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Abstract

In this paper, a novel approach to define the optimal bidding of Renewable-only Virtual Power Plants
(RVPPs) in the day-ahead, secondary reserve, and intra-day markets is proposed. To this aim, a robust
optimization algorithm is developed to account for the asymmetric nature of the uncertainties that character-
ize the market prices, as well as the energy production of the RVPP stochastic sources and flexible demand
consumption. Simulation results show increased RVPP benefits compared to other existing solutions and
demonstrate the potential of renewable sources to further increase their economic competitiveness. The
simplicity of the implementation, the computational efficiency, and the flexible robustness are also verified.
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Nomenclature

Indexes and Sets

d €D Set of demands

k € X Set of Intra-Day Market (IDM) sessions

p € P Set of daily load profiles

r € R Set of Non-dispatchable Renewable Energy Sourcess (ND-RESs)
t € T/t > 1 Setof time periods/IDM time periods

6 € ® Set of Solar Thermal Units (STUs)

—=DA /=ID

7:511/ Tk Set of decision variables of Day Ahead Market (DAM)/IDM#k/Secondary Reserve Market (SRM)

Parameters

P/ f’%‘),t Median/negative deviation of ND-RES r (solar field of STU 6 thermal) production in the DAM
during period ¢ [MW]

Pﬁ[/ IV’L[ZJ Median/negative deviation of ND-RES r production in the IDM#k during period ¢ [MW]
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PSR/PSK Median/negative deviation of ND-RES r production in the SRM during period ¢ [MW]
PdD’;}J/f’i/;J Median/positive deviation of hourly consumption of profile p of demand d in the DAM during
period ¢ [MW]
R4/R; Down/up ramp rate of demand d [MW/hour]
I_?f(';) /I_?f(ls) Secondary Reserve (SR) down/up ramp rate of ND-RES r (demand d) [MW/min]
E,; Minimum energy consumption of demand d throughout the operation horizon [MWh]
Py/P, Minimum/maximum power production of STU 6 IMW]
P,/P; Minimum/maximum power consumption of demand d [MW]
P,/P, Minimum/maximum power production of ND-RES r [MW]
CR Operation and maintenance costs of ND-RES r [€/MWh]
C,p Cost of load profile p of demand d [€]
M Big positive value [MW]
T5® Required time for SR action [min]
Ba: /Ba; Percentage of down/up flexibility of demand d during period ¢ [%]
I'?A4/TP DAM/IDM#k price uncertainty budget [-]
I'24 Demand d consumption uncertainty budget in the DAM [-]
F%‘) ND-RES r (Solar field of STU 6 thermal) production uncertainty budget in the DAM [-]
ST /TSR Up/down SRM price uncertainty budget [-]
At Duration of periods [hour]
& Small positive value IMW]
k User-defined parameter to set the limit of up reserve traded in the SRM as a percentage of total power capacity
of RVPP [%]
DA/ ADA
/EID A Median and positive/negative deviation of DAM price prediction during period ¢ [€/MWh]
1
SR SR
/ ElSR* L Median and positive/negative deviation of down SRM price prediction during period t [€/MW]
1
ASRT /SR
/ EISR’T ’ Median and positive/negative deviation of up SRM price prediction during period ¢ [€/MW]
1
3D /41D
/ /]Si}t(D ki Median and positive/negative deviation of IDM#k price prediction during period ¢ [€/MWh]
A3
o: Coeflicient to calculate the ratio of down-to-up reserve requested by the Transmission System Operator
(TSO) during period ¢ [%]
Variables
pgf Production of STU 6 in the DAM during period ¢ [MW]
pl? Consumption of demand d in the DAM during period ¢ [MW]
pR4 Production of ND-RES r in the DAM during period ¢ [MW]
i, Production of STU 6 in the IDM#k during period [MW]
pi5, Consumption of demand d in the IDM#k during period ¢ [MW]
P2, Production of ND-RES r in the IDM#k during period ¢ [MW]
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PP /p Total power traded (positive for selling and negative for buying) by RVPP in the DAM/IDM#k during

period ¢ [MW]
pgf Thermal power output of the solar field of STU 6 during period ¢ [MW]
r,s R‘T/ r,SR‘l Total up/down SR traded by RVPP during period ¢ IMW]
R Total SR traded by RVPP for different TSO calls on conditions during period ¢ [MW]
rjzf SR provided by STU 6 for different TSO calls on conditions during period ¢ [MW]
rf({:ft / rf({:ft Up/down SR provided by ND-RES r (demand d) during period ¢ [MW]
rf(’;)’t SR provided by ND-RES r (demand d) for different TSO calls on conditions during period ¢ [MW]
y2* /v RVPP energy production affected by DAM/IDM#k price uncertainty during period 7 [MWh]
yg);‘ Demand d consumption affected by uncertainty during period ¢ [MW]
Y%),1 ND-RES r (solar field of STU 6 thermal) production affected by uncertainty during period ¢ [MW]
r]?f Dual variable to model the demand d uncertainty during period ¢ [MW]
’7%),: Dual variable to model the ND-RES r (solar field of STU 6 thermal) production uncertainty during period

t [MW]
nP* /i Dual variable to model the price uncertainty of DAM/IDM#k during period ¢ [€]
qf Ry r],SR’l Dual variable to model the price uncertainty of up/down SRM during period ¢ [€]
vPA/vIP" Dual variable to model the price uncertainty of DAM/IDM#k [€]
ySR&1 /SR Dual variable to model the price uncertainty of up/down SRM [€]
vfl’A Dual variable to model the demand d uncertainty [MW]
v%) Dual variable to model the ND-RES r (solar field of STU 6) production uncertainty IMW]
Xﬁ’f Binary variable that is 1 if demand d robust constraints are active during period #, and 0 otherwise [-]
X%),, Binary variable that is 1 if ND-RES r (STU ) robust constraints are active during period ¢, and O other-

wise [-]
ug, Binary variable that is 1 if profile p of demand d is selected, O otherwise [-]

1. Introduction

1.1. Motivation

A Virtual Power Plant (VPP) combines and operates several independent assets in a coordinated man-
ner to provide a flexible and economical solution to utilities that otherwise could not be possible. This
combination and coordination can partially mitigate some of the issues related to Non-dispatchable Renew-
able Energy Sourcess (ND-RESs), such as their inherent variability and relatively small size compared to
conventional fossil-fuel plants [1]. In this regard, different organizations have manifested their interest in in-
creasing the performance of an integrated portfolio of Renewable Energy Sources (RESs) to operate together
as a Renewable-only VPP (RVPP), capable of providing flexibility and ancillary services to the electricity
markets while being competitive against other market participants (see, e.g., [2]).

In order to operate the RVPP in an economically viable manner, it is necessary for the RVPP to partic-
ipate in different electricity markets to cover its costs and generate profit. The primary source of income
for the RVPP comes from its participation in the Day Ahead Market (DAM), where the market operator
provides or receives payments based on the amount of energy supplied to/consumed from the network [3, 4].
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Additionally, operators have designed distinct Intra-Day Markets (IDMs) mechanisms that allow units to (i)
“update” their submitted energy volumes after the DAM has been cleared and (ii) compensate for any un-
expected imbalance [5]. In contrast to the energy markets, such as the DAM and IDM, which are overseen
by the market operator, the reserve markets are settled by the Transmission System Operator (TSO). The
reserve is a margin of power that the power plants are required to include in their generation programs to
address unexpected load changes or generation failures. In the event of power imbalances, such as those
caused by equipment failures or sudden load increases, the Primary Reserve (PR) is the first one to act, en-
suring that the frequency returns to acceptable levels. The PR service is typically not offered on the market
due to security concerns. Following PR, Secondary Reserve (SR) or Automatic Frequency Restoration Re-
serve (aFRR) is activated to restore the frequency and area power interchange to their respective reference
values [6]. Unlike PR, this service is suitable for market participation as it allows generating units more
time to prepare and deliver the required provision. Therefore, it is essential that researchers and engineers
carefully evaluate the participation of the RVPP in different energy and reserve markets.

The main limitation of RVPPs is the wide set of uncertainties that characterize the behavior of the units
they comprise. These include the ND-RESs production (from wind speed and solar irradiation), as well as
demand consumption patterns. Such uncertainties can significantly affect/on the participation of RVPPs in
the DAM and/or Ancillary Service Markets (ASMs), such as the Secondary Reserve Market (SRM), and thus
on their expected benefits. The RVPP operator thus needs to take advantage of other market mechanisms,
such as IDMs, to compensate for any forecast errors. Moreover, the forecasted market prices, used to plan
the participation of the RVPP in different markets, are also subject to uncertainties that depend on, e.g.,
the markets’ time scale and forecast horizon [7]. Therefore, handling simultaneously multiple sources of
uncertainty with different variabilities is important for RVPP operators to be competitive compared to other
market participants [8, 9].

1.2. Literature Review

Short-term electricity trading usually spans a time window of 24 hours, and different pools take place
prior to the power delivery. According to.the quantity traded, short-term electricity markets can also be
categorized into energy markets, in which the market operator gives/receives payments according to the
amount of energy supplied to/consumed from:the network, and ASMs, related to the reliability and security
of the grid [10]. In the literature; there.is a vast body of papers that model the behavior of VPP in the
energy markets, which mainly includes DAM and IDM [5, 11-14]. These papers neglect the participation of
VPP in ASMs, which can bring more benefit for the VPP. Besides, the uncertainties in both ND-RESs and
electricity prices are barely studied together in their optimization models.

Apart from DAM and IDM; ASMs exist, efficiently assigning resources to guarantee a reliable power
system operation. Frequency and non-frequency-related ancillary services exist. Most of such markets are
based on the availability of certain levels of power reserves (capacities) that were adequately scheduled in
advance. The papers [15-19] study the VPP participation in multi-markets, including energy and reserve
markets. Although VPP offering in simultaneous energy and reserve markets is implemented in the above
papers, the complete formulation for reserve provision of each VPP’s units and associated constraints are
simplified. For instance, in energy-limited devices, the real-time use of reserve energy affects the reserve
capacity offering. Therefore, a simple assumption of a fraction of energy may not be sufficient. Moreover,
the reviewed literature mainly focuses on the simultaneous energy and reserve market clearing or on the
initial stage (DAM and reserve) of sequential multi-market offerings. However, the complete sequence
of multi-markets, which includes several energy and reserve markets and their interactions, has not been
considered.
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The operation and planning of power systems, in general, and market participation in particular, are sub-
ject to multiple sources of uncertainties [7, 20]. Two main approaches can be generally followed to model
market price and stochastic energy production/consumption in optimization problems, namely Stochastic
Programming (SP) and Robust Optimization (RO) [21]. In the SP, scenarios are constructed based on the
probability distribution of uncertain parameters. The scenarios are then used to configure the optimization
problem, in which the final results are assigned according to the probability of the scenarios [21]. In [22], a
multi-objective model is implemented for VPP, including wind units, hydroelectric power plants, and ther-
mal units, participation in the continuous IDMs. The uncertainties of hydro inflow forecast, wind generation,
and shared order book of VPP compared to other market participants are captured through scenarios by a
multi-stage SP model. In [23, 24], a two-stage SP approach is proposed to find the optimal bidding strat-
egy of a VPP in the joint energy and reserve market. The uncertainties of ND-RESs generation, demands,
reserve deployment requests, and electricity prices (DAM, Balancing Market (BAM); and spinning reserve
market) are captured through a scenario generation method. However, constructing a priori scenarios is
not always simple or even accurate enough. Moreover, as the number of scenarios increases, the number
of constraints and variables in the optimization problem also grows, resulting in an increase in computa-
tional burden. However, some works propose techniques to mitigate this increase in computational burden
(e.g., [25, 26]). The paper [25] studies a multi-energy VPP to enhance the resilience of agricultural mi-
crogrids, where the Probability Density Function (PDF) of several uncertain parameters are formulated to
account for Photovoltaic (PV) and solar thermal uncertainties. In [26], the uncertainties associated with
speed and power of integrated wind units are modeled using the PDF of uncertain parameters. While using
SP based on the PDF of uncertain parameters can reduce computational time, determining the PDF of these
parameters is not feasible in some cases due to the unavailability of exact information.

By contrast, RO establishes a formulation that allows obtaining the values of the decision variables based
on adverse realizations of the model parameters. RO has the advantage that the mathematical formulation
does not grow in the number of variables and constraints as much as it occurs with SP. However, RO results
can be too conservative, although the user may define the level of conservatism by selecting the so-called
uncertainty budget to alleviate this issue [27]. In [28], the RO problem of a price-taker VPP, including
wind power plant, demand, and Energy Storage System (ESS), is proposed in the DAM and BAM. The
uncertainties considered include market prices and wind production. In [29], an RO approach is discussed
to operate a VPP, including hydro-pumped storage units, thermal units, wind and PV plants, and demand
in the energy and reserve markets. Symmetric uncertainties of RESs and demand are considered through
confidence bounds (price uncertainty is not considered). The up/down reserve bidding by hydro-pumped
storage units and thermal units'is modeled in the optimization problem. An iterative algorithm based on
solving two Mixed Integer Linear Programming (MILP) problems related to hydro-pumped and thermal
units operation is offered to solve the resulting two-stage problem. In [28, 29], the uncertainty budget is
set on an hourly basis for each uncertainty in the constraints, which implies the decision from the VPP
operator of dozens of parameters per uncertain profile in each market session. An approach requiring far
less parameters to be adjusted by the operator would ease the usability and implementation of RO-based
bidding approaches.

Apart from SP and RO, interval optimization [30-32] and fuzzy optimization [33, 34] are also employed
to address uncertainties. In [30], interval optimization is employed to account for uncertainties in wind-
integrated units by considering multiple decision vectors associated with different intervals of the objective
function of the problem. The potential risk associated with the solution is mitigated by incorporating the
average value and the deviation of the objective function across the specified intervals. The paper [31] ex-
amines the short-term electricity market participation of a price-maker VPP by considering wind generation
and demand uncertainties using interval optimization. In [32], interval optimization is applied to address
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uncertainties in the profit of a VPP within a regulated electricity market, while also modeling uncertainties
in wind units, solar PVs, and demands as constraints within the interval optimization framework. In [33], a
bidding optimization model for VPP participation in the DAM and real-time market is developed, consider-
ing the uncertainties associated with RESs. Fuzzy optimization is employed to capture the uncertainties in
wind and PV generation. This is achieved by defining fuzzy sets and membership functions for each unit and
the objective function, thereby enabling the evaluation of their influence. The paper [34] presents a schedul-
ing model for DAM participation of VPP, addressing uncertainties associated with wind units, PV units,
electric vehicles, and demand. The model employs fuzzy satisfaction theory to solve a multi-objective prob-
lem, managing system compensation costs, abandoned power costs, and VPP operational income. While
interval and fuzzy optimizations are applicable for various problems, they have limitations. The solutions
obtained through interval optimization can be overly conservative compared to those from RO, as it does not
allow for controlling the level of conservatism. The design of fuzzy sets and membership functions in fuzzy
approaches is a complex and subjective process, making results challenging to interpret. Additionally, the
computational time of fuzzy and interval optimization can be significant, posing challenges for large-scale
problems or real-time applications.

There are more advanced models to capture the uncertain parameters in which the two approaches (SP
and RO) are combined or improved. For example, in the Stochastic Adaptive'RO (SARO) approach, the
problem is defined as a max-min-max problem [35, 36]. The third level allows modeling the corrective
actions after uncertain parameters occur. Therefore, compared to a sSimple RO model, there is more flexibility
to counter uncertainties. The main limitation of the SARO approach.is that not many stochasticities can
be included in the model, as otherwise, the problem can easily/become too cumbersome computationally.
SARO approaches are best suited for problems where feasibility must be strictly guaranteed in all ranges
of uncertainties considered. In the problem that is solved in this paper, it can safely be assumed that not
complying with the RVPP optimal bid can be admitted, albeit some penalization may be applied.

Distributed RO (DRO) technique is a powerful-tool, especially when uncertainties are centered around
the type of density distribution. Its primary strength lies in scenarios where the exact distribution of the
uncertainty is unknown, and one needs to optimize against the worst-case distribution within a certain ambi-
guity set. The papers [37-39] use DRO technique to model the uncertainties of RESs in the DAM. In [40],
a DRO approach is proposed to model the bidding problem of a VPP in the DAM and BAM. A Wasserstein
ambiguity set is used to deal with-both uncertainties of electricity price and wind power generation. It is
shown that the proposed DRO approach has better out-of-sample performance compared to the SP problem.
In the context of this paper, the parameters of the price density functions are not just assumed to be known
but are also derived from historical data, making the application of DRO less pertinent.

The coupling of uncertain parameters, such as the production of ND-RES and electricity prices, be-
comes another significant factor in the energy market operations, influencing the strategies and decisions of
RVPP operator in the electricity markets. In the study presented in this paper, a single-level RO is employed
to capture the effect of-individual uncertain variables. However, this approach does not fully capture the
complex inter-dependencies between these parameters. This is a recognized limitation of single-level RO
frameworks compared to multi-level RO [41, 42] and SP approaches [13, 19, 36]. Multi-level RO mod-
els offer greater flexibility in capturing the interactions between uncertain parameters in the RVPP bidding
problem than single-level models. This advantage arises from the addition of a new optimization level that
explicitly represents the behavior of uncertainties, such as electricity prices and energy production and their
coupling. In this framework, the objective function of the new level can be designed to identify the worst-
case scenario for the profit of the RVPP, rather than focusing solely on energy-related metrics. The research
on multi-level models introduces various mathematical methods, including adaptive [41, 42] and stochastic
RO [13, 19, 36], to deal with the uncertainties in ND-RES output, electricity prices, and their couplings.
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Despite their advanced capabilities, these approaches are confronted with significant challenges, including
the complexity of implementation and the rapid growth of problem size as the number of iterations during
the solution process increases. These limitations can compromise the scalability and computational fea-
sibility of these approaches, particularly in the context of large-scale problems. Moreover, the stochastic
simulation-optimization framework [43] integrates coupled uncertainties using copulas and Monte Carlo
methods, allowing a probabilistic comprehension of joint effects. However, RO, as applied in this paper,
focuses on worst-case scenarios in a single-level RO model within defined bounds, thereby providing com-
putational efficiency at the expense of detailed coupling representation.

Regardless of the approach applied, a feature that the aforementioned RO-based references in the VPP
market participation share is that they consider symmetric distributions of the uncertain profiles. This as-
sumption, which simplifies the problem implementation and input data generation, does not accurately repre-
sent the reality of, e.g., solar irradiation or wind speed profiles, nor the different market prices. In particular,
the modelling of asymmetric uncertainty on DAM prices allows RO to identify scenarios where buying or
selling energy worsens the RVPP objective function. Moreover, regardless of the uncertainty approach ap-
plied, the references above consider either conventional (thermal) units and/or fast ESSs (e.g., batteries) as
part of the VPP. In other words, the ND-RESs rely on thermal or electrochemical units to improve their
reliability. The unique challenges faced by renewable-only RVPPs havenot been adequately addressed. Be-
sides, the literature mainly focuses on the first market window (generally the DAM with SRM) due to its
larger liquidity. However, how the results of that optimization problem affect subsequent market sessions is
not analyzed.

Some works in the literature consider the asymmetric nature of uncertain parameters in the RO prob-
lem in power system applications. In [44], an uncertainty set, called forward and backward deviations, is
introduced to capture the asymmetric distribution of random variables. The authors subsequently refine
the proposed method to identify a tractable solution for stochastic linear optimization problems. In [45],
an asymmetric uncertainty set is proposed by considering a limited distributional information. In [46], the
asymmetric RO model proposed in [45] is developed for reserve scheduling of a wind unit. The authors uti-
lize dual theory to identify the robust counterpart of the proposed bi-level asymmetric RO model. A linear
RO is proposed in [47] by considering asymmetric uncertainty bounds for optimal control of systems. The
bounds on uncertain parameters are built for cases when full distributional information is available and the
case that only limited distributional.information is available. However, to the best of the authors’ knowl-
edge, the application of RO with.asymmetric uncertainty modeling to single-level optimal bidding of RVPP
in sequential markets is limited.

Another method for addressing asymmetric uncertainty is multi-band RO uncertainty modeling, which
was first introduced in [48] for wireless network design. The objective of this method is to reduce the con-
servatism level of RO-problem against uncertainty. The main idea of this method is to divide the bound of
uncertain parameters to several intervals by considering the probability of each interval according to proba-
bility density function:of uncertain parameters. In this context, a multi-band uncertainty modeling approach
is proposed in [49] for unit commitment problems. This method addresses the limitations of the RO ap-
proach regarding the selection of intervals with low probability. The application of multi-band uncertainty
modeling in security-constrained unit commitment problem is developed in [50, 51] by considering nodal
load uncertainty. The authors of [52] employ multi-band uncertainty modeling for transmission expansion
problem, considering renewable sources and demand uncertainties. However, defining multiple new uncer-
tainty budgets into the optimization problem increases problem complexity and hinders the applicability of
the proposed method. Furthermore, adding more binary variables to the optimization problem and the need
for having knowledge on the distribution of uncertain parameters are other disadvantages of this method.
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1.3. Paper Contributions
The contributions of this paper are thus threefold:

o A single-level robust optimization model tailored for RVPPs to define their optimal bidding in sequen-
tial energy and reserve markets: This model considers the interactions and sequences of different
energy and reserve markets, thus being specifically tailored to address the intricacies and challenges
posed by sequential markets in the European context. Moreover, the high computational efficiency of
the proposed single-level optimization problem allows evaluating, through parametric sensitivity anal-
ysis, the impact of choosing different uncertainty budgets for the uncertain parameters in the model,
providing the user (e.g., the RVPP operator) with the adequate solution to each market condition. To
the authors’ knowledge, this type of analysis has not been presented in the context of optimal RVPP
bidding.

o Asymmetric uncertainty on robust optimization: Existing models for VPP market participation assume
symmetric uncertainties, which may not accurately represent the real-world scenarios RVPPs face.
The proposed robust model handles the asymmetric behavior of uncertain parameters, providing a
more realistic representation. An evaluation of how this asymmetric handling impacts RVPP profit is
offered. Such evaluation is compared against previously proposed solutions that consider symmetric
uncertainty distributions, showcasing the significant differences between the proposed more realistic
approach, and the symmetric approximations. The proposed model is also agnostic with respect to
the methodology used to generate the forecasts of the probability distributions of the uncertainties.
This flexibility ensures that the proposed model remains relevant and adaptable to a wide range of
forecasting methodologies, enhancing its practical applicability.

o Robustness budget on global scheduling horizons: Traditional single-level robust optimization models
often require defining uncertainty budgets.on an hourly basis for each uncertain parameter in the
constraints. This process can be cumbersome and less intuitive for RVPP operators, specially as the
size of the RVPP increases. The proposed approach simplifies this by allowing operators to define
a single robustness budget for each parameter across the entire scheduling horizon (e.g., 24 hours).
This innovation reduces the complexity of parameterization and enhances the model’s practicality,
particularly for real-world applications where operators must frequently update their models to align
with market windows.

1.4. Paper Organization

The remainder of the paper is organized as follows. The RVPP bidding in sequential energy and reserve
markets is introduced in Section 2. An overview of the proposed flexible robust RVPP bidding optimization
is presented in Section 3, whereas the detailed formulation is provided in Section 4. Section 5 discusses
simulation results for different case studies. Finally, conclusions are drawn in Section 6.

2. RVPP Bidding in Sequential Energy and Reserve Markets

In this section, the concept of sequential electricity markets is introduced, and the bidding strategy of
RVPP used in this paper for sequential markets participation is presented. While many system operators
opt for joint market clearing, especially in day-ahead and intra-day trading, there exist notable instances and
specific segments where a sequential market clearing approach is observed. This is particularly evident in the
balancing and reserve markets, where individual countries often manage these aspects separately from the
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main energy market [21, 53]. This distinction is crucial as the dynamics, rules, and challenges of sequential
markets differ from those of joint clearing markets. Further, it is important to distinguish between joint mar-
ket clearing, joint decision-making for determining optimal bids, and joint bidding. In a sequential market
clearing structure, decision-making for determining optimal bids can be made jointly (i.e., different markets
can be considered simultaneously at the time of making the optimal decision for the market participant, al-
though such markets are cleared sequentially by the operator). The bids for the different markets can then
be submitted jointly or sequentially according to market gate closing times. Hence, the choice is to consider
sequentially cleared markets for our RO-based formulation of the bidding model. Figure 1 depicts the Span-
ish electricity market as an example of a typical market sequence in European countries [54]. The Spanish
energy markets include DAM and seven IDMs. The generation units and demands send DAM offers for an
upcoming day, including both electricity price and energy, to the Spanish Market Operator (OMIE). Units
have opportunities to adjust their DAM energy offers by participating in IDMs. The sequential optimization
problems are solved in this paper based on the fact that more accurate forecasts of uncertain parameters
could be available as time is closer to the power delivery period.

In addition to energy markets, several reserve markets are run to guarantee the security of the system.
The SRM associated with Automatic Generation Control (AGC) is run by the Spanish TSO, Red Eléctrica
de Espafia (REE). In this regard, the resources of the up and down-regulation provision for the 24 hours
of the operation day are assigned by REE for seven operational zones of the Spanish system. Then, each
zone is responsible for providing its promised reserve by clearing.the offers from its reserve providers. Note
that the electric market design shown in Figure 1 can be adapted, upon some adjustments, to the situation in
other European countries.

E Deli Periods
s Day-Ahead Market (DAM) nw

IDM#7
Intra-Day Market (IDM) IDM#6
ID
IDM#4
IDM#3
IDM#2
IDM#1
DAM
Day before operation (D-1) Day of operation (D)
12 01213 .. 16 17 1819 ... 2223 24 12345678910 11 12 13 .18 19 ... 24

Vol r b

paM  Additional |ppg [DM#2 | IDM#3  IDM#4 IDM#5 IDM#6  IDM#7
Upward -,
Reserve Gate Closure
Secondary Tertiary
Reserve Reserve

Figure 1: Spanish electricity markets structure [54].

Figure 2 shows the bidding strategy of RVPP in the sequential markets, including DAM, SRM, and
IDMs. The information flow between different electricity markets and the necessary input data for running
the optimization problems in each of the mentioned electricity markets are also presented. In this paper a
price-taker RVPP, i.e., an RVPP with small size, is modeled. Therefore, the RVPP does not significantly
affect the market clearing price. As market prices are unknown until the market is cleared, the RVPP opti-
mization model considers electricity price forecasts data as inputs, which are generated by means of large
sets of historical data. Note that the problem is solved from the RVPP operator point of view as a bidding
unit, not from the overall system operator’s side. In other words, the RVPP operator does not have access to
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the bids submitted by other market participants. Therefore, the dual form of the network operation problem
is not considered in order to clear the market and to determine the nodal electricity price. Instead, the worst
cases of income deviations in the corresponding bounds of electricity price forecast (as well as the forecast
bounds of ND-RESs energy and demands) are obtained in the RO problem. Moreover, it is assumed that
RVPP bids at zero or low prices. This assumption is relevant since the size of RVPP is small, and it mainly
includes ND-RESs with low operation costs. Note that the proposed bidding approach could potentially be
adapted for joint clearing markets. For example, if DAM and SRM are cleared at the same time, the RVPP
can use the first pane of Figure 2 to bid in these two markets at the same time.

According to Figure 2, the step-by-step solution methodology of the optimization problems for different
market sessions in the Spanish electricity market is summarized below:

1. The RVPP receives the input data of its units in addition to the forecast of uncertain parameters before
the gate closure of each electricity market selected for participation.

2. The RVPP maximizes its benefits by solving different single-level MILP optimization problems de-
fined in Section 4 related to each market session.

3. The results of solving the optimization problems are used to bid energy or.reserve in the corresponding
electricity market and to determine the dispatch of RVPP units:

4. The bids submitted by RVPP to the markets are cleared based on the priorities of OMIE and REE,
and then the results are sent to the RVPP operator. The energy and reserve bids may or may not be
accepted according to the decision of the market operator. Note that the RVPP finds the optimal bids
according to the forecast data and whether they are feasible or not will be determined by the system
operator.

5. The RVPP uses its accepted bids from previous market sessions as well as the updated input data and
forecast of uncertain parameters to.solve the optimization problem for the upcoming market session.

Note that in the proposed RVPP bidding scheme, the interconnection between the markets is appropri-
ately addressed. For example, in the case©of the DAM objective function, the possibility of providing reserve
in the SRM needs to be considered. Therefore, the optimization problem for both DAM and SRM is per-
formed (see upper pane of Figure 2). The RVPP offers energy to the DAM before the DAM gate closure.
However, the up/down reserve is not offered and can be reoptimized before the SRM gate closure. In addi-
tion, the first IDM (IDM#1) effect in the SRM objective function is considered, but the IDM#1 bid results
are not offered in the SRM (see middle pane of Figure 2). Finally, the objective function for each IDM is
optimized by considering the bidding results of DAM, SRM, and previous IDMs (see bottom pane of Fig-
ure 2). The proposed bidding approach allows the RVPP to omit some of the above electricity markets if so
deemed. For instance, the SRM or a number of IDMs can be ignored, and RVPP can go for the subsequent
market, in which the input data is based on previously implemented markets. It is worth noting that IDMs are
not included in the co-optimization problem of the DAM snapshot. The reason is that the co-optimization
of DAM and IDMs can lead to a speculation effect. For instance, a net seller RVPP might attempt to benefit
by, e.g., buying a large amount of energy in the DAM to sell it later at a higher price in the IDMs or vice
versa. However, this co-optimization is not implemented because usually, the regulator of the system does
not allow this kind of participation in the market. Besides, IDMs tend to have much less liquidity than DAM
and are mainly used for minor energy adjustments (however, there are some IDM markets with relatively
high traded energy such as IDM#1 in the Spanish system). Therefore, with low market liquidity, there is a
high risk of not being called in the IDM, thus potentially incurring notable economic losses for the RVPP.

10
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The optimization problems involved in the different electricity markets shown in Figure 2, namely (i)
DAM+SRM,; (ii) SRM+IDM#1; and (iii) IDM#k, will be developed in Sections 3 and 4 of this paper.

Set DANM+SEM input data: including RVPP
umnits, and DAM and SEM forecast data

|
| i
! I
: L !
: ‘ Solve DAM+SRM robust optimization problem (eq. 7) ‘ :
L : L |
g : ‘Find RVPP energy bids in DAM and corresponding units dispatch ‘ :
|
: i
| |
| I
| |
| |
! I

|
|

. . No
Are all RVPP bids accepted in DAM7

Use BVPP energy bids
Yes that are accepted in DAM

Set SRM+IDM#] input data: including DAN
accepted bids, update of RVPP units, and SRM
and IDM#1 forecast data
Je

‘Sol\-‘e SEM+IDM#1 robust optimization problem (eq. 9)‘
L
‘Find RVPP up/down reserve bids in SRM and corresponding units d\i5palch‘

SEM

Use RVPP reserve bids
that are accepted in SEM

Set IDM#k input data: including DAM, SRM,
and IDM#1.__k-1 accepted bids, update of RVPP
units, and IDM#E forecast data
L

‘Soh’e IDM#k robust optimization problem (eg. 11) ‘

L

‘ Find RVPP energy bids in IDM#k and corresponding units dispatch ‘

IDM#k

Use RVPP energy bids that
are accepted in IDM#E

Figure 2: Bidding strategy of RVPP in the sequential electricity markets.

3. Overview of Flexible Robust RVPP Bidding Optimization

The majority of the implementations of flexible RO in VPP applications (e.g., [1, 13, 36, 55]) are based on
the principles that Bertsimas and Sim presented in [27]. In the following sections, the approach of Bertsimas
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and Sim, which is summarized in Appendix A for interested readers, is further developed to consider the
asymmetric uncertainty in the objective function and to define the robustness budget on global scheduling
horizons of the associated constraints.

3.1. Flexible Robust Optimization of the Objective Function

In this section, the flexible robust formulation of the objective function is formulated by developing the
formulation in [27]. For this purpose, consider the following linear deterministic problem:

maxZC,x, (1a)
t
st.
Ax =B, (1b)
C<x<D, (le)

where C; is the vector of coefficients of objective function (1a); x, is the vector of free decision variables; ¢ is
the time index representing hours; A and B are matrices of fixed parameters.in.the equality constraint (1b);
C and D are the vectors of lower and upper bounds of inequality constraint (1c), respectively.

To develop the flexible RO on the objective function, let us assume the parameter C, as a bounded
uncertain parameter with the symmetric probability distribution at time# (i.e., CelC,-C,,C,+C,1,C =C)),
where C, is the mean of the uncertain distribution, and C, =.C, s the deviation at time ¢. By elaborating on
the approach followed in [27] (see Appendix A), (2) is presented as the robust formulation of (1):

maxZC‘,xl—Fo O—Zn;’ (2a)
t t

st.

V! > CyY vt (2b)
-y <x <y, Yt (2¢)
vy, =0, vt (2d)
Ax =B, (2e)
C<x<D, (2f)

where I'? is a user-defined parameter that represents the robust uncertainty budget in the objective function;

v’ and 7! are dual variables related to the parameter uncertainty; and y{ is the auxiliary variable of the x;
absolute value function.-The first term in (2a) is like the deterministic objective function (1a) by substituting
the mean value of uncertain parameter C, (C)). The second and third terms in (2a) calculate the objective
function reduction‘due to uncertainty of parameter C;.

In this paper, the asymmetric behavior of uncertain parameters is modeled. To this aim, let us assume
the parameter C, as a bounded uncertain parameter with the asymmetric probability distribution at time ¢
(i.e., C,e[C, = C,,C; + C,1,C, £ C,), where C, is the negative deviation at time ¢; C, is the positive deviation
at time #; and C, is the median of the distribution (not the mean). To model the asymmetric behavior in the
objective function, constraint (2c) is replaced by eq. (3):

v

C
- CTty;) <x <y, Vi 3)

t
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In the above constraint, if C; = C,, then constraints (2c) and (3) are formally equivalent. Note that al-
though equation (2b) remains unchanged in the asymmetric model, it considers both positive and negative
deviations of the uncertain parameter through equation (3). Appendix B provides more information on how
the asymmetric robust formulation is obtained, as well as different conditions for the uncertain parameter
deviations.

As can be observed from (2), the uncertainty budget is implemented using a parameter '’ that adjusts the
level of robustness that the user chooses for each source of uncertainty. This uncertainty budget I'” represents
the number of time periods over the whole scheduling horizon for which an uncertain parameter will take
the value that has the worst impact on the objective function. For instance, for a net seller RVPP, prices
will take the lowest value in their interval for I'” periods in (2), whereas for a net buyer RVPP, the opposite
applies.

The uncertainty budget I'” can thus take any value between zero (deterministic case without uncertainty —
optimistic scenario) and the number of periods of the market horizon, T (pessimistic scenario). For instance,
for the DAM, uncertain prices are defined for 24 periods of 1 hour. If I'” takes any value between 0 and 24,
then the optimization algorithm will choose the I'” periods for which the worst tealization of the uncertain
parameter would impact the most on the objective function. For the remaining 24 —I'° periods, the uncertain
parameter would be deterministic, i.e., C; = C.If non-integer values for I'” are chosen, a fraction of the last
period in which uncertainty is included would be considered. With this formulation, the user can select the
strategy to follow, either optimistic (low values of I'?) or conservative/pessimistic (high values of I'?).

3.2. Flexible Robust Optimization of Time-varying Constraints

The uncertainty of stochastic renewable production and.demand consumption also needs to be consid-
ered in the RVPP optimization problem. However, these uncertain parameters appear in the optimization
constraints, which further convolutes the problem and its formulation. To model the flexible robust con-
straints for stochastic renewable production, let.us.assume the following deterministic inequality constraint:

x <X, Vit 4)

where X, is the vector of positive upper bounds of inequality constraint (4).

To develop the flexible RO of the sequential constraints for renewable productions, let us assume pa-
rameter X;, which represents the available power production of a given ND-RES, as a bounded uncertain
parameter which can take values within the interval X, € [X, — X,, X,], in which X, is the median of the
uncertain distribution, and‘X, is.the negative deviation at time 7. As uncertainty affects the ND-RES gen-
eration, the scenario that has the most negative effect on the objective function is the one in which, for a
given period, the uncertain parameter takes the lowest value of its interval, i.e. X; = X, — X,. In the flexible
RO framework; the median value of ND-RESs production is selected as the most probable scenario. The
worst-case scenarios thus occur when the production of these units lies in the lower 50% of the distribution.
Mathematically, this focus on the worst-case scenario is consistent with RO theory, as proved mathematically
in [56]. By excluding positive deviations, the computational burden of the problem is also reduced, as the
formulation concentrates solely on the most critical deviations affecting the objective function. However, the
consideration of positive deviations (abundant production) of ND-RESs might become relevant in alternative
modeling approaches. For example, in SP, the entire PDF of uncertain parameters — including both positive
and negative deviations — must be modeled, given that each potential realization affects the expected value
of the objective function. If, at the scheduled period, there is more energy available than the offered one, the
RVPP operator can make use of other market mechanism to leverage the surplus of power/energy, minimiz-
ing curtailment. Given the above discussion, the positive deviation of ND-RESs available power, denoted as

13
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X,, is not considered in the proposed approach. The opposite applies in the case of flexible demands, i.e., the
downward deviation of demand consumption is not considered. By elaborating on the approach followed
in [13], the robust formulation (5) is proposed to consider the uncertain parameter X, in the constraint (4):

x <X -y, Vt (5a)
¥ <X, Vi (5b)
ye2ve4nt - MU -y, Yt (5¢)
V=2 X, Vit (5d)
ey <ny < My, , vt (5e)
2x=T (sf)
t
VO Vi (52
x: €1{0,1}, Yt (5h)

where I'“ is a user-defined parameter that represents the robust uncertainty budget in the optimization con-
straints; v¢ and 7 are dual variables related to the sensitivity of the upper bound value to the robust uncer-
tainty budget; y{ represents the negative deviation of the uncertain parameter; /M is a small/big positive
number; and y; is a binary variable that guarantees the robustness budget predefined by the user through I'
(x: = 1, if for period ¢ the uncertain parameter deviates with respect to the median value).

To develop the flexible robust constraints for demands; parameter X, is assumed as a bounded uncertain
parameter with values within X, € [X,, X, +X,], in which'X, i§ the median of the uncertain distribution, and X,
is the positive deviation at time #. Then, constraints (5a), (5b), and (5d) are replaced by (6a), (6b), and (6c),

respectively:
x <X+, Vit (6a)
<X, Vi (6b)
V> X, Vit (6¢)
(5¢), (5e) - (5h), Vi (6d)

The set of constraints (5) (and accordingly (6)) needs to be defined for each source of uncertainty in the
constraints, i.e., one for each ND-RES and flexible demand unit i that the RVPP contains. This implies that
the RVPP operator needs to define as many I'{ as ND-RESs and flexible demands are included in the RVPP.
As opposed to price uncertainty budget I'’, each I'{ can only take integer values between 0 and the number
of periods of each market. This is due to the binary nature of y;, in (5), which does not allow for non-integer
values for I';. Implementing a robustness budget on the global scheduling horizons, the higher I'{ is, the more
periods in the scheduling horizon include this uncertainty in the model, and thus, the more conservative the
solution is. The power deviations of different time periods are chosen based on their magnitude following a
decreasing path. That means those time periods that lead to the highest deviation of ND-RES production or
demand are chosen before other periods. It is worth mentioning that, in contrast to the proposed model, the
literature (e.g., [1, 28]) proposes defining a separate uncertainty budget for each time period of each ND-RES
or demand. In the references above, the operator needs to assign substantially more uncertainty budgets for
each of the units, which, in most cases, is not an easy task. Besides, it can be inferred that by increasing the
value of the uncertain parameter for each time period, the uncertainty evenly affects the objective function
instead of selecting the worst scenarios.
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Finally, the feasibility of the optimization problem is related to the value of parameter I';. For the
maximum value of I'{, the optimization problem is feasible for all possible deviations of uncertain parameters
in its predicted bounds. For lower values of I'{, the optimization problem is feasible for at least the number
of worst periods in which energy deviates. The deviation of energy in other periods leads to the probabilistic
feasibility of the solution. That means as energy deviates in more time periods with a more considerable
amount, the feasibility of the optimization problem decreases.

Note that the RVPP operator bases optimal bid decisions on forecast data, leaving the actual feasibility
assessment of these bids (and of other market participants) to the system operator, which is beyond the scope
of this paper. In this paper, we introduce in the case studies of Section 5 the concept of possible unfeasibility
to assess the RVPP’s ability to meet market bids considering potential energy fluctuations, since our model
optimizes bids within forecast uncertainty limits without pre-judging their feasibility.

The following section builds upon the concepts of RO discussed above, and provides with the detailed
formulation proposed in this paper to determine the optimal bidding of RVPPs in sequential energy and
reserve markets.

4. Flexible Robust Optimization Model

This section presents and describes the robust formulation of the RVPP bidding problem in the sequential
electricity markets, based on the concepts on RO outlined in Section 3. The electricity price uncertainty
modeling in the objective function for each DAM+SRM, SRM+IDM#1, and IDM#k problem is presented
in Section 4.1. Section 4.2 formulates the constraints that do.not include any uncertain parameters, such as
the supply-demand balancing constraints and the power traded constraints. The uncertainty modeling in the
constraints of ND-RES production and flexible demand consumption is discussed in Section 4.3. Finally,
the parametrization for different asymmetric uncertainties used in this paper is explained in Section 4.4.

4.1. RVPP Flexible Robust Objective Functions

The objective functions of the three problems illustrated in Figure 2, namely DAM (considering possible
SRM participation), SRM (jointly with-first IDM session), and IDMs, are presented and discussed in Sec-
tions 4.1.1, 4.1.2, and 4.1.3, respectively./Constraints that are associated to such objective functions are also
included.

4.1.1. DAM+SRM

The objective function (7) maximizes the benefits of RVPP in the DAM and SRM. The first line of (7)
calculates the expected RVPP incomes from bidding in the DAM, up SRM, and down SRM. The parameters
7lf)A, ifR’T, and ;lfR’l are the median of the uncertain parameters (DAM, up SRM, and down SRM electricity
prices) in the objective function. The first line of (7) is analogous to the first term of the objective func-
tion (2a) in Section 3.1. The second line depicts the operation costs of ND-RESs and the costs of selecting
a particular load. profile, and it does not include any uncertain parameter. If single deterministic values are
considered for parameters ;l,DA, ;l,SR’T, and ;lfR’l, the first and second lines of (7) behave like the deterministic
objective function in the DAM and SRM. In the proposed model, the uncertainty of DAM and SRM prices
is considered by finding the worst cases of price deviations in the corresponding forecast bounds. The DAM
and SRM price deviations due to uncertainty affect the median income from the first line of the objective
function (7). The income reduction due to DAM and SRM price uncertainties is determined by the last two
lines of the objective function (7). The last two lines of (7) are the reduction of the total expected incomes
of the first line of the objective function (7). They represent the worst realization of the price deviations that
consequently has the highest impact on reducing the total benefit of the optimization problem. The last two
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lines in (7) are analogous to the second and third terms of the objective function (2a). The robust variables
vPA VSRT and vSR! represent the average income reduction per uncertain parameter whose deviation is
applied to. The robust variables 74, n,sR’T, and 77,5 Ri represent the additional hourly incomes reduction for
each price deviation of each market. The uncertainty budgets ' and I'S®T/TS®! make the robustness of

the model flexible against uncertainties in the DAM and SRM electricity prices, respectively.

max 37 [124pPAA + SR ASRT 4 3RS

=DA

teT
DPNCLIEP I
teT reR deD peP
_ rDAVDA _ FSR,TVSR,T _ l—‘SR,LVSR,l (7)
DA SR, SR,l
_Z[nz +1n, T"'77t ]
teT

Constraints (8a) and (8b) model the impact of DAM price volatility on income reduction when electricity
price takes its worst condition value by considering price asymmetry. Depending on RVPP selling or buying

o . o . . ~DA DA
electricity in the market, the worst DAM price conditions are, respectively, at the prices values 4, — A4, or

P ;ltL)A. Constraints (8c) and (8d) calculate the volatility of up and down SRM income reduction when

/ll‘
. . . sSRT 3SR, ~SR| SR, .
the reserve price takes its worst value, i.e., 4, = A, "and A Lo A ¥ The robust formulation selects the

hours for price deviation that affect the most (negatively) the incomes of the objective function. As variables
rtSR’T and r,SR’l are positive, there is no need to evaluate the absolute value of these variables. Constraint (8e)
defines the nature of positive auxiliary variables. Constraints (8) are written analogous to (2b), (3), and (2d)

in Section 3.1, considering three uncertain parameters related to the DAM, up SRM, and down SRM prices.

PPt = APt Vi (8a)
;ltDA DA DA DA
_/Alﬁyz <poAr<y”, Vi (8b)
t
VRT 4 BT PPRTSRT Vi (8¢)
VIR R PR PRAS Vi (8d)
VDA,VSR,T7VSR,,L’ntDA’n}gR,T,nfR,l’ytDA > 0 , Vit (Se)

4.1.2. SRM + IDM#1

The objective function (9) maximizes the benefits of RVPP in the SRM and IDM#1. The deterministic
and robust components of the objective function are distinguishable analogously to Section 4.1.1, consider-
ing that the uncertain parameters are related to the up SRM, down SRM, and IDM#1 prices. According to
the first line of the objective function (9), before the SRM gate closure, the RVPP maximizes the profits of
selling up/down reserve in the SRM and energy in IDM#1. Therefore, the possibility of considering the ar-
bitrage opportunity between SRM and IDM#1 is provided. The second line shows the rescheduled operation
costs of ND-RES in IDM#1. The profit reduction due to uncertainties in the SRM and IDM#1 electricity
prices are considered through the third and fourth lines of (9).

~SRT SRT , 3SR SR. , 3ID 1D
maxZ[/l, R SV g +/l(k=1)!tp(k=1)JAt]

=SR
teT
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- Z Z CRP(k A

teT reR
SR SR, SR..SRL _ID _ID
—DSRISRT _pSRGSRE_T VL, 9)
SRT , SRL , _ID
Z[U; +17; +’7(k:1),z]
teT

Constraints (10) set the corresponding benefit reductions of the SRM objective function (9). The first
two constraints correspond to the SRM, and the last two constraints to IDM#1. To implement the flexi-
ble robustness for IDM#1, the asymmetric price deviation should be the one that sets a resulting price of
;lf,?:l)‘t - /Vl(ll?:l)’, when the RVPP is selling energy to IDM#1 and price of Zf,il)’t + /Alg,?:])yt for buying energy.
Constraint (10e) defines the nature of positive auxiliary variables.

VR L PR > PORT,SET Vi (10a)
VIRL PRl > RGIRE Vi (10b)
D <ID D
Vi=1) T ’l(k—l)t 2 Azt Y=ty 5 A\ (10c)
i,
=Dt D D
~D Yi=1) —P(k DaB < Yieziy > vt (10d)
(k=1),t
SR,
VIR SR v(k 1y 1 T,nt ’77(1( 1)¢’Y(k 20, Vit (10e)
4.1.3. IDM#k

The objective function of IDM#k participation isiprovided in (11), where the first term calculates the
bidding income in each IDM. The second term computes the rescheduled deterministic operation costs of
ND-RES in each IDM. The uncertainties in IDMs electricity prices are captured by the third and fourth
terms of (11). The robustness of income reduction.in the IDMs objective function (11) comes from IDMs
price volatility. The uncertainty budget F,’(D should be assigned according to the different number of periods
of each IDM session.

max > A0plRA= > CRpdL- TPV = > nf Vk (11)
=k > 27 reR >

Constraints (12) calculate the income reduction arising from the worst case of IDM#k electricity price in
the IDM objective function.. The price deviations will be those that reduce the expected incomes the most,
considering the possible asymmetry in price.

v+ = B0 V1> T (12a)
R 4D < oA
1<yl Ykt 2T (12b)

/lID kt —pkt

Vk ,771”9)’1” 20 Vk,tZT (12C)

4.2. RVPP Deterministic Constraints

This section presents the deterministic constraints to formulate the RO problem for the RVPP market
bidding. The supply-demand balancing constraints and the power traded constraints are presented in Sec-
tions 4.2.1 and 4.2.2, respectively. In Appendix C, the constraints in this section are developed by consider-
ing the internal sub-region network for the RVPP.
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4.2.1. Supply-demand Balancing Constraints

The supply-demand balancing constraints for different market problems are presented in this section.
Constraint (13) enforces the supply-demand balancing for the RVPP units connected to a single bus, consid-
ering both energy and up/down SR in the DAM+SRM. The reserve provision by each of the RVPP units is
considered in the power balance constraint (13) by variables 5 tR , g f, and rS R Three states are considered
for variable ¥, which is related to the total traded reserve by RVPP. When R =0, the supply-demand
balancing constraints are only held for the power. When 7% = rtSR’T and rf,R SR 4 the supply-demand
balancing constraints are held for the power and up SR reserve and power and down SR respectively. Simi-
lar reserve activation scenarios are defined for units variables rftR s ret , and rS R according to the above states.
The above states keep the power balance equations for all possible SR snuatlons in real-time (i.e., the SR
not called on and up or/and down reserve called on). The goal is not to schedule the units according to the
actual realization of the reserve, since it is rather difficult to accurately predict the sign and value of the
SR activation. However, the logic behind these states is to assign power and SR-boundaries (according to

delivery time possibilities) to offer the best energy and reserve to the market.

D LR RN AR BV AR AR LAt ¥ K =

reR e deD
The supply-demand balancing constraint in the DAM+SRM is fairly similar to SRM+IDM#1 and IDM#k
problems. If SRM+IDM#1 is solved, the power related to units in the DAM (p, i pg . ,and p dA ) and the

total power traded in the DAM (pP*") become parameters, and the variable related to the IDM#1 units power
(p(k D p(k 1o and p{l?:l),d,t) and total power traded in IDM#1 (pgl?:l),m) are added to (14).

DA* DA*
Z[prt + Pl 1)rt+rrt] Z Por + Pl 1)0t+r8t]
reR 0e®

pt +P{1?:1),t+”th+Z pdD? * Pl rgf] ’ v (4

deD
In IDM#k, in addition to power related to:units in the DAM and the total power traded in the DAM, the
reserve provided in the SRM+IDM#1 (7)), the power related to units in the previous IDMs (pkr ” pk 0.0

and pk’ 4. t) and the power traded in‘the previous IDMs ( p D") become parameters. Besides, the time periods
for each session of the IDM#k ate updated by substltutlng (15) instead of (13).

DA DA*
Z Dry +r +Zpkrt+pkrt Z Poy +r9: +Zpk0t+pk01 -
reR 0O
k-1
A SR 1D DA
+n +2pk,t + Pig + Z Par =it +Zpkdt+pkdt s Vktz7 o (15)
k=1 deD

4.2.2. Power Traded Constraints

The power traded constraints for different market snapshots are presented in this section. The equa-
tions (16a) and (16b) limit the maximum and minimum power and reserve to be traded in the DAM+SRM.
The amount of requested down reserve by the TSO is a proportion of up reserve for each time period, mod-
eled by (16c). Constraint (16d) sets the limit of the up reserve traded in the market according to a share of
the total power production capacity of RVPP, defined by the user-defined parameter «. Note that if k = 0,
then the RVPP will only participate in the DAM, as no power would be allocated in the SRM.
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DA | SR ZP’ n Zpg i vt (16a)
reR 0e®
- Z Py < pP , Vi (16b)
deD
PRT = o SR vt (16¢)
PSRT < K{Z P, + Z 139} , Vi (16d)
reR 6e®

The power traded constraints in the SRM+IDM#1 are written in (17). The power that had already been
traded in the DAM is fixed, and the IDM#1 power is added to these constraints.

PPV P+ < Y Pk Y P, Vi (17a)
reR [0
- Z Py<pPh 4+ pll, — Rt Vi (17b)
deD
(16¢) — (16d) , Vi (17¢)

The power traded in IDM#k is calculated according to (18); The DAM power (pP4"), the up and down
reserve (rSRT ,S R and the power related to previous IDMs (p,’c?*), which had already been assigned in
the previous markets, are fixed in these equations.

pPr +Zpkt +pkt+rtSR’T*SZP,+ZP9, Vk,t>1 (18a)
reR 0e®
-1
-2 Pasp +Zpkz £l ki (18b)
deD

4.3. RVPP Flexible Robust Constraints

This section presents the robust constraints to formulate the RO problem for RVPP market bidding. With
this aim, only the constraints that define the robustness of uncertain RVPP assets, such as ND-RESs, flexible
demands, and Solar Thermal Units (STUs), are presented in Sections 4.3.1, 4.3.2, and 4.3.3, respectively.
Deterministic operation constraints not modified by the RO (e.g., operation constraints of STUs, etc.) are
omitted here. For'the sake of conciseness, and without loss of generality, all RVPP units are assumed to be
connected to a single bus, and network constraints are thus neglected. The robust constraints proposed in
this section can be readily supplemented by network constraints in the form of well-known DC or AC power
flow problems. Interested readers can find such constraints in, e.g., [2].

4.3.1. ND-RESs Constraint

The ND-RESs formulation in the DAM and SRM is presented in (19). Constraints (19a) and (19b)
limit the up/down reserve that each ND-RES can provide by considering a ramp-constraint response of the
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ND-RES and the required time for SR action presented by the TSO. The lower limit of ND-RESs output
power is given by (19¢). Constraint (19d) is the upper limit of ND-RESs production by considering the
median and negative deviation of the power forecast. The median value of ND-RES production is selected
as the most likely scenario, while the worst-case scenarios are defined for lower energy production in the
RO problem [56]. Therefore, only negative deviations are considered in the formulation to define the worst-
case scenarios, as positive deviations will always benefit the RVPP (see also the discussion in Section 3.2).
Constraints (19e)-(19k) apply the robust formulation to the uncertain parameters for stochastic ND-RESs
generation similar to (5) in Section 3.2. The binary variable )( 4 sets the active or non-active status of each
period to satisfy the predefined robustness budget. In this work I'P4 is included in the formulation to make
the highest energy reduction scenario in the entire operation horizon flexible, as a robustness budget for a
global scheduling horizon. Constraint (19e) assigns the maximum value for power reduction in each period
according to the uncertainty budget I'?4 that the RVPP operator predeﬁnes for the entire operation horizon.
The dual variables related to ND-RESs energy uncertainties in (19f), v?4 and 17,, , set a lower bound on
energy deviation. Both dual variables are bounded by (19g) and loglcally constrained by (19h) based on
the active or non-active status of the periods to comply with the robustness budget. If the robust status of a
period is active Q( = 1), constraint (19h) leads to a reduction of input energy of ND-RESs on that specific
period by allowmg a positive amount for n,A. Constraint (191) limits' the.number of periods affected by
considering the robust strategy. For instance, if P4 = 3, the ND-RES power deviation occurs in 3 hours that
results in the worst energy reduction. Finally, the nature of positive auxiliary variables is defined in (19j),
whereas constraint (19k) shows the nature of auxiliary binary variables.

rf,tR’T < TSRRSK Vr ¢t (19a)
Pt < TSRRSR Vr.t (19b)
P, < pP SRl i Vr,t (19¢)
pPA+ R < PDA v Vr,t (19d)
yor < PPA, Vr,t (19%)
yDA > vPA DA — M1 - P4 Vr, t (19f)
RS P Vr,t (19g)
axbt <nPt < Myt Vr,t (19h)
Z XDA — 1—~DA Vr (19i)
Pt vt 20, vt (19))
X2 e {01 v, t (19k)

The robust formulation of ND-RESs in the SRM+IDM#1 and IDM#k problems is fairly similar to the
DAM+SRM. If SRM+IDM#1 is solved, the power traded in the DAM (p, ] DA™y becomes a parameter, and the
variable related to the IDM#1 power (p(k=1) m) is added to (19c) and (19d). Besides, the parameters related

to the median/negative deviation of the ND-RES r production forecast in the SRM (P5X/P5F) are updated
for SRM+IDM#1 by substituting (20b), (20c), and (20d) instead of (19d), (19¢), and (19g), respectively.

ErSP?rA* SRi"'P(k R V.t (202)
" SE
Pf,)tA T+ P(k Dot = PS yrt , vr,t (20b)
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i< Bf, Vr,t (20c)
Rk > PiF, Vr,t (20d)

In IDM#k, in addition to the power traded in the DAM, the power in the previous IDM#1-IDM#k — 1
(pﬁz;) becomes a parameter. The forecast parameters of ND-RES r production in the IDM (P]’f: Wi Pk ;) are
updated. Besides, the time periods for each session of the IDM#k are updated by substituting (21) instead

of (19¢), (19d), (19e), and (19g).

P <p SRL+Zpk”+pk”, Yk,rt>t (21a)
PPY SR Zpk” +p < PP —yP Vk,rt 21 (21b)
w2 <PP Vksr, 127 (21c)

D HSR
Vllc,r + nk,rt 2 Pkrr ’

Yk, r,t>T1 (21d)

4.3.2. Flexible Demands Constraints

The robust constraints associated with the flexible demands are formulated in this section. This formula-
tion builds upon the deterministic model of flexible demands.in RVPPs presented in [57]. There, the authors
proposed a bi-level flexibility model for demands, where the first level involves selecting a consumption pro-
file from a pre-defined set in the DAM, and the second level defines thresholds around the selected profile to
vary consumption in SRM and IDMs.

Constraint (22a) assigns the demand for each period to predefined profiles of demands considering the
median and positive deviation of demand. Constraint (22b) assures that only one profile between several pro-
files of the load is selected by the algorithm. The maximum positive deviation of demand is limited by (22c)
and (22d). Constraints (22a)-(22d) are elaborated based on the approach of selecting the predefined profiles
of demands in [57] and by applying the robust method analogous to constraints (6a) and (6b) in Section 3.2.
Constraints (22e)-(22h) are defined similarly to robust constraints (5¢), (6¢), (5e), and (5f) in Section 3.2 to
assign the maximum value for demand in each period according to the uncertainty budget FdDA which RVPP
operator defines. Constraints. (22i)-(221) limit the up/down reserve by a specified amount of load (flexibility
of demand) selected by constraint (22a), considering that the uncertainty can affect demand in some peri-
ods. The ramp-up and ramp=down limitations of load are restricted by (22m) and (22n), respectively. These
constraints define the worst condition of the ramp rate of the load when the up or down reserve is activated
in two sequential periods. Constraints (220) and (22p) bound the load capability for providing the up/down
reserve. Constraint (22q) confines the minimum energy that the demand should use. This equation is written
for the worst condition of providing reserve from the minimum daily energy consumption perspective, i.e.,
when the demand provides the up reserve which requires the demand to further reduce its consumption.
Finally, constraints (22r) and (22s) define the nature of positive and binary variables, respectively. The ro-
bust formulation of flexible demands in the SRM+IDM#1 and IDM#k can be deduced following the same
process as for ND-RESs in Section 4.3.1, and their equations are omitted here.

ph = Z | P28 | + 521 vd, t (22a)
peP
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Dy =1, vd (22b)
peP
ydt Szpdptudp’ vd,t (22¢)
peP
Yar < Myt vd,t (22d)
yDA 2 vttt = ML= X2, Vd,t (22¢)
Nt = Y P gy vd,t (22f)
peP
exat <t < MRt vd,t (22¢)
xgi =T, vd (22h)
t
P < B (pﬁ,’j‘ R vd,t (22i)
FZR‘T < pay — P, vd,t (22j)
rd, K< Bas (PRt =01) vd,t (22K)
dt RL<Py—pt, Vd,t (221)
SR, SR, 5
(20 +5) = (P26 — 7)) < Retst V.1 (22m)
SR, SR,
(pd @t rd(tll)) (pdt ~Ta T) < RiAt, vd,t (22n)
oyt < TSFRSR, Vd,t (220)
rar S TR, Vd, ¢ (22p)
Ed < > [phtac-rf], vd (229)
teT
vty 20, vd, 1 (221)
Xt €101}, vd, t (225)

4.3.3. Solar Thermal Units Constraints

STUs are a particular type of ND-RES, as they also include molten-salt energy storage capability, and
thus, they cannot be accurately represented by the model in Section 4.3.1. In STUs, the source of uncertainty,
i.e., solar irradiation, affects the thermal output power at the solar field, which is then used to either convert it
to electric power to be injected into the grid or used to charge the molten-salt storage device. The efficiency
of the conversion.between thermal and electric powers depends on the thermal power passed through the
Power Block of the STU, with typical values of 30-40% (see [58] for more details). The full deterministic
model of the STU with its storage can be found in [2, 54]. As justified at the beginning of Section 4.3, only
those constraints in the model affected by the robust formulations are presented in (23). Again, the robust
formulations of STUs in the SRM+IDM#1 and IDM#k are fairly similar to the DAM+SRM problem, and
their equations are omitted.

0<ps <P =i, V6,1 (23a)
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yor < PO, Vo, t (23b)
vorz vt et -M(1-x5) V.t (23¢)
vt + gy = PR Vo, (23d)
exer STo < Myp? Vo, t (23¢)
Doxbt =14, Vo (23f)
t
vt e 20, v, t (23¢g)
xor €{0,1}, Vo, (23h)

4.4. Asymmetric Uncertainty Parametrization

Different approaches have been proposed in the literature for quantifying the forecasted bounds of uncer-
tain parameters. Common methods include using historical data [59], fitting parametric distributions [60],
and applying bootstrapping techniques [61]. The historical data appreach for‘determining the confidence
level of uncertain parameters entails the examination of past data toforecast the values of these parameters.
This data, which can be collected from observations, measurements, and historical records, is processed and
analyzed to identify patterns and relationships within it. Fitting a parametric distribution to determine the
forecast intervals of uncertain parameters requires choosing-assuitable distribution, guided by domain exper-
tise and also the properties of the input data. Finally, bootstrapping approaches involve repeatedly sampling
from the input data of uncertain parameters to create:multiple’bootstrap samples. An estimated forecasted
bound is then determined by aggregating the results obtained from all these samples.

In this paper, historical data are used to determine the upper and lower bounds of the asymmetric un-
certain parameters. The dataset of past observations is analyzed to predict the behavior of the uncertain
parameters. The historical data for DAM electricity price [62] and wind energy production [63] over a
30-day workday period are presented in"Figures 3 and 4, respectively. The data patterns for each hour are
analyzed, with hour 15 as an illustrative example in the figure. Histograms of the historical data, which
reveal the asymmetric distributions of the parameters, are generated for each hour across consecutive days.
Based on these histograms, the median, mean, 10%, and 90% percentiles are extracted and used as bounds
for the RO simulations.

After thoroughly describing the robust RVPP bidding optimization algorithm in (7)-(23) as a manage-
able, single-level MILP problem, and the parametrization of the uncertainties, several case studies are then
explored in Section’5. These case studies have been designed to test and validate the algorithm’s efficacy
and practical applicability.

5. Case Studies

In this section, a set of case studies is presented to evaluate the proposed flexible RO model for RVPP
market bidding. To this aim, different RVPP configurations and electricity market sequences are considered.
The RVPP may include a wind farm, a solar PV plant, an STU, and/or flexible demand. A residential
aggregator is considered for the flexible demand, with three different profiles available for choice at the
DAM, as in [57]. The minimum daily consumption of each profile is 360 MWh. The maximum possible
demand value at each period is 30 MW. During SRM and IDMs, the demand owner allows a +10% tolerance
for additional demand flexibility over the selected profile at DAM.
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Figure 3: Historical data of DAM electricity price and associated bounds in a specific hour [62]: (a) Historical data for 30 days; (b)
Data in hour 15 for 30 days; (c) Histogram in hour 15.

The forecast data of the wind farm and solar PV energy production available to solve the DAM are
depicted in Figure 5 [63, 64].“Only negative deviations are evaluated, as discussed in Section 4.3. Updates of
such uncertain profiles for subsequent market sessions, as well as for the STU, are defined similarly and not
shown here. The solar PV and the wind farm both have a rated capacity of 50 MW each, and their operation
costs are respectively 5€/MWh and 10 €/ MWh. The STU power block has a rated electrical capacity of 50
MW, and the thermal storage capacity of the STU is 1100 MWh [58]. The operation cost of the STU is 15
€/MWh. The price forecast data for DAM, SRM, and IDM#1 are adopted from the REE website, and the
former is shown in Figure 6 for the sake of illustration [62], where the asymmetric distribution is apparent.

Table 1 shows the RVPP configuration and uncertainty data included in each case study. In Case I,
the capability of the proposed model to handle the asymmetric uncertainties in the electricity prices and to
consider the whole period for energy robustness compared to the RO formulation proposed in [28] and the SP
approach in [1] is evaluated. In Case 2, multiple uncertainties in the ND-RESs production, flexible demand,
and electricity market prices (DAM & SRM) are considered to show the effectiveness of the proposed model.
Besides, the sensitivity analysis for different uncertainty budgets is done to evaluate the behavior of RVPP
operator considering risk. In Case 3, the bidding strategy of RVPP in the sequential markets is analyzed by
considering the updated forecast data in the SRM and IDMs.
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Figure 5: Median/worst case of wind/solar production in the DAM [63, 64].

The simulations are carried out using a Dell XPS with an i7-1165G7 processor, 2.8 GHz, and 16 GB of

RAM using the CPLEX solver in GAMS 38.3.0. The simulation time for all case studies in the proposed
model is below 2 seconds.
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Table 1: RVPP configuration and uncertainty data of each case study:
RVPP configuration Uncertain data
Case
Wind Solar STU Demand Wind Solar STU Demand DAM SRM IDMs
1 v v v v v v v v v
2 v v v v v v v v v v
3 v v v v v v v v
5.1. Case ]

In the first analysis of Case I, only uncertainties in electricity prices are considered. Figure 7 compares
the DAM traded power for the proposed model and the model in [28] by considering uncertainties in the
DAM and SRM price (T?* = 5 and IS®TISRL ='5). The figure also depicts the maximum and minimum
deviation of the DAM price forecast compared to the median and mean values. Figure 8 presents and
compares the traded up/down reserve, as well.as the SRM price and its deviation. In [28], the asymmetry in
the electricity prices is not considered, so instead of the median value of forecast data, the mean value is used
in the objective function of the optimization problem. Considering different electricity prices leads to some
differences between the results of both models. The proposed model results in more conservative results in
hours 10, 12, 13, and 14; therefore, the RVPP sells less energy in the electricity market. For instance, the
traded energy in hours 10 and 14 is 22% and 40% lower than the model proposed in [28]. However, the
proposed model resultsiin selling more energy in the DAM in hours 11, 16, 17, and 22. In hour 17, the sold
energy in the model proposed in [28] is 40% lower than the proposed model. These differences between
traded energy in both models are due to the variation of electricity prices that in turn comes from uncertainty
occurring in different hours. Therefore, considering lower electricity prices in hour 17 in the model proposed
in [28] due to uncertainty (the minimum electricity price), the STU in the RVPP stores energy in this hour
to provide more up reserve in hour 22 according to Figure 8.

Figure 9 compares the DAM profit in the proposed model and the model in [28] for different com-
binations and values of uncertainty budgets. These include the energy robustness case (wind and solar
production), the DAM price robustness case, and the price-energy robustness case. The energy uncertainty
budget in the proposed model (F%)) and the model in [28] (I“%M) changes between 0-24 and 0-1, respec-
tively. Therefore, the uncertainty budget is shown in relative terms with respect to the maximum budget.
Price uncertainty budgets for both models (I'?4) are similar and change between 0-24. The figure shows the
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and PSR ISRL = 5),

trend of DAM profit with changes in the uncertainty budget parameters to better illustrate how the worst-case
scenarios are captured in each model. The results in the figure show that the proposed model has a superior
capability to capture worst-case.scenarios than model [28]. The results also indicate that, in the proposed
model, the worst cases, i.e., those with the greatest impact on the objective function, are addressed first. In
contrast, in the model in [28], the profit is evenly reduced, demonstrating that this model does not effectively
distinguish the worst-case scenarios for price, energy, and price-energy robustness cases. In both models,
increasing the uncertainty budget decreases the DAM profit for the above three cases. However, in the pro-
posed model, the saturation of RVPP profit occurs at smaller percentages of uncertainty budget, i.e., worst
realizations are captured first. For example, for an uncertainty budget of 21% for the price robustness case,
the RVPP profit compared to the deterministic case is reduced by 19% and 13% in the proposed model and
the model [28], xespectively. Besides, the figure shows that in the model [28], the energy robustness case
is linear, and price and price-energy cases are almost linear. This is due to the fact that by increasing the
energy uncertainty budget, which has a significant effect compared to the price uncertainty budget on RVPP
profit, the energy is reduced evenly in all time periods.

It is worth noting that the higher DAM profit observed in the model [28] should not be interpreted as
evidence that it is a better approach. The different DAM profits are due to the use of different values of
the uncertain parameter as the basis for each RO. For example, in the proposed model, the median DAM
electricity price is considered, while the mean DAM price is used in model [28]. This is also a result of using
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a less conservative approach to capture the uncertainty that leads to higher DAM profit. Moreover, although
the results for DAM profit for the proposed model lead to more conservative solutions and, consequently,
lower profit for DAM market participation, the penalization cost in the proposed model is significantly lower
than that of the model in [28]. This is due to the fact that a more realistic approach is used to model the
uncertain parameters (taking into account the asymmetry and considering the uncertainty budget over the
entire scheduling horizon) than in the model [28]. This is further illustrated by the out-of-sample assessment
performed in the last analysis of Case 1.
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Figure 9: DAM profit in Case 1 for the proposed model (*) and the model in [28] (*#) for various uncertainty budgets: Energy

robustness: (1"%3 e[0-24]orI" %) ,€10- 1],I'PA = 0); Price robustness: (F%‘) =0or 1"23) ,=0r DA ¢ [0 - 24)); Price-energy

robustness: (F%) =[0-24]orI" %‘)J =[0-1],TP4 = [0 - 24)).

In the second analysis of Case 1, only uncertainties in units’ energy are considered. Figure 10 compares
the possible unfeasible region of wind farm available energy in the deterministic (optimistic) case, in the
proposed model for '”* = 5, and in the model [28] for 24 = 5/24. The possible unfeasible region corre-
sponds to the area between the traded energy and the minimum available energy. These unfeasible regions
are depicted using different backgrounds in the figure. By assuming an accurate forecast bound for wind
production, unfeasibility can occur'if the wind production is less than the median wind production minus the
deviation value. In the deterministic case, a relatively large possible unfeasible region is observable accord-
ing to Figure 10 since any negative deviation during the scheduling period can lead to unfeasibility or penalty
for RVPP. In the proposed model, the possible unfeasible region is significantly reduced by capturing the
worst case of wind deviation instead of considering even fluctuation.

Finally, in the last analysis of Case 1, the uncertainties in both energy and electricity prices are consid-
ered. An out-of-sample assessment is performed according to Appendix D to further justify the proposed
flexible RO model compared to the symmetric RO model in [28] and SP model in [1]. To ensure a fair com-
parison between the proposed model and model [28], distinct sets of data are employed for the models and
for the out-of-sample assessment. The uncertainty bounds (including upper and lower bounds, mean, and
median) for the proposed model and model [28] are assigned in accordance with the explanation provided in
Section 4.4. It is worth noting that the uncertainty bounds used for the RO models are not based on the fitting
distribution; rather, they are derived from historical data. Besides, to ensure a fair comparison between SP
model [1] and the RO models, a different set of scenarios for different uncertainties for SP model [1] are
generated by fitting a Weibull distribution to the same historical dataset used to determine the bounds of
the proposed model and the RO model [28]. For the out-of-sample assessment, 100 scenarios are generated
using Monte Carlo sampling based on the hourly distributions of various uncertain parameters. Note that,
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Figure 10: Possible unfeasible region of wind farm energy in Case I in the deterministic model, proposed model ('?4 = 5) and the
model in [28] (T24 = 5/24).

for a fair comparison between the proposed model and models in [1, 28], the same set of scenarios is used
for out-of-sample assessment to ensure that the same randomness (or uncertainty) is‘introduced across both
methods. To better capture the asymmetric behavior of different distributions, the Weibull distribution is
used to generate the scenarios. The Weibull distribution is a versatile probability distribution capable of
modeling various data with varying degrees of skewness and tail-behavior. These characteristics make it
a valuable tool in statistical analyses. Further details on the fitting distributions to historical data for the
out-of-sample assessment and SP model [1] can be found in Appendix E. The parameter Z is a cost coef-
ficient that penalizes the energy infeasibility level in the out-of-sample assessment [19, 36]. The penalty
parameter Z is set to 1000 €/ MWh similar to [36], in.which their authors are similar to [28], to compare
better the results of the proposed model and model [28]. In the context of RVPP operation, assigning a high
value to this parameter relative to the DAM price is essential to effectively identify infeasible solutions. This
ensures that infeasible solutions are correctly identified during the out-of-sample evaluation, as the objective
function values for infeasible solutions differ significantly from those of feasible ones.

The results of out-of-sample assessment for different uncertainty budgets are provided in Table 2. Given
the dissimilar types of input parameters-used in the RO and SP models (e.g., the uncertainty budget in the RO
model, which is inapplicable in SP), a separate Table 3 is provided to present the results of the out-of-sample
assessment for the SP model [1]. The results compare the average operating profit [1*” (excluding the penal-
ization cost), the average penalization cost K**, and the average net profit [1* — K’ of RVPP. The average
operating profit [1*" represents the profit of the RVPP from the DAM energy and SRM reserve participation,
minus the operation and demand costs in the out-of-sample assessment. The average penalization cost K%
accounts for the cost incurred due to not providing some or all of the energy bid in the market. Due to the
limited number of hours with renewable production and the low probability of having more than 6 simul-
taneous hours out of 24 hours at the worst deviation, the table only presents the results for the uncertainty
budget between 0-6. The results show that the average penalization cost is very high for the deterministic
approach (when.all uncertainty budgets are zero). This leads to a significant loss for RVPP according to
the first row of Table 2. The model [28] obtains more average operating profit at higher uncertainty budget
values than the proposed model. This is due to the fact that the proposed approach is more conservative
in capturing the worst-case scenarios. Besides, increasing the uncertainty budget reduces the value of the
average penalization cost in both the proposed model and the model [28]. However, considering the worst
case of energy uncertainty, the proposed model has a better performance in terms of net profit and average
penalization cost. It is worth noting that higher penalizations on some electric markets, such as the SRM,
could lead the RVPP to be excluded from participation in those markets. The proposed approach results in
higher net profit for all uncertainty budgets (1-6). The net profit in the proposed model is 27.0%, 57.1%,
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65.4%, 64.3%, 61.9%, and 74.2% higher than the net profit in model [28].

The results for the SP model [1] in Table 3 demonstrate that as the number of scenarios increases, the
operating profit of the RVPP declines gradually due to the inclusion of a broader range of scenarios. The
results also indicate that the net profit of the RVPP increases with a higher number of scenarios, as the model
becomes more effective at capturing uncertainty. Among the tested scenarios, the use of 60 scenarios yields
the highest net profit for the RVPP, but it also imposes a significant computational burden compared to RO
models (which is less than 2 seconds for all cases). It is therefore essential to strike a balance between
the computational complexity of the model and the resulting net profit when applying the SP approach. In
comparison to the RO models (see Tables 2 and 3), the SP approach [1] results in lower changes in both
operating profit and net profit. This is due to the fact that the SP approach accounts for all scenarios of
uncertain parameters along with their associated probabilities. In contrast, the results of the proposed RO
model and the RO model in [28] exhibit higher volatility in these parameters. This'is.due to the fact that the
RO models focus on worst-case scenarios and do not consider the probabilities of these scenarios, making
it indifferent to their likelihood. Consequently, the hours that lead to high penalty costs are managed first,
regardless of the their probability.

Table 2: The out-of-sample assessment for the proposed model and the model in [28] (PA = SRTZ PSRL = [0-6],T24 = [0-6]

r@) —
DA _
or Frw)’t =[0-0.25]).

Proposed model Model [28]
Uncertainty ne K I%-K“ TN I | G
budget [-] k€] [k€] [k€] k€] [k€] [k€]
0 274 2157 -188.3 274 2159 -188.5
1 24.1 1461 -122.0 264 193.6 -167.2
2 213 1057 -62.5 254 1713 -145.9
3 18.8 625 -43.7 243 150.7 -126.4
4 16,7 569 -40.2 234 136.1 -112.7
5 14.8 ©..50.0 -35.2 22.1 1146 -92.5
6 13.0° 347 -21.7 213 1057 -84.4

To further verify the results.obtained in Table 2, the frequency histograms of defined variables for each
scenario and uncertainty. budget 2 are depicted in Figures 11, 12, 13. Figure 11 shows the distribution of
operating profit.of RVPP without considering the penalization cost. Figures 12 and 13 show the distribution
of penalization cost and net profit, respectively. The operating profit in the model [28] is more than the
proposed model in most scenarios according to Figure 11. However, according to Figures 12 and 13, the
proposed model has better performance when the penalization cost is considered.

5.2. Case 2

Figure 14 shows the DAM profit when only energy uncertainties (wind and solar production, STU ther-
mal production, and demand) are considered, when only price uncertainties (DAM and SRM) are considered,
and when all uncertainties, both in price and energy, are included. The RVPP income reduction at the sat-
uration point, i.e., when all uncertainty budgets are set to 10 compared to total possible income reduction
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Table 3: The out-of-sample assessment for the SP model [1].

Model [1]
Number of n* K I - K* Computational time
scenarios [-] k€] [k€] k€] [s]
10 21.1 1072 -86.1 9
20 20.7 98.3 -77.6 18
30 20.3 92.8 -72.5 35
40 20.3 93.7 -73.4 126
50 20.5 94.4 -73.9 252
60 204  92.1 -71.7 44305
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Figure 11: Frequency histogram of sampled daily operating profit for the proposed model and the model in [28] (IPA = PSRT = PSR =
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Figure 12: Frequency histogram of sampled daily penalization cost for the proposed model and the model in [28] (T4 = PSRT =

[SRL =2, 100 =2 0or 00 = 2/24).

(uncertain parameters=24) for the three cases, energy robustness, price robustness, and price-energy ro-
bustness, is 92%, 73%, and 90%, respectively. The larger percentage of income reduction for the energy
robustness case is due to the fact that the forecasted production of ND-RES and STU units is zero or almost
zero in some hours. Therefore, the saturation of income reduction occurs at lower values of uncertainty
budget compared to the price robustness case. In the price robustness case, the DAM and SRM price uncer-
tainty budgets are increased from O to 24 in unity steps. By increasing uncertainty budgets, the RVPP income
decreases with a higher slope for lower values of uncertainty budgets than for greater ones. This trend is
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Figure 13: Frequency histogram of sampled daily net profit for the proposed model and the model in [28] (TP4 = TSRT = [SRL =

DA _ DA _
2,24 =20rT24  =2/24).

expected as the worst cases of price deviations are selected first in the robust formulation. Comparing all
cases, it can be observed that, in the scenario considered, the majority of the RVPP profit reduction comes
from energy uncertainty. Indeed, all RVPP units have uncertain productions; and reducing them has a higher
impact on the RVPP income than price fluctuation.

The analysis at the RVPP unit level is next discussed. To this aim, Figure 15 shows DAM traded energy,
the wind farm, STU, and solar energy for a deterministic case. Figure 16.depicts the same results as Figure 15
when the uncertainty budgets for energy (wind farm, STU, and solar energy) and electricity price (DAM and
SRM) are set to 5. The total sold/bought energy in the uncertain case is decreased/increased by 41% and 8%
compared to the deterministic case. By increasing the uncertainty budget, the hours that impose the highest
deviations in energy according to the energy forecast are selected as the worst cases. For instance, hours
15-18 and 22 for wind production, hours 11, 12,.15, 17, and 19 for available solar energy, hours 10-14 and
15 for STU available energy, and hours 8, 1517, and 19 for demand are the worst hours from a deviation
perspective for each technology.

012 3 4 5 6 78 910111213 1415161718 192021 222324
Uncertainty budget [-]

------------ Energy robustness  -------Price robustness Price-energy robustness

Figure 14: DAM profit in Case 2 for various uncertainty budgets: Energy robustness: (F%’) = F[?A € [0—-24], TPA = SRT = PSR =
0); Price robustness:(I'>4 = l"gA =0,TPA = PSRT = PSR ¢ [0 - 24]); Price-energy robustness: (I'’4 = DA = 1PA = PSRT =

r(6) r(0) d
SR € [0 - 24)).

5.3. Case 3

Finally, the flexible robust optimal participation of an RVPP in the complete sequence of market sessions
is considered. This case study assumes enough liquidity on IDMs to show the RVPP model capabilities. For
instance, the first IDM (IDM#1) in the Spanish market has high liquidity in some circumstances. Figure 17
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Figure 16: RVPP different units energy and traded energy in Case 2.in the DAM for 1"%) =TPA = SRT = SR = 5,

displays the total traded energy and SR for the deterministic case by assuming RVPP participates in DAM,
SRM, IDM#1, and IDM#4. In the deterministic case, RVPP sells most of its available energy in the DAM
and IDM#1 between hours 9-22. Besides, the RVPP mostly buys energy in the DAM in hours 1-8 and 23-
24. However, the RVPP sells energy in hours 23-24 in IDM#1 to arbitrage energy between DAM and IDM.
There is also a small percentage of traded energy in IDM#4 compared to the previous markets, as a small
value of energy is usually traded in the last sessions of IDMs. The RVPP trades both up and down SR in the
SRM in hours 9-24 as it has available wind or/and solar production.

Figure 18 shows the same results as Figure 17 when the uncertainty budgets for energy (wind and solar)
and all price uncertainty budgets are equal to 5. In this case, the RVPP prefers to sell less energy in the DAM
due to the uncertainty. In the uncertain case, the total sold/bought energy until the last considered market
session (IDM#4) is decreased/increased by 28% and 14% compared to the deterministic case. In hour 15,
it sells almost nothing.in the DAM and mostly provides the up and down reserve. However, when it goes
to IDM#1 with a more precise forecast value, the traded energy in hour 15 is increased. This is also due
to the fact that in-hour 15, the DAM price is low; however, the IDM price is relatively high, so RVPP has
an opportunity to adjust its traded energy. The same trend is understandable for traded energy in IDM#1
compared to DAMbetween hours 9-19. The amount of trading up and down SR is also decreased compared
to the deterministic one as a more conservative strategy is adopted.

6. Conclusion

This paper proposes a novel mathematical formulation of the optimization problem for RVPP participa-
tion in sequential energy and reserve markets. A new and efficient flexible RO approach is implemented as
an MILP to accurately capture the asymmetric uncertainties in the electricity prices and RESs in the day-
ahead, secondary reserve, and intra-day markets. Moreover, as opposed to other RO models, the proposed
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approach considers the robustness budget over the whole scheduling horizon, increasing the overall flexibil-
ity of the problem, and simplifying the parameter definition of the model. Simulation results show that apart
from a more realistic representation of the uncertainties that characterize the problem, the proposed model
provides improved results from the feasibility point of view. Moreover, the simplicity and high computa-
tional efficiency of the model allow comprehensive evaluations of the results by means of, e.g., parametric
sensitivity analyses. Results from such studies indicate that most of the reduction in RVPP profit comes from
the ND-RESs energy uncertainty. Moreover, for the cases discussed, considering the uncertainty, the RVPP
prefers to trade energy in the IDMs in which the forecast data is more accurate, resulting in less reserve
provided. The work presented in. this paper can be extended in several ways. On one hand, the optimization
problem that has been applied to sequential electricity markets can be formulated for the case of joint elec-
tricity market clearing.. A probabilistic assessment of the proposed robust model will be provided in future
works to determine the required uncertainty budget for each uncertain parameter so that the RVPP operator
reaches a certain desired income. Moreover, the benefits of RVPP aggregation will be thoroughly evaluated
considering different conditions with respect to the case studies discussed in this paper for model validation
and testing. A price-maker optimization model of RVPP as a multi-level problem will be provided to address
the increasing penetration of RES in the emerging grids. In this context, the regulatory aspects of the sys-
tem and the estimated strategies of other market competitors have to be taken into account in the developed
model. Moreover, a multi-level problem to identify the worst realizations of the combination of price and
energy uncertainties, i.e., incomes robustness, is also under development. In this context, considering the
coupling of different uncertain parameters related to ND-RESs and electricity market prices becomes par-
ticularly relevant. Finally, extending the current framework to include additional energy sources and their
interactions with electricity markets is a valuable direction for future research.
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Appendix A. Bertsimas and Sim Robust Approach

The robust approach of Bertsimas and Sim [27] is summarized in this appendix, which initially considers
the linear optimization problem (A.1).

max ¢'x, (A.1a)
st.

Ax<b, (A.1b)

I<x<u, (A.lIc)

In (A.la), x is the vector of free decision variables; ¢ is the transposed vector of fixed parameters of
the objective function; A is the matrix of uncertain parameters; a;; are the elements of the matrix A; and it
is assumed that J; is the set of elements in row i of the matrix A that are subject to uncertainty. Each entry
of a;j, j €J; is a symmetric bounded random parameter d;; (i:e., a;;€[a;; — d;j, a;; + &ij], d;j = a;j; b is the
vector of upper bounds of the uncertain constraint (A.1b); [ andu are the vectors of lower and upper bounds
of the inequality constraint (A.1c), respectively.

In (A.1), itis assumed that uncertainty only.affects matrix A in (A.1b) since if the uncertainty of objective
function ¢ needs to be modeled, it can be done by including the constraint z— ¢"x < 0 into constraint (A.1b)
and maximize the auxiliary objective function z.

Then, the non-linear formulation (A.2)is proposed as the RO of the problem (A.1).

maxc'x, (A.22)
st.
X+ v - D . < b: 1 .
Zj: GXT T s IS LT L) ;a”y i = LD diyn e < bi vi (A.2b)
-y S£X LY, Vj (A.2¢)
I<x<u, (A.2d)
y>0, (A2¢)

where set S; includes the optimization variables in problem (A.2b)-(A.2e) that correspond to the integer
part of the uncertainty budget I'; (|I';]) and is defined by a subset of the uncertainty set J;; index h; contains
one optimization variable in problem (A.2b)-(A.2e) that corresponds to the non-integer remaining part of
the uncertainty budget (I'; — | I';]) and belongs to the uncertainty set J;, while it is not contained in the set S;;
parameter [; takes value in the interval [0, |J;|] and adjusts the level of robustness that the user chooses for
the uncertainty.
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Given the vector of optimal values x, it is proved that the objective function of the linear problem (A.3)
is equivalent to selecting the subset {S;U {A;}| S:CJ;, 1S = LI':], hi€J;\S;} within the protection function of
ith constraint (A.2b) (second term on the left-hand side of (A.2b)).

Bi(x*,T;) = max Z a;j |x;| Zij » (A.3a)
j€.],'
st.
Zzij <Ii, (A.3b)
JeJdi
0<z<1, Ve, (A30)

where x7; is the optimal value of the ith constraint; and z;; is a positive variable less.than 1.
Finally, by applying the strong duality theorem to (A.3) and substituting the result.to the problem (A.2b)-
(A.2e), the equivalent linear robust formulation is obtained as (A.4):

maxc'x, (A.4a)
st.
D +ali+ ) piy < by, Vi (A.4b)
j jeli
Zi+ pij = 4ijy;, Vi, je J; (A.4c)
—yi<x;<y;, vj (A.4d)
l;<xj<uy, vj (A.de)
pii >0, Vi, j€J; (A.4f)
yjz0, Vj (Adg)
%20, Vi (A.4h)

where z; and p;; are dual variables of constraints (A.3b) and (A.3c), respectively; y; is the auxiliary variable
that calculates the x; absolute value function; /; and u; are the elements of vectors I and u, respectively.

The proposed model by Bertsimas and Sim in (A.4) is a linear optimization problem; however, it is
shown in [27] that the propoesed approach is also valid when the original problem is an MILP (i.e., when
some of the variables in the vector x are integer), such as the problem proposed in this paper.

Appendix B. Asymmetric Robust Approach

The flexible RO approach with asymmetric uncertainty used in this paper is developed based on the sym-
metric RO model described in [27] (explained in Appendix A) and the forward-backward asymmetric RO
model presented in [44]. To develop the flexible RO framework with asymmetric uncertainty, a similar pro-
cedure and proofs of feasibility and optimal solution are used as in [27] and [44], with some modifications.
The main difference lies in the formulation of the protection function for uncertain parameters.

The asymmetric uncertainty model proposed in this paper represents a specific type of forward-backward
asymmetric RO model as described in [44]. This distinction arises because the protection function in [44] is
defined more generally for all possible conditions of the uncertain parameter and its associated variable. In
defining the protection function, the two most important factors are the deviation of the uncertain parameter
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and the variable by which it is multiplied. For example, in the case of uncertainty in DAM electricity prices,
the protection function needs to be formed based on the positive or negative deviations of the electricity
price multiplied by the traded energy of the RVPP. The protection function defined in this paper takes into
account the fact that, for example, the worst case of electricity price uncertainty occurs with a negative price
deviation when the RVPP is an energy seller on the market and with a positive price deviation when the
RVPP is an energy buyer.

To develop the asymmetric RO approach, consider the linear optimization problem (B.1):

max ¢'x, (B.1a)
st.

Ax<b, (B.1b)

I<x<u, (B.1¢)

Each entry of a;;, j €J; in the matrix A is an asymmetric bounded random parameter a;; (i.e., a;;€[a;; —
d;j, @;j + aijl, a;j # a;;). Other parameters and variables in (B.1) are defined similar to (A.1) in Appendix A.

For the asymmetric uncertainty set a;;, unlike the symmetric uncertainty set, the protection function of
the uncertain constraint changes not only based on the sign of the optimal value xj. but also based on the
different deviations @;; and d&;;. When the optimal value of xj is. negative, the worst case of the uncertain
parameter a;; occurs with positive deviation @;;, and accordingly the protection function is defined as (B.2a).
For the positive value of xj., the worst case occurs with negativedeviation ¢;; and accordingly the protection
function is defined as (B.2b).

Bx*.T) = max Z&ij|x;|+(Fi—LFiJ)&,~hi [xi[b s Vi (B.2a)
{(SiUthi)lSiCJi, IS il=LTi ). hi€Ji\S i} 4es,

B(x*,T;) = max Za x| + (T = T . ||V Vi B.2b

BOTD = s e e e i ||+ @ = (T i, [ (B.2b)

It is possible to write the protection functions (B.2a) and (B.2b) with only one protection function (B.3)
that considers both conditions using a positive auxiliary variable y;.

*’1". = E G::v: + (T = | T: D i , Vi B3
lB(x 2 {SiU‘hi}lsigjil:litls?}l)iLrinhiEJi\Si} =3 i Ti=1D nei l ( Y
aij -
T YiSX =Y, Vi,jelJ; (B.3b)

ij
In (B.2a), since xj. is negative, the left side of (B.3b), i.e. —Z—jy ;i < x;is active, so the expression Z—jy ; (and

xj. , which results in (B.3a). In (B.2b), since xj is positive,

. G, N . .
correspondingly 7o Yn) is substituted instead of
the right side of (B.3b), i.e. x; < y;, is active, so the positive auxiliary variable y; (and correspondingly y) is
substituted instead of |xj|, which results in (B.3a). Note that considering above explanation although (B.3a)

37



Journal Pre-proof

includes only the negative deviation d;; (and correspondingly d;;,,), it considers both positive and negative
deviations of the asymmetric uncertain parameter through constraint (B.3b).

The protection function (B.3a) for the asymmetric uncertainty has the same structure as the protection
function for the symmetric uncertainty in Appendix A and [27] (by considering also the constraint (B.3b)).
Therefore, the same procedure and proof as for the symmetric uncertainty can be used here to obtain the
robust formulation for the asymmetric uncertainty by considering a different limits as (B.3b) for the auxiliary
variable y;. The final asymmetric robust model is developed as in (B.4) by applying the strong duality

theorem.
maxc'x, (B.4a)
st.
Z Zl,'j.xj‘ +zl + Zp,-j <b;, Vi (B4b)
J JeJi
zi+ pij 2 4y, Vi, j g Ji (B.4c)
di;
-y <xi<y, Visje Ji (B.4d)
aij
lijjSuj, Vj (B.4e)
pi;i >0, Vi, jeJ; (B.4f)
y; =20, Vj (B.4g)
720, Vi (B.4h)

Appendix C. Sub-region Network Constraints

In this Appendix, the internal sub-region network of the RVPP, provided that the units in the portfolio are
“electrically close” to each other and belong to a defined geographical sub-region, is formulated. The equa-
tions for a DC power flow used for active power trading in DAM and SRM are presented below. Note that,
for IDMs participation, the time periods vary from V¢ € T to V¢t > 1. The active power flow through trans-
mission line / is represented.in (C.1a), whereas the bounds of active power flow through transmission line
[ are imposed by (C.1b). Finally, the voltage angle reference and angle limits are set by (C.1c) and (C.1d),

respectively.
i = (1/XDGie — Sjane) » Vi, ¢t (C.1a)
Pi<p, <P, Vi, t (C.1b)
0p: =0, b:ref.,Vt (C.1c)
-n<6p; <, Vb, t (C.1d)

In the above constraints, p;; is the active power flow through transmission line / in time period ¢. X; is
the reactance of transmission line /. 0, is the voltage angle at bus b in time period ¢. i(/) and j(/) are sending
and receiving bus of transmission line /, respectively. P; is the capacity of transmission line /.
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To implement the sub-region network constraints, the supply-demand balancing constraints for each
market session defined in Section 4.2.1 are modified according to constraints (C.2)-(C.4). Constraints (C.2a)
and (C.2b) enforce the supply-demand balancing for the RVPP units considering both energy and up/down
SR in the DAM+SRM for the main sub-region buses (B,,) and other buses (B/3B,,), respectively.

Z[p,, +VSR] Z[Pet +r§f Z P+ Z pl,t:ptDA Z pdz rglf >

reR =) lli)=b 11j()=b deD
Vb e B, ¥Vt (C.2a)

Z[l’ff"'rff] Z[pDA_HSR] Z P+ Z Pl,t=Z[Pdt —rdt] ,Ybe B/B,,¥t (C.2b)

reR €O lli(h=b 11j(h=b deD

The supply-demand balancing constraints in the SRM+IDM#1 for the main sub-region buses and other
buses are formulated in (C.3a) and (C.3b), respectively.

DA* DA*
Z[prt +P(k 1)rt+rrt] Z Do +P(k 1)0z+r9z] (C.3a)
reR 6e®
DA* | ID R DA* R
- Z Dt + Z Pt =D t DPg=iy,; T Vts + Z Pay +P(k ).t "3,] s Vb e B, Vt
1i=b 1j()=b deD
D DA* | _ID R
Z [pr,t + Py + ot ] Z Por + Plen s o1 ] (C.3b)
reR 0e®
DA* | ID R
_ Z P+ Z Pu = Z [P0 + =R Vb € B/B,, Vit
1iy=b 1j(=b deD

The supply-demand balancing constraints in the IDM#k for the main sub-region buses and other buses
are formulated in (C.4a) and (C.4b), respectively.

k-1
I DA* R
Z Pty +Zpkrt+pkrt] Z Por + 15 +Zpk9t+pk6t Z PLt (C.4a)
reR 1 00 lli(h)=b
+ Z Pl,z=PtDA t +Zpk’ +pk[ Z pit —rdt+2pkdt+pkdt ,Vbe B, Vk,t > 1
11j(h=b deD
k-1 k=1
DA* DA R
Z{ +r§ +Zpkrt+pkrt Z Doy +rgt Zpk9t+pk9t Z Dis (C.4b)
reR k=1 e k=1 lli(h=b
+ pl,— {Pd: rdt+Zpkdt+pkdt] , VbeB/B,, Yk, t>71
1j(h=b deD

Appendix D. Out-of-sample Assessment

In this Appendix, an out-of-sample assessment is presented to evaluate the performance of the pro-
posed model compared to [28]. To reach this goal, a set of |w| random scenarios with equal probability
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is generated for DAM and SRM electricity prices, available ND-RESs power production, thermal power
output of the solar field of STUs, and demands. The corresponding parameters for each scenario are
APA ASRT QSRL pDA 'pDA “and PPA | respectively. Then the scenario-based problem (D.1) is solved by

Lw’ M tw 2 Ttw 0T rLw T g tw d.t,w’
using the generated scenarios for uncertain parameters and by fixing the obtained market bid results of solv-
ing the proposed model in (7), i.e. the energy and reserve bid variables pP4", r,SR’T ,and rts R as well as the
variable of selection of load profiles u;}p.
1 DA DA* SRT SR | SRl SR,*
max m{zz [/lt,w JZ2RNAVE VPl PEE g
weQteT
D IDIPVCH IR 3) NN 3 Yooy o
weQ €T reR deD peP weQ €T
st.
DA R DA R ]|_ DA, SR DA R
Z [pr,t,w + rit,w] + Z [pa,t,w + rgg,t,w] =D + ry — Ko+ Z [pd,,,w u r;,t,w] s v t,w (le)
reR 0c® deD
E?A < Pffw _ rftRwl ) Vr,t,w (D.lc)
A+ < pPA Vr,t,w (D.1d)
SF DA
0= Porw < Porw> vé,t,w (D.le)
DA DA
Patw = Parw Vd,t,w (D.1f)
SR, 5 .
PR < Bas Z Pypatty, Vd,t,w (D.1g)
peP
SRY _ DA
Tatw < Parw ~ Pa> Vd,t,w (D.1h)
SR, P . 5 .
PR < Bas Z Pypatty, Vd,t,w (D.1i)
peP
SRl _ A .
rd,t,(i <Pa— pt?,t,w , vd,t,w (D.1j)
DA SR, DA SR,T P
(Poa, + o) — (P tye — P 0) < R, Vd,t,w (D.1K)
DA SR, DA SR,
(PR e+ Tt o) = (PO, = FSRT) < Ryt Vd,t,w (D.11)
SR SRpSR
Tgrw S T°"R,™, Yd,t,w
(D.1m)
SR, SRBSR
et STSRRSE, Vd,t,w (D.In)
DA SR,
Eg< ) (phr,ar-rfT Vd, w (D.1o)
teT

; DA SRT SRLl SR DA DA SRT SR R
In problem (D.1), the variables p2 . r /5, o, rof,. Porw Parw Taiw T and riR  related to

power and reserve provided by ND-RESs, STUs, and demands are written for each scenario w. The first
three terms in the objective function (D.1a) calculate the operating profit of RVPP in all scenarios for DAM
energy and SRM reserve participation, named by I1*". The fourth term of (D.la) determines the average
penalization cost due to not providing some or whole part of energy bid in the market, named by K*. The
net profit of RVPP can be calculated as I[I*V — K*". The slack variable «;,, is added in the supply-demand
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balancing constraint (D.1b) and is penalized by parameter Z in the objective function. Constraints (D.1c)-
(D.1d) are scenario-based constraints for ND-RESs. Constraint (D.1¢) is scenario-based constraint for STUs.
Constraints (D.1f)-(D.10) are scenario-based constraints for demands.

Appendix E. Weibull Probability Distribution Fitting

In this paper, the Weibull probability distribution fitting is used to generate scenarios for the out-of-
sample assessment. Furthermore, the scenarios for the SP model [1] are generated based on the fitting of
the Weibull probability distribution. While other probability distributions, such as the Log-normal, Gamma,
Exponential, and Beta distributions [65], could be used to fit the historical data, the Weibull probability
distribution has been demonstrated to provide an appropriate fit for various uncertain parameters, including
DAM and SRM electricity prices, wind energy, STU thermal energy, and solar energy [65-68]. To validate
the fitted distributions for various uncertain parameters, several tests, including the Kolmogorov-Smirnov
(KS) Test, Mean Absolute Error (MAE), and Wasserstein Distance [69], are employed, as summarized in
Table E1. These tests aim to compare the generated scenarios using the fitted-Weibull distribution with the
historical data. The results of these tests confirm that the fitted distributions are not significantly different
from the original historical data. The fitted distributions for all uncertain parameters for a specific hour are
also presented in Figure E1.

Table E1: Validation results of Weibull fitted distribution for uncertain parameters in a specific hour.

Test Name Threshold DAM Price SRM Price . Wind Energy STU Thermal Energy Solar Energy
Test Statistic D < 0.2 0.1300 0.1533 0.1067 0.1367 0.0967
Kolmogorov-Smirnov (KS) P-value > 0.05 0.8027 0.6129 0.9435 0.7506 0.9762
Result Not Difterent . Not Different  Not Different Not Different Not Difterent
Mean Absolute Error (MAE) MAE < 0.1 0.0639 0.0662 0.0327 0.0952 0.0874
Wasserstein Distance Distance < 2.0 1.7331 1.4713 0.8919 1.7883 1.2489
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