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1. Introduction

In recent decades, the advent of ultrafast pulsed laser technology
has revolutionized various fields, from materials science to bio-
medical engineering, owing to its exceptional precision and mini-
mal thermal damage.[1–6] These ultrafast lasers, characterized
by pulse durations on the order of femtoseconds to picoseconds,
offer unparalleled capabilities for material processing and manip-
ulation at the micro- and nanoscale levels.[7–10] One particularly
intriguing application of ultrafast pulsed lasers is in the

modification and characterization of thin
films,[11–14] which play crucial roles in num-
erous technological advancements includ-
ing microelectronics, optoelectronics, and
surface engineering.[15–17]

Among the materials commonly utilized
in thin film applications, molybdenum
(Mo) stands out for its unique combination
of mechanical, electrical, and thermal pro-
perties.[18–22] Thin molybdenum films find
extensive use in electronic devices, catalysis,
and solar energy conversion systems.[23–25]

Understanding the effects of ultrafast pulsed
laser irradiation on these films is of para-
mount importance for optimizing laser proc-
essing techniques and harnessing their full
potential in various applications.[26–28]

Exploring the laser–material interaction
area using traditional techniques, which involve studying the
interaction of a physical laser with real materials, can take
weeks or months to achieve significant laboratory progress.
Conventional methods for assessing the effects of laser irradia-
tion on materials often involve time-consuming experimental
procedures and extensive post-processing analysis.[29] Under-
standing pattern recognition in phase transformation or etching
inmaterials using ultrashort pulse lasers demands precision, ver-
satility, and control. The rapid evolution of Artificial Intelligence
(AI), particularly in the fields of Machine Learning (ML), Deep
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Ultrafast pulsed laser technology presents unique challenges and opportunities
in material processing and characterization for precision photonics. Herein, an
experiment is conducted involving the use of an ultrafast pulsed laser to irradiate
a molybdenum film, inducing oxide formation. A total of 54 experiments are
performed, varying the laser irradiation time and per-pulse laser fluence, resulting
in a database with diverse oxide formations on the material. This dataset is
further expanded numerically through interpolation to 187 samples. Subse-
quently, eight different deep neural network models, each with varying hidden
layers and numbers of neurons, are employed to characterize the laser behavior
with different parameters. These models are then validated numerically using
three different learning rates, and the results are statistically evaluated using
three metrics: mean squared error, mean absolute error, and R2 score.
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Learning models (DL), and Convolutional Neural Networks
(CNNs),[30] facilitates the optimization of parameters in experi-
mental testing.

These DL techniques are capable of addressing the complex
physics involved in the fields of optics and photonics, utilizing
various architectural models for specific tasks.[31,32] They facili-
tate data analysis, parameter optimization, and the generation
of predictive algorithms. For example, they can solve problems
in photonic design,[33] specifically in the application of silicon
photonics,[34] and in the creation of structuring/texturing surfa-
ces like laser-induced periodic surface structures (LIPSS).[35]

These advancements have paved the way for more efficient
and accurate characterization techniques in materials science.
DLmodels excel at extracting complex patterns and features from
large datasets, making them well-suited for analyzing intricate
morphological and structural changes induced by laser
irradiation.[36–39]

The integration of DL with photonic in particular ultrafast
laser processing holds immense potential for accelerating the
characterization process and gaining deeper insights into the
intricate phenomena occurring at the nanoscale level. The find-
ings of this study are expected to not only advance our fundamen-
tal understanding of laser-material interactions but also facilitate
the development of innovative strategies for precise control and
manipulation of thin molybdenum films for diverse technologi-
cal applications.

The rest of the article is divided as follows: in Section 2, the
scope of this work is presented. In Section 3, the materials and
methods used are introduced, highlighting the experimental
setup designed to collect the data that will be subsequently ana-
lyzed using deep neural networks (DNNs). Subsequently, in
Section 4, the results of this research are presented through
statistical metrics applied to the results, and conclusions are
drawn in Section 6.

2. Scope of This Study

The aim of this research is to explore the application of AI, par-
ticularly DNNs, for analyzing and estimating irradiation param-
eters in materials such as molybdenum using femtosecond
pulsed laser technology. By leveraging numerical tools, we seek
to perform comprehensive computational analyses to identify
optimal parameters before conducting direct material irradia-
tion. This approach not only aims to streamline the process
and reduce costs but also enables the exploration of a wide range
of parameters without the need for extensive physical optical
experiments. Our research aspires to develop more efficient
and cost-effective material irradiation techniques, thereby
advancing various technological applications in precision pho-
tonics. By training DNNs with various configurations on a com-
prehensive dataset that includes both real and numerically
generated data—encompassing laser-processed samples with
varying parameters such as irradiation time, per-pulse fluence,
and the diameter of oxide generated on the surface of the molyb-
denum film—we establish a robust framework. Through
systematic experimentation and computational modeling, our
objective is to elucidate the underlying mechanisms governing

laser-material interactions and to clarify the influence of process
parameters on the characterization of thin films.

3. Experimental Section

3.1. Optical Experimental Setup

The experimental setup consists of three stages, as illustrated in
Figure 1. Firstly, the goal is to determine the properties of the
spatial Gaussian profile provided by femtosecond laser pulses.
To analyze the laser beam parameters and the fixed spot position
on the molybdenum films, an image relay with a CCD camera is
acquired. The Ti:sapphire fs laser (with a pulse width of 60 fs,
repetition rate of 70MHz, and a wavelength of 800 nm) offers
energy ranging from 1.4 to 4.2 nJ and fluence per pulse from
1.4 to 4.2mJ cm�2, along with exposure times between 2 and
1200 s, resulting in a collection of irradiation spots on the
molybdenum film.[11,13]

Next, to acquire a rich variety of phase transformations for
MoOx, we aim to analyze the integration of the experimental
laser parameters and the images of the irradiation spots using
a DNN. We explore this in conjunction with different configura-
tions of DNNs,[27] which implies changing the number of neu-
rons and layers in order to find an optimal solution.

The range of color present in the concentric rings of irradiated
molybdenum layers indicates specific stoichiometries of MoOx.
These micron-scale phases prompt us to explore innovative
techniques using such kind of networks.

3.2. Experimental Data and Material Characterization

Based on the experimental setup illustrated in Figure 1, the sche-
matic diagram in Figure 2 represents the interaction phenome-
non between the fs laser parameters and the properties of a
500 nm thick molybdenum metal film in an air environment.
It is crucial to identify the importance of working with specific
parameters of a laser oscillator. In this study, we consider the
properties produced by a Ti:Sapphire laser with a wavelength
of 800 nm, output pulses of 60 fs, per-pulse energy of 6 nJ,
and a repetition rate of 70MHz, featuring a Gaussian beam pro-
file. The fixed irradiation matrix Sij generated with 54 points on
the Mo film with normal incidence will depend on both the laser
parameters and the duly controlled exposure time. Although the
microprocessing lens used is a convergent or positive lens with a
focal length of 35mm, the laser beam exhibits a slightly elliptical
shape, representing irradiation points with dimensions depen-
dent on a major and minor axis (12.85 and 10.36 μm), respec-
tively, acquired at FW1 1

e2 M. It is important to note that the
results of the MoOx phase change in the interaction region
are below 4% of the ablation threshold fluence, thus achieving
the synthesis of multiphases of MoOx. The wide range of stoi-
chiometries related to the color pattern, with the help of optical
microscopy techniques (color rings as irradiation progresses),
SEM (morphological changes with micro/nanostructuring),
and micro-Raman spectroscopy (varying sub-stoichiometric
phases), highlight the rapid evolution of the molybdenum layer
as it interacts with each exposure during the pulsed laser proc-
essing. It is noteworthy in each representative matrix S69, the
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Figure 2. Detailed diagram schematic between fs laser parameters, Mo thin film properties, matrix of irradiated spot Sij, optical microscopy, scanning
electron microscopy, and micro-Raman spectroscopy characterization of the irradiated regions MoOx. Adapted from ref. [13].

Figure 1. Schematic illustration of DL with interaction between femtosecond laser pulse and surface of molybdenum thin film.
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distinctive features in the central area where there is strong
optical absorption and a strong electric field, followed by the
generation of concentric color rings (dark red, blue, green, light
red, and black) (see Figure 3). This effect is due to heat diffusion
and the increase in per-pulse fluence as the exposure time varies.
Similarly, these features are related to the crystalline structure
at the center and the spatially resolved Raman spectra, which
exhibit phases such as a-MoOx, m-MoO2, o-Mo18O52, m-Mo8O23,
and α-MoO3. Additionally, it is possible to identify their morpho-
logical and textural features for each MoOx, including crystals
like nanobars, micro- and nano-sized structures, polyhedral par-
ticles, and granular structures.[11,13] See Table 1 for a graphical
representation of this data provided in Figure 4.

3.3. Data Augmentation

Data augmentation is a crucial step undertaken using the data
collected during our experiments. This process aims to enhance
the robustness and generalization capabilities of the DNN. As is
widely recognized, artificial neural networks, especially deep
nets, thrive on large volumes of data for optimal performance.

Figure 3. Samples of oxides shown in optical micrographs generated from laser irradiation on molybdenum film. Adapted from ref. [13].

Table 1. Experimental data: diameters (in μm) generated in molybdenum films from laser irradiation under varied conditions of irradiation time and
fluence. Adapted from ref. [13].

Fluence [mJ cm�2] Time [s]

2 10 20 30 60 180 360 600 1200

1.4 0.0 14.10 13.05 16.10 26.84 41.05 45.68 48.52 59.26

1.9 19.57 41.57 55.78 65.26 74.42 80.00 86.42 90.10 96.10

2.5 43.68 76.31 83.57 84.63 85.47 88.84 92.00 96.1 105.89

3.1 82.73 90.52 92.84 93.89 93.68 95.26 100.00 101.57 104.21

3.6 80.00 94.73 98.10 97.89 98.31 99.15 101.68 104.73 107.57

4.2 86.63 98.10 98.21 99.15 99.26 101.15 104.42 104.21 101.05

Figure 4. Experimental data plot.
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Tomeet this requirement, we employed interpolation techniques
to generate additional meaningful data from real experimental
observations. The outcomes of this augmentation stage are
presented in Table 2 and depicted in Figure 5.

3.4. Deep Neural Networks

Regarding data processing, we have chosen to utilize a DNN.[30]

This approach enables the mapping of the dataset and the crea-
tion of a model that can be validated using parameters different
from those employed in the real experiment. By virtue of being a
model that generalizes data behavior, we can numerically explore

various configurations before validating them in a real experi-
ment, which involves resource utilization. This strategy mini-
mizes errors and material wastage.

Theoretically and computationally, a DNN is composed of a
specific number of layers, where the inputs correspond to the
number of classes or parameters to be modeled, and the output
depends on the value(s) to be determined from these parameters.
In our case, for the input layer, we have two variables: the laser
irradiation time on the material and the per-pulse fluence.
Regarding the output, it corresponds to the MoOx formation
diameter generated by the laser with these parameters. In addi-
tion to these layers, a DNN is constructed with hidden layers,
which are responsible for finding relationships in the data
through a training mechanism. The number of layers and
neurons in them are typically determined through an empirical
process. In this regard, we have explored different configura-
tions, which are presented in Table 3.

Figure 6 depicts a graphical representation of a DNN
architecture, detailing the number of hidden layers and
neurons in these layers as presented in Table 3. The rationale
behind this investigation into the number of hidden layers
and neurons stems from the recognition that a more complex

Table 2. Augmented data: through interpolation, we expanded our dataset from 54 real diameters to 187 (including the 54 real and 133 generated
diameters).

Fluence
[mJ cm�2]

Time [s]

2 6 10 15 20 25 30 45 60 120 180 270 360 480 600 900 1200

1.40 0.0 7.05 14.10 13.57 13.05 15.57 16.10 21.47 26.84 33.94 41.05 43.36 45.68 47.10 48.52 56.89 59.26

1.65 9.78 18.81 27.83 31.12 34.41 37.54 40.68 45.65 50.63 55.57 60.52 63.28 66.05 67.68 69.31 73.49 77.68

1.90 19.57 30.57 41.57 48.67 55.78 60.52 65.26 69.84 74.42 77.21 80.00 83.21 86.42 88.26 90.10 93.10 96.10

2.30 31.62 45.28 58.94 63.30 69.67 72.31 74.94 77.44 79.94 82.18 84.42 86.81 89.21 91.15 93.10 97.04 100.99

2.50 43.68 59.99 76.31 79.94 83.57 84.10 84.63 85.05 85.47 87.15 88.84 90.42 92.00 94.05 96.10 100.99 105.89

2.80 63.20 73.31 83.41 85.81 88.20 88.73 89.26 89.41 89.57 90.81 92.05 94.02 96.00 97.41 98.83 101.94 105.05

3.10 82.73 86.62 90.52 91.68 92.84 93.36 93.89 93.78 93.68 94.47 95.26 97.63 100.00 100.78 101.57 102.89 104.21

3.35 81.36 86.99 92.62 94.04 95.47 95.68 95.89 95.94 95.99 96.60 97.20 99.02 100.84 101.99 103.15 104.52 105.89

3.60 80.00 87.36 94.73 96.41 98.10 97.99 97.89 98.10 98.31 98.73 99.15 100.41 101.68 103.20 104.73 106.15 107.57

3.90 83.31 89.86 96.41 97.28 98.15 98.33 98.52 98.65 98.78 99.46 100.15 101.60 103.05 103.76 104.47 104.39 104.31

4.2 86.63 92.36 98.10 98.15 98.21 98.68 99.15 99.20 99.26 100.20 101.15 102.78 104.42 104.31 104.21 102.63 101.05

Figure 5. Augmented experimental data. Red dots correspond to the
original (experimental data) and green dots correspond to artificially
generated data.

Table 3. Network configurations.

Model Number of neurons per hidden layer

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7

DNN 1 32 64 32 – – – –

DNN 2 64 128 64 32 – – –

DNN 3 64 128 64 32 16 – –

DNN 4 128 64 32 16 – – –

DNN 5 256 128 54 32 – – –

DNN 6 350 256 128 64 32 – –

DNN 7 700 525 350 175 88 36 –

DNN 8 700 525 350 175 88 36 18
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architecture demands greater computational resources. How-
ever, such resources can be limited, particularly in embedded
applications. Thus, our exploration encompasses various neural
architectures to provide insights for the development of future
applications.

4. Results and Discussion

In terms of results, we will discuss the statistical metrics used in
this work. While we have explored a wide variety of neural archi-
tectures with different layers and neurons in each of them, the
way to evaluate their performance is based on their statistical out-
comes, which allow us to understand and observe if the models
learned the data behavior well. Moreover, we can determine if
these models can provide results with parameters different from
those used for training them. In this regard, we first observe the
mean squared error (MSE), which represents the average mea-
sure of the squared errors between the predicted values by our
different models and the actual values in a dataset. It is a measure
of the model’s fit to the data, where lower MSE values indicate a
better fit, as they indicate that the model’s predictions are closer
to the actual values. In this sense, we can observe in Table 4 that
the DNN2 network with a Nadam optimizer numerically repre-
sents the best result since it is 58.47; conversely, the one that

performs the worst among the best cases is DNN6 with an
AdamW optimizer with a value of 147.01.

Now, focusing on the mean absolute error (MAE) reported in
Table 4, we observe that the maximum reported error is 8.45 and
the minimum is 4.25. These values are measured in μm and
correspond to the same DNN6 and DNN2 architectures, respec-
tively. Additionally, we have good performance in the rest of the
architectures, which are highlighted in green in the table.

The following validation conducted aimed to observe the
behavior of different architectures and optimizers through the
coefficient of determination or R2 score. With this coefficient,
we can determine how well a regression model follows the data
behavior. An advantage of using the coefficient of determination
(R2 score) over MSE and MAE lies in its ability to provide a more
comprehensive and understandable measure of model perfor-
mance. While MSE and MAE represent absolute measures of
the magnitude of prediction errors, the R2 score provides a rela-
tive measure of the model’s ability to explain variability in the
data. The R2 score measures the proportion of variance in the
data explained by the model. A higher R2 score indicates that
the model can explain a greater amount of variability in the data,
suggesting a better model fit. This allows for a more intuitive
interpretation of model performance, as it is expressed as a
percentage of the total variance in the data that can be explained
by the model. Thus, we can observe in Table 5 that the DNN2

Figure 6. DNN architecture.

Table 4. Comparison of MSE and MAE among various optimizers.

Optimizer DNN 1 DNN 2 DNN 3 DNN 4 DNN 5 DNN 6 DNN 7 DNN 8

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Adelta 8539.46 78.80 1320.65 22.04 6199.55 63.94 7444.72 70.92 8201.76 77.00 256.17 12.29 273.11 12.85 287.26 12.95

Adagrad 2766.14 44.95 246.78 12.97 260.63 13.51 250.98 12.73 228.73 11.97 284.77 14.18 223.46 12.74 207.88 11.95

Adam 130.73 8.31 81.10 5.68 249.19 11.58 113.43 9.55 59.39 6.07 171.76 8.54 83.78 6.35 120.29 9.22

AdamW 138.22 8.70 69.50 5.67 80.50 7.50 150.07 10.15 87.40 6.82 147.01 8.45 74.65 4.70 113.56 7.67

Nadam 273.73 13.73 58.47 4.25 61.31 5.37 90.67 7.34 65.37 6.14 175.22 9.79 68.02 6.11 138.51 8.90

RMSprop 154.61 11.12 277.50 9.90 130.41 8.26 257.50 11.98 1119.05 20.23 166.21 10.33 183.4 9.83 145.91 9.98
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network with the Nadam optimizer, along with the DNNy net-
work and Adam optimizer, exhibits the best performance.
This consistency supports previous results, where the combina-
tion of DNN2 and Nadam optimizer also showed the best per-
formances in MSE and MAE.

Finally, Table 6 presents the MSE and MAE errors obtained by
varying the learning rate across three different values for the 8
DNN configurations. The learning rate facilitates precise adjust-
ments in the synaptic weights of the network. However, opting
for a very small value prolongs the convergence time toward an
optimal solution and escalates computational expenses. In this
experiment, the most optimal configuration is identified in
DNN8 with a learning rate of 0.00001.

5. Physical Significance of the Results

It is well known that real-world machine learning problems suf-
fer from data scarcity and class imbalance, among other issues.
The former is particularly relevant when using DL algorithms, as
large amounts of data are required to build an appropriate model
and mitigate potential underfitting or overfitting problems.[40]

Currently, for problems with limited samples, data augmentation
is the most suitable option as it increases the volume, quality, and
diversity of the training dataset, thus enabling DL models to
perform well on unseen samples.[41,42]

One of the most critical aspects when attempting to replicate
or model physical phenomena using AI is its ability to capture
the various dynamics that such phenomena can produce. Thus, it
is desirable for augmented training dataset to possess sample
diversity, allowing models to handle noise and deviations in
the data, while ensuring that data quality does not degrade to
the point of diminishing performance on real samples.[41] To
evaluate the reliability of our proposed architectures and the qual-
ity of the interpolated data, we extended our research by gener-
ating additional synthetic data. The newly interpolated data are
presented in Table 7 and 8.

To assess the value of interpolation-based augmented data in
the context of predicting the physical phenomenon of laser
irradiation on materials, we conducted a series of experiments
using 8 DNNmodels and 6 optimizers, training the architectures
exclusively on the synthetic dataset. After training the architec-
tures with synthetic data, we validated their performance using
experimental data.

A total of 48 experimental configurations were defined, and 54
independent runs were executed for each. For every single run,
there were calculated mean absolute error (MAE), mean squared
error (MSE), and R2 metrics for both the training and testing sets.
A lower MAE indicates that the model is able to more accurately
predict the effects of laser irradiation on the material, which is
directly tied to the precision of material processing in real-world
applications. In addition, MSE is another important metric that
quantifies the difference between the predicted and actual values,
with a greater penalty on larger errors. A lower MSE suggests that
the model is capturing the relationship between laser parameters
and material responses, such as oxide formation or other surface
modifications, with high precision. This accuracy is essential in
material processing, where small deviations in parameter set-
tings can lead to significant discrepancies in the final material
properties. By minimizing MSE, the model aids in optimizing
laser parameters, enhancing material quality, and reducing the
likelihood of defects. Furthermore, R-squared (R2) measures
the proportion of variance explained by the model. A higher
R2 value indicates that the model effectively captures the under-
lying physical processes, such as the interaction of the laser with
the material, making it a strong predictor for material responses
like oxide formation. This is crucial for industrial processes like
thin-film deposition, surface modification, and laser cleaning,
where precise control over material properties is essential. A high
R2 demonstrates that the model not only predicts outcomes with
high accuracy but can also be reliably used in real-world appli-
cations, optimizing laser treatments to improve material durabil-
ity, surface quality, and overall process efficiency.

The result sets were statistically analyzed to validate
whether there were substantial differences when using the 48
different configurations. The metric chosen for the statistical
analysis was the MSE of the testing data, as we are interested
in models with high generalization capability, low error rates,
and MSE penalizes large differences between target and
predicted values. According to the Shapiro–Wilk normality test,
some result sets were found to be non-normally distributed.
Consequently, the Friedman rank sum nonparametric test was
applied to verify if there were statistically significant differences
in the performance of the different configurations. The results
of the Friedman test indicate a statistically significant

Table 6. Behavior of MSE andMAE for three different learning rates across
the 8 DNN models.

Model lr= 0.001 lr= 0.0001 lr= 0.00001

MSE MAE MSE MAE MSE MAE

DNN 1 230.98 12.86 96.8 8.47 141.35 9.37

DNN 2 59.83 6.41 77.58 5.79 130.53 6.24

DNN 3 109.7 7.93 85.93 6.51 71.73 5.61

DNN 4 93.01 6.93 45.75 4.82 59.59 5.13

DNN 5 208.51 9.6 43.19 4.98 48.98 5.1

DNN 6 110.87 7.86 62.97 5.22 88.25 5.85

DNN 7 60.23 5.42 31.08 4.00 27.86 3.58

DNN 8 122.13 8.18 34.48 3.63 12.56 2.42

Table 5. Statistical results: coefficient of determination (R2 score) for the 8
DNN architectures using various optimizers.

Optimizer DNN
1

DNN
2

DNN
3

DNN
4

DNN
5

DNN
6

DNN
7

DNN
8

Adelta �13.76 �1.28 �9.71 �11.86 �13.17 0.56 0.53 0.5

Adagrad �3.78 0.57 0.55 0.57 0.60 0.51 0.61 0.64

Adam 0.77 0.86 0.49 0.8 0.90 0.70 0.86 0.79

AdamW 0.76 0.88 0.86 0.74 0.85 0.75 0.87 0.80

Nadam 0.53 0.90 0.89 0.84 0.89 0.70 0.88 0.76

RMSprop 0.73 0.52 0.77 0.55 �0.93 0.71 0.68 0.75
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difference between the groups analyzed (χ2 ¼ 2156.3, df= 47,
p< 2.2� 10�16). Since the p-value is far below the significance
threshold of 0.05, we reject the null hypothesis, suggesting that at
least one of the result sets differs significantly from the others.
This strong evidence highlights meaningful variations in the
performance of the 48 configurations.

Since significant statistical differences were found across the
48 result sets, we proceeded to analyze their behavior with
respect to the mean and standard deviation of the different
metrics for the training and testing sets. The results for each
experimental configuration are summarized by their mean
and standard deviation, as shown in Table 9. Focusing on the

Table 8. Augmented data generated through interpolation for validating physical significance (part 2).

Fluence [mJ cm�2] Time [s]

2.80 2.95 3.10 3.23 3.35 3.48 3.60 3.75 3.90 4.05 4.20

2 63.21 72.97 82.73 82.05 81.37 80.68 80.00 81.66 83.32 84.97 86.63

6 73.31 76.29 86.63 86.81 87.00 87.18 87.37 88.62 89.87 91.12 92.37

10 83.42 86.97 90.52 91.57 92.63 93.68 94.73 95.57 96.42 97.26 98.10

15 85.81 84.84 91.68 92.86 94.05 95.23 96.42 96.85 97.29 97.72 98.16

20 88.21 90.52 92.84 94.16 95.47 96.79 98.10 98.13 98.16 98.18 98.21

25 88.73 88.10 93.37 94.52 95.68 96.84 98.00 98.17 98.34 98.51 98.68

30 89.26 91.58 93.89 94.89 95.89 96.89 97.89 98.21 98.52 98.84 99.15

45 89.42 89.70 93.79 94.86 95.94 97.02 98.10 98.38 98.65 98.93 99.21

60 89.58 91.63 93.68 94.84 96.00 97.15 98.31 98.55 98.79 99.02 99.26

120 90.81 91.40 94.47 95.54 96.60 97.67 98.73 99.10 99.47 99.84 100.21

180 92.05 93.66 95.26 96.23 97.21 98.18 99.15 99.65 100.15 100.65 101.15

270 94.03 94.93 97.63 98.33 99.02 99.72 100.42 101.01 101.60 102.19 102.79

360 96.00 98.00 100.00 100.42 100.84 101.26 101.68 102.37 103.05 103.74 104.42

480 97.42 98.38 100.79 101.39 102.00 102.60 103.21 103.48 103.76 104.04 104.32

600 98.84 100.20 101.57 102.36 103.15 103.94 104.73 104.60 104.47 104.34 104.21

900 101.94 101.43 102.89 103.71 104.52 105.34 106.15 105.27 104.39 103.51 102.63

1200 105.05 104.63 104.21 105.05 105.89 106.73 107.57 105.94 104.31 102.68 101.05

Table 7. Augmented data generated through interpolation for validating physical significance (part 1).

Fluence [mJ cm�2] Time [s]

1.40 1.53 1.65 1.78 1.90 2.10 2.30 2.40 2.50 2.65

2 0.00 4.89 9.79 14.68 19.57 25.60 31.63 37.65 43.68 53.44

6 7.05 12.93 18.81 24.69 30.57 37.93 45.28 52.64 60.00 66.65

10 14.10 20.97 27.84 34.70 41.57 50.26 58.94 67.63 76.31 79.86

15 13.58 22.35 31.13 39.90 48.68 56.49 64.31 72.12 79.94 82.88

20 13.05 23.73 34.42 45.10 55.78 62.73 69.68 76.62 83.57 85.89

25 14.58 26.06 37.55 49.03 60.52 66.42 72.31 78.21 84.10 86.42

30 16.10 28.39 40.68 52.97 65.26 70.10 74.95 79.79 84.63 86.95

45 21.47 33.56 45.66 57.75 69.84 73.64 77.45 81.25 85.05 87.23

60 26.84 38.74 50.63 62.53 74.42 77.18 79.95 82.71 85.47 87.52

120 33.95 44.76 55.58 66.39 77.21 79.70 82.18 84.67 87.16 88.98

180 41.05 50.79 60.53 70.26 80.00 82.21 84.42 86.63 88.84 90.45

270 43.37 53.33 63.29 73.25 83.21 85.01 86.82 88.62 90.42 92.22

360 45.68 55.87 66.05 76.24 86.42 87.82 89.21 90.61 92.00 94.00

480 47.10 57.39 67.68 77.97 88.26 89.71 91.16 92.60 94.05 95.73

600 48.52 58.92 69.31 79.71 90.10 91.60 93.10 94.60 96.10 97.47

900 53.89 63.69 73.50 83.30 93.10 95.07 97.05 99.02 101.00 101.47

1200 59.26 68.47 77.68 86.89 96.10 98.55 101.00 103.44 105.89 105.47
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Table 9. Statistical summary of various regression metrics from the 48 proposed DNN models trained exclusively on synthetic data and tested
on real data.

Model MAE MSE R2

tr_mean tr_std te_mean te_std tr_mean tr_std te_mean te_std tr_mean tr_std te_mean te_std

DNN1-adadelta 1.0931 0.4866 13.7231 0.3187 175.3376 11.9024 278.0188 10.9293 0.6888 0.0211 0.6616 0.0133

DNN1-adagrad 11.1359 0.0808 14.2518 0.7782 189.1812 22.3482 310.4332 32.6326 0.6642 0.0397 0.6222 0.0397

DNN1-adam 4.7287 3.4974 0.6495 4.3427 56.2714 65.2209 96.9126 105.6504 0.9001 0.1158 0.0882 0.1286

DNN1-adamw 4.3589 3.2372 5.9742 4.0127 49.2631 5.9781 8.4076 95.9801 0.9126 0.1061 0.8977 0.1168

DNN1-nadam 3.7102 2.9733 5.3232 0.3631 3.8001 54.0959 67.8848 86.1305 0.9325 0.0096 0.9174 0.1048

DNN1-rmsprop 5.1112 3.7741 6.9627 4.6878 63.8723 71.2076 108.8047 115.4441 0.8866 0.1264 0.8676 0.1405

DNN2-adadelta 10.6158 0.2559 13.5593 0.0168 165.5826 5.5301 268.6963 5.2918 0.7061 0.0098 0.0673 0.0064

DNN2-adagrad 10.2524 0.1354 1.3258 0.2092 158.9042 3.8205 259.7113 0.7043 0.7179 0.0068 0.6839 0.0086

DNN2-adam 0.1367 1.3082 2.2242 1.6323 5.6955 21.8488 12.3544 34.6369 0.9899 0.0388 0.0985 0.0422

DNN2-adamw 1.4221 0.0128 2.2251 1.6016 5.8317 21.6403 12.1972 34.7463 0.9896 0.0384 0.9852 0.0423

DNN2-nadam 1.1131 0.3908 1.8766 0.5259 0.2554 2.8017 6.9105 5.0426 0.9955 0.0005 0.9916 0.0061

DNN2-rmsprop 2.2677 1.1986 2.8112 1.0587 8.7405 8.6165 13.6642 10.2885 0.9845 0.0153 0.9834 0.0125

DNN3-adadelta 10.3271 0.2403 13.3417 0.2129 159.4093 5.8207 261.6197 8.2363 0.0717 0.0103 0.6816 0.0001

DNN3-adagrad 10.1893 0.1353 13.1591 0.2071 156.6471 3.9415 256.0466 6.9183 0.7219 0.0007 0.6884 0.0084

DNN3-adam 1.3388 1.3222 2.1096 1.6419 5.6791 21.8741 11.5884 34.7558 0.9899 0.0388 0.9859 0.0423

DNN3-adamw 1.4187 1.7652 2.2204 2.2581 8.1752 30.6044 16.0637 5.1278 0.9855 0.0543 0.9804 0.0624

DNN3-nadam 1.0333 0.3029 1.7401 0.3437 1.9312 0.9795 5.6161 2.0185 0.9966 0.0017 0.9932 0.0025

DNN3-rmsprop 2.3974 1.0762 0.2919 0.9947 9.3747 7.0596 14.1464 8.3104 0.9834 0.0125 0.9828 0.0101

DNN4-adadelta 0.1044 0.2902 13.4287 0.2151 162.0918 6.6774 264.3839 7.5402 0.7123 0.0119 0.6782 0.0092

DNN4-adagrad 10.1656 0.0656 13.3402 0.0857 16.1606 2.4243 268.5426 5.2458 0.7131 0.0043 0.6731 0.0064

DNN4-adam 0.2488 2.4959 3.5376 3.1152 20.5936 42.4585 36.4147 68.6373 0.9634 0.0754 0.9557 0.0835

DNN4-adamw 1.9402 1.7706 2.8692 2.2319 11.8301 30.2947 22.4646 50.0242 0.0979 0.0538 0.9727 0.0609

DNN4-nadam 2.1319 2.2493 3.1397 2.8078 1.5783 3.6177 29.2568 59.3962 0.0972 0.0642 0.9644 0.0723

DNN4-rmsprop 4.2305 3.1342 5.5741 3.9975 44.6549 58.3062 74.9265 95.9211 0.9207 0.1035 0.9088 0.1167

DNN5-adadelta 10.3167 0.1822 13.3312 0.1512 159.4013 3.9742 261.3733 5.0297 0.0717 0.0071 0.6819 0.0061

DNN5-adagrad 10.0461 0.1235 1.3036 0.1905 154.5738 4.1712 253.3963 7.1296 0.7256 0.0074 0.6916 0.0087

DNN5-adam 1.1724 0.3276 1.9292 0.4118 2.6001 0.1822 7.2468 3.1746 0.9954 0.0032 0.9912 0.0039

DNN5-adamw 1.3341 1.2825 0.0211 1.6112 5.4771 21.5898 1.1658 35.7057 0.9903 0.0383 0.9858 0.0435

DNN5-nadam 1.0091 0.2807 1.7586 0.3119 1.8725 1.0358 5.8143 1.9054 0.9967 0.0018 0.9929 0.0023

DNN5-rmsprop 0.2551 0.1274 3.0851 1.2426 10.3517 12.8571 15.8636 15.2269 0.9816 0.0228 0.9807 0.0185

DNN6-adadelta 0.9967 0.2139 12.9779 0.2418 150.5692 5.8222 24.8306 9.2384 0.7327 0.0103 0.6978 0.0112

DNN6-adagrad 6.8243 0.8951 0.8896 0.1116 81.3997 14.6905 134.8545 24.8173 0.8555 0.0261 0.8359 0.0302

DNN6-adam 0.9121 0.2595 1.5388 0.0293 1.4462 0.7377 4.5551 1.4745 0.9974 0.0013 0.9945 0.0018

DNN6-adamw 0.8956 0.2653 0.1556 0.2818 1.3969 0.6861 4.5249 1.4039 0.9975 0.0012 0.9945 0.0017

DNN6-nadam 0.9952 0.3541 1.5752 0.3205 1.6672 0.9783 4.6374 1.5908 0.0997 0.0017 0.9944 0.0019

DNN6-rmsprop 2.8696 1.4022 3.3047 1.2694 11.7742 9.6979 16.0942 1.0232 0.9791 0.0172 0.9804 0.0125

DNN7-adadelta 9.1912 0.3895 12.0529 0.4544 129.6454 10.1878 215.0242 15.8463 0.7699 0.0181 0.7383 0.0193

DNN7-adagrad 3.2244 0.2672 4.1624 0.2662 26.7606 4.2462 43.3693 5.6557 0.9525 0.0075 0.9472 0.0069

DNN7-adam 0.8206 0.3704 1.4467 0.3391 1.2088 1.0271 4.0215 0.0161 0.9979 0.0018 0.9951 0.0002

DNN7-adamw 0.8365 0.3319 1.4562 0.2771 1.2153 0.8141 4.0042 1.1836 0.9978 0.0014 0.9951 0.0014

DNN7-nadam 1.1969 0.7447 1.6909 0.6006 2.4808 2.9283 5.0285 3.0138 0.9956 0.0052 0.9939 0.0037

DNN7-rmsprop 2.9582 1.3555 3.1558 1.3087 12.3069 9.6948 14.9317 10.9414 0.9782 0.0172 0.9818 0.0133

DNN8-adadelta 8.5705 0.0754 11.3285 0.8868 115.2731 16.9587 19.2488 26.7471 0.7954 0.0301 0.7657 0.0326

DNN8-adagrad 0.3175 0.3024 4.1418 0.2739 25.7639 5.0112 42.3262 6.5047 0.9543 0.0089 0.9485 0.0079

DNN8-adam 0.9324 0.4659 1.5871 0.0445 1.5071 1.5259 4.6171 0.2129 0.9973 0.0027 0.9944 0.0026
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MSE of the testing data, DNN7 with the AdamW optimizer (in
green) achieved the best mean result, closely followed by
DNN9 with the AdamW optimizer (in yellow), which had
the lowest standard deviation. Both models show similar val-
ues across all measured statistics for the training and testing
sets; however, we selected DNN7 as the best model due to its
simpler topology. It is worth mentioning that by observing the
mean and standard deviation of MAE for both training and
testing data from both models, there are insights suggesting
that their overall behavior does not exhibit overfitting. The
worst performance is obtained with DNN1 using the
Adagrad optimizer (in red), which has the highest mean
MSE, and DNN1 with the RMSprop optimizer (in orange),
which shows the highest standard deviation. Regarding the
DNN1 with Adagrad model, it can be argued that it suffers
from underfitting since, in general, it fails to adequately model
the data and shows moderate variability across several runs.
The DNN1 with RMSprop model shows lower mean MSE
values than DNN1 with Adagrad but has a higher standard
deviation, making it an unstable model.

Although the aforementioned experimentation is uncon-
ventional, it allows for the validation of the viability of
interpolated-based generated data for the purpose of this
research. We can observe that generated data can produce
models with good generalization capability for unseen real data,
as studied and analyzed in ref. [43], where several configurations
and proportions of real and synthetic data were used for training
DL models and testing on both real and synthetic data, showing
that augmentation techniques improve the accuracy and gener-
alization of DL models.

Following more conventional experimentation, we proceed to
implement Leave-One-Out Cross-Validation (LOOCV). This tech-
nique is useful for testing and comparing machine learning
models on small datasets.[20] Basically, LOOCV generates disjoint
training and testing datasets by using all but one sample as the
training set and the remaining one as the testing set. This
process is repeated as many times as there are samples in the
original dataset, ensuring that each sample is used as a test
set exactly once throughout the entire validation process. For
our implementation, LOOCV is applied exclusively to the real
data, resulting in 54 runs per DNN model. However, in each
individual run of LOOCV, the training set is augmented with
the entire interpolated-based synthetic data to make the models
more robust. As in the previous experiment, we performed sta-
tistical tests to verify significant differences in the behaviors of
the proposed models. The regression metric was, once again,
MSE on the testing data. According to the Shapiro–Wilk normal-
ity test, all result sets were found to be non-normally distributed.
The results of the Friedman rank sum test indicate a statistically
significant difference among the result sets. The test statistic
(χ2 ¼ 1042.5, df= 47, p< 2.2� 10�16) is far below the signifi-
cance threshold of 0.05. This strongly suggests that there are sig-
nificant differences between the resulting test.

As previously done, we analyzed the performance based on the
mean and standard deviation of the different metrics achieved
through the LOOCV-based experimentation. Table 10 summa-
rizes the results, showing the mean and standard deviation of
the different metrics over the training and testing sets for all
DNN configurations. In this case, the best mean and standard
deviation of MSE on the testing set were achieved by DNN7 with

Table 9. Continued.

Model MAE MSE R2

tr_mean tr_std te_mean te_std tr_mean tr_std te_mean te_std tr_mean tr_std te_mean te_std

DNN8-adamw 0.8223 0.3025 1.4568 0.2605 1.1703 0.7479 4.0136 1.0754 0.9979 0.0013 0.9951 0.0013

DNN8-nadam 1.1462 0.6266 1.6617 0.5414 2.2478 2.1841 4.9574 2.6857 0.0996 0.0039 0.0994 0.0033

DNN8-rmsprop 3.2859 1.2929 3.6129 1.3686 14.2312 10.1312 18.5358 12.5189 0.9747 0.0018 0.9774 0.0152

Table 10. Statistical summary of various regression metrics from leave-one-out cross-validation applied to the 48 proposed DNN models.

Model MAE MSE R2

tr_mean tr_std te_mean te_std tr_mean tr_std te_mean te_std tr_mean tr_std

DNN1-adadelta 50.9922 32.6245 49.5381 39.3609 401.5611 3237.9037 3974.6176 416.8091 �5.6675 5.3766

DNN1-adagrad 11.2924 0.6654 13.7992 10.4999 198.7792 20.3848 29.8626 442.2535 0.6702 0.0339

DNN1-adam 5.3533 3.2181 7.2245 8.1581 66.5104 6.5471 11.7515 248.1671 0.8896 0.1086

DNN1-adamw 4.7891 0.2634 5.2642 5.8317 53.0732 53.7865 6.1091 143.2394 0.9119 0.0892

DNN1-nadam 5.3796 3.3299 6.8788 0.6269 67.1972 67.1882 85.8894 12.7542 0.8886 0.1112

DNN1-rmsprop 5.4929 3.4285 7.2592 7.9887 65.4862 69.6876 115.3333 294.9952 0.8913 0.1157

DNN2-adadelta 11.8106 0.7966 13.6238 9.7872 206.4132 24.1601 279.6229 328.7262 0.6575 0.0399

DNN2-adagrad 10.7738 0.1293 13.5097 9.4021 175.8813 3.1757 269.2747 366.2304 0.7082 0.0052

DNN2-adam 1.7621 0.8056 2.2136 2.1222 6.7893 7.8156 9.3208 16.5868 0.9887 0.0129

DNN2-adamw 1.9046 0.7239 2.3783 2.7331 7.5543 6.1451 12.9878 30.3619 0.9875 0.0102
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the AdamW optimizer (in green). The results of this model
across different metrics are similar for both the training and test-
ing sets, which suggests that it does not suffer from overfitting.
However, it is noticeable that the standard deviations are greater
than in the previous experiment. This could be the result of the
combination of real data and augmented data, as pointed out in

ref. [40], where it is observed that synthetic data generators pro-
duce higher variance in results. The DNN1 with the Adadelta opti-
mizer (in red) produces the worst results for both the mean and
standard deviation of MSE on the testing set. It can be argued that
this model suffers from underfitting, and across several runs, it is
unstable due to the high standard deviation values.

Table 10. Continued.

Model MAE MSE R2

tr_mean tr_std te_mean te_std tr_mean tr_std te_mean te_std tr_mean tr_std

DNN2-nadam 2.0112 1.4553 2.7991 4.0666 10.0167 24.2197 24.0657 105.6014 0.9833 0.0408

DNN2-rmsprop 2.7768 1.7919 3.2635 3.2934 16.4467 29.5036 21.2962 47.6411 0.9727 0.0488

DNN3-adadelta 11.5451 0.5825 14.2736 9.9962 196.3148 16.8218 301.8093 394.3578 0.6742 0.0282

DNN3-adagrad 10.7349 0.1348 13.2794 9.2699 173.8966 4.1163 260.6829 348.8432 0.7115 0.0066

DNN3-adam 1.7133 0.7786 2.4219 0.2323 5.8046 6.0336 11.1616 17.3169 0.9904 0.0001

DNN3-adamw 2.0883 1.6362 3.2379 3.7938 11.7953 26.9025 24.6101 77.1551 0.9805 0.0445

DNN3-nadam 1.9408 1.3548 2.5206 2.3747 8.2514 13.6869 11.8885 19.0373 0.9863 0.0227

DNN3-rmsprop 2.6688 1.8496 3.6662 4.0771 14.2584 23.4905 29.7559 76.9126 0.9764 0.0388

DNN4-adadelta 13.8527 12.0437 1.4697 1.1668 422.9861 1134.8529 349.6237 630.5853 0.2959 1.8978

DNN4-adagrad 10.6622 0.0753 13.3829 9.4697 177.4426 2.3987 267.1178 38.3555 0.7056 0.0036

DNN4-adam 2.9991 2.1477 4.5112 4.7449 2.3644 36.4533 42.4482 92.6007 0.9608 0.0603

DNN4-adamw 2.9023 1.7748 3.6638 3.9994 21.4945 28.1068 29.1229 70.1256 0.9644 0.0465

DNN4-nadam 2.4808 1.2767 3.0599 3.2317 14.8967 17.5116 19.6136 38.7981 0.9753 0.0029

DNN4-rmsprop 0.4723 3.4202 0.0534 5.6283 49.8536 65.9656 5.9607 11.9906 0.9174 0.1093

DNN5-adadelta 11.8177 0.5791 14.7701 9.2137 203.1575 21.1933 301.4777 33.1883 0.6629 0.0351

DNN5-adagrad 10.5774 0.1143 13.2625 9.3306 17.1585 4.0545 261.3425 363.1245 0.7153 0.0068

DNN5-adam 1.5389 0.5656 2.4537 2.0629 0.4347 3.2928 10.1976 1.4289 0.9928 0.0055

DNN5-adamw 1.4226 0.4849 2.0169 2.0652 0.4021 0.3028 8.2538 15.6665 0.9933 0.0005

DNN5-nadam 2.0941 0.9908 2.4278 1.8312 7.5508 6.7223 9.1853 13.4595 0.9875 0.0112

DNN5-rmsprop 2.9162 1.6507 0.3481 2.6561 14.5282 15.2845 19.0415 26.0779 0.9759 0.0254

DNN6-adadelta 11.3664 0.3433 13.9118 0.9638 187.2094 9.6878 284.7099 339.2216 0.6894 0.0154

DNN6-adagrad 0.9123 0.4984 11.4986 8.7206 129.7374 12.6769 206.8588 288.7897 0.7847 0.0213

DNN6-adam 1.1439 0.4815 1.8803 1.5261 2.4417 0.2092 5.8214 8.9435 0.9959 0.0035

DNN6-adamw 1.2349 0.0597 1.8709 0.1628 2.7888 2.6075 6.1017 10.3222 0.9954 0.0043

DNN6-nadam 1.8021 1.3732 2.3001 1.8111 6.4672 9.7747 8.5098 11.8879 0.9893 0.0162

DNN6-rmsprop 2.5259 1.4032 2.9499 2.2816 1.0423 9.9408 13.8111 19.5811 0.9827 0.0165

DNN7-adadelta 10.8197 0.2247 13.4662 9.1385 172.9935 5.7291 263.3041 331.7588 0.0713 0.0091

DNN7-adagrad 4.1045 0.3572 4.8566 6.0102 41.3821 0.3547 59.0402 149.7733 0.9313 0.0059

DNN7-adam 1.6329 1.3335 2.2694 2.3008 5.4638 10.8842 10.3456 22.5247 0.9909 0.0181

DNN7-adamw 1.1887 0.5921 1.8164 1.4024 2.5918 2.2762 5.2296 7.2757 0.9957 0.0038

DNN7-nadam 0.1273 0.7756 1.8264 1.5723 2.9973 3.3310 5.7620 8.7274 0.0995 0.0055

DNN7-rmsprop 2.7564 1.7798 3.1216 2.7497 13.0283 17.0494 17.1656 32.1084 0.9784 0.0282

DNN8-adadelta 10.6556 0.0231 12.9729 8.9338 169.0319 5.9556 246.6296 314.4291 0.7195 0.0098

DNN8-adagrad 4.1471 0.2989 4.8484 6.3724 42.5252 4.2155 63.3623 168.7884 0.9294 0.0069

DNN8-adam 1.3248 0.6157 1.8055 1.5498 3.0023 2.6396 5.6173 10.1449 0.0995 0.0044

DNN8-adamw 1.5393 1.0043 1.8283 1.8279 4.5553 6.5934 6.6222 13.1932 0.9924 0.0109

DNN8-nadam 1.4377 0.9478 1.9134 1.9367 3.7966 5.9354 7.3425 14.2305 0.9937 0.0098

DNN8-rmsprop 0.3433 1.8514 4.0317 2.9694 18.1931 17.0899 24.9086 33.0177 0.9698 0.0283
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6. Conclusion

The field of AI is vast; however, many of its techniques require
fine parameter tuning tailored to the specific application. In our
particular case, we have chosen to tackle the modeling of the
behavior of an ultrafast pulsed laser in material characterization,
particularly in oxide formation on a molybdenum film, which
holds significant relevance in semiconductor manufacturing.
We have opted to explore the use of DNNs, although other meth-
ods could also be applied. The choice of this technique stems
from its widespread adoption, extensive available information,
and readily available libraries. Moreover, its conceptual simplicity
makes it accessible even to nonexperts in the field of AI.

Given the lack of a mathematical explanation guiding the
selection of the number of layers and neurons in a neural net-
work or the optimal optimizer, we decided to conduct thorough
experimentation to enhance the robustness of our research. To
this end, we initiated experimentation with an experimental
setup where data was collected. These data were artificially aug-
mented using interpolation, providing us with more information
to train different models. In particular, we created 8 different
neural network architectures, each with a minimum of 3 hidden
layers. Additionally, we explored 6 different optimizers and
varied the learning rate parameter, which serves as an indicator
of fine adjustment during training.

All this experimentation was validated using statistical meas-
ures, including basic ones like MSE and MAE, as well as more
sophisticated measures in the field of AI, such as the R2 score.
This score allows us to better understand the ability of our mod-
els to capture the behavior of our data.

Moreover, the generalizability of our models to other laser
configurations or material types was a key consideration in
our study. The physical basis of the laser-matter interaction
was critical in guiding our neural network design. For instance,
in the specific case of an 800 nm pulsed laser, the heat
propagation distance during a 60 fs pulse is �2 nm due to diffu-
sion effects, with an optical penetration depth of 20 nm—

representing only 4% of the total film thickness. These precise
dynamics highlight the importance of carefully tuning parame-
ters when applying our models to other systems. While our focus
was on molybdenum, the versatility of femtosecond laser inter-
actions and the adaptability of DNNs suggest the potential for
extending our methodology to other materials and laser wave-
lengths by modifying input parameters.

In conclusion, the versatility of our approach allowed us to
explore a wide array of numerical configurations, systematically
varying parameters and conditions, before committing to real-
world experimentation. By doing so, we mitigated the inherent
risks and resource expenditures associated with experimental
trials, effectively minimizing errors and material wastage.
Additionally, this computational approach afforded us the flexi-
bility to refine and optimize our experimental design iteratively,
leveraging insights gained from simulated scenarios to inform
and enhance subsequent experimental iterations. Ultimately,
this integrated computational-experimental approach empow-
ered us to conduct more efficient and cost-effective research,
accelerating progress in our understanding of material irradia-
tion processes and paving the way for broader applications of
laser-driven material transformations.
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