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Abstract: Deepfake images, synthetic images created using digital software, continue
to present a serious threat to online platforms. This is especially relevant for biometric
verification systems, as deepfakes that attempt to bypass such measures increase the
risk of impersonation, identity theft and scams. Although research on deepfake image
detection has provided many high-performing classifiers, many of these commonly used
detection models lack generalizability across different methods of deepfake generation. For
companies and governments fighting identify fraud, a lack of generalization is challenging,
as malicious actors may use a variety of deepfake image-generation methods available
through online wrappers. This work explores if combining multiple classifiers into an
ensemble model can improve generalization without losing performance across different
generation methods. It also considers current methods of deepfake image generation, with
a focus on publicly available and easily accessible methods. We compare our framework
against its underlying models to show how companies can better respond to emerging
deepfake generation methods.

Keywords: deepfakes; biometric verification systems; generalization; ensemble learning;
deepfake detection model

1. Introduction
Recent advancements in Artificial Intelligence (AI) and deep learning have drastically

altered our ability to manipulate multimedia content. Modern AI tools, often available for
free online, can be easily used to modify the visual appearance of individuals in images
or videos, allowing for the generation of images that are near indistinguishable from real
world content, coined as Deepfakes. A deepfake is a digitally altered piece of media
made by either modifying an existing video by replacing one person’s face over another or
creating entirely new content involving a target’s likeliness. While our ability to create such
content highlights developments in Artificial Intelligence and deep learning methods, it
also presents a growing set of ethical and security challenges. Malicious uses of generative
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AI allow the attacker to create multimedia content including fake images, fake videos, and
voice cloning. This multimedia content can be used to impersonate someone, when the
content is generated for a target, or to create the profile of a person that does not exist in
real life. A survey of methods for creating deepfake content is presented in [1], along with
a description of some of the characteristics that help to identify fake content.

As deepfake generation models rapidly evolve, it has become increasingly more diffi-
cult for humans to detect the difference between real and fake content. When presented
with a deepfake detection task, humans perform no better than randomly guessing to
identify deepfakes [2]. As such, modern methods for detecting deepfakes have increas-
ingly relied on machine learning and deep learning models to classify content, such as
convolutional neural networks (CNNs), vision transformers, and recurrent neural networks.
These detection models, while often achieving high accuracy on their datasets, frequently
struggle to maintain high performance on data outside of the scope of their dataset. More
specifically, high performance against a specific deepfake generation technique does not
translate to effectiveness across a diverse range of generation methods. Detection models
easily overfit to artifacts or signals specific to one generation method, creating a tradeoff
between achieving high accuracy and ensuring generalization across different techniques.

As generation models continue to diversify, they challenge the effectiveness of overly
specialized models, which highlights the need to develop models that are well generalized
against a wide variety of deepfake generation methods. We present a new paradigm for
efficient deepfake detection: an ensemble of methods that individually perform best on a
wide range of deepfakes categorized by their generation method. An ensemble model that
takes multiple predictions into account performs better across a mix of deepfakes generated
from different sources.

In our experiments across a variety of datasets, the ensemble model shows robust per-
formance across all datasets, whereas the individual models typically perform well on one
type of deepfake. We discuss the benefits and limitations of ensemble models, particularly
within industry standards and requirements. Although this study has focused on deepfake
detection in images, it is important to highlight that recent research [3–5] has explored
multimodal analyses, utilizing data such as audio and video. In some cases [5], analyses
combining audio and video have demonstrated more relevant results than unimodal sys-
tems, positioning themselves as a promising field for fraud detection in the coming years.
However, it is crucial to emphasize that the limited availability of multimodal datasets
poses a significant challenge to advancing this area of research.

After this introductory section, the rest of this paper is structured as follows: Section 2
discusses the motivation for deepfake detection, highlighting its real-world impact and
industry concerns. Sections 3–5 review related work in key generative techniques, the
most relevant approaches for deepfake detection, and the general ensemble approach.
Section 6 introduces the datasets that we use throughout this work. Section 7 examines
the limitations of state-of-the-art models when restricted to single-generation strategies,
while Section 8 evaluates their performance across a proposed diverse dataset. Section 9
introduces our ensemble model, designed for improved robustness and generalization,
followed by its evaluation in Section 10. Section 11 provides an in-depth discussion of
the findings, analyzing the observed behaviors of different approaches, and Section 12
concludes with final remarks and future research directions.

2. Motivation
The financial sector increasingly relies on biometric verification to authenticate user

identities for banking transactions and other sensitive operations. This reliance stems
from the need for secure and user-friendly authentication mechanisms. However, as
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biometric verification systems become more widespread, they also face growing threats
from adversarial attacks, particularly through the use of deepfake and face-swapping
technologies [6,7].

A recent Ipsos poll (2023) [8] conducted for Wells Fargo revealed that nearly one in
three Americans (31%) have already been victims of online financial fraud. Credit card
fraud is the most common type, affecting 64% of victims, followed by data breaches (32%)
and account hacking (31%). Attackers increasingly exploit AI-generated deepfake videos
and voice cloning to impersonate victims, sometimes bypassing account access security
systems. If a malicious actor is able to gain access to an account, they can issue credit
cards, take out loans, order money transfers, etc. leading to financial losses and potential
reputational damage for banks and other financial entities.

Face-swapping applications and tools have gained popularity in recent years, offering
users the ability to modify facial appearances in real time. These tools are widely available
and require minimal technical expertise, making them a growing concern for financial
institutions. The accessibility of such technology increases the likelihood of fraudulent
activities that bypass traditional biometric verification measures [9].

A major challenge for companies in the financial sector is developing robust biometric
verification systems capable of countering the evolving deepfake landscape. These systems
must meet several critical requirements: high performance against multiple face generation
techniques, low false positive rates, rapid processing speeds, and non-discriminative
performance across diverse demographics [10]. Financial institutions must continually
refine their verification processes and integrate advanced fraud detection mechanisms to
stay ahead of emerging threats.

Deepfakes are increasingly relevant for developing defense mechanisms across various
systems, not limited to financial contexts [11]. While promising in areas like entertainment,
deepfakes raise concerns about privacy invasion, fake news, and phishing attacks. Ad-
vances in generative models like VAEs, GANs, and diffusion models complicate detection,
demanding more sophisticated techniques. A key challenge is creating robust models
capable of detecting diverse falsification methods. Strengthening detection is critical for
securing facial recognition systems and mitigating the risks of this evolving technology. We
further include that, in addition to proactive detection of deepfakes, the reactive application
of detection methods is equally important to trace fraudulent activities and block fraudsters
in their various attempts.

Considering the Top Threats to Cloud Computing 2024 report by the Cloud Security
Alliance (CSA) [12], deepfaked images, in our view, have the potential to exacerbate at
least 5 of the 11 major cloud security threats: Identity and Access Management (IAM),
Insecure Interfaces and APIs, insecure third-party resources, system vulnerabilities, and
unauthenticated resource sharing. These threats underscore the critical need to address
the risks posed by generative technologies, which can significantly compromise cloud
security frameworks.

In our analysis, third-party authentication platforms, especially those utilizing fa-
cial biometric systems, are particularly vulnerable to fraudulent activities enabled by
advanced deepfake image generation. These platforms represent a significant point of
vulnerability for a wide range of applications, with financial systems being among the most
affected. Moreover, as noted in the CSA report, the growing reliance on digital platforms
for biometric authentication, coupled with increasing leaks of sensitive data—including
audio, video, biometric images, and employee Personally Identifiable Information (PII)—
amplifies the likelihood of deepfake-driven biometric attacks. However, the CSA report
provides limited discussion on the specific impacts of generative technologies, such as
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facial deepfakes, emphasizing the urgent need for further exploration of this topic from a
cybersecurity perspective.

3. Deepfake Generation
Many different state-of-the-art models are available for deepfaked image generation.

These models are accessible online through websites or applications that fraudsters can
use to produce fraudulent images. These methods follow very different processes for
developing images and as a result leave different artifacts that classifiers can take advantage
of to identify fake images. While the breadth of generation methods is quite broad, this
paper chooses to focus on three distinct generation methods: GANs, VAEs, and diffusion
models. By exploring how ensemble models can generalize across these three methods, a
framework can be developed to further expand to incorporate a broader class of images.

3.1. GANs

GANs are currently one of the most powerful tools for image generation. In some
cases, the images created by GANs are so realistic that even humans find it difficult to
distinguish them. They can generate images of various objects, animals, or even body parts,
depending on the training dataset used [13].

In general, GANs consist of two types of neural networks: the generator and the
discriminator. As the name suggests, the generator is responsible for creating images, while
the discriminator evaluates the quality of the generated images to make them appear more
authentic. The discriminator assigns a score to each image, where a higher score indicates
greater authenticity. Training is thus performed by optimizing this score [14].

Two well-known GAN architectures are the Deep Convolutional GAN (DCGAN)
and the Progressive Growing GAN (PGGAN). DCGAN consists of convolutional layers
with max pooling, with batch normalization being applied in both the generator and the
discriminator networks. On the other hand, PGGAN starts with a smaller number of layers,
progressively increasing the number of layers in the generator and discriminator networks,
thus producing higher-resolution images throughout training. It is worth noting that other
GAN variants are also widely used for image generation, such as BEGAN, Adversarial
Network, Cycle GAN, Style GAN, among others [15].

3.2. VAEs

Variational Autoencoders (VAEs) are a type of generative model that builds on tra-
ditional autoencoders by incorporating a probabilistic framework to better capture the
underlying distribution of data. They consist of two main components: an encoder and a
decoder. The encoder maps input data into a latent space, producing the parameters (mean
and variance) of a probability distribution, typically Gaussian, instead of deterministic
points. This probabilistic approach allows VAEs to model the variability inherent in the
data. During training, the decoder reconstructs the input by sampling from these distribu-
tions, minimizing the difference between the original and reconstructed data. The training
process optimizes two objectives: a reconstruction loss, ensuring accurate reconstruction,
and a regularization term, the Kullback-Leibler (KL) divergence, which encourages the
latent space to resemble a predefined prior, usually a standard normal distribution. This
design enables accurate data reconstruction and also allows the generation of new, real-
istic data samples, making VAEs highly effective for applications like data synthesis and
anomaly detection [16,17].

VAEs have proven to be powerful tools in detecting deepfakes, thanks to their ability
to model the distribution of authentic data and flag anomalies. When trained exclusively
on real images, a VAE learns to reconstruct genuine data effectively. However, when
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presented with a deepfake, the reconstruction error tends to be significantly higher due
to the mismatch between the fake input and the learned distribution of real data. This
increase in reconstruction error serves as a reliable indicator of deepfakes.

An example of this application is the OC-FakeDect framework [18], which employs
a one-class VAE trained exclusively on real face images. This method treats deepfakes as
anomalies, achieving 97.5% accuracy on the NeuralTextures dataset and does not use fake
images during training.

3.3. Diffusion Methods

Traditional generative approaches such as Variational Autoencoders (VAEs) and Gen-
erative Adversarial Networks (GANs) have limitations in terms of stability, training com-
plexity, and mode collapse, where the generator produces a limited variety of outputs,
failing to capture the full diversity of the training data. Diffusion models provide an
alternative approach that has demonstrated superior performance in various domains.
Diffusion models generate data by progressively introducing noise into a dataset and subse-
quently learning to reverse this process. The goal of the model is to approximate the reverse
of this process, using a neural network trained to predict and remove the added noise
at each step. By iteratively refining noisy data, the model reconstructs realistic samples
from pure noise [19].

There are two processes to understand how the diffusion works. The forward dif-
fusion process and reverse diffusion process are foundational components of diffusion
models, which have shown great promise in generative tasks. The forward process in-
volves gradually adding noise to an initial data sample, such as an image, over a series
of time steps, until the data is completely corrupted into pure noise. Mathematically, this
is represented by a sequence of conditional distributions that progressively degrade the
original data, typically modeled as a Markov process [20]. The reverse diffusion process
aims to recover the original data from the noise by learning to reverse the corruptive steps
of the forward process. This is carried out through a learned function that predicts the
noise added at each time step, allowing for the stepwise denoising of the data [19]. By
training the model to predict the noise at each step, the reverse process becomes capable
of generating high-quality data, making diffusion models highly effective for generative
tasks such as image synthesis [21]. More recently, this technique has allowed researchers to
develop text-to-speech models for a variety of applications, such as video generation [22]
or 3D image generation [23].

In the context of deepfake generation, diffusion models are particularly advantageous
due to their ability to learn complex data distributions, resulting in more realistic facial
expressions, seamless blending, and improved temporal consistency in video synthesis [24].
Moreover, the iterative refinement process of diffusion models allows for fine-grained
control over attributes such as identity, expression, and lighting, which is crucial for high-
quality deepfake manipulation [25]. A novel approach is trying to combine the image
quality from diffusion models with the speed of GANs, adversarial training, and score
distillation—the Adversarial Diffusion Distillation (ADD) [26]. These properties make
diffusion-based deepfake models a promising direction for applications in entertainment,
virtual reality, and synthetic media, while also raising concerns regarding misinformation
and ethical considerations surrounding their use, in particular, frauds in biometric systems
for the financial sector.
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4. Deepfake Detection
Driven by the need to combat the misuse of generative AI in deepfake creation, several

state-of-the-art detection methods have emerged. This section explores these approaches
and their key contributions.

4.1. CNNs

Convolutional neural networks (CNNs) have historically been a core technology
in image processing and is one of the most common frameworks for deepfake detection
models. CNNs typically distinguish between real and deepfaked images by observing small
features consistent with generated content, typically looking for pixel level differences [27].

A particular type of CNNs, CNN-F, leverages the detectable fingerprints left by CNN-
based generators. The model is pre-trained with a dataset, then fine-tuned on these
fingerprints. Wang et al. analyzed a detection model trained on one specific CNN-generator.
It was shown that with proper data augmentation, the model could generalize across many
other datasets generated by different architectures [28]. Various post-processing techniques
were tested, and data augmentation proved to increase the generalizability of the model.

An alternative method for deepfake detection arises by focusing on inconsistencies in
the texture of generative images. The texture of fake faces in deepfaked images generated
using GANs is noticeably different from the texture of faces in real images. GramNet, a
CNN-based framework outlined in Liu et al., captures inconsistencies in style and texture
to identify generated content. This model architecture introduces a “Gram Block” to the
CNN backbone which computes a global texture representation [29]. By changing focus to
global style features instead of localized inconsistencies, GramNet has improved robustness
against image-editing techniques, such as compression, blur, and noise.

4.2. Transformers

Vision transformers have also been applied as a framework for identifying deepfake
images. In Ghita et al, a proposed ViT model is proposed that leverages the self-attention
mechanisms of ViTs to link relationships between regions, or patches, of the image. This
allows the model to identify artifacts across patches that are introduced during the deepfake
generation. The experimental results show that the ViT model was able to achieve accuracy
at or above traditional CNN-based approaches. The study also showed that ViTs are better
at generalization when classifying images generated by novel deepfake methods [30]. Since
ViTs have global attention mechanisms, they are better able to consolidate information from
across the entire image, which improves the robustness of the classifier. This suggests that
ViTs could hold promise in building more resilience in a deepfake detection system, which
would help improve against newly developing deepfake generation models.

4.3. Patch-Based Classifiers

Another method for deepfake detection are patch-based classifiers. This method
processes the images by dividing them into smaller regions called patches and analyzing
these localized areas of the initial image. The localized focus allows these classifiers to
observe minute artifacts from deepfake generation, such as texture mismatch, spatial
inconsistency, and unnatural transitions between elements of the image. This allows patch-
based models to become highly effective for isolating fine-grained patterns that can be
overlooked in global classifiers and can improve their generalizability to new deepfake
generation methods.

Patch-Forensics, a patch-based classifier proposed in Chai et al, segments the input
images into non-overlapping patches and processes each patch independently through a
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truncated backbone CNN model and projects a per patch score. These scores are aggregated
to form an overall prediction on the nature of the image [31].

Extensions of these patch-based models seek to combat images generated using diffu-
sion models. Images generated using these models are known for holding increased photo-
realism and very few visual artifacts, presenting a difficult challenge for deepfake detection.
A framework for detecting and localizing manipulated regions of diffusion-generated
images is proposed in Tantaru et al. Within their set of three proposed frameworks in Dolos,
the study showed that Patches, a weakly supervised training of a modified Patch-Forensics
with Xception as the backbone model, showed promise in not only detecting diffusion-
generated images but also localizing the manipulated regions within the images. The
experimental results showed the framework was also able to generalize effectively across
seen and unseen datasets, and outperformed existing detection models when applied to
unseen diffusion-based manipulations [32].

4.4. GANs

GANs are mainly used to generate high-quality deepfakes, but the discriminator
within a GAN can also be a powerful tool for detection. The discriminator of a Deep Con-
volutional GAN achieves 100% accuracy on detecting fake images from its corresponding
generator within 10 iterations, even as the generator produces highly realistic images [15].
However, its accuracy on identifying real images as well as its performance on other
datasets vary. Asan et. al tested three GANs for deepfake detection: Steganography-GAN,
MRI-GAN, and MDD-GAN [33]. Each model employed the same architecture, but their
techniques differed. Steganography-GAN is a preventative model, embedding watermarks
into content. These watermarks are difficult for deepfake generators to decipher, leading
to a 100% accuracy in deepfake prevention. MRI-GAN uses perceptual differences in
images. It was proven to be viable in detecting deepfakes but performed worse than other
models. MDD achieved the highest AUD score and was capable of generalizing effectively
to new datasets without any model updates. Jheelan and Pudaruth trained several deep
learning models to detect deepfake images generated with GANs, and they even developed
a web-based interface to upload images and run their detection algorithm [34].

4.5. Strategies

Deepfake detection can also be achieved by analyzing continuity between the face
and the context surrounding it (e.g., neck, ears, hair). Nirkin et. al proposes a system
with two complementary networks: one for detecting features on the segmented face and
another for its context. By identifying discrepancies between the face and its context, their
model incorporates multiple Xception networks to differentiate fake and real images. This
method significantly outperforms the baseline and successfully identifies many fakes that
other state-of-the-art models missed [35]. There are ways to overcome this detection model,
like generating deepfakes that reconstruct the entire image or head. However, this would
require a much broader integration of identity, which would be challenging to bypass a
fully developed biometric verification system.

Another emerging strategy for deepfake detection uses other modalities related to
an image, mainly text or audio, to provide extra information or context. SIDA makes use
of vision–language models, which learn from images and text, allowing them to perform
well on tasks that require both modes of communication [36]. By prompting LISA, a
vision–language model with good reasoning capabilities, to identify whether an image is a
deepfake and which part has been tampered, if any, Huang et al. found consistent high
accuracy across real, partially tampered, and completely generated images.
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Although the majority of this paper focuses only on image deepfakes, video and audio
deepfakes have rapidly improved over the last several years and pose an even greater
challenge for biometric verification systems. These multimodal models typically encode
the audio data separately from the corresponding video frames, but can then choose to
produce independent predictions for the audio and visual data streams [37], or combine
the two into one feature set [38].

4.6. Model Generalization

Despite many models achieving high accuracy on benchmark deepfake datasets, this
research area suffers from a lack of generalizability and diversity. As deepfake generation
becomes more powerful and accessible to a global audience, relying on current models
poses major security risks for biometric verification systems.

Many deepfake generation applications are based on a handful of popular GANs such
as StyleGAN and CycleGAN. However, verification systems cannot ignore the alternative
and emerging GANs that are constantly developing. Many detection models are trained
and tested on a dataset generated from a limited number of GANs, leading to sharp
performance drops when tested on novel GAN variants and diffusion-based methods [39].
Biometric verification systems cannot limit what methods their adversaries use, and in fact
should expect to contend with all types of emerging methods. It is unrealistic for companies
to rely on one model without putting in considerable effort to train the model on a wide
variety of GANs and diffusion models, and retrain as new deepfake generation methods
are developed.

Biometric verification systems, particularly in financial systems, must prepare for
adversarial attacks as financial fraud and information leaks can be devastating. Mali-
cious actors will likely make repeated attacks to obtain access to bank accounts. If a
detection model depends on specific patches of the face or certain fingerprints left by
GANs, the verification system is vulnerable to new deepfakes as attackers learn about the
model’s weaknesses.

5. Ensemble Model
Ensemble learning, or multiple classifier systems (MCS), can be understood as a

machine learning technique that improves the model by combining multiple methods to
enhance recognition accuracy in pattern recognition systems. Ensembles were introduced
as a way to improve the generalization ability of individual neural networks [40]. They were
implemented as a “mixture of experts” that vote for the final answer and may specialize in
different aspects of the problem or different types of inputs [41,42].

Multiple Classifier Systems (MCSs) have emerged as a crucial paradigm in machine
learning and pattern recognition, offering a robust approach to improving predictive accu-
racy. The core principle of MCS lies in leveraging the diversity of multiple base classifiers,
combining their strengths to achieve superior performance compared to individual mod-
els. Ensemble learning methods, such as bagging, boosting, and stacking, exemplify this
strategy by aggregating decisions from multiple classifiers. Bagging reduces variance
through bootstrap aggregation, boosting enhances weak learners sequentially, and stacking
employs meta-learning to refine predictions. These approaches have been widely studied
and applied in various domains, with modern implementations like Random Forest, Ad-
aBoost, and XGBoost demonstrating significant improvements in practical applications.
The success of ensemble methods largely depends on the tradeoff between classifier ac-
curacy and diversity, ensuring that base models complement each other’s strengths and
mitigate individual weaknesses. Consequently, the study and development of MCS con-
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tinue to be a vibrant research area, driving advancements in adaptive learning and complex
decision-making systems [43,44].

Voting and combining strategies are fundamental to Multiple Classifier Systems
(MCSs), determining how individual classifiers contribute to the final decision. The most
common approaches include majority voting, weighted voting, and probability-based
fusion. In majority voting, each classifier casts a vote, and the class with the most votes is
chosen. Weighted voting assigns different importance levels to classifiers based on their
performance, giving more influence to stronger models. Probability-based fusion combines
the predicted probability distributions from individual classifiers, selecting the class with
the highest aggregated confidence. These strategies allow diverse classifiers—such as
decision trees, SVMs, and neural networks—to be integrated effectively, leveraging their
complementary strengths to improve robustness and accuracy [45].

In our study, we propose an MCS approach that combines individual classifiers trained
on different synthetic data generation strategies, specifically designed for fake image detec-
tion in fraud prevention. By leveraging the diversity of these artificially created datasets,
our method enhances classification performance, capturing complementary patterns while
reducing overfitting to a single data source. This approach is particularly well suited for
scenarios where multiple algorithms are used to generate fake images, each introducing
unique variations and challenges. By integrating classifiers trained on data from differ-
ent generation techniques, our ensemble method ensures broader coverage of potential
fraud patterns. The structured voting and fusion strategy further enhances robustness and
generalization, making it effective in complex and adversarial environments.

Figure 1 presents the generative stage for creating deepfake images, followed by the
pre-training phase of individual models. Meanwhile, Figure 2 illustrates the composition
stage of a diverse dataset, incorporating samples from each training dataset of the individ-
ual models to represent a diverse scenario in deepfake generation techniques. Subsequently,
it depicts the combination stage, describing the ensemble learning architecture under a
learned voting rule. While system performance might seem degraded by the fact of using
several models, it is worth mentioning that these models may be executed in parallel [46]
so using today’s multi-core processors, the execution time will be equivalent to the running
just the slowest model alone.

Figure 1. A diagram of the pretraining phase of the individual models.

Finally, Figure 3 provides a summarized overview of the proposed ensemble architec-
ture, including the pre-trained models considered in this study for inferring whether an
input image is classified as fake or non-fake.
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Figure 2. An overview of the diverse database composition and ensemble architecture.

Figure 3. A diagram of the proposed ensemble-based approach for robust deepfake image detection.

Robustness Against Adversarial Attacks

To mitigate the threat of adversarial attacks, the utilization of ensemble learning
and ensemble models has proven to be an effective strategy to increase the robustness
of deep learning systems. A prominent technique in this context is ensemble adversarial
training, which is particularly beneficial against black-box attacks. The core idea involves
training multiple models with distinct architectures or different weight initializations, using
adversarial examples generated by diverse attack methodologies.

In the domain of medical image analysis, the advantage of ensemble models has been
empirically demonstrated. Studies indicate that custom models integrating multiple CNN
architectures exhibit greater resilience against black-box adversarial attacks, outperforming
single models in white-box scenarios. Furthermore, implementing an ensemble training
approach, where each CNN architecture is trained with multiple initializations, results in a
significant reduction in attack accuracy [47,48].

The fundamental principle behind ensemble adversarial training lies in its ability
to neutralize the vulnerability of individual models to specific attack types, especially
in black-box settings where the attacker has limited knowledge of the target model. By
training neural networks with adversarial samples crafted from various attack methods,
such as FGSM and PGD, the ensemble benefits from a broader spectrum of training data.
This enhanced diversity in the training set improves generalization capability and overall
robustness against unseen adversarial examples. In the pursuit of robust medical diagnostic
systems, adversarially pre-training multiple models with diverse architectures, followed
by averaging their output probabilities, emerges as a promising strategy [49].

While the primary focus is on employing ensembles for defense, it is relevant to note that
ensemble-based attacks have shown success in overcoming transferability challenges between
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different architectures, such as CNNs and vision transformers. This indirectly underscores
the potential of combining multiple models for both offensive and defensive purposes. In
summary, evidence suggests that ensemble learning, particularly through the adversarial
training of diverse model architectures, offers a promising path towards developing more
resilient deep learning systems in critical domains like medical image analysis [47–49].

6. Benchmark Datasets
To evaluate the performance of the various state-of-the-art detection models, we

selected six benchmark datasets: DeepFakeFace [DFF], FaceForensics++ [FF++], Individual-
ized Deepfake Detection Dataset [IDDD], ProGAN, StarGAN, and WhichFace. Together,
these datasets cover three categories of image generation: diffusion models, face-swap mod-
els, and GAN models. The details of each dataset, including specific generation methods,
year, and size, are presented in Table 1.

Table 1. An overview of the datasets used in this study and how many real and deepfake images
were included in our combined dataset.

Dataset Generation Methods Year Real Fake

DeepFakeFace Stable Diffusion v1.5
Stable Diffusion Inpainting
InsightFace

2023 1500 1500

FaceForensics++ Deepfakes
Face2Face
FaceSwap
NeuralTextures

2018 2707 2698

Individual Faceswap-GAN 2021 1500 1500

ProGAN Progressive GAN 2017 200 200
StarGAN Star GAN 2018 2000 2000
WhichFace Style GAN 2019 1000 1000

Each dataset contains images of faces cropped to include minimal background informa-
tion. All samples are either directly downloaded from open-source repositories or publicly
available. These datasets are used to test pre-trained checkpoints of publically available
models. This opens up flexibility for dataset construction, as the models are not retrained
on the training splits of the data. However, it is important to have each dataset balanced
between real and fake classes so as not to bias the evaluation of the model predictions.

6.1. DeepFakeFace

The DeepFakeFace dataset consists of computer-generated images of celebrities using
a range of different deepfake generation techniques. Such methods include Stable Diffusion
v1.5, Stable Diffusion Inpainting, and InsightFace. The dataset consists of 120,000 different
images, made up of 30,000 real images from the IMDB Wiki dataset, and 30,000 fake images
generated using the three techniques described above. All images that are part of this
dataset have a resolution of 512 by 512. DeepFakeFace was loaded from Hugging Face and
re-partitioned in testing sets with 1500 real and 1500 fake images [50].

6.2. Individualized Deepfake Detection Dataset

The Individualized Deepfake Detection Dataset was created using Faceswap-GAN. Un-
like existing deepfake detection datasets such as FaceForensics++, IDDD allows us to assess
the performance of detection models on images of specific individuals. It consists of images
of 45 specific individuals, with a total of 23,000 authentic images and 22,000 deepfake
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images. These images are also divided into a training dataset, collected from the CelebDFv2
dataset, and testing dataset, composed of images from the CACD dataset.

6.3. Face Forensics++, ProGAN, StarGAN, and WhichFace

All four of these datasets were downloaded from Hugging Face and were used in the
training of the CNN-Fingerprints model [28].

The Face Forensics++ dataset is a partitioned version of the challenge dataset described
in Face Forensics [51]. This dataset is composed of images generated from 1000 original
video sequences. The videos were generated using four different face manipulation meth-
ods: Deepfakes, Face2Face, FaceSwap, and NeuralTextures. The images are all cropped to
contain a frontal view of the face without occlusions.

The ProGAN and StarGAN datasets were generated by running the pre-trained Pro-
GAN and StarGAN models on images from CelebA [52] and generate real and fake image
pairs. These images are then cropped on the long edge (center crop length is exactly the
length of the short edge) and then resized to 256 × 256.

WhichFace includes 1k real face and 1k fake faces images scraped from whichfaceis-
real.com. This website holds both real images as well as Style-GAN generated faces. These
images are downloaded, compressed in JPEG and resized from 1024 × 1024 to 256 × 256.

7. Individual Models
This paper seeks to explore how methods of constructing combined or ensemble

methods can impact the generalizability of deep fake detection classifiers. In order to
understand what models constructively fit in an ensemble method, individual pre-trained
models were first individually evaluated on deepfake detection tasks prior to constructing
and testing the multi-classifier models. This combined model relies on a collection of
individual classifiers that serve as the ‘voters’ in the ensemble. This paper explored five
models identified from deepfake detection papers.

As described in Section 8, we do not retrain any of the following models on our chosen
benchmark datasets. Instead, we use pre-trained checkpoints from the models’ authors to
evaluate their performance. The deepfake generation methods that each model checkpoint
was trained on are listed in Table 2 below.

Table 2. Overview of models used in this study.

Model Name Year Deepfake Generation Methods

CNN-F [28] 2020 GAN ProGAN

MesoNet [53] 2018 VAE Deepfake
Face2Face

DCT [39] 2022
GAN

ProGAN, StyleGAN, ProjectedGAN
Diff-StyleGAN2, Diff-ProjectedGAN

Diffusion DDPM, IDDPM, ADM, PNDM, LDM

Dolos [32] 2024 Diffusion
Repaint–P2, Repaint–LDM

LaMa, Pluralistic GAN

7.1. CNN-Fingerprints

CNN-fingerprints describes a specialized CNN designed to identify common artifacts
present across GAN generated synthetic images [28]. The architecture of this model seeks
to extract fine-grained spatial features by defining carefully chosen kernel sizes, strides,
and paddings in the convolutional layers. This allows CNN-F to specifically capture subtle
statistical irregularities and artifacts inherent in synthesized images, which are preserved
during the pooling layers.
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CNN-F is a pivotal part of the ensemble model, as it focuses on the more minute
artifacts rather than overall textural elements or context-based detection. CNN-F also
shows decent generalization itself, as it focuses on smaller artifacts present across GAN-
based deepfake generation methods.

7.2. MesoNet

The second pre-trained model explored for the ensemble model is MesoNet, as intro-
duced in “MesoNet: a Compact Facial Video Forgery Detection Network” [53]. MesoNet
is a compact deep neural network that was specifically designed to detect facial video
forgeries. This model analyzes each frame of a video individually, so the model architecture
is still applicable for photo-based deepfake detection. MesoNet focuses on intermediate
properties present in facial images by using more largely selected kernel and pooling sizes.
The model was trained with the goal of capturing facial specific digital manipulation, which
enhances the model’s application in identify verification and images forgery detection.

Within the ensemble model, MesoNet plays a critical role as it can efficiently process
and extract relevant features from the facial regions in the input image, ultimately enhancing
the overall robustness and accuracy of the ensemble model.

7.3. Discrete Cosine Transforms

The DCT-based approach [39] uses frequency-domain analysis to identify artifacts
created by diffusion-based image generation. The method begins by applying a Discrete
Cosine Transform (DCT) to the input image. This transformation allows the model to
pickup on artifacts in the frequency domain that are ingrained during the denoising process
of diffusion models. By identifying these frequency discrepancies, the DCT + classification
approach can successfully identify diffusion-based image generation. Within our ensem-
ble framework for deepfake detection, the DCT-based module enhances our ensemble’s
robustness by adding a frequency-focused perspective to the detection process, thereby
improving overall detection accuracy against diffusion model deepfakes.

7.4. Dolos

We evaluate the “Patches” architecture category described by the authors of Dolos [32],
which is based on the Patch-Forensics model [31]. This localization model truncates the
Resnet and Xception models to obtain binary deepfake predictions on small regions of an
image. All the binary patch classifications are averaged to produce a final classification
for the image as a whole. The authors of Dolos retrain the Patch-Forensics model with
diffusion-generated deepfake images and experiment with three setups that provide the
model with varying amounts of information. We choose Setup B, where images are partially
manipulated but only classified with real or fake, with no further localization details. This
setup is closest to our context of biometric verification systems: most deepfake attacks
manipulate the face without changing the image background, and any detection system
should classify images as fake if any part has been manipulated.

Including Dolos in our ensemble model introduces a new deepfake detection strategy
that takes advantage of differences between deepfaked image portions and the background,
which is often not manipulated.

8. Individual Model Evaluation
For each model we evaluated, we used the publicly available code and pretrained

weights that the original researchers provided, with special care to finding checkpoints
loaded from fine-tuning on facial datasets. Since this paper focuses on improving classifi-
cation for unseen data, we chose to load pre-trained models that any security verification
developer would be able to access without re-training or fine-tuning.
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Each model was thresholded at 0.5, with 1 indicating a deepfake image and 0 indicating a real
image. As these models are being evaluated for their contribution to a voter ensemble model, the
quality of the positively tagged images is of higher concern (as a voter with a high false-positive
rate would add more noise to the ensemble system). To address this, the ROC curves for each
model and precision score were further examined to understand how the models behave. The
ROC curves also provide insight into potentially stronger thresholds for the individual models.
As the ensemble model will provide a weight to each voter output, it does have the capability
to learn a stronger threshold for each sub-classifier. By observing the ROC curve, the maximum
precision of the model can be observed based on the true-positive vs false-positive rate.

The six datasets represent a coverage of different concerns with image fraud. Deep-
FakeFace contains images generated using Stable Diffusion models; FaceForensics and
individual contain images generated using Faceswap models; and ProGAN, StarGAN, and
WhichFace contain images generated using GANs. Results are shown in Table 3.

Table 3. Individual model results for various datasets with a 0.5 threshold. Metrics include accuracy
(Acc) split into total accuracy, deepfake accuracy, and real accuracy; precision (Prec); recall (Rec);
and area under the ROC curve (AUC). The DCT models’ values refer to the quality factor of the
pre-processing compression. Bold indicates the highest score on each dataset for some metrics.
* Indicates high performance as the benchmark dataset was in the model’s training data.

Model Dataset Accuracy Metrics
Total Fake Real Prec Rec AUC

CNN-F

DeepFakeFace 52.9 70.8 35.1 52.2 70.8 53.1
FaceForensics 56.7 60.9 52.6 56.2 60.9 58.9
Individual 51.8 69.7 34.0 51.2 69.7 51.7
ProGAN 55.3 52.0 58.5 55.6 52.0 53.7
StarGAN 50.0 100.0 0.0 50.0 100.0 43.0
WhichFace 50.4 2.9 97.9 58.0 2.9 45.9
Average 51.5 51.7 51.2 51.4 51.7 51.5

MesoNet

DeepFakeFace 53.2 27.8 78.5 56.4 27.8 54.8
FaceForensics 68.7 74.8 62.5 66.6 74.8 74.6
Individual 61.1 64.7 57.4 60.2 64.7 64.7
ProGAN 53.5 21.5 85.5 59.7 21.5 49.7
StarGAN 51.8 67.0 36.7 51.4 67.0 50.6
WhichFace 51.4 68.3 34.5 51.0 68.3 50.7
Average 57.3 39.8 74.7 61.1 39.8 57.3

DCT (0.1)

DeepFakeFace 54.3 10.9 97.7 82.8 10.9 77.8
FaceForensics 67.5 42.4 92.5 88.9 44.4 85.2
Individual 65.6 43.4 81.7 70.2 43.4 69.3
ProGAN * 100.0 100.0 100.0 100.0 100.0 100.0
StarGAN 95.2 93.2 97.2 97.1 93.2 98.8
WhichFace 98.8 98.5 99.0 99.0 98.5 99.9
Average 72.2 58.3 86.1 80.7 58.3 77.8

DCT (0.5)

DeepFakeFace 51.0 3.1 99.5 83.0 2.6 77.1
FaceForensics 54.6 14.8 94.4 72.3 14.8 64.4
Individual 56.9 23.3 90.3 70.6 23.3 65.8
ProGAN* 100.0 100.0 100.0 100.0 100.0 100.0
StarGAN 91.7 89.4 94.0 93.7 89.4 97.1
WhichFace 99.3 99.2 99.4 99.4 99.2 100.0
Average 68.6 42.8 94.3 88.2 42.8 76.9

Dolos

DeepFakeFace 68.1 86.7 49.4 63.2 86.7 71.3
FaceForensics 50.1 0.0 99.9 0.5 0.0 19.8
Individual 50.8 35.1 66.4 50.9 35.1 50.5
ProGAN 50.0 0.0 100.0 50.0 100.0 27.4
StarGAN 50.0 0.0 100.0 50.0 100.0 0.9
WhichFace 50.0 100.0 0.0 0.0 0.0 34.1
Average 52.9 14.9 90.7 61.6 14.9 23.9
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As expected, we see the performance of the models varies across the types of genera-
tion methods. For example, we note that the DCT models performed especially strongly on
the GAN-generated images, while other models did not display confidence in classifying
similar images. This section further explores the results of the individual models across
three categories of images: diffusion, VAEs, and GANs.

In addition to comparing model performance for each collection of datasets, this
section also identifies combinations of models that would provide insight into developing
heuristics for ensemble model formation. The data was partitioned based on the method of
generation used by the datasets. Each model’s ROC curve was examined to understand the
quality of the ‘votes’ that the models provide. As mentioned earlier, the weighting process
of the ensemble model provides an opportunity for the individual model thresholds to be
rebalanced. This means that an individual model’s performance in the ensemble is likely
higher than against a 0.5 threshold.

8.1. Diffusion

The DeepFakeFaces dataset serves as our collection of images for diffusion models,
using Stable Diffusion v1.5 and Inpainting to generate samples. Figure 4 displays the ROC
curves on this dataset for each of the five individual models from Table 3. For this class of
images, Dolos was the only model which showed total accuracy significantly better than
a random classifier. That being said, it was noted that Dolos tends to over-classify false
positives, with a lower precision metric of 63.2%. In the context of biometric verification,
having a higher-than-normal false-positive rate is not inherently a negative, as the samples
that are flagged as fraudulent can be passed on for secondary or manual verification.
Adding the Dolos model with its ’over eager voting’ could help to identity how accurate
models with lower precision impact ensemble results.

Figure 4. ROC curves of each model over diffusion generated images in DeepFakeFace. The point on
each curve is placed at the spot corresponding to the threshold with the maximum J-Score. The color
of these points has no special meaning.
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Looking at the ROC curves of each model, one can see that the Dolos model is not
the only model that shows a positive performance. Although DCT models only slightly
improve accuracy compared to a random classifier, they show a starkly different ROC
curve that suggests successful classification. When coupled with a high precision for DCT
(0.1)—83.0—it is clear that while the DCT model is likely to miss a good portion of the
diffusion-generated images, the images that it flags as fraudulent are not likely to be false
positives. Intuitively, high precision should suggest that a model is a good candidate for
the ensemble strategy, as it is unlikely to provide a ‘vote’ for an image that is not deepfaked.
This potential heuristic is further explored in Section 10.

8.2. FaceSwap

The results based on face-swap datasets—FaceForensics and Individual—present a
similar tradeoff between accuracy and precision. MesoNet and DCT both showed high
total accuracy—between 61% and 69%—though DCT had a higher precision—88.9% and
70.6% on FaceForensics and Individual, respectively. Figure 5 shows the ROC curves of the
models for the dataset based on face-swap algorithms.

(a) ROC curve on FaceForensics (b) ROC curve on Individual

Figure 5. ROC curves of each model over face-swapped images. The point on each curve is placed at
the spot corresponding to the threshold with the maximum J-Score. The color of these points has no
special meaning.

While MesoNet had higher total accuracy, the AUC for DCT (0.1) was the largest for
both FaceForensics and Individual, at 85.2% and 69.3%, respectively. This high AUC and
high precision again suggests that DCT could prove to be a more successful member of the
ensemble, which is explored further in Section 10 as well.

8.3. GANs

The DCT models were by far the highest performers in the GAN-generated datasets as
can be seen in the total accuracy, precision, and ROC curves. This suggests that our ensemble
models should be constructed with DCT models as the primary members and the additional
models to add robustness to VAE- and diffusion-generated input samples. Figure 6 shows the
ROC curves of the models for the datasets based on GAN generated images.
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(a) ROC curve on StarGAN (b) ROC curve on WhichFace

Figure 6. ROC curves of each model over GAN-generated images. The point on each curve is placed
at the spot corresponding to the threshold with the maximum J-Score. The color of these points has
no special meaning.

9. Ensemble Model Architecture
We apply the ensemble methodology to deepfake image detection to gain robustness

against adversarial attacks and a larger variety of generative methods. As explored in
Section 8, individual detection models can achieve high performance on a specific dataset
or generative method, but do not carry this level of performance to unseen datasets. We
aim to combine the strengths of individual models that perform well on one generative
category: Dolos for diffusion-generated deepfakes, Mesonet for deepfakes created through
face-swap methods, and DCT (0.1) and DCT (0.5) for GAN-generated deepfakes.

Each combination of these four models was combined into an ensemble model using
a random forest classifier. The classifier is composed of a number of decision trees based
on Gini impurity, each trained on a different subset of the data. The maximum depth,
minimum samples to split and the number of estimators were chosen to be three, five, and
nine by parameter search with successive halving. Each decision tree returns a probability
between 0 and 1 for the image being a deepfake and the image being real. These results are
averaged, and the classifier returns real or fake based on which class has the higher average.

We provided only the individual model predictions, not the images themselves, as
input to our ensemble model. Each ensemble model was trained on predictions from 80%
of each of our six datasets and tested on the remaining 20%, with 5-fold cross validation. In
the following sections, we report the mean and standard deviation for the metrics across
the five folds.

10. Ensemble Model Evaluation
In this section, we present the results of different ensemble approaches. Table 4 shows

the average accuracy, precision, recall, and area under ROC curve (AUC) of exhaustive
ensemble combinations between four models: DCT (0.1), DCT (0.5), Dolos, and Mesonet.
We find that the combination of all four models produces the best accuracy and recall,
without significant drawbacks in precision or standard deviation in any metric. Combining
only DCT (0.5) and Dolos produces the highest precision of 87.7%, but with lower accuracy
and recall.

In Figure 7, we have added the ROC curves of the DCT (0.1), DCT (0.5), Dolos, and
Mesonet ensemble for each dataset. These are shown in red along with the five individual
models we evaluated in Section 8. For all datasets and deepfake generation methods, the
four-model ensemble matches the best single model.
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(a) DeepFakeFace (b) FaceForensics

(c) Individual (d) ProGAN

(e) StyleGAN (f) WhichFace

Figure 7. ROC curves (in red) for an ensemble that combines all four submodels, compared against
the ROC curves of individual submodels for each dataset. Each of the six subfigures contain results
for a specific dataset, listed ini the subfigure caption.
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Table 4. Performance comparison of different ensemble models. The mean and standard deviation
across five runs are reported.

Ensemble Model Combination Accuracy Precision Recall AUC

DCT (0.1) & DCT (0.5) 72.1 ± 0.8 83.1 ± 2.5 61.2 ± 3.5 80.1 ± 1.1
DCT (0.1) & Dolos 75.5 ± 0.8 79.5 ± 4.9 71.5 ± 3.5 85.3 ± 0.9
DCT (0.1) & Mesonet 76.3 ± 0.2 84.7 ± 0.8 68.0 ± 1.0 82.9 ± 1.1
DCT (0.5) & Dolos 74.0 ± 0.4 87.7 ± 2.4 60.1 ± 2.4 82.8 ± 1.3
DCT (0.5) & Mesonet 72.7 ± 0.8 78.2 ± 3.3 67.2 ± 2.6 80.0 ± 0.7
Mesonet & Dolos 72.6 ± 0.8 77.0 ± 3.4 68.2 ± 4.7 80.4 ± 1.2

DCT (0.1) & DCT (0.5) & Dolos 74.4 ± 1.8 84.2 ± 1.8 64.6 ± 4.4 84.2 ± 0.7
DCT (0.1) & DCT (0.5) & Mesonet 75.4 ± 0.8 85.5 ± 0.7 65.3 ± 2.2 82.3 ± 0.9
DCT (0.1) & Dolos & Mesonet 78.0 ± 1.9 86.9 ± 3.0 69.2 ± 3.2 87.8 ± 1.3
DCT (0.5) & Dolos & Mesonet 77.1 ± 1.7 84.0 ± 3.9 70.1 ± 5.6 85.2 ± 1.3

DCT (0.1) & DCT (0.5) & Dolos & Mesonet 79.2 ± 1.5 83.4 ± 2.1 73.0 ± 2.0 87.4 ± 0.9

10.1. Combining Similar Models

We explore the combination of the two versions of the DCT model, DCT (0.1) and DCT
(0.5), as an example of whether two models that detect similar types of deepfakes can be
combined into an improved ensemble. Table 5 presents the accuracy, precision, and recall
of each individual model and their combination in all six datasets.

Table 5. Individual and ensemble model results split across various datasets. Metrics include accuracy
(Acc); precision (Prec); and recall (Rec). The DCT models’ values refer to the quality factor of the
pre-processing compression. A metric is bolded if it is the highest across DCT(0.1), DCT(0.5), and the
ensemble DCT (0.1) & DCT (0.5).

Model Dataset Metrics
Acc Prec Rec

DCT (0.1)

DeepFakeFace 54.3 82.8 10.9
FaceForensics 67.5 88.9 44.4
Individual 65.6 70.2 43.4
ProGAN 100.0 100.0 100.0
StarGAN 95.2 97.1 93.2
WhichFace 98.8 99.0 99.0
Average 72.2 80.7 58.3

DCT (0.5)

DeepFakeFace 51.0 83.0 2.6
FaceForensics 54.6 72.3 14.8
Individual 56.9 70.6 23.3
ProGAN 100.0 100.0 100.0
StarGAN 91.7 93.7 89.4
WhichFace 99.3 99.4 99.2
Average 68.6 88.2 42.8

DCT (0.1) & DCT (0.5)

DeepFakeFace 54.9 ± 0.2 81.7 ± 4.6 12.7 ± 1.1
FaceForensics 69.3 ± 3.6 81.6 ± 2.9 49.7 ± 8.5
Individual 63.2 ± 2.1 68.3 ± 2.0 48.8 ± 5.3
ProGAN 99.3 ± 1.1 98.6 ± 2.1 100.0 ± 0.0
StarGAN 83.4 ± 3.0 75.6 ± 3.2 98.9 ± 0.4
WhichFace 91.1 ± 1.6 84.9 ± 2.2 100.0 ± 0.0
Average 72.1 ± 0.8 83.1 ± 2.5 61.2 ± 3.5

The ensemble model produces slightly higher accuracy on two datasets that DCT (0.1)
and DCT (0.5) did not perform well on: DeepFakeFace and FaceForensics. It also shows
reduced performance on two GAN datasets that the individual DCT models performed
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very well on: StarGAN and WhichFace. This leads to the ensemble of the two DCT models
being slightly worse than DCT (0.1).

However, the combination of these two models increases recall across all datasets.
Although DCT (0.5) performs significantly worse than DCT (0.1) on most of the six datasets,
with ProGAN and WhichFace as the exceptions, the ensemble results suggest that DCT
(0.5)’s deepfake predictions help catch deepfake images that DCT (0.1) misses. Recall is
particularly important for biometric verification systems, as fewer false negatives mean
fewer malicious actors that are able to gain access to systems using deepfakes. The perfor-
mance of the DCT (0.1) and DCT (0.5) ensemble is particularly encouraging as it shows a
strategy to improve security without developing new model architectures. More analysis
is needed to determine what features DCT (0.5) may have learned that DCT (0.1) did not,
as well as how the two individual models’ predictions differ. Exploring other instances of
ensembles constructed from similar models and generalizing this into a strategy for creating
an effective ensemble given a specific model type are valuable directions for future work.

10.2. Combining Different Models

We next explore an ensemble of two models that achieve their best performance on
different types of datasets. DCT (0.1) performs very well on GAN-generated deepfakes,
moderately well on the face-swap datasets, and at random on diffusion-generated deep-
fakes. Dolos performs moderately well on the diffusion-generated deepfakes but at random
on all other datasets, suggesting that the model cannot adapt to new generative methods
for deepfakes and is limited to detecting one type of deepfake. We show accuracy, precision,
and recall for these two individual models as well as their ensemble in Table 6.

Table 6. Individual and ensemble model results split across various datasets. Metrics include accuracy
(Acc); precision (Prec); and recall (Rec). The DCT models’ values refer to the quality factor of the
pre-processing compression. A metric is bolded if it is the highest across DCT(0.1), Dolos, and the
ensemble DCT (0.1) & Dolos.

Model Dataset Metrics
Acc Prec Rec

DCT (0.1)

DeepFakeFace 54.3 82.8 10.9
FaceForensics 67.5 88.9 44.4
Individual 65.6 70.2 43.4
ProGAN 100.0 100.0 100.0
StarGAN 95.2 97.1 93.2
WhichFace 98.8 99.0 99.0
Average 72.2 80.7 58.3

Dolos

DeepFakeFace 68.1 63.2 86.7
FaceForensics 50.1 50.0 4.0
Individual 50.8 50.9 35.1
ProGAN 50.0 50.0 100.0
StarGAN 50.0 50.0 100.0
WhichFace 50.0 0.0 0.0
Overall 52.9 61.6 14.9

DCT (0.1) & Dolos

DeepFakeFace 71.0 ± 4.3 78.2 ± 9.0 62.3 ± 17.4
FaceForensics 74.2 ± 2.2 90.7 ± 3.8 54.0 ± 5.5
Individual 64.2 ± 3.0 68.4 ± 4.8 52.9 ± 3.1
ProGAN 98.3 ± 1.9 96.7 ± 3.4 100.0 ± 0.0
StarGAN 81.2 ± 1.9 72.9 ± 2.0 99.3 ± 0.7
WhichFace 87.0 ± 3.8 79.8 ± 4.5 99.5 ± 1.1
Overall 75.5 ± 0.8 79.5 ± 4.9 71.5 ± 3.5
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The DCT (0.1) and Dolos ensemble improves performance on the DeepFakeFace and
FaceForensics datasets compared to the DCT (0.1) model. We see a drop in GAN-generated
deepfake detection, most notably in the StarGAN and WhichFace datasets, but the ensem-
ble model still shows significant improvement in overall accuracy and recall. As in the
previous DCT (0.1) and DCT (0.5) ensemble, this DCT (0.1) and Dolos ensemble produces a
much higher recall percentage, with recall improving across all datasets compared to the
individual DCT (0.1) model despite accuracy decreases in the GAN-generated datasets. As
recall is the more critical metric for blocking fraud in verification systems, this ensemble
example highlights that we do not have to sacrifice performance in DCT (0.1)’s strengths to
improve its accuracy in diffusion-generated deepfakes. We can combine two models with
different strengths to produce a more robust defense system, even if the individual models
generalize poorly.

11. Discussion
Several metrics can be used to evaluate the quality of a classifier, in this case the

ability to determine if a picture is real or was generated by AI tools. As a general metric,
the accuracy provides an overall level of quality, indicating the percentage of correct
classification. However, for the specific application of second-factor authentication, it is
more acceptable to obtain false positives than false negatives, meaning that it is more
desirable to reject access to a real client (and ask for another validation) than to grant access
to an impostor. Keeping this in mind, the recall metric penalizes the false positives more
and becomes a priority in our consideration of deepfake detection systems. All ensemble
model combinations improve on overall accuracy compared to the individual models
evaluated in Table 3 and make significant gains in recall.

However, adding more models to an ensemble can risk losing performance for specific
types of deepfakes. Table 6 shows that although the DCT (0.1) and Dolos ensemble achieves
higher overall accuracy compared to the DCT (0.1) model, its performance on the StarGAN
and WhichFace datasets is significantly lower. Selecting another model that is trained
on diffusion-generated deepfakes and is more capable of discriminating between GAN-
generated and real images may avoid the large drops in accuracy and precision. This
tradeoff may also depend on the makeup of deepfake attacks for a specific system, and
which types of deepfakes are most common. For instance, GAN-generated images may
constitute a very large majority of deepfakes received by a verification system due to the
accessibility of GANs. If diffusion-generated deepfakes are rarely received, we would
likely prefer to use just DCT (0.1) instead of DCT (0.1) and Dolos. There are many similar
cases where lower overall performance is accepted, in exchange for peak performance on
a specific deepfake type that will protect more users. One important characteristic of the
ensemble strategy it that it can easily be adapted to be more effective against any particular
technique being actively used by the attackers.

One additional consideration when using an ensemble approach is how to avoid
overfitting on training data. The random forest classifier reduces this phenomena by
training each of its decision trees on different subsets of the ensemble training data. We can
also tune parameters like the number of trees and the minimum number of data samples in
a leaf to prevent individual decision trees from overfitting to outliers. However, the risk
of overfitting and the best parameters to use may vary depending on the system and the
quality of deepfake attacks it receives.
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11.1. Guidelines for Ensemble Construction

In Section 10.2, we explored how combining two models that perform well on different
deepfake generation methods produces a better ensemble, increasing accuracy by more
than 3% compared to combining two similar individual models. This leads us to one
general guideline when selecting individual models for an ensemble: choose models with
different strengths and avoid overlap in model architecture or training data. It is important
that all deepfake generation methods, especially popular ones that are likely to be accessed
by malicious actors, are represented by at least one individual model that can contribute
strong predictions to the ensemble.

In addition to a model’s strong performance on at least one type of deepfake, we
must also consider its performance on other deepfake types. From Table 3, we see that
both the Dolos and MesoNet models perform well on one deepfake type and perform at
chance on the other two types. However, Dolos only predicts one class for four out of six
datasets. MesoNet is better able to discriminate between deepfake and real for all datasets,
even though its overall accuracy on diffusion- and GAN-generated deepfakes is still 50%.
MesoNet’s stronger performance across all deepfake types makes it a better candidate
for including in ensemble models. We see from Table 4 that the DCT (0.1) and MesoNet
ensemble slightly outperforms the DCT (0.1) and Dolos ensemble.

11.2. Implications for Biometric Security

Our findings reinforce that single deepfake classifiers that can handle a variety of
threats are not readily available. Each of the detection models we evaluated had a distinct
generation technique that they performed significantly better on face-swapped deepfakes
for MesoNet, GAN-generated deepfakes for DCT, and diffusion-generated deepfakes for
Dolos. Classifiers that excel when presented with one method of synthetic data lose per-
formance when confronted with diverse generation techniques, and predict at random on
novel datasets. As such, the use of deepfake image classifiers in identify verification applica-
tions often struggles against adversarial threats using different methods of image or video
generation, and lacks the generalizability required for deployment across secure contexts.

The results of combining submodel architectures through a random forest classifier
shows promise in improving the generalizability of a deepfake detection classifier. All en-
semble model combinations outperform the individual submodels. In particular, combining
two models that work well on different deepfake generation techniques, like diffusion and
GANs in Section 8.2, creates a well-rounded model that performs well on both techniques
without increasing recall.

From a practical point of view, real-world biometric systems must account for both
security and usability. Overly permissive models risk admitting malicious deepfakes, while
excessively conservative models degrade user experience by frequently misclassifying legit-
imate images. The balance achieved by the ensemble approaches in this study is particularly
relevant for financial applications, where a wide variety of tools to generate deepfakes are
available for adversarial attacks. As adversaries often tailor their attacks to circumvent
known detection weaknesses, an ensemble model framework can better accommodate
evolving threats, offering enhanced resilience in dynamic operational environments.

One tradeoff that is crucial to consider for real-world systems is the increased latency
and overhead when running an ensemble model. The latency of an ensemble predictor
can be minimized by running the submodels in parallel, resulting in no additional runtime
beyond the longest submodel. This leaves the final classifier, which combines submodel
predictions to produce one decision. As this final classifier is often simpler and processes
much less input data compared to the submodels, it does not add a large amount of latency.
Running our ensemble model on one standard NVIDIA Tesla T4 GPU with 40 cores and
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16 GB of memory, we have observed a maximum average latency of 2.83 ms ± 124 µs,
which is very efficient for a real implementation. In comparison, we found that for each
inference, the individual model MesoNet had an average latency of 78 ms ± 18.4 ms.

11.3. Inverting Model Predictions

As can be seen from the Individual Model Evaluation section, the Dolos model had
an interesting performance for the GAN-based datasets (this includes the Faceswap-GAN-
generated partition of the data in the FaceForensics dataset). We noted that the curves for
these datasets had inverted ROC curves. Upon further examination, the model seemed
to produce flipped results. With Dolos predictions on GAN images showing a very low
TPR/FPR ratio at certain thresholds. However, the same frozen checkpoint for Dolos still
predicts accurately for the Diffusion models. This suggests some promise in dynamically
flipping or reweighting the predictions from models like Dolos based on properties of the
image. This ’informed’ classifier would involve retraining the last layer to also process the
input image and learn to additionally evaluate which model would be more successful for
the type of image provided. This would allow the performance of ’flipped’ classifiers like
Dolos to provide a bump in performance across more the image classes. In addition, this
would allow for models with spiky performance to be reweighted as specialist and only
assigned contribution to the ensemble model when the image contains certain artifacts that
it performs well on. This is explained further in the Future Work section below.

12. Conclusions and Future Work
This study presents a framework for robust deepfake detection in biometric verifica-

tion systems, with a particular focus on the financial sector. By combining six benchmark
deepfake datasets and evaluating multiple state-of-the-art models across our entire dataset,
we have shown that single-model performance often stagnates around chance or moderate
accuracy, particularly when faced with new or more complex generation methods. Ensem-
ble approaches offer noticeable improvements, achieving up to 80% accuracy across varied
deepfake techniques without requiring expensive model retraining. Practical deployment
in biometric systems benefits from these higher detection and lower recall rates, reducing
vulnerabilities in identity verification processes. Our results underscore the pressing need
for model generalization and ensemble-based strategies to keep pace with the rapidly
evolving deepfake landscape.

Future Work

Despite the promising performance gains observed in our experiments, several con-
straints merit further attention. First, the computational overhead of running multiple
detection models in an ensemble can impede real-time or large-scale deployment. While
we propose that an ensemble framework is much more adaptable to emerging deepfake
generation techniques, more research must be carried out to understand the cost of gen-
erating an ensemble prediction compared to existing deepfake detection pipelines that
process user requests. In addition, testing and selecting a good ensemble model from many
available options can be a difficult and time-consuming task. We have proposed some
starting guidelines and considerations when choosing a limited set of individual models,
but more research can be performed with a broader set of models to develop a formalized
set of principals.

In this paper, we do not explore explainability in our ensemble model, even though
this is an important concern in fraud detection. Ensemble models may be beneficial in this
aspect, as we can analyze how the “votes” of individual models are weighed. However, this
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framework adds another classifier layer on top of multiple detection models, and it is hard
to understand how different model combinations interact and affect overall performance.

While our combined dataset offers a useful test bed, they may not encompass all
emerging deepfake generation methods or demographic factors, limiting the broader
applicability of the results. Testing our individual and ensemble models on additional
larger datasets, particularly in-the-wild datasets that include real-world malicious uses
of deepfakes, would help with evaluating additional generalization. Finally, although
ensemble approaches generally improve robustness, their performance may degrade if
all base models share the same underlying biases or are trained on similarly skewed
datasets. Future research should thus focus on both algorithmic optimizations and more
diverse, representative data collection to address these limitations. In addition, using other
ensemble methods like gradient boosting may improve the performance of our model and
reduce bias.

As mentioned in the discussion, there is also potential for work in developing an
informed ensemble method. The specific architecture for informing the classifier may vary.
One method for developing the informed ensemble could involve training an ’adjudicator’
that outputs a confidence score for each of the individual models. Such an adjudicator may
be trained on the same datasets used in individual model benchmarking, with tags as a
vector representing which models successfully classified the image in benchmarking. This
model’s output would then be appending to the classifier outputs and passed into the final
decision model. Another method could be to strip the last layers of each of the submodels.
The input to the decision model would then instead be embeddings generated from each
classifier. This allows the final decision model to consider ’votes’ based on properties of the
image extracted internally in each classifier.

Finally, we have developed and evaluated our ensemble method for single images only,
but it can easily be expanded to deepfake videos. Many biometric verification systems have
increased security by requiring video rather than just one image, or prompting the user
to do specific actions like turning to one side. As video is a collection of highly correlated
image frames, our ensemble model could be run out of the box by performing inference
on each video frame. However, a better ensemble strategy would likely use different
submodels that can detect temporal inconsistencies across images frames and have been
trained on large deepfake video datasets.
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