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a b s t r a c t

I prove the numerical equivalence between Pearson’s independence test statistic for categorical
variables and the Lagrange Multiplier and overidentifying restrictions test statistics in several popular
linear and non-linear regression models. I also show that its asymptotically equivalent Likelihood Ratio
test is numerically identical in the non-linear regression models, and that the heteroskedasticity-robust
Wald test statistic in the multivariate linear probability model and the moment condition model
coincide with the Wald test statistic in the conditional multinomial model. Finally, I show that all
these equivalences also apply to serial independence tests in discrete Markov chains.
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1. Introduction

Many important economic theories imply the independence
etween two categorical variables. Examples include the
ign of price movements and excess demand/supply (Bouissou
t al. (1986)), financial market timing (Pesaran and Timmermann
1994)), blood donations and monetary compensation (Mellström
nd Johannesson (2008)) and the Minimax theorem (Brown and
osenthal (1990), Chiappori et al. (2002) and Palacios-Huerta
2003)).

There are multiple procedures to test independence. For exam-
le, Palacios-Huerta (2003) used Pearson’s test in a contingency
able, Chiappori et al. (2002) used Wald tests in a Linear Prob-
bility Model (LPM) and Brown and Rosenthal (1990) relied on
ikelihood Ratio (LR) tests in a logit model.
Anatolyev and Kosenok (2009) showed the asymptotic equiv-

lence between Pearson’s test statistic and the Wald test statistic
n a multivariate LPM under i.i.d sampling. However, this equiv-
lence does not prevent reaching different conclusions in finite
amples with the same dataset even if p -values are computed in
nalogous ways.
In this paper I prove the numerical equivalence between many

eemingly unrelated independence test statistics. Table 1 sum-
arizes the results. ⃝ corresponds to Pearson’s test statistic and

ts numerically equivalent versions, △ and □ represent the LR
nd Wald test statistics in the multinomial model, and ▽ stresses
symptotic equivalences. All these equivalences also apply to
erial independence tests for discrete Markov chains.

E-mail address: jsentana@icade.comillas.edu.
https://doi.org/10.1016/j.econlet.2022.110850
0165-1765/© 2022 Elsevier B.V. All rights reserved.
Table 1
Equivalence results.
Models\Test statistics LM LR Wald Wald-Robust J-test

Multivariate LPM ⃝ ▽ ▽ □ –
Unconditional multinomial model ⃝ △ ▽ ▽ –
Conditional multinomial model ⃝ △ □ ▽ –
Multinomial probit ⃝ △ ▽ ▽ –
Multinomial logit ⃝ △ ▽ ▽ –
Moment condition model ⃝ ⃝ ▽ □ ⃝

2. Testing methods

Let x be the K × 1 categorical variable (A1, . . . , AK ) and ỹ
the H × 1 categorical variable (B1, . . . , BH). Both Ak and Bh, for
k = 1, . . . , K and h = 1, . . . ,H , are dummy variables equal to
1 if its corresponding categorical value is equal to its kth or hth
value, respectively.

Let the contingency table be

ỹ\x A1 · · · AK Sum
B1 n11 · · · n1K n1⋄
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

BH nH1 · · · nHK nH⋄

Sum n∗1 · · · n∗K n

here nhk, for h = 1, . . . ,H and k = 1, . . . , K , denotes the
bserved joint frequency, nh⋄ =

∑K
k=1 nhk the number of times

hat Bh is 1, n∗k =
∑H

h=1 nhk the number of times Ak is 1 and
n =

∑K n =
∑H n the sample size.
k=1 ∗k h=1 h⋄
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.1. Contingency test

Pearson’s statistic is:

earson =

K∑
k=1

H∑
h=1

(nhk − (n∗knh⋄/n))2 (n/n∗knh⋄) . (1)

nder the null hypothesis of independence between ỹ and x, (1)
symptotically follows a chi-squared distribution with (H − 1) ×

(K − 1) degrees of freedom under appropriate regularity condi-
tions (see Mood et al. (1974)).1 ,2

2.2. Multivariate LPM

Consider

ỹ = ∆x + u, (2)

where u =(u1, . . . , uH )′ and ∆ =

⎛⎜⎝ δ11 · · · δ1K
...

. . .
...

δH,1 · · · δH,K

⎞⎟⎠, with

= vec
(
∆′
)
and ΣU = E(uiu′

i) = Var (ui).
Given that Ak and Bh are dummy variables, the coefficients of

the explanatory variables are

δhk = E(Bh|A1 = 0, . . . , Ak = 1, . . . , AK = 0)
= Pr(Bh = 1|A1 = 0, . . . , Ak = 1, . . . , AK = 0).

Their sum is equal to 1 for all the columns in the regression
coefficient matrix, so I can cross out the last equation without
loss of generality to avoid a singular covariance matrix because
BH = 1 −

∑H−1
h=1 Bh (see Judge et al. (1985)).

δ can be estimated by OLS equation by equation without loss
of efficiency relative to the seemingly unrelated regression (SUR)
estimator because the regressors in all the H − 1 equations are
identical. Thus, δ̂SURh = δ̂OLSh = (nh1/n∗1,. . . , nhK/n∗K )′ provides the
natural estimator of the conditional probabilities δhk, which are
always non-negative and add up to 1. Therefore, it avoids a com-
mon criticism of the LPM motivated by the fact that this model
does not necessarily imply conditional probabilities between 0
and 1 (see Wooldridge (2002)).

Under H0, δh1 = · · · = δhK = δh for h = 1,. . . ,H − 1, so
he conditional and unconditional probabilities of Bh = 1 are the
ame. As in the unrestricted model, δ̃SURh = δ̃OLSh = nh⋄/n, for
= 1, . . . ,H − 1, under H0.
Under the alternative, the multivariate LPM violates the ho-

oskedasticity assumption because Var(u|x) will change depend-
ng on the values of Ak (see Wooldridge (2002)), which justi-
ies the use of heteroskedasticity-robust Wald tests. However,
R = Cov(u|x) is constant under H0, implying that the non-robust

regression tests remain asymptotically valid.

2.3. Conditional multinomial model

Let Phk = Pr (Bh = 1|A1 = 0,. . . , Ak = 1,. . . , AK = 0) denote
the conditional probabilities. The joint probability of Bh = 1 and
Ak = 1 is πhk = Phk × π∗k, where π∗k = Pr(Ak = 1), so the
parameters of interest become Phk and π∗k.

Under the alternative, P̂hk = nhk/n∗k and π̂∗k = n∗k/n∗K , so
P̂hk = δ̂hk for h = 1, . . . ,H − 1 and k = 1, . . . , K . Under H0,
hk = Ph⋄ for k = 1, . . . , K and h = 1, . . . ,H − 1, so P̃h⋄ = nh⋄/n

1 Apart from random sampling, all joint population frequencies must be
trictly positive and fixed, so that nhk increases asymptotically with n.
2 If nh⋄ and n∗k were fixed in repeated samples, the finite sample distribution
f (1) would coincide with that of Fisher’s (1922) exact test. In general, its finite
ample distribution is unknown.
2

and π̂∗k = n∗k/n∗K , which results in P̃h⋄ = δ̃h for h = 1, . . . ,H−1.
In contrast, π̂∗k coincides under the null and alternative.

It is worth mentioning that the information matrix evaluated
under H0 is block diagonal between Phk and π∗k (see Online
Appendix A.1.3).

2.4. Unconditional multinomial model

Let πhk = Pr(Bh = 1; Ak = 1). The null hypothesis states
that πhk = πh⋄ × π∗k, h = 1, . . . ,H and k = 1, . . . , K , where
πh⋄ = Pr(Bh = 1). Therefore, it is convenient to write the joint
probabilities under the alternative as the product of two sets of
parameters: (i) πh⋄, for h = 1, . . . ,H − 1, and π∗k, for k =

1, . . . , K − 1, which denote the marginal probability distribution
for ỹ and x respectively, and (ii) (K − 1) × (H − 1) additional
parameters ϑ which should be 0 under H0 (see Mood et al. (1974)
section 3.5.4 and Online Appendix A.1.4).

As in Section 2.3, the estimators of πh⋄ and π∗k are the same
under the null and alternative, and the information matrix eval-
uated under H0 is block diagonal between πh⋄, π∗k and the ϑ ’s.

2.5. Multinomial probit model

Consider the following ‘‘random utilities’’ model:

B∗

1i = α11A1i + · · · + α1KAKi + ε1i
...

B∗

Hi = αH1A1i + · · · + αHKAKi + εHi

⎫⎪⎬⎪⎭ , (3)

where εh|x ∼ i.i.d. N(0, ω) (see section 27.3 of Ruud (2000)).
Let Bhi = 1

{
B∗

hi = maxj=1,...,H B∗

ji

}
, where 1{} is the indicator

unction, so that Bhi = 1 if h is the preferred choice. This implies
hk = Pr(Bh = 1|x), which is a normal cumulative distribution
unction of dimension H − 1. Under H0, αh1 = · · · = αhK = αh,
for h = 1,. . . ,H .

2.6. Multinomial logit model

The multinomial logit model is obtained if in (3), εhi, instead of
being normal, is drawn from an i.i.d. extreme value distribution
(see section 27.4 of Ruud (2000)). This model ensures Phk ≥ 0, for
all h, k, as well as

∑H
h=1 Phk = 1 by assuming that

Pr(Bh = 1 | A1, . . . , AK ) = (1 + D)−1 exp
(∑K

k=1 γhkAki

)
,

Pr(BH = 1 | A1, . . . , AK ) = (1 + D)−1

}
,

where D =
∑H−1

h=1 exp
(∑K

k=1 γhkAki

)
, and γhk, for h = 1, . . . ,H −

1 and k = 1, . . . , K , are the model parameters. Under H0,
γh1 =. . .= γhK = γh for h = 1, . . . ,H − 1.

2.7. Moment condition model

We can express all the conditional probabilities Phk in terms
of the following set of moment conditions

E [(y − Πx) ⊗ x] = 0, (4)

where ⊗ denotes Kronecker product, y is a categorical variable
that coincides with the first H − 1 elements of ỹ and Π con-
tains the corresponding elements of ∆. These moment conditions
coincide with the first order conditions of the multivariate LPM,
as well as with the scores of the conditional multinomial model.
Under H1, Π is unrestricted while under H0, Π = υl′K , where lK
is a vector of K ones, but one can write Π ′(υ) = lKυ ′IH−1, which
implies that δ(υ) = vec(Π ′(υ)) = (I ⊗ l )υ .
H−1 K
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The GMM estimator is defined as:

υ̂ = argmin
υ

(
1
n

n∑
i=1

{[yi − Π (υ)xi] ⊗ xi}

)′

× Υ −1

(
1
n

n∑
i=1

{[yi − Π (υ)xi] ⊗ xi}

)
,

here Υ is a symmetric positive definite [K × (H − 1)] × [K ×

H − 1)] weight matrix.
With random sampling, the optimal GMM estimator is the

ne which minimizes the GMM criterion function when Υ =

ΣR ⊗
∑n

i=1

(
xix′

i

)
], where ΣR is defined in Section 2.2.

The J-test statistic is just the value of the GMM objective
unction evaluated at the efficient GMM estimator (see Hansen
1982)). Algebraically, J = n × ḡ(υ̂)′Υ −1ḡ(υ̂), where ḡ(υ̂) =
−1∑n

i=1{[yi − Π (υ̂)xi] ⊗ xi}.

. Numerical equivalence results

The following proposition, which I prove in Online Appendix
.1, contains the main result:

roposition 1. For general H and K , the LM test statistic for
ndependence in a multivariate LPM, multinomial logit, multinomial
robit and the conditional and unconditional multinomial models,
omputed using the information matrix, are numerically identical to
earson’s contingency table test statistic and the GMM J-test statistic
n the moment condition model. Additionally, the same numerical
quivalence result holds if one exchanges regressors and regressands
n all those models.

This means that, for any sample size and sampling scheme,
esearchers will reach the same conclusions if they use any of
hose test statistics as long as p-values are computed in a similar
anner. This numerical result is substantially different from the

amous inequality Wald ≥ LR ≥ LM in the multivariate LPM
see Berndt and Savin (1977)) because it shows that the LM
est statistics are numerically identical across multiple linear and
on-linear models.
Computationally, the easiest test is Pearson’s statistic due to its

imple closed-form expression (1). In contrast, the multinomial
ogit and especially probit models should be avoided because they
equire numerical optimization.

Another implication of Proposition 1 is that the Monte Carlo
xperiments previously reported in the literature will apply to all
hose tests because there will only be one finite sample distribu-
ion, so they could be combined in a meta study.

Proposition 1 also says that if we exchange regressors and
egressands the corresponding test statistics will not change. For
xample, one obtains numerically the same LM statistic if one
egresses ỹi on xi or xi on ỹi in the multivariate LPM. Similarly,
mposing independence on Pr (Bh = 1 | A1,. . . , AK ) for all h
yields the same LM statistic in a conditional multinomial model
as imposing it on Pr (Ak = 1 | B1,. . . , BH ) for all k.

Four of the models in Section 2 are essentially the same.
Specifically, the log-likelihood function under the null and al-
ternative of the multinomial logit and probit models are analo-
gous to the conditional component of the log-likelihood of the
multinomial model. In addition, the unconditional multinomial
model can be regarded as an alternative reparametrization of the
joint probabilities. Therefore, I prove in Online Appendix A.2 the
following equality:

Proposition 2. For general H and K , the LR test statistic for
independence in the multinomial logit, multinomial probit and the
conditional and unconditional multinomial models are numerically
identical.
3

Although the Wald test statistics in all those models will
generally differ, the numerical equivalence between the OLS es-
timator in the multivariate LPM, the ML estimators of the condi-
tional probabilities and the unrestricted GMM estimators suggest
a close relationship. The crucial difference is the homoskedasticity
assumption in the Wald test of the multivariate LPM. Specifically,
if a robust test was carried out, the following numerical equality
would hold (see Online Appendix A.3):

Proposition 3. For general H and K , the heteroskedasticity-robust
Wald test statistic for independence in the multivariate LPM and the
moment condition model is numerically identical to the Wald test
statistic of the conditional multinomial model.

Given that the LM test statistic is numerically equivalent in
all the models in Table 1, all the other statistics will also be
asymptotically equivalent (see section 17.3 of Ruud (2000)) even
though they will be numerically different. For example, LRLPM ̸=

LRMultinomial because the true conditional distribution of the LPM is
not normal, so the (pseudo) likelihood function of the multivari-
ate LPM is different from the multinomial model one even under
H0 (see Online Appendix A.1). Similarly, the Wald test statistic
of the multinomial logit and probit is different from the one in
the conditional multinomial model because Wald statistics are
not invariant to non-linear transformations of the restrictions,
despite having the same log-likelihood functions under the null
and alternative.

3.1. Serial independence tests for Markov chains

Propositions 1–3 can be extended to serial independence tests
for discrete Markov chains.

Let xt summarize the K variables (A1,. . . , AK ) at time t , which
has the Markov property if for all k ≥ 1 and all t

Pr(xt+1|xt , xt−1, xt−2, . . . , xt−k) = Pr(xt+1|xt ).

The Markov chain is fully characterized by the K×K transition
matrix

P =

⎛⎜⎝ P11 · · · P1K
...

. . .
...

PK1 · · · PKK

⎞⎟⎠ ,

where Phk = Pr(xt+1 = xh|xt = xk) are the one step transition
probabilities with states k = 1, . . . , K , where PKk = 1−

∑K−1
h=1 Phk,

for all k and h = 1, . . . , K − 1.
If the Markov chain is serially independent, the matrix P will

be:

P = lK ×
(

π1 · · · πK−1 1 −
∑K−1

k=1 πk
)
.

The main difference with the conditional model in Section 2.3
is that the marginal model of the Markov chain is based on
a single observation while the conditional model is recursive.
Nevertheless, serial independence can still be assessed by Wald,
LR and LM test statistics. Not surprisingly, I can easily show that
the numerical equivalence results in Propositions 1−3 also apply
in this context.

In summary, the only reason why researchers might reach
different conclusions in empirical applications is because they
compute p-values differently or use Wald or LR versions.
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