝑅
̄
𝑅𝑆𝑅
𝑑 , ∀𝑑, 𝑡 (5e)

𝑟𝑆𝑅,↓𝑑,𝑡 ≤ 𝛽𝑑,𝑡𝑝𝑑,𝑡 , ∀𝑑, 𝑡 (5f)

𝑟𝑆𝑅,↓𝑑,𝑡 ≤ 𝑃𝑑 − 𝑝𝑑,𝑡 , ∀𝑑, 𝑡 (5g)

𝑟𝑆𝑅,↓𝑑,𝑡 ≤ 𝑇 𝑆𝑅𝑅̄𝑆𝑅
𝑑 , ∀𝑑, 𝑡 (5h)

̄
𝐸𝑑 ≤

∑

𝑡∈T
(𝑝𝑑,𝑡𝛥𝑡 − 𝑟𝑆𝑅,↑𝑑,𝑡 ) , ∀𝑑 (5i)

𝑢𝑑,𝑝 ∈ {0, 1} , ∀𝑑, 𝑝 (5j)

The RVPP is allowed to choose one demand profile among several 
defined profiles according to the constraints (5a) and (5b). The up 
reserve provided by demands is confined by the downward flexibil-
ity of demand, the minimum possible demand, and the capability 
of demand to provide reserve in constraints (5c)–(5e), respectively. 
The constraints (5f)–(5h) are defined for the down reserve provided 
by demands. The minimum energy along the time horizon that each 
demand is allowed to consume is constrained by Eq.  (5i). Finally, the 
nature of binary variables is described by constraint (5j).

The deterministic formulation proposed in (1)–(5) assumes an exact 
single forecast value for each uncertain parameter. However, the vari-
ations of the uncertain parameters in the optimization problem need to 
be considered as they affect the optimal RVPP decision and its profit in 
different electricity markets. This is discussed in the following Section.

2.3. Robust optimization in the objective function

In the objective function (1) there are three parameters related to 
DAM, up and down SRM electricity prices that are uncertain. In order to 
find the robust counterpart of the objective function, the range of these 
uncertain parameters must first be defined. The uncertainty bounds for 
these parameters in each period can be defined as [𝜆̃𝐷𝐴−𝜆̌𝐷𝐴, 𝜆̃𝐷𝐴, 𝜆̃𝐷𝐴+
𝑡 𝑡 𝑡 𝑡
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𝜆̂𝐷𝐴
𝑡 ], [𝜆̃𝑆𝑅,↑𝑡 − 𝜆̌𝑆𝑅,↑𝑡 , 𝜆̃𝑆𝑅,↑𝑡 ], and [𝜆̃𝑆𝑅,↓𝑡 − 𝜆̌𝑆𝑅,↓𝑡 , 𝜆̃𝑆𝑅,↓𝑡 ], respectively. Note 
that, for the hourly DAM price, depending on whether the RVPP is an 
energy seller or buyer in the market, the worst case condition occurs at 
the minimum or maximum of the corresponding hourly DAM electricity 
price bound, respectively. For the SRM price, RVPP is always seller, 
and thus, only negative deviation of the price leads to the worst case, 
hence the upper bounds of the SRM uncertain parameters are defined 
as median values. Authors in [8] defined the robust counterpart of 
DAM electricity price uncertainty term in a way that results in finding 
the hours that lead to the most electricity price variance multiplied 
by the traded energy of RVPP. However, this approach has some 
limitations in finding the actual worst case of the optimization problem, 
especially when the uncertainties related to ND-RESs and demands 
(see Section 2.4) are also considered. The authors in [6] have recently 
developed a counterpart for the uncertain terms in the objective func-
tion based on binary variables that considers the final electricity price 
and also the effect of uncertainties related to ND-RESs and demands 
(uncertainties in the constraints of the optimization problem) on the 
final value of the traded energy of RVPP. To achieve this, the electricity 
price (DAM, and up and down SRM) in each time period is assigned 
in (6). Depending on the direction of the electricity price variation, 
which is modeled by the binary variable 𝜒𝐷𝐴

𝑡 , 𝜒 ′𝐷𝐴
𝑡 , 𝜒𝑆𝑅,↑

𝑡 , 𝜒𝑆𝑅,↓
𝑡 , the 

electricity price in each time period can take the minimum, median, or 
maximum value from its corresponding bound.

𝜆𝐷𝐴
𝑡 = 𝜆̃𝐷𝐴

𝑡 − 𝜆̌𝐷𝐴
𝑡 𝜒𝐷𝐴

𝑡 + 𝜆̂𝐷𝐴
𝑡 𝜒 ′𝐷𝐴

𝑡 , ∀𝑡 (6a)

𝜆𝑆𝑅,↑𝑡 = 𝜆̃𝑆𝑅,↑𝑡 − 𝜆̌𝑆𝑅,↑𝑡 𝜒𝑆𝑅,↑
𝑡 , ∀𝑡 (6b)

𝜆𝑆𝑅,↓𝑡 = 𝜆̃𝑆𝑅,↓𝑡 − 𝜆̌𝑆𝑅,↓𝑡 𝜒𝑆𝑅,↓
𝑡 , ∀𝑡 (6c)

𝜒𝐷𝐴
𝑡 + 𝜒 ′𝐷𝐴

𝑡 ≤ 1 , ∀𝑡 (6d)

𝜒𝐷𝐴
𝑡 , 𝜒 ′𝐷𝐴

𝑡 , 𝜒𝑆𝑅,↑
𝑡 , 𝜒𝑆𝑅,↓

𝑡 ∈ {0, 1} , ∀𝑡 (6e)

Considering the approach proposed in [6], the robust counterpart 
of the deterministic objective function (1) can be written as: 
max

𝛯𝐷𝐴+𝑆𝑅

∑

𝑡∈T

[

𝜆̃𝐷𝐴
𝑡 𝑝𝐷𝐴

𝑡 𝛥𝑡 + 𝜆̃𝑆𝑅,↑𝑡 𝑟𝑆𝑅,↑𝑡 + 𝜆̃𝑆𝑅,↓𝑡 𝑟𝑆𝑅,↓𝑡

]

−
∑

𝑡∈T

∑

𝑟∈R
𝐶𝑟𝑝𝑟,𝑡𝛥𝑡

−
∑

𝑑∈D

∑

𝑝∈P
𝐶𝑑,𝑝𝑢𝑑,𝑝 −

∑∑

𝑡∈T
𝒚𝐸𝑀
𝑡 (7a)

s.t.

𝝂𝐸𝑀 + 𝜼𝐸𝑀
𝑡 ≥ ̂̌𝝀𝐸𝑀

𝑡 ⊙ 𝒑𝐸𝑀
𝑡 , ∀𝑡 (7b)

𝒚𝐸𝑀
𝑡 ≥ 𝝂𝐸𝑀 + 𝜼𝐸𝑀

𝑡 −𝑀(1 − 𝝌𝐸𝑀
𝑡 ) , ∀𝑡 (7c)

𝜀(𝝌𝐸𝑀
𝑡 ) ≤ 𝜼𝐸𝑀

𝑡 ≤ 𝑀(𝝌𝐸𝑀
𝑡 ) , ∀𝑡 (7d)

−𝑀(1 − 𝝌𝐸𝑀
𝑡 ) ≤ ̂̌𝝀𝐸𝑀

𝑡 ⊙ 𝒑𝐸𝑀
𝑡 − 𝝂𝐸𝑀 ≤ 𝑀(𝝌𝐸𝑀

𝑡 ) , ∀𝑡 (7e)

𝝂𝐸𝑀 , 𝜼𝐸𝑀
𝑡 , 𝒚𝐸𝑀

𝑡 ≥ 0 , ∀𝑡 (7f)

𝝌𝐸𝑀
𝑡 ∈ {0, 1} , ∀𝑡 (7g)

 where ⊙ represents the Hadamard product, which results in a vector 
of the same dimension, with elements given by the product of the 
corresponding elements of the original two vectors.

Vectors of parameters and variables defined in (7) include: the un-
certain parameter related to the variation of the negative and positive 
DAM and up and down SRM prices ̂̌𝝀𝐸𝑀

𝑡 = {𝜆̌𝐷𝐴
𝑡 ,−𝜆̂𝐷𝐴

𝑡 , 𝜆̌𝑆𝑅,↑𝑡 , 𝜆̌𝑆𝑅,↓𝑡 }; 
the binary variable related to the electricity price variation 𝝌𝐸𝑀

𝑡 =
{𝜒𝐷𝐴

𝑡 , 𝜒 ′𝐷𝐴
𝑡 , 𝜒𝑆𝑅,↑

𝑡 , 𝜒𝑆𝑅,↓
𝑡 }; the auxiliary dual variables 𝝂𝐸𝑀 =

{𝜈𝐷𝐴, 𝜈𝐷𝐴, 𝜈𝑆𝑅,↑, 𝜈𝑆𝑅,↓}, and 𝜼𝐸𝑀
𝑡 = {𝜂𝐷𝐴

𝑡 , 𝜂′𝐷𝐴
𝑡 , 𝜂𝑆𝑅,↑𝑡 , 𝜂𝑆𝑅,↓𝑡 }; the vari-

ables related to traded energy and up and down reserve 𝒑𝐸𝑀
𝑡 =

{𝑝𝐷𝐴
𝑡 𝛥𝑡, 𝑝𝐷𝐴

𝑡 𝛥𝑡, 𝑟𝑆𝑅,↑𝑡 , 𝑟𝑆𝑅,↓𝑡 }; and the profit reduction due to price un-
certainty represented by the auxiliary variable 𝒚𝐸𝑀

𝑡 = {𝑦𝐷𝐴
𝑡 , 𝑦′𝐷𝐴

𝑡 ,
𝑦𝑆𝑅,↑𝑡 , 𝑦𝑆𝑅,↓𝑡 }.

The first three terms in the robust objective function (7a) are similar 
to the deterministic objective function (1). The last term in (7a) is the 
profit reduction due to DAM negative and positive price uncertainty 
7 
and up and down SRM reserve price uncertainty. Constraint (7b) as-
signs the lower bounds of the dual variables 𝝂𝐸𝑀  and 𝜼𝐸𝑀

𝑡  to the 
absolute value of the profit reduction due to the price volatility. The 
lower bound of the profit reduction 𝒚𝐸𝑀

𝑡 , which is reduced in the 
objective function (7a), is assigned based on the constraint (7c). The 
variable 𝒚𝐸𝑀

𝑡  gets positive values only when the binary variable 𝝌𝐸𝑀
𝑡

is 1, i.e. when the optimization problem chooses the worst condition of 
the electricity price in a given time period. The dual variable 𝜼𝐸𝑀

𝑡  is 
bounded in the constraint (7d) based on the condition of the binary 
variable 𝝌𝐸𝑀

𝑡 . The difference between the possible profit reduction 
and the dual variable 𝝂𝐸𝑀  is bounded by the binary variable 𝝌𝐸𝑀

𝑡
in the constraint (7e). Eq. (7e) has the purpose of setting a lower 
bound 𝝂𝐸𝑀 ≥ ̂̌𝝀𝐸𝑀

𝑡 ⊙ 𝒑𝐸𝑀
𝑡  when 𝝌𝐸𝑀

𝑡  is zero and setting an upper 
bound 𝝂𝐸𝑀 ≤ ̂̌𝝀𝐸𝑀

𝑡 ⊙ 𝒑𝐸𝑀
𝑡  when 𝝌𝐸𝑀

𝑡  is 1. This constraint is essential 
for the case that uncertain parameters related to ND-RESs production 
and demands (see Section 2.4) affect the energy/reserve traded by 
RVPP (𝒑𝐸𝑀

𝑡 ), and it avoids choosing wrong periods for the worst-
case electricity price. Finally, the nature of positive dual variables 
and binary variables is represented by the constraints (7f) and (7g), 
respectively.

2.4. Robust optimization in the ND-RESs and demands constraints

In constraints (4b) and (5a) of problem (1)–(5), there are two 
parameters related to ND-RESs production and demands consumption, 
respectively, that are actually uncertain, namely 𝑃𝑟,𝑡 and 𝑃𝑑,𝑝,𝑡 (index 
𝑝 is neglected here for the sake of simplicity). The range of these 
uncertain parameters to find the robust counterpart of these constraints 
are defined as [𝑃𝑟,𝑡 − 𝑃𝑟,𝑡, 𝑃𝑟,𝑡] and [𝑃𝑑,𝑡, 𝑃𝑑,𝑡 + 𝑃𝑑,𝑡], respectively. Note 
that only the negative deviation of ND-RESs and the positive deviation 
of demands are considered to find the robust counterparts of these 
constraints, since the deviation in the opposite direction usually leads 
to more profit for RVPP [34].

Elaborating from [6], the flexible robust counterpart of the con-
straints (4b) and (5a) can be written in the general form (8).

𝒑𝒖,𝑡 = 𝑷̃ 𝒖,𝑡 ∓ 𝝌𝒖,𝑡
̂̌𝑷 𝒖,𝑡 , ∀𝒖, 𝑡 (8a)

𝜆𝐷𝐴
𝑡 𝒑𝒖,𝑡𝛥𝑡 ≤ 𝜆𝐷𝐴

𝑡 𝑷̃ 𝒖,𝑡𝛥𝑡 ∓ 𝒚𝒖,𝑡 , ∀𝒖, 𝑡 (8b)

𝒚𝒖,𝑡 ≤ 𝜆𝐷𝐴
𝑡

̂̌𝑷 𝒖,𝑡𝛥𝑡 , ∀𝒖, 𝑡 (8c)

𝒚𝒖,𝑡 ≥ 𝝂𝒖 + 𝜼𝒖,𝑡 −𝑀(1 − 𝝌𝒖,𝑡) , ∀𝒖, 𝑡 (8d)

𝝂𝒖 + 𝜼𝒖,𝑡 ≥ 𝜆𝐷𝐴
𝑡

̂̌𝑷 𝒖,𝑡𝛥𝑡 , ∀𝒖, 𝑡 (8e)

𝜀𝝌𝒖,𝑡 ≤ 𝜼𝒖,𝑡 ≤ 𝑀𝝌𝒖,𝑡 , ∀𝒖, 𝑡 (8f)

𝝂𝒖, 𝜼𝒖,𝑡, 𝒚𝒖,𝑡 ≥ 0 , ∀𝒖, 𝑡 (8g)

𝝌𝒖,𝑡 ∈ {0, 1} , ∀𝒖, 𝑡 (8h)

Vectors of indices, parameters and variables defined in (8) include: 
the general index for ND-RESs and demands 𝒖 = {𝑟, 𝑑}; the variable 
related to traded energy of ND-RESs and demands 𝒑𝒖,𝑡 = {𝑝𝑟,𝑡, 𝑝𝑑,𝑡}; 
the parameters related to the general form of median and deviation of 
uncertain parameters 𝑷̃ 𝒖,𝑡 = {𝑃𝑟,𝑡, 𝑃𝑑,𝑡} and ̂̌𝑷 𝒖,𝑡 = {𝑃𝑟,𝑡, 𝑃𝑑,𝑡}; the binary 
variable of ND-RESs and demands robust constraints 𝝌𝒖,𝑡 = {𝜒𝑟,𝑡, 𝜒𝑑,𝑡}; 
the auxiliary variable related to the profit reduction (cost increase) due 
to the units’ output deviation due to uncertainty 𝒚𝒖,𝑡 = {𝑦𝑟,𝑡, 𝑦𝑑,𝑡}; and 
the auxiliary dual variables 𝝂𝒖 = {𝜈𝑟, 𝜈𝑑}, and 𝜼𝒖,𝑡 = {𝜂𝑟,𝑡, 𝜂𝑑,𝑡}.

Constraint (8a) sets the output energy of uncertain units (ND-RESs 
or demands) by considering the possible deviation from the median 
value of the forecast (active when 𝝌𝒖,𝑡 = 1). In the constraint (8a), 
only the negative deviation for ND-RESs and the positive deviation for 
demands are assumed. The worst condition of unit profit deviations is 
given by the constraints (8b)–(8h) based on the condition of the binary 
variable 𝝌𝒖,𝑡. The profit of each unit for each time period is constrained 
in Eq.  (8b) to the median profit minus (plus) the profit reduction (cost 
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increase) due to the units’ output deviation due to uncertainty, 𝒚𝒖,𝑡. The 
dual variable 𝒚𝒖,𝑡 is confined to the maximum possible profit reduction 
of each unit in each time period in (8c). The lower bound of the dual 
variable 𝒚𝒖,𝑡 is limited to the sum of the dual variables 𝝂𝒖 and 𝜼𝒖,𝑡 and 
the uncertainty activation binary variable 𝝌𝒖,𝑡 in (8d). For those periods 
where 𝝌𝒖,𝑡 = 1, the dual variable 𝒚𝒖,𝑡 has a positive value, resulting in 
the profit reduction in the constraint (8b). The sum of the dual variables 
𝝂𝒖 and 𝜼𝒖,𝑡 is set higher than the maximum profit reduction for each 
unit in each time period in the constraint (8e). Constraint (8f) bounds 
the dual variable 𝜼𝒖,𝑡 based on the condition of the binary variable 𝝌𝒖,𝑡. 
Finally, the nature of positive dual variables and binary variables is 
specified in the constraint (8g) and (8h), respectively.

Note that, the term 𝜆𝐷𝐴
𝑡 𝒑𝒖,𝑡 on the left side of the constraint (8b) 

is a nonlinear expression. By substituting the electricity price from Eq. 
(6a) into (8b), the resulting nonlinear term involves the multiplication 
of binary and continuous variables 𝜒 (′)𝐷𝐴

𝑡 𝒑𝒖,𝑡. This nonlinear term can 
be formulated linearly (see (9) below) by the method proposed in [35] 
using equivalent linear constraints. 
𝒑(′)𝑄𝒖,𝑡 = 𝒑𝒖,𝑡 − 𝒑(′)𝐴𝒖,𝑡 , ∀𝒖, 𝑡 (9a)

̄
𝑷 𝒖𝜒

(′)𝐷𝐴
𝑡 ≤ 𝒑(′)𝑄𝑢,𝑡 ≤ 𝑷̄ 𝒖𝜒

(′)𝐷𝐴
𝑡 , ∀𝒖, 𝑡 (9b)

̄
𝑷 𝒖(1 − 𝜒 (′)𝐷𝐴

𝑡 ) ≤ 𝒑(′)𝐴𝒖,𝑡 ≤ 𝑷̄ 𝒖(1 − 𝜒 (′)𝐷𝐴
𝑡 ) , ∀𝒖, 𝑡 (9c)

 The vectors of auxiliary variables 𝒑(′)𝑄𝒖,𝑡  and 𝒑(′)𝐴𝒖,𝑡  are defined to deter-
mine the final result of the nonlinear term 𝜒 (′)𝐷𝐴

𝑡 𝒑𝒖,𝑡 when the RVPP 
is a net energy seller (buyer). When the binary variable 𝜒 (′)𝐷𝐴

𝑡  related 
to the electricity price deviation is 1, the Eqs. (9) set 𝒑(′)𝑄𝒖,𝑡 = 𝒑𝒖,𝑡 and 
𝒑(′)𝐴𝒖,𝑡 = 0. On the other hand, for 𝜒 (′)𝐷𝐴

𝑡 = 0, the Eqs. (9) lead to 𝒑(′)𝑄𝒖,𝑡 = 0
and 𝒑(′)𝐴𝒖,𝑡 = 𝒑𝒖,𝑡.

2.5. Average regret constraints

In this section, the average regret for different decision alterna-
tives of the RVPP, which constitutes the main contribution of the 
paper, is formulated. The objective is that the RVPP operator could 
assign the desired amount of regret for each parameter, instead of 
assigning the uncertainty budget parameters, which are usually used 
in the literature to define the chosen level of conservatism. These 
uncertainty budgets are defined as the number of hours/periods that 
uncertain parameters deviate from their median value to their worst 
case. Usually, it is difficult for RVPP operator to predefine their values, 
especially when several uncertain parameters are considered in the 
optimization problem. By using the concept of average regret in this 
paper, the RVPP operator obtains a more expedient interpretation since 
the average regret is represented in terms of cost. In this section, normal 
distributions are used to compute the average regret for different 
uncertain parameters. However, the proposed approach is general and 
can be used for any type of distribution. Furthermore, in the case 
of unavailability of PDF of uncertain parameters, it is still possible 
to compute the average regret in the proposed model by assuming 
known, approximated distributions, such as normal, triangular, or uni-
form distributions for uncertain parameters. Therefore, the proposed 
probabilistic approach is suitable in the RO problems, where usually 
the unavailability of complete information about uncertain parameters 
is a common issue.

2.5.1. Average regret definition
In the context of the work presented in this paper, average regret

can be defined as the weighted sum of the loss felt by the decision 
maker (RVPP operator) with respect to the use of alternative decisions 
when uncertainties related to RVPP output energy and DAM and SRM 
electricity prices unfold. The additional costs in the BAM due to not 
providing promised energy of the DAM and potential profit decrease 
due to electricity price fluctuation in the DAM and SRM clearing 
are considered as the loss felt by RVPP. Note that the profits from 
8 
Table 1
Example for regret calculation.
 Decision 
made/

Energy 
shortage

Price deviation Regret energy 
cost

Regret price 
cost

 

 Actual 
realization

[MWh] [e/MWh] [e] [e]  

 d0/d0 0 0 0 0  
 d0/d1 2 1 20 9  
 d0/d2 4 2 40 18  
 d0/d3 6 3 60 27  

bidding in the DAM and SRM in different decisions are neglected 
in the calculation of the average regret to easily control the regret 
level in the constraints of the optimization problem. In this way, 
the average regret of more conservative strategies will be lower than 
optimistic decisions resulting in a better control of the average regret. 
This estimated average regret can help the RVPP operator to assign its 
level of conservatism. A simple example is used in this section to help 
understand the definition of average regret in this paper.

Suppose the RVPP operator can make 4 different decisions with 
equal probability regarding its output energy as 𝐷 = {𝑑0, 𝑑1, 𝑑2, 𝑑3}. 
The corresponding RVPP output energy and electricity price for each 
of these decisions are {9,7,5,3} MW, and {7,6,5,4} e/MWh, respec-
tively. The penalty for not providing promised energy is assumed 
to be 10 e/MWh. Table  1 provides information about the energy 
and price regret of decision 𝑑0 corresponding to alternative decisions 
𝐷 = {𝑑0, 𝑑1, 𝑑2, 𝑑3}. The average energy and price regret for deci-
sion 𝑑0 is calculated as the average of the last two columns as 30 
e and 13.5 e respectively. By using similar tables to calculate the 
average energy and price regret for other decisions, the results for 
decisions 𝐷 = {𝑑0, 𝑑1, 𝑑2, 𝑑3} can be calculated as {30, 15, 5, 0} e and 
{13.5, 5.25, 1.25, 0} e, respectively. It can be seen how choosing more 
conservative strategies reduces the average regret of RVPP.

2.5.2. Average regret of RVPP output energy
Eq. (10) calculates the average regret related to the uncertainty of 

the total output energy of RVPP.

∑

𝑡∈T

∑

𝑧∈Z

[

𝐽𝑧,𝑡𝑍𝑡𝜌
𝐷𝐴,𝑄
𝑧,𝑡 𝛥𝑡

]

≤ 𝛤𝑅𝑒𝑔𝑀𝑎𝑥, (10a)

𝜌𝐷𝐴,𝑄
𝑧,𝑡 = 𝑝𝐷𝐴

𝑡 + 𝑟𝑆𝑅,↑𝑡 − 𝑃 𝐹
𝑧,𝑡 + 𝜌𝐷𝐴,𝐴

𝑧,𝑡 , ∀𝑧, 𝑡 (10b)

𝜌𝐷𝐴,𝑄
𝑧,𝑡 ≤ 𝑃𝑡𝜄𝑧,𝑡 , ∀𝑧, 𝑡 (10c)

𝜌𝐷𝐴,𝐴
𝑧,𝑡 ≤ 𝑃𝑡(1 − 𝜄𝑧,𝑡) , ∀𝑧, 𝑡 (10d)

𝜌𝐷𝐴,𝑄
𝑧,𝑡 , 𝜌𝐷𝐴,𝐴

𝑧,𝑡 ≥ 0 , ∀𝑧, 𝑡 (10e)

The average regret associated with the output energy of RVPP 
in (10a) is calculated by multiplying the probability factor 𝐽𝑧,𝑡 asso-
ciated with each segment of RVPP output energy PDF, the penalty 
cost of not providing bid energy in the BAM 𝑍𝑡, and the auxiliary 
variable 𝜌𝐷𝐴,𝑄

𝑧,𝑡 . Segments of the PDF represent different decisions for 
RVPP output energy as the uncertainties unfold. The auxiliary variable 
𝜌𝐷𝐴,𝑄
𝑧,𝑡  is the difference between the total energy and reserve bid of 
the RVPP minus the energy forecast value in each segment (alternative 
decisions) of the RVPP output energy PDF (𝑃 𝐹

𝑧,𝑡). The auxiliary variable 
𝜌𝐷𝐴,𝐴
𝑧,𝑡  thus has value when the above difference is negative and avoids 
calculating regret for decisions with lower regret. Both 𝜌𝐷𝐴,𝑄

𝑧,𝑡  and 𝜌𝐷𝐴,𝐴
𝑧,𝑡

are mutually exclusive in (10c)–(10d). The average regret in (10a) is 
limited by a user-defined coefficient 𝛤 , which represents a per-unit frac-
tion of the maximum possible regret of the output energy of RVPP. By 
selecting the coefficient 𝛤 , the user has the flexibility to adjust the level 
of conservatism of the optimization problem against uncertainty by 
knowing the maximum possible regret 𝑅𝑒𝑔𝑀𝑎𝑥. The maximum possible 
regret is computed by summing all regrets in all segments 𝑧 if none of 
the uncertain parameters deviate from their median in all time periods 
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Fig. 2. Calculation of average regret according to the PDF of total output energy of RVPP in a sample hour.

(

𝑅𝑒𝑔𝑀𝑎𝑥 =
∑

𝑡∈T
∑

𝑧∈Z 𝐽𝑧,𝑡𝑍𝑡

[

∑

𝑟∈R 𝑃𝑟,𝑡 −
∑

𝑑∈D 𝑃𝑑,𝑡 − 𝑃 𝐹
𝑧,𝑡

]

𝛥𝑡
)

. With 𝑍𝑡
set to 114 e/MWh and other parameters as defined in Fig.  2, the 
maximum regret of the RVPP output energy is calculated 𝑅𝑒𝑔𝑀𝑎𝑥 =
78.32 e. This value is used as an input parameter in constraint (10a), 
allowing the RVPP operator to adjust the desired regret limit related 
to the output energy of the RVPP through the per-unit parameter 𝛤 . 
Based on (10b)–(10e), the auxiliary variable 𝜌𝐷𝐴,𝑄

𝑧,𝑡  has value only if 
the sum of the energy and reserve bid of RVPP is greater than 𝑃 𝐹

𝑧,𝑡. This 
condition ensures that the regret associated with each segment of PDF 
is calculated only for those segments that are active, i.e., have values 
less than the sum of the energy and reserve bid of RVPP. The binary 
variable 𝜄𝑧,𝑡 in (10c)–(10d) enforces this condition.

Fig.  2 shows the calculation of the average regret according to 
the PDF of the total output energy of RVPP to further illustrate the 
formulation in (10). For this purpose, the value of different parameters 
and variables (𝐽𝑧,𝑡, 𝜌𝐷𝐴,𝑄

𝑧,𝑡 , 𝑃 𝐹
𝑧,𝑡, 𝜄𝑧,𝑡) in (10a) is provided by assuming the 

total energy and reserve bid of the RVPP (decision of RVPP operator) 
at the instant 𝑡 (𝑝𝐷𝐴

𝑡 + 𝑟𝑆𝑅,↑𝑡 ) is equal to −1.2 MW. According to 
Section 2.5.1, the regret for each decision can be calculated by the 
weighted sum of the loss felt by the RVPP operator corresponding to 
alternative decisions. Assuming that the DAM and SRM bidding profit 
does not affect the loss felt in different decisions, the loss felt for the 
decision 𝑝𝐷𝐴

𝑡 + 𝑟𝑆𝑅,↑𝑡 = −1.2 MW corresponding to alternative decisions 
can be calculated by the use of PDF of uncertainty. The value of energy 
regret (loss felt) of the above decision compared to alternative decisions 
is determined based on the probability of each segment (𝐽𝑧,𝑡), the 
penalty cost in the BAM (𝑍𝑡), and the difference between the energy 
value of each segment and the final energy plus the reserve bid of RVPP 
(𝜌𝐷𝐴,𝑄

𝑧,𝑡 𝛥𝑡). The average regret is calculated based on the sum of the 
regrets for each segment of PDF of the total output energy. Assuming 
𝑍𝑡 = 114 e/MWh, the regret of the proposed decision compared to the 
alternative decisions 𝑧 = 2, 3, 4 according to the PDF of the RVPP output 
energy is 91.2 e, 205.2 e, and 319.2 e. Considering the probability 
of the alternative decisions 𝑧 = 2, 3, 4 as 13.5%, 2.3%, and 0.2%, the 
average regret for this decision at the sample hour is 17.67 e. Note that 
the number of segments can be chosen to maintain the accuracy of the 
regret calculation without compromising the computational efficiency 
of the optimization problem.

2.5.3. Average regret of DAM electricity price
Formulations (11) calculate the average regret related to the uncer-

tainty of the DAM electricity price.

∑ ∑

[

𝐽𝐷𝐴
𝑧,𝑡 𝐾𝐷𝐴

𝑧,𝑡 𝑝𝐷𝐴,𝑄
𝑡 𝛥𝑡

]

≤ 𝛤𝐷𝐴𝑅𝑒𝑔𝑀𝑎𝑥,𝐷𝐴, (11a)

𝑡∈T 𝑧∈Z

9 
∑

𝑡∈T

∑

𝑧∈Z

[

𝐽 ′𝐷𝐴
𝑧,𝑡 𝐾 ′𝐷𝐴

𝑧,𝑡 𝑝𝐷𝐴,𝐴
𝑡 𝛥𝑡

]

≤ 𝛤 ′𝐷𝐴𝑅𝑒𝑔′𝑀𝑎𝑥,𝐷𝐴, (11b)

𝑝𝐷𝐴,𝑄
𝑡 + 𝑝𝐷𝐴,𝑄′

𝑡 = 𝑝𝐷𝐴
𝑡 + 𝑝𝐷𝐴,𝐴

𝑡 + 𝑝𝐷𝐴,𝐴′

𝑡 , ∀𝑡 (11c)

𝑝𝐷𝐴,𝑄
𝑡 ≤ 𝑃𝑡𝜄

𝐷𝐴
𝑡 , ∀𝑡 (11d)

𝑝𝐷𝐴,𝑄
𝑡 ≤ 𝑃𝑡(1 − 𝜒𝐷𝐴

𝑡 ) , ∀𝑡 (11e)

𝑝𝐷𝐴,𝑄′

𝑡 ≤ 𝑃𝑡𝜄
𝐷𝐴
𝑡 , ∀𝑡 (11f)

𝑝𝐷𝐴,𝑄′

𝑡 ≤ 𝑃𝑡𝜒
𝐷𝐴
𝑡 , ∀𝑡 (11g)

𝑝𝐷𝐴,𝐴
𝑡 ≤ 𝑃 ′

𝑡 (1 − 𝜄𝐷𝐴
𝑡 ) , ∀𝑡 (11h)

𝑝𝐷𝐴,𝐴
𝑡 ≤ 𝑃 ′

𝑡 (1 − 𝜒 ′𝐷𝐴
𝑡 ) , ∀𝑡 (11i)

𝑝𝐷𝐴,𝐴′

𝑡 ≤ 𝑃 ′
𝑡 (1 − 𝜄𝐷𝐴

𝑡 ) , ∀𝑡 (11j)

𝑝𝐷𝐴,𝐴′

𝑡 ≤ 𝑃 ′
𝑡 𝜒

′𝐷𝐴
𝑡 , ∀𝑡 (11k)

𝑝𝐷𝐴,𝑄
𝑡 , 𝑝𝐷𝐴,𝑄′

𝑡 , 𝑝𝐷𝐴,𝐴
𝑡 , 𝑝𝐷𝐴,𝐴′

𝑡 ≥ 0 , ∀𝑡 (11l)

Since Eq.  (6a) enforces to have three final values for DAM electric-
ity price (lower bound, median, and upper bound of the uncertainty 
bound), the average regret calculation is formulated for these three 
conditions in (11). Note that in the calculation of the average regret 
related to the DAM electricity price in (11), different type of parameters 
and variables are used compared to the constraints of the average 
regret related to the RVPP output energy in (10). The average regret 
associated with the uncertainty of the DAM electricity price for the 
cases where RVPP is an energy seller and an energy buyer is calculated 
in (11a) and (11b), respectively.

The average regret related to the DAM electricity price when the 
RVPP is an energy seller is calculated in (11a) by multiplying the 
probability of each segment of the PDF of the DAM electricity price 
(𝐽𝐷𝐴

𝑧,𝑡 ), by the negative deviation of the DAM electricity price from the 
median in each segment of the PDF of the DAM electricity price (𝐾𝐷𝐴

𝑧,𝑡 ), 
and by the total energy traded by the RVPP (𝑝𝐷𝐴,𝑄

𝑡 ) for the condition 
that the electricity price is at its median (𝜒𝐷𝐴

𝑡 = 0) and the RVPP is an 
energy seller (𝜄𝐷𝐴

𝑡 = 1). A similar approach with a different direction 
of the DAM electricity price deviation is used in (11b) to calculate the 
average regret in the case where RVPP is an energy buyer in the market. 
The maximum regret parameters for the DAM price, when the RVPP is 
an energy seller and an energy buyer, are calculated using 𝑅𝑒𝑔𝑀𝑎𝑥,𝐷𝐴 =
∑

𝑡∈T
∑

𝑧∈Z 𝐽𝐷𝐴
𝑧,𝑡 𝐾𝐷𝐴

𝑧,𝑡 𝑃𝑡𝛥𝑡 and 𝑅𝑒𝑔′𝑀𝑎𝑥,𝐷𝐴 =
∑

𝑡∈T
∑

𝑧∈Z 𝐽 ′𝐷𝐴
𝑧,𝑡 𝐾 ′𝐷𝐴

𝑧,𝑡 𝑃 ′
𝑡 𝛥𝑡, 

respectively. The average regret associated with DAM in (11a) and 
(11b) is controlled by the user-defined per-unit coefficients 𝛤𝐷𝐴 and 
𝛤 ′𝐷𝐴 for the hours when RVPP is an energy seller and buyer, respec-
tively. In accordance with the conditions specified in (11c)–(11l), the 
auxiliary variable 𝑝𝐷𝐴,𝑄

𝑡  has value only when the electricity price is at 
its median value and RVPP is an energy seller. These conditions are 
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Fig. 3. Calculation of average regret according to the PDF of DAM price in a sample hour that RVPP is energy buyer.
Table 2
Logic of different binary and auxiliary variables in Eqs. (11).
 𝜄𝐷𝐴

𝑡 𝜒𝐷𝐴
𝑡 𝜒 ′𝐷𝐴

𝑡 𝑝𝐷𝐴,𝑄
𝑡 𝑝𝐷𝐴,𝑄′

𝑡 𝑝𝐷𝐴,𝐴
𝑡 𝑝𝐷𝐴,𝐴′

𝑡  
 1 1 – 0 𝑝𝐷𝐴

𝑡 0 0  
 1 0 – 𝑝𝐷𝐴

𝑡 0 0 0  
 0 – 1 0 0 0 −𝑝𝐷𝐴

𝑡  
 0 – 0 0 0 −𝑝𝐷𝐴

𝑡 0  

determined based on the binary variables 𝜒𝐷𝐴
𝑡  and 𝜄𝐷𝐴

𝑡 , respectively. 
For the hours when RVPP is an energy buyer, the auxiliary variable 
𝑝𝐷𝐴,𝐴
𝑡  has value only when the electricity price is at its median and 
RVPP is an energy buyer. These conditions are determined based on 
the binary variables 𝜒 ′𝐷𝐴

𝑡  and 𝜄𝐷𝐴
𝑡 , respectively. The logic of different 

binary and auxiliary variables in Eqs. (11) is represented in Table  2.
Fig.  3 shows the calculation of the average regret for DAM electric-

ity price when RVPP is an energy buyer (𝜄𝐷𝐴
𝑡 = 0) in the market. If 

the optimization problem chooses the median value for the electricity 
price (𝜒 ′𝐷𝐴

𝑡 = 0), it can lead to regret for RVPP, because when the 
market clears, the deviation of the electricity price from the median 
value to a larger value results in additional costs or profit reduction for 
RVPP. The calculation of regret for each segment of DAM electricity 
price is based on the probability of each segment (𝐽 ′𝐷𝐴

𝑧,𝑡 ), the difference 
between the predicted price and the median price (𝐾 ′𝐷𝐴

𝑧,𝑡 ), and the final 
output energy of RVPP (𝑝𝐷𝐴,𝐴

𝑡 𝛥𝑡).

2.5.4. Average regret of SRM electricity price
Formulations (12) limit the average regret related to the uncertainty 

of the up and down SRM price.

∑

𝑡∈T

∑

𝑧∈Z

[

𝐽𝑆𝑅,↑(↓)
𝑧,𝑡 𝐾𝑆𝑅,↑(↓)

𝑧,𝑡 𝑟𝑆𝑅,𝑄,↑(↓)
𝑡

]

≤ 𝛤𝑆𝑅,↑(↓)𝑅𝑒𝑔𝑀𝑎𝑥,𝑆𝑅,↑(↓), (12a)

𝑟𝑆𝑅,𝑄,↑(↓)
𝑡 = 𝑟𝑆𝑅,↑(↓)𝑡 − 𝑟𝑆𝑅,𝐴,↑(↓)𝑡 , ∀𝑡 (12b)

𝑟𝑆𝑅,𝑄,↑(↓)
𝑡 ≤ 𝑅̄𝑆𝑅,↑(↓)

𝑡 (1 − 𝜒𝑆𝑅,↑(↓)
𝑡 ) , ∀𝑡 (12c)

𝑟𝑆𝑅,𝐴,↑(↓)𝑡 ≤ 𝑅̄𝑆𝑅,↑(↓)
𝑡 𝜒𝑆𝑅,↑(↓)

𝑡 , ∀𝑡 (12d)

𝑟𝑆𝑅,𝑄,↑(↓)
𝑡 , 𝑟𝑆𝑅,𝐴,↑(↓)𝑡 ≥ 0 , ∀𝑡 (12e)

According to constraints (6b) and (6c), the SRM price takes two 
conditions (median and lower bound of the SRM price). The loss 
felt associated with the condition that the median value is chosen in 
the optimization problem compared to decisions with the lower SRM 
clearance price is calculated in (12). The regret associated with the up 
and down SRM price uncertainty can be interpreted as the loss of profit 
10 
due to considering a higher SRM prediction than the actual SRM price 
clearance.

The average regret in (12a) is calculated by multiplying the proba-
bility of each segment of the PDF of the SRM electricity price (𝐽𝑆𝑅,↑(↓)

𝑧,𝑡 ), 
by the negative deviation of the SRM electricity price compared to 
the median value in each segment of the PDF of the SRM electric-
ity price (𝐾𝑆𝑅,↑(↓)

𝑧,𝑡 ), and the total reserve traded by RVPP when the 
SRM price is at its median value, represented by the auxiliary vari-
able 𝑟𝑆𝑅,𝑄,↑(↓)

𝑡 . The average regret related to SRM price in (12a) is 
controlled by the user-defined coefficient 𝛤𝑆𝑅,↑(↓). The maximum re-
gret parameter for the SRM price is calculated using 𝑅𝑒𝑔𝑀𝑎𝑥,𝑆𝑅,↑(↓) =
∑

𝑡∈T
∑

𝑧∈Z 𝐽𝑆𝑅,↑(↓)
𝑧,𝑡 𝐾𝑆𝑅,↑(↓)

𝑧,𝑡 𝑅̄𝑆𝑅,↑(↓)
𝑡 . The state of the auxiliary variable 

𝑟𝑆𝑅,𝑄,↑(↓)
𝑡  is controlled by (12b)–(12e) to set the regret value to zero 
when the SRM price deviates from its median to its worst case.

Fig.  4 shows the calculation of the average regret for the SRM 
electricity price. The regret must be considered for the time periods 
when the optimization problem chooses the median value for the SRM 
electricity price (𝜒𝑆𝑅,↑(↓)

𝑡 = 0). The regret for each segment of the PDF 
of the SRM electricity price is calculated based on the probability of 
each segment (𝐽𝑆𝑅,↑(↓)

𝑧,𝑡 ), the differences between the median electricity 
price and the predicted price (𝐾𝑆𝑅,↑(↓)

𝑧,𝑡 ), and the reserve bid of the RVPP 
in the SRM when the reserve price does not deviate (𝑟𝑆𝑅,𝑄,↑(↓)

𝑡 ).

2.6. MILP formulation

The set of equations that formulates, as an MILP, the regret-based 
flexible RO problem of RVPP proposed in this paper is thus as follows: 
(2); (3); (4a); (4c)–(4d); (5b)–(5j); (6); (7); (8a); (8c)–(8h); (9); (10); 
(11); and (12). Note that (7a) is the objective function of the MILP prob-
lem. In addition to the input parameters related to the characteristics 
of the RVPP units, the forecast data of the units and the forecast data 
of the electricity prices, the RVPP operator needs to assign its per unit 
regret limit by having the estimation of the maximum possible regret 
to solve the optimization problem. The optimization results include the 
economic and technical outputs of the RVPP and its units.

3. Simulation results

The simulation results of the proposed regret-based flexible RO 
model for RVPP are presented in this section. Without loss of generality, 
an RVPP in southern Spain with one wind farm, two solar PV plants, 
and a flexible demand is first used in the simulations. The computa-
tional efficiency of the proposed model is then assessed using a larger 
RVPP comprising 21 units. This RVPP includes 10 PV plants, 7 wind 
farms, one ESS (LI-ION battery), and 3 demands. The data for these 
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Fig. 4. Calculation of average regret according to the PDF of SRM price in a sample hour.
units are generated by applying specific modifications to the units in the
original RVPP described above. The ESS model and its associated data 
are sourced from [36]. The energy forecast bounds for different units 
of RVPP for a sample day of the spring season in southern Spain are 
presented in Fig.  5 [37,38]. The nominal capacity of the wind farm and 
the solar PV plants is 50 MW, and their operation costs are 10 e/MWh 
and 5 e/MWh, respectively. A flexible demand with 10% tolerance 
for additional demand flexibility is considered according to [33]. The 
forecast bounds of DAM and SRM electricity prices, which are taken 
from [39], are shown in Fig.  6.

Three case studies are conducted to analyze the performance of the 
proposed model, as follows.

• Case 1: Determine the optimal scheduling and bidding of RVPP by 
considering different percentage of regret limit of RVPP output 
energy, and DAM and SRM electricity price. 𝛤 = 𝛤𝐷𝐴 = 𝛤𝑆𝑅 =
1.0 − 0 for imbalance penalty cost 𝑍𝑡 = 3 times the DAM price.

• Case 2: Determine the necessary level of conservatism of RVPP 
against different uncertainties to obtain the maximum expected 
profit by considering different levels of forecast data accuracy and 
penalty costs in the BAM. 𝛤 = 𝛤𝐷𝐴 = 𝛤𝑆𝑅 = 1.0 − 0; forecast 
deviations: 0%, 50%, and 100%; imbalance penalty costs 𝑍𝑡 = 3, 
6 and 9 times the DAM price.

• Case 3: Evaluate the solution results and computational per-
formance of the proposed model for an RVPP with 21 units, 
compared to the stochastic model presented in [27], using out-
of-sample assessment. In the proposed model, 𝛤 = 𝛤𝐷𝐴 = 𝛤𝑆𝑅 =
1.0−0, while the number of scenarios in the stochastic model [27] 
ranges from 10 to 50. The imbalance penalty cost, 𝑍𝑡, is set to 9 
times the DAM price.

Simulations are performed on a Dell XPS with an i7-1165G7 2.8 GHz 
processor and 16 GB of RAM using the CPLEX solver in GAMS 39.1.1. 
The computation time of the different simulations of Case 1 and Case 
2 ranges between 1 and 60 s, which is highly suitable for market 
optimization problems. Additionally, the computation time in Case 3 
for different input parameters is less than 722 s, as detailed in Table  4.

3.1. Case 1

Fig.  6 shows the total traded energy and reserve of RVPP for 
different regret limits. Note that the input parameters 𝛤 , 𝛤𝐷𝐴, and 
𝛤𝑆𝑅 are per-unit economic values, which user can quickly compute 
these values from reasonable monetary numbers. The results show that 
depending on the value of total production and demand, RVPP can be 
a seller or buyer of energy in the market. A similar trend regarding 
11 
the trading energy direction of RVPP is kept for almost all regret 
limits except for hour 13. Between hours 1–7, although the demand 
is low, since the RVPP has no wind nor PV production in these hours, 
the RVPP is an energy buyer in the market. Between hours 8–9, the 
RVPP buys a significant amount of energy to supply its early morning 
demand. Between hours 14–19, due to the higher available energy of 
the ND-RESs of the RVPP and the reduction in demand, the RVPP 
behaves as an energy seller on the market.

For a per unit regret limit of 1.0, the uncertainty is not taken into 
account and the final values of DAM and SRM are equal to their median 
values. In this case, the RVPP usually sells more energy when it is an 
energy seller in the market and buys less energy when it is an energy 
buyer in the market compared to the lower per unit regret limits of 0.6 
and 0.2. However, in some hours, for example hours 10, 14, 23, this is 
not the case because RVPP prefers to provide more reserve compared 
to the lower regret limits. For a per unit regret limit of 0.6, the DAM 
electricity price variables deviate from the median to their worst case in 
hours 9, 11, 16, and 17. When the RVPP is the energy seller, the worst 
condition for the electricity price is when the price takes its minimum 
value, and for an energy buyer RVPP it occurs in the maximum bound 
of the electricity price forecast. The worst hours for the SRM prices are 
hours 17 and 18. For a regret limit of 0.2 per unit, the DAM and SRM 
electricity price deviations from the median to the worst case occur 
more often than for the regret limits of 1.0 and 0.6 per unit. The worst 
cases of positive deviations of DAM electricity price occur in hours 8, 9, 
10, 11, 13, and 21, while the worst cases of negative DAM electricity 
price deviations occur in hours 16, 17, 18, and 20. In most of these 
hours, the traded energy of RVPP is high, which results in the highest 
negative impact on the objective function.

Fig.  7 shows different financial metrics of RVPP for different per 
unit regret limits. The negative value for incomes means that the RVPP 
incomes from selling electricity are less than the RVPP costs of buying 
electricity from the market. The incomes come from bidding for the 
energy and/or reserve in the DAM and SRM (first term in the objective 
function (7a)). The operation costs are the second and third terms 
of (7a). The profit is the incomes from bidding on the market minus 
operation costs. The expected profit is the profit minus the robust cost 
(fourth term of (7a)) minus any regret cost (Eqs. (10a), (11a), (11b), 
and (12a)), which can be declared as the final profit of RVPP by 
taking into account the bidding and the clearing of the BAM. By 
considering a per unit regret limit of 1.0, the RVPP obtains the highest 
profit. However, this approach can result in a significant amount of 
regret. By lowering the regret limit, both the profit and the regret 
of RVPP decrease. The operation cost of RVPP for lower values of 
the regret limits is reduced because RVPP produces less energy in the 



H. Nemati et al. International Journal of Electrical Power and Energy Systems 167 (2025) 110594 
Fig. 5. The energy forecast data.
Fig. 6. RVPP traded energy and reserve versus electricity price for different regret limits 𝛤 = 𝛤𝐷𝐴 = 𝛤 𝑆𝑅 = 1.0, 0.6, 0.2 per unit.
market and buys more energy. In Fig.  7, the RVPP decision areas are 
categorized as optimistic, balanced, and pessimistic as an example. In 
this case, the RVPP with an optimistic decision (for regret limit per 
unit between 1.0–0.7) can achieve a higher expected profit compared 
to more conservative strategies. The maximum expected profit of −9.56 
ke on the market is obtained by considering a regret limit per unit of 
0.9. Note that in the Case 2, it is shown that the best decision of RVPP 
to achieve the highest expected profit varies depending on the forecast 
accuracy and BAM penalty cost.

Table  3 shows the information about the number of hours the 
uncertain parameters deviate from the median value to the worst 
case (uncertainty budget in the literature). The table shows that to 
achieve a per unit regret limit of 0.7, the worst case hours for all 
uncertain parameters are equal to or less than 2. To achieve lower 
12 
regret limits, deviations of more uncertain parameters are needed. To 
achieve a low per unit regret limit of 0.2, the maximum number of 
hours chosen for the uncertain parameters deviations related to SRM 
price and ND-RESs/demand energy is 4.

3.2. Case 2

Fig.  8 shows the expected profit of RVPP for different forecast 
deviations and different penalty costs 𝑍𝑡. For all penalty costs, a similar 
trend can be seen in the figure. By decreasing the regret limit, the 
expected profit first increases, since the decrement of the regret costs 
reduction is usually greater than the decrement of the profit reduction 
for higher values of the regret limit. This is due to the fact that a few 
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Fig. 7. Financial metrics of RVPP by considering different regret limits 𝛤 = 𝛤𝐷𝐴 = 𝛤 𝑆𝑅 = 1.0 − 0 per unit.
Table 3
Number of parameters’ deviations from the median value to the worst case versus regret 
limits 𝛤 , 𝛤𝐷𝐴 , and 𝛤 𝑆𝑅.
 𝛤 , 𝛤𝐷𝐴 , 𝛤 𝑆𝑅 DAM price Up/down SRM price Wind/PV1/

PV2/demand
 

 [p.u] [–] [–] [–]  
 1.0 0 0 0,0,0,0  
 0.9 0 0,1 0,0,0,0  
 0.8 1 2,2 2,0,0,1  
 0.7 1 2,2 2,0,1,1  
 0.6 4 2,2 2,0,0,2  
 0.5 5 4,4 1,3,1,2  
 0.4 7 3,3 2,1,3,2  
 0.3 9 4,4 4,2,4,3  
 0.2 10 4,4 3,2,2,4  
 0.1 14 5,5 6,5,6,4  
 0 24 11,11 22,22,22,24  

hours for the high regret limits are chosen as the worst case in the 
optimization problem (see Table  3), and these hours are the hours that 
have the greatest impact on regret reduction. By decreasing the regret 
limit after reaching the maximum expected profit, the expected profit 
has a slow decreasing trend up to a certain regret limit. For the low 
values of the regret limits, the expected profit decreases significantly 
due to the fact that the profit of RVPP suddenly decreases, while 
reducing the regret cost becomes more difficult and requires selecting 
more number of hours as the worst-case hours. For the higher values 
of the penalty cost, the RVPP must adopt more conservative strategies 
to achieve the maximum expected profit. The figure also shows that 
the expected profit of RVPP decreases as the percentage of forecast 
deviation increases. For the high regret limits, the expected profit 
reduction is less than for the lower value of the regret limits. This 
is due to the fact that a higher number of hours is selected as the 
worst case for the lower regret limits. The RVPP operator can use this 
figure to decide its appropriate level of conservatism against different 
uncertainties. The results of this figure will guide the RVPP operator 
13 
when bidding in the market. For example, for the 𝑍𝑡 = 3, 6, 9 times the 
DAM price, the optimistic, balanced, and pessimistic decisions against 
different uncertainties would each be appropriate approaches for the 
RVPP in each case.

3.3. Case 3

Fig.  9 shows the traded energy of the RVPP with 21 units, along with 
the output energy of its different production technologies and demands. 
The results indicate that the RVPP acts as an energy buyer in the market 
between hours 1–10 and as an energy seller between hours 11–24. 
The output energy from the RVPP units demonstrates that a significant 
portion of the RVPP energy comes from solar PVs production. The 
figure also shows that the ESS mainly discharges between hours 7–9 
and 20–22, to meet early morning and late-day demands, as solar PV 
production is zero or small at these hours. The ESS charges mainly 
between hours 16–19 when solar PV production is high and demand 
is lower.

The performance of the proposed model is compared against the 
stochastic model [27] using an out-of-sample assessment presented 
in [10]. To ensure a fair comparison, scenarios for different uncertain 
parameters in the stochastic programming model [27] are generated 
using Monte Carlo sampling based on the same historical dataset used 
to determine the bounds of the uncertain parameters in the proposed 
model. Additionally, distinct sets of data are utilized for the models 
and the out-of-sample assessment. It is worth noting that, for a fair 
comparison between the proposed model and the model in [27], the 
same set of scenarios is used for the out-of-sample assessment, ensur-
ing that the same randomness (or uncertainty) is introduced in both 
methods. The basic idea is to compare both methods under similar 
experimental conditions to ensure that any observed differences in 
performance are attributable to differences in the methodologies rather 
than to fluctuations in the experimental conditions. 

Table  4 presents the out-of-sample assessment results for the pro-
posed model under different per-unit regret limits. The table represents 
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Fig. 8. Expected profit of RVPP for different forecast deviations 0%, 50%, and 100%, for different penalty costs 𝑍𝑡 = 3, 6, 9 × DAM price for 𝛤 = 𝛤𝐷𝐴 = 𝛤 𝑆𝑅 = 1.0 − 0 per unit.
Fig. 9. Traded energy of RVPP with 21 units and the output energy of its different units (𝛤 = 𝛤𝐷𝐴 = 𝛤 𝑆𝑅 = 0.2 per unit).
the average sampled profit (excluding the penalization cost in each 
sample), the average sampled penalization cost, and the average sam-
pled net profit (calculated as the average sampled profit minus the 
penalization cost). These metrics are defined in [10]; for more informa-
tion, refer to the paper. The simulation results show that decreasing the 
per-unit regret limit (by adopting more robust strategies) significantly 
reduces the penalization cost of the RVPP, leading to a higher net profit 
for the RVPP. The RVPP achieves its highest net profit by adopting 
a per-unit regret limit of 0.2. For this regret limit, the penalization 
cost is reduced by 70.7% compared to the penalization cost at the 
maximum per-unit regret limit of 1. Table  5 provides the results for the 
stochastic programming model presented in [27], considering different 
numbers of scenarios. As the number of scenarios increases, the net 
profit of the RVPP also improves, underscoring the importance of 
selecting an appropriate number of scenarios in the stochastic opti-
mization problem. The maximum net profit of the RVPP is achieved 
with 50 scenarios. However, the computational burden for 50 scenarios 
increases significantly, reaching 12,474 s.

To further illustrate the effectiveness of the proposed method, Figs. 
10, 11, and 12 illustrate the distribution of different out-of-sample 
financial metrics across samples for the proposed model in comparison 
to the stochastic programming model [27]. The per-unit regret limit of 
0.2 in the proposed model and 50 scenarios in the model presented 
by [27] are selected for comparison, as these values result in the 
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Table 4
The out-of-sample assessment for the proposed model (21-unit RVPP) for 𝛤 = 𝛤𝐷𝐴 =
𝛤 𝑆𝑅 = 1.0 − 0 per unit.
 𝛤 , 𝛤𝐷𝐴 , 𝛤 𝑆𝑅 Average 

sampled
Average 
sampled

Average 
sampled

Computa-
tional time

 

 [p.u] profit [ke] penalization 
cost [ke]

net profit 
[ke]

[s]  

 1 45.24 63.62 −18.38 9  
 0.8 42.39 56.52 −14.13 73  
 0.6 37.62 54.79 −17.17 217  
 0.4 32.25 39.65 −7.40 404  
 0.2 23.34 18.60 4.74 722  
 0 11.61 7.33 4.28 114  

highest net profit for each model. The results demonstrate that the 
proposed model effectively maximizes the RVPP’s net profit across 
samples. Samples with higher profit occur more frequently in the 
model presented by [27] compared to the proposed model, as shown 
in Fig.  10. However, Fig.  11 demonstrates that the proposed model 
performs better in reducing penalization costs, with high penalization 
costs occurring less frequently. The proposed approach handles worse-
case condition better than stochastic programming in most samples. 
In contrast, the stochastic programming model provides a less resilient 
solution that offers less protection against penalization compared to the 
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Fig. 10. Sample distribution of profit for the proposed model and the model in [27] (𝛤 = 𝛤𝐷𝐴 = 𝛤 𝑆𝑅 = 0.2 per unit or 50 scenarios).
Fig. 11. Sample distribution of penalization cost for the proposed model and the model in [27] (𝛤 = 𝛤𝐷𝐴 = 𝛤 𝑆𝑅 = 0.2 per unit or 50 scenarios).
Table 5
The out-of-sample assessment for the stochastic programming model [27] (21-unit 
RVPP) for the number of scenarios ranges from 10 to 50.
 Number of Average 

sampled
Average 
sampled

Average 
sampled

Computational 
time

 

 scenarios [–] profit [ke] penalization 
cost [ke]

net profit [ke] [s]  

 10 40.65 44.08 −3.43 57  
 20 36.08 34.99 1.09 851  
 30 35.69 34.67 1.01 784  
 40 27.73 26.31 1.42 1574  
 50 25.94 21.03 4.91 12474  

proposed regret-based model. Finally, the results in Fig.  12 for the net 
profit of the RVPP demonstrate the strong performance of the proposed 
model across different samples.

4. Conclusion

This paper studies the simultaneous participation of RVPP in the 
day ahead and secondary reserve markets by considering the imbalance 
15 
penalty cost in the balancing market. The concept of average regret is 
used to assist the RVPP operator in visualizing the appropriate degree 
of conservatism against multiple uncertain parameters in the day ahead 
and secondary reserve market electricity prices, as well as the output 
energy of the RVPP. The proposed regret-based flexible robust opti-
mization model provides a more convenient way to determine the level 
of conservatism of the RVPP operator by determining the monetary 
parameter of the regret limit instead of the uncertainty budget used 
in the literature. The simulation results show that the hours with the 
highest traded energy are usually selected as the worst cases of the 
electricity price. By decreasing the regret limit, the sold and bought 
energy of RVPP is decreased and increased, respectively. Furthermore, 
the simulation results illustrate that depending on the desired regret 
limit of the RVPP, the penalty cost in the balancing market, and 
different forecast deviations, the best decision for RVPP can be an 
optimistic, balanced, or conservative strategy.  Finally, the simulation 
results for a larger RVPP demonstrate the computational efficiency of 
the proposed method. In the future work, the proposed average regret 
concept will be developed in the adaptive robust optimization of RVPP.
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Fig. 12. Sample distribution of net profit for the proposed model and the model in [27] (𝛤 = 𝛤𝐷𝐴 = 𝛤 𝑆𝑅 = 0.2 per unit or 50 scenarios).
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