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Abstract. Electric energy systems have always been a continuous source of ap-
plications of planning under uncertainty. Stochastic parameters that may strongly
affect the electric system are demand, natural hydro inflows and fuel prices, among
others. A review of some estimation methods used to approximate those parame-
ters is presented. Reliability and stochastic optimisation are widespread techniques
used to incorporate random parameters in the decision-making process in electric
companies. A unit commitment, a market-based unit commitment, a hydrothermal
coordination and a risk management model are typical models that can incorporate
uncertainty in the decision framework.

1 Introduction

Uncertainty may be originated, in a broad sense, by the lack of reliable data,
measurement errors or parameters representing future information. In elec-
tric energy systems planning, uncertainty appears mainly in demand, natural
hydro inflows, fuel prices, system availability, electricity prices, competitors’
strategies, and regulatory framework. Electric demand has a cyclic pattern,
with seasonal, weekly and daily variations along the year. Besides, demand
also presents a locational variation depending on the local or regional eco-
nomic activity. Natural hydro inflows are subject to climate conditions every
year and, therefore, also the water flowing into the reservoirs that can be
used for electricity production. Fossil fuel prices are subject to geopolitical
circumstances. System elements such as power plants and transmission lines
are subject to random failures that can affect the capability of the system to
supply electricity to final customers. Because of the previous stochastic pa-
rameters, electricity prices resulting from market clearing are also subject to
stochasticity. Finally, the regulatory frameworks under which many electric
energy systems are currently operating are subject to changes to adapt them
to new requirements (i.e., emissions market) or to improve their performance
by changing some market rules.
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Planning! and operation decisions of electric systems are certainly com-
plex, with very different time scopes. They can include decades in the case
of generation and transmission expansion or just several minutes for the eco-
nomic dispatch. These decisions are coordinated to achieve the objective of
optimal operation of the electric system. This general objective is separated
into several others for different time horizons that are implemented in hier-
archical decision support tools. In power systems planning the time scope is
usually divided into the following levels:

Very long term: for any time ranging from five to fifteen years
Long term: for any time ranging from two to five years
Medium term: any time ranging from one month to two years
Short term: from one week to one month

Very short term: any time below one week

This division is required by the practical infeasibility of finding a model
detailed enough to characterize the system. At the same time, the nature of
the whole problem is well suited to be functionally decomposed. Longer the
time period lower the detail in modelling the system. The purpose of this
hierarchical process is to represent adequately the main variables, parame-
ters and characteristics of the electric system affecting each decision level.
Besides, it allows managing the complexity of the whole problem. The pre-
viously mentioned stochastic parameters can affect the system planning in
different time horizons. As previously established, only the relevant stochas-
tic parameters are considered in each time horizon and decision level. For
example, stochasticity in demand may affect all the decisions. However, it
seems that this influence can be more relevant in the very long term (where
expansion decisions are taken) and in the very short term (where unit com-
mitment decisions must be adopted). Uncertainty of natural hydro inflows
seems to be relevant in the medium term due to its yearly cycle.

Firstly, in section 2 we present some tables that show the importance of
some stochastic parameters. We have used Spain as the case study for pre-
senting real data. In section 3 we present some of the methods that have been
used so far to predict future values of stochastic parameters. In section 4 we
show some of the mathematical techniques that can be used to deal with un-
certainty in electric energy systems incorporated in decision support tools. In
section 5 we summarize some of the classical applications and we present how
they take into account the uncertainty. Finally, we extract some conclusions
and recapitulate the work presented in this chapter.

2 Uncertainty Impact

For proximity and data accessibility, we have chosen to show the impact of
the uncertainty of the Spanish electric energy system (see [20]). As a matter

! Planning is used here for any time horizon for taking decisions apart from the
online system operation.
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of fact, the energy demand increase for the last five years is shown in the
following table. The energy load has increased at an approximate 5 % rate for
the last five years (a cumulative 21 %) mainly due to the economic activity.
An increment correction is made to include the effect of working vs. non
working days and temperature.

Year Energy Yearly Corrected yearly
increment increment

TWh % %
2000 195.0 5.8 6.5
2001 205.6 5.4 4.9
2002 211.5 2.8 3.9
2003 225.8 6.8 5.4
2004 235.4 3.5 3.6

Peak load has also increased as shown in the next table. From year 2000 to
year 2004 the winter peak load has increased in 4.5 GW (an increment of 13.5
% with respect to winter peak load in year 2000) and the summer peak load
in 7.2 MW (an increment of 24.6 % with respect to summer peak load in year
2000) and it is almost the same that the winter peak load. The main reason
for this huge increment in summer peak load is the high penetration of air
conditioning in new home and hotel developments in Spain. This peak load
increment in five years would be equivalent to approximately ten combined
cycle gas turbines, which implies two units per year.

Year Winter peak load Summer peak load

GW GW
2000 33.2 29.4
2001 34.9 31.2
2002 34.3 31.9
2003 37.2 34.5
2004 37.7 36.6

The annual energy coming from natural hydro inflows shows also a great
variation along the last years. For example, the hydro energy in year 2003 was
160 % the energy available in year 2002. The percentage of being exceeded
corresponds to the value of the cumulative distribution function for that
hydro energy.
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Year Hydro Index Percentage of

energy being exceeded
TWh %

2000 26.2 0.90 62

2001 33.0 1.14 27

2002 21.0 0.73 88

2003 33.2 1.15 26

2004 24.6 0.85 68

3 Estimation Methods

In this section we present different techniques used for estimating the evo-
lution of some stochastic parameters along the time, namely demand and
natural hydro inflows. With these two parameters, we have tried to show a
variety of complementary prediction techniques used in the context of electric
energy systems.

3.1 Demand

Load forecasting has always been an important concern for long term expan-
sion decisions, mainly related to yearly peak demand. At this time horizon,
the main influence factors are related to the use of electricity by different
customers and to the general socioeconomic and demographic parameters.
Besides these, weather conditions strongly influence the electric load. In the
short term, not only peak is important but also the demand profile and its
variation for each day of the week need to be estimated.

Forecasting methods differ depending on the time range they are dealing
with, see book [9] for a detailed review. For long term forecasting, end-use
models and econometric models are primarily used. For short term forecasting
a large variety of methods from statistical and artificial intelligent techniques
are used. Among them, we can mention regression methods, time series anal-
ysis, artificial neural networks, fuzzy logic, and combinations of them.

End-use models explain the electric demand as a function of the direct use
of electricity by different customers (for example, in appliances for domestic
users, electric motors or aluminium tons for industrial customers, and air
conditioning for commercial customers). So load forecasting is reinterpreted
as the estimation of end-user devices and their evolution along the time. The-
oretically, this approach is very precise. However, it requires a huge amount
of data and can be very sensitive to their quality.

Econometric models use general economic data as factors for explaining
electricity consumption. So load forecasting is estimated as a function of
economic parameters (such as gross domestic product, customer price index,
etc.) obtained by using statistical techniques.
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Regression is used to determine the relationship between load consump-
tion and factors such as weather, temperature, day of the week, etc., see [12,23].

Time series methods are based on detecting the intrinsic structure of
load data regarding correlation, trend, seasonal variation, etc. ARMAZ2 and
ARIMA? techniques use time and past load as input parameters, see [1].

Artificial neural networks (ANN) are devices able to do nonlinear curve
fitting. The outputs of an ANN are nonlinear functions of the inputs. These
usually are load, temperature, humidity and weather. Its use in load forecast-
ing has received a lot of attention, see [13] for a recent and exhaustive review
of papers.

Fuzzy logic generalizes the classic Boolean logic by associating qualitative
ranges to a number value. Therefore, this technique allows the introduction
of qualitative data in load forecasting, for example in ANN] see [21].

After the deregulation process that has been carried out by the electricity
industry in many countries an important additional factor that may affect
load forecasting is price. So sensitivity analysis needs to consider as well
demand elasticity in load forecasting.

3.2 Natural Hydro Inflows

Another important source of stochasticity in electric energy systems are nat-
ural hydro inflows. Two different techniques are used to include their stochas-
ticity. One is scenario generation and the other is scenario tree generation.

The first tries to create plausible scenarios for future outcomes of hydro
inflows. It usually resorts to time series analysis or other forecasting tech-
niques, see [11]. The second tries to detect the internal structural dependence
of the different scenarios previously generated. The scenario tree is then in-
corporated in multistage decision tools, which are going to be described in
the following section. In these models, whose resolution relies on the use of
LP, NLP and MIP solvers, uncertainty given by parameters with continuous
distributions complicates its resolution because of the necessity of combin-
ing simulation techniques with optimisation techniques. For that reason, the
choice of an appropriate discrete distribution is crucial for obtaining good
results of the associated stochastic optimisation problem.

Among the existing techniques for generating scenario trees, they appear
those based on moment adjustment [14]. These techniques consist of minimiz-
ing the distance between statistical properties of the discrete outcomes given
by the scenario tree and those of the underlying distribution. This minimiza-
tion is carried out through the resolution of a NLP problem. Although this
method has been extended to multistage and multivariate distributions [15],
the nonlinearity of resulting mathematical problem experiences difficulties

2 AutoRegressive Moving Average.
3 AutoRegressive Integrated Moving Average.
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when a large number of time periods and dimensions in the multivariate dis-
tribution needs to be approximated. Another type of methods uses clustering
techniques to generate the scenario tree [19,16]. This technique adapts itera-
tively the tree branches to the original data series as a function of its vicinity
to a series randomly chosen.

4 Decision Making Methods

In this section we present some of the mathematical methods used to in-
corporate the uncertainty in the decision support process in electric energy
systems. These techniques are reliability and stochastic optimisation.

4.1 Reliability

It is evident that cost and reliability criteria can be conflicting. A strict
reliability criterion may derive in over investment. On the other hand, under
investment usually leads to highly unreliable systems. Reliability evaluation
in electric energy systems has been for many years an area of research, see
the classical reference book from Billinton and Allan [4]. Recently, under
deregulated electricity markets it has been a renewed interest in the topic
due not only to the recent important blackouts occurred in several systems
(for example, in New York, UK and Italy in 2003) but also to new concepts
like transmission open access that are being explored. Even more, networks
are currently led to operate close to physical limits. The main objective of
reliability is to determine some measures or criteria to be used in generation
and network capacity or operation planning.
Important aspects to be considered in reliability evaluation are:

1. Load forecast and capability of the system to supply it

2. Possible generator locations for new generators, generation commitment
and maintenance scheduling and other unit requirements including fuel
availability

3. Possible contingencies in generation or transmission systems and ways to
alleviate them

Generation reliability is usually evaluated by analytical methods such as
probabilistic production simulation, see the seminal papers of Baleriaux [3]
and Booth [5] and a comparison of algorithms in [17]. This technique is
based on obtaining the cumulative distribution function of the sum of ran-
dom variables corresponding to load and generation unit failures. Dispatch of
generating units is made by iteratively convoluting the random variables. The
most common reliability measures obtained by this method are loss of load
probability (LOLP) and expected energy not served (EENS). These reliabil-
ity indexes are frequently used as adequacy criteria for generation expansion
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and operational planning. For example, a classical planning criterion used for
generation expansion has been to have a LOLP lower than 1 day in 10 years.

However, the method only considers the forced outage rate of the units
and ignores the frequency and duration of these outages and the operating
constraints that play a significant role in short term operations, for exam-
ple, startup and shutdown time and minimum uptime and downtime. Monte
Carlo simulation can incorporate some of these characteristics in probabilistic
simulation models [22] or in chronological or sequential planning models [10].

Monte Carlo simulation with variance reduction techniques (VRT) is also
used to evaluate generation and transmission composite reliability, see refer-
ences [18,6]. Control and antithetic variables are some of the VRT frequently
used.

4.2 Stochastic Programming

Within a decision-making framework, many problems can be posed as optimi-
sation problems. This way of modelling considers a set of decision variables,
relations among these variables (termed constraints) and an expression of
the variables whose value needs to be optimised (the objective function). A
problem set in this form is known as a mathematical programming problem.
The algebraic expressions that form the constraints and objective function
may lead to a LP or NLP problem. Additionally, the nature of the decision
variables leads to a continuous problem or to a mixed-integer one. These
problems are solved by using a collection of algorithms that are the wide-
range subject of research of mathematical programming community. These
algorithms include simplex methods, branch & bound methods, methods of
feasible directions, etc. From a practical point of view, there exists a wide
collection of algorithms already implemented in computer codes available for
being used by decision makers. In addition, current algebraic languages give
the possibility of modelling a mathematical programming problem and test
these algorithms quickly.

The difficulty of the resolution of mathematical programming problems
increases when stochasticity is introduced in the problem parameters. The
introduction of uncertainty in the context of energy planning is aimed at
providing a collection of optimal decisions that have to be taken prior to
uncertainty disclosure. This type of stochastic problem is usually denoted
as two-stage program and its purpose is to give a solution, which hedges
against the uncertain future. This is the most extended way of dealing with
uncertainty. There also exist other methods, like those of probabilistic con-
straints, which produce a solution of a mathematical program such that their
constraints are satisfied with some given probability.

Random parameters in stochastic programming (SP) appear as scenarios.
The use of scenarios is extended and is a common way of representing stochas-
ticity in multistage problems. These scenarios share part of their stochastic
information and create a graph structure, which is denoted in the literature
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as scenario tree. Contrary to deterministic problems, for which a collection
of well-studied algorithms exists, for the moment there is no algorithm that
outstands as the leading algorithm to solve stochastic problems. Users and
researches are focused on the resolution of the deterministic equivalent prob-
lem and in the combination of decomposition techniques to create ad hoc
algorithms for specific problems. SP has been widely used as a mathemati-
cal programming technique for planning under uncertainty in electric energy
systems. Next section describes some examples that deal with uncertainty in
different ways depending on the time scope of the model.

5 Characteristic Models

The type of stochastic parameters that enter within energy planning mathe-
matical programming models heavily depends on the considered model. This
section reviews classical models, focusing on the presence of stochasticity:

e a unit commitment (UC) model

e a market-based unit-commitment model

e a mid-term hydrothermal coordination model
e a mid-term risk management model

With these models, we try to introduce the treatment given in SP to
random parameters like demand, hydro inflows and fuel prices.

Short-term models consider uncertainty in electricity demand. A classi-
cal cost-minimization UC model considers uncertainty in the chronological
weekly load demand. A market unit-commitment model represents competi-
tors’ behaviour by means of their residual demand curve. Uncertainty in com-
petitors’ behaviour can be represented as a discrete random variable whose
values are the different residual demand curves. In mid-term models, besides
uncertainty in demand information, models incorporate uncertainty of hy-
dro inflows and fuel costs. Typically, hydrothermal models use SP to obtain
robust decisions for the set of future hydro scenarios. The use of SP is also
necessary for risk management models. Finally, stochasticity in fuel costs is
employed in one of the presented problems to model future contracts with
the purpose of exercising control over minimum benefit scenarios.

The authors have developed the models presented in this section and their
references are given in the corresponding sections. These models have been
implemented in computer applications and applied to the Spanish electric
system.

5.1 Unit Commitment

This problem has to decide the set of generating units that need to be com-
mitted as well as their generation levels. In these problems, total variable cost
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is minimized. Demand appears in classical models as a known parameter and
the problem decides the subset of committed units that will provide the re-
quired demand. This modelling reflects the traditional regulation framework
where an Independent System Operator (ISO) orders to the different compa-
nies the amount of energy they had to produce.

The operating cost of thermal units is modelled as a straight line with
a fixed operating cost (the intercept) and a variable cost (the slope). This
operating cost represents the fuel and operation and maintenance costs.

A weekly model is interpreted as a multiperiod problem where each period
comprises a set of hours. A possibility is to consider one period for each hour,
summing up 168 periods. The nature of the decision variables turns this
optimisation problem into a mixed-integer one. Variables that represent the
commitment status of the units are binary and those that represent operating
levels are continuous.

The remaining section describes the algebraic model of a weekly UC prob-
lem. Consider the following collection of sets, indices, parameters and vari-
ables.

Sets
T  Set of periods
I Set of thermal units

Indexes
t Index for periods
h Auxiliar index for periods
i Index for thermal units
Parameters
D, Demand of period ¢ [MW]
R, Spinning reserve coefficient for thermal production

in period ¢ (%]
Dury Duration of period ¢ [h]
prer Maximum rated capacity of thermal unit 4 [MW]
pmin Minimum rated capacity of thermal unit i [MW]
L Upwards ramp limit of thermal unit i [MW /1]
Ldown Downwards ramp limit of thermal unit 4 [MW /h]
F; Fixed operating cost of thermal unit ¢ [€/h]
| Variable cost of thermal unit ¢ [€/MWh)]
c® Startup cost of thermal unit 4 €]
Clown Shutdown cost of thermal unit ¢ €]
Ti Minimum uptime of thermal unit ¢ [h]
Ki Minimum downtime of thermal unit ¢ [h]
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Variables

Dti Operating level of thermal unit ¢ in period ¢ [MW]
Ut Commitment status of thermal unit ¢ in period ¢ {0,1}
sy Startup decision of thermal unit ¢ in period ¢ {0,1}
sown Shutdown decision of thermal unit ¢ in period ¢ {0,1}

The UC problem must satisfy the load profile in each load level considered

I
Zpti = Dt Vt (1)
i=1

requiring a spinning reserve operating margin that can be modelled as

I
Z(Pimmuti — pri) > RyDy/100 % (2)
i=1

Each thermal unit operating level is bounded between its minimum and
maximum rated capacity

P u < pri < PPug Vi (3)
Variation in a thermal unit power generation is controlled through the
ramp constraints
L?O’”"Durt < pti — pr—1i < L Dury Vt, i (4)
Startup and shutdown decisions are managed with the following con-
straints
Ui — Up—1; = Sy — gdown Vt, i (5)

Some advanced UC models include minimum uptime and downtime re-
quirements for switched-on and switched-off thermal units. Committed units
are usually required to produce a minimum number of hours before they
can stop. Similarly, once they stop, they must also remain offline a minimum
number of hours, before they can produce again. These minimum uptime and
downtime requirements can be formulated as follows:

Upthy @ 2> Uig — Ug—1 4 Vi, h, 1 (6)

Upphy i ST+ Uy —ug—1i Vit hyyi (7)
where the set of shifted indexes, controlled by h;, maybe reduced for those
values h; > 1 such that

he—1

7 < Y Durey (8)

=0
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he—1

ki < Y Dury (9)
1=0

Given the above variables and constraints, the UC model minimizes the
total variable operating cost, given as:

T I
Z Z(DurtFiuti + DuriVipy + C;* s} + Cdown gdown) (10)
t=1 i=1
Uncertainty in a weekly UC model appears in the randomness of demand
load profiles that a generation company faces. For this reason, instead of
formulating a single-scenario problem, the company may analyze its decision-
making problem by means of a SP problem. Stochasticity in demand profiles
can be modelled as a discrete random variable in the form of a scenario
tree. A load profile scenario tree is presented in figure 1. It is represented
the possible evolution of the demand for a week that begins on Tuesday. It
is not considered being uncertain along the very first day. For the second
day, Wednesday, two branches appear. These branches branch at the end of
the second day producing four scenarios that represent the evolution of the
demand profiles for the remaining days of the week.

14 L L L L

I I I I
0 20 40 60 80 100 120 140 160 180
Hours

Fig. 1. Load demand profile scenario tree.

5.2 Market-Based Unit Commitment

Classical UC problem changes dramatically if the company operates in an
electricity spot market. In this new framework, companies are responsible of
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their total production, which is no longer decided by an ISO. A day-ahead
market is the market that takes place one day before the physical delivery
of power production. This market is based on offers submitted by power
producers and bids submitted by power purchasers. Offers and bids indicate
the price at which producers are willing to sell and purchasers to buy.

In this new context, the objective function of an energy planning problem
changes from the traditional cost minimization to a maximization of the
company’s benefit.

The company’s benefit B(p) is defined as the difference between revenues
and operating cost ¢(p). In addition, company’s incomes depend on the mar-
ket price 7w at which the energy p is sold.

B(p) = mp — c(p) (11)

The energy price is a function of the total amount of energy sold. Similarly,
the energy amount that each company is able to sell depends on the final
price. Observe that the energy demand (understood as a function of price)
needs to be equal to the energy supplied (also understood as a function of
price).

D(m)= Y §%(m) (12)

agents

Under the assumption that competitor’s behaviour is given by their supply
energy functions, the amount of power a single company is able to sell depends
on the demand at that price, D(w), and the offers of the rest of agents,
é;rest(7r)

R(m) = D(m) = Y 8™ () (13)

rest

expression that gives the residual demand faced by the company, R(7). The
company’s benefit is now given as

B(p) = R (p)p — c(p) (14)

The inverse residual demand function is a staircase function that can be
approximated by means of a piecewise linear function. The revenue function
is also a non-concave function that can be modelled as a piecewise linear
function fig.2). This function is modelled by considering a collection of binary
variables to represent the total amount of energy produced as a sum of the
quantities of each segment. Price and revenue values can also be modelled in
the same way.

Uncertainty is again a relevant ingredient of these new market-based UC
models. However, the main source of uncertainty is now the wholesale electric-
ity market, because the decisions made by the rest of agents are not known
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Fig. 2. Piecewise linear residual demand function and revenues’ function.

in advance. This uncertainty is implicit into the residual demand function
that may be considered a random variable within a SP problem.

When having a completely known residual demand function, the benefit
maximization problem is deterministic. This problem determines company’s
optimal production and price for selling that production. However, if a ran-
dom residual demand function is given, the benefit maximization problem
turns into a SP problem. It should provide an optimal quantity for each one
of the residual demand functions involved. This obeys the rules of a supply
energy function, although additional conditions about non decreasing values
need to be imposed.

The multistage stochastic problem we are about to present considers a
realization of uncertainty to be a set of residual demand functions, one func-
tion for each period of the problem scope (fig. 3). The reader should note the
difference in uncertainty management in this model with respect to that of
the weekly UC model and forthcoming models.

N N
1k(p1k) 1—1 Wzk(sz) N WTk(PTk) lr\k_

D1k Pag; Pk

Fig. 3. Single scenario of residual demand functions.

Consider the next collection of sets, indexes, parameters, variables and
constraints used in the formulation of a market-based UC problem.

Sets

T  Set of periods

I Set of thermal units

J  Set of segments to represent
the residual demand function

K Set of scenarios
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Indezes

t

ENSES

Index of periods
Index of thermal units
Index of segments
Index of scenarios

Deterministic parameters

Dury
max
P
man
Pz;lp
L
own
Li
F;
Vi
up
G
own
G

Duration of period ¢ [h]
Maximum rated capacity of thermal unit ¢ [MW]
Minimum rated capacity of thermal unit ¢ [MW]

Upwards ramp limit of thermal unit 4 [MW /h]
Downwards ramp limit of thermal unit ¢  [MW /h]
Fixed operating cost of thermal unit 4 [€/h]
Variable cost of thermal unit ¢ [€/MWh]
Startup cost of thermal unit ¢ €]
Shutdown cost of thermal unit ¢ [€]

Stochastic parameters

5fj Slope of segment j of the residual demand function

in period ¢ and scenario k [€/MW]
fyfj Slope of segment j of the revenue function

in period ¢ and scenario k [€/MW]
wfj Price at segment j of the residual demand function

in period ¢ and scenario k [€]
ﬁfj Quantity at segment j of the residual demand function

in period ¢ and scenario k [MW]
Efj Benefit at segment j of the revenue function

' in period ¢ and scenario k €]

Prob* Probability of scenario k

The load demand constraints adopt the next expression in this case

I
S phi=pf YLk (15)
=1

where the total amount of energy produced pf in period ¢ and scenario k is

modelled by

J-1
Pf =Dl + prj (16)

j=1

The total revenue is modelled as a piecewise linear function similarly to
the total amount of energy produced.
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Variables
vfj Binary variable corresponding to segment j

in period ¢ and scenario k {0,1}
pF Total production in period ¢ and scenario k [MW]
PE; Total production of segment j

in period ¢ and scenario k [MW]
Pk Operating level of thermal unit 4

in period ¢ and scenario k [MW]
il Price in period ¢t and scenario k €]
bk Benefit in period ¢ and scenario k [€]
uk, Commitment status of thermal unit i

in period ¢ and scenario k {0,1}
supk Startup decision of thermal unit

in period ¢ and scenario k 10,1}
sfown k Shutdown decision of thermal unit i

in period ¢ and scenario k 10,1}
xf’“/ Binary variable related with monotonicity

of the supply function in period ¢ and scenarios k and k¥’ {0,1}

J—1
bwltf = bfo + Z 'ijpfj (17)
j=1

as well as the price obtained when considering the optimal production pf in
period t and scenario k.

J—1
j=1

This piecewise linear modelling requires the next constraints, which force
a monotonic use of variables representing segment values.

kK k k kK k
(P; — Pij—1)viy1 j < Py < (B — Pij—1)vi; (19)

vz j=1...,J-1 (20)

Due to uncertainty, limits for thermal units power output are introduced
for any of the scenarios considered. Similarly, ramp constraints and startup
and shutdown constraints are independently introduced for each scenario k.

PtTmei < pfi < PtTamufi vt k (21)

L;—iownD’UJTt < pfl _ pf—li < L?pDU’I”t Vt, k (22)
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k k _ upk down k
Ugp — U114 = St — Sty vt k (23)

The former set of constraints is the core of the market-based UC problem
with stochasticity in the parameters modelling the residual demand functions.
As it has already been commented, the optimal solution provided by this SP
problem is a set of quantities and prices that form an offer curve. This curve
has to be non decreasing. The following set of constraints is introduced into
the model for that reason.

pF—pF > M kK K >k (24)
x> M vk K >k (25)
pF—pF > -2 Ymr veEE K >k (26)
x> =2 YMT vk K K >k (27)

The SP model is completed with the objective function that maximizes
the expected benefit.

T K
max Z Z Prob®[bF — c(pk)] (28)

t=1 k=1

where ¢(pF) indicates the production cost in each period ¢ and scenario k.
This cost can be modelled as it has been presented in previous section. The
optimal solution for this problem is an offer curve for each period (fig.4).
For simplicity in the exposition, a pure thermal generating system has been
considered. However, the model has been extended to more complex systems
comprising hydro units as well as futures and options [2]. It is necessary to
outline that building the offer curve necessarily implies the consideration of
stochasticity. This model represents uncertainty in a different way that the
weekly UC problem and the next models, where stochasticity is introduced
by means of a scenario tree.

5.3 Hydrothermal Coordination

A hydrothermal coordination model considers a generating system with ther-
mal units as well as hydro units, see [8] for further details. Hydro units pro-
vide the capability for energy reserve management. In hydrothermal models,
a constant coefficient of efficiency for each hydro unit is usually considered
and hydro reserves are expressed in terms of energy stored, in MWh. A differ-
ence between short-term models and mid-term models appears in the way of
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Fig. 4. Stochastic residual demand function and offer curve for a single period.

considering electricity demand. Short-term models usually consider a chrono-
logical load profile, while mid-term models use to represent the demand ag-
gregated. Thus, mid-term models usually gather the demand in blocks of
peak, shoulder and off-peak hours. Another difference with short-term mod-
els appears in the stochastic parameters considered. In short-term models,
demand profile (together with units’ outage) is the main source of uncer-
tainty. In mid-term models, hydro inflows and fuel costs represent additional
sources that must be taken into account when looking for optimal solutions
to hedge against uncertainty. In a mid-term model, like the presented in this
section, stochasticity enters as a scenario tree. Figure 5 shows a hydro inflows
scenario tree. The tree represents an initial inflow value that branches into
two possibilities in the second month of the model. The scenario tree branches
again in the second and third months producing a final eight-scenario tree.

One of the objectives of a mid-term model is to schedule hydro reserves.
A model that minimizes the expected operation cost over the complete time
scope can achieve this. Hydro units have a very low cost that is usually ne-
glected. Operating cost is limited to variable costs of thermal units. Reservoir
levels are bounded in order to prevent spillage and dramatic scenarios of low
reserves.

Thus, hydrothermal models include equations that represent the evolution
of the reserves. Let us consider the next collection of sets, indexes, parameters
and variables in order to model them.
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8 Scenario Tree for the main Hydro Unit infows

05

Months

Fig.5. Scenario tree for hydro inflows to a reservoir.

Sets

T  Set of periods

H Set of hydro units
K  Set of scenarios

Indezes

t Index of periods

h Index of hydro units
k Index of scenarios

Deterministic parameters

R Maximum storage capacity of hydro reserve j [MWHh]
R Minimum storage capacity of hydro reserve j [MWHh]
I Maximum rated capacity of hydro unit j [MW]
L Minimum rated capacity of hydro unit j MW]
pj Pumping efficiency of hydro unit j (%]

Stochastic parameters
I ]k Natural inflows of hydro unit j

in period t and scenario k [MWHh]
Prob* Probability of scenario k
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Variables
rfj Level of hydro reserve j

in period ¢ and scenario k [MWHh]
st; Production level of hydro unit j

in period ¢ and scenario k [MW]
wfj Pumping level of hydro unit j

in period ¢ and scenario k [MW]

As mentioned, scheduling of hydro reserves can be obtained by introducing
some constraints that represent the dynamics of water reserve evolution.

rfj = rf_l’j + IJI-C - Durt(sfj - pjwfj)/lOO (29)
with
R < pf < R (30)
L™ < iy < L (31)
L7 < pjwf; /100 < LT (32)

A stochastic mid-term hydrothermal coordination problem gives the pos-
sibility of verifying the reserve evolution for the set of hydro scenarios ana-
lyzed. The SP problem provides a solution for the first stage that does not
anticipate the uncertainty given by natural hydro inflows. An example of this
solution is given in the next figure 6. It is depicted the evolution of the hydro
reservoir storage level for the hydro unit whose natural inflows are given in
figure 5.

5.4 Risk Management Model

Risk is implicit to all activities that take place in energy operation business
and planning activities must consider this risk. SP is a suitable tool to carry
on with this risk, which appears under different forms depending on the
activity considered. As outlined at the beginning of the chapter, short-term
operation suffers from the unit failure risk and demand fluctuation. Mid-term
operation has to deal with uncertain hydro inflows and fuel prices, see for
example [7], and long-term models pay careful attention to different factors,
for example demand evolution and regulatory changes.

A risk management model controls the variability of the random variable
that represents the operating cost function or the profit function. A variety of
methods to measure risk can be introduced into a SP problem. A possibility
consists of penalizing those scenarios in which the company cost is greater
than a certain reference cost. Similarly, those scenarios whose profits are less
than a certain reference profit can be penalized.
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Evolution of the Main Unit Reserve
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Fig. 6. Reserve evolution of a stochastic mid-term hydrothermal model.

Another alternative consists on introducing a hard limit for the quantile of
the distribution function at a given confidence level. This quantile is usually
referred to as Value at Risk (VaR) in risk management models. VaR has
the additional difficulty, for SP problems, that it requires the use of binary
variables for its modelling. Conditional Value at Risk (CVaR) computes the
average of scenario profit values that lie under the quantile given by the VaR.
CVaR computation does not require the use of binary variables and it can
be modelled by the simple use of linear constraints. Figure 7 illustrates the
concepts of VaR and CVaR.

A f(Profits)

T ‘ —p
l Profits
CVaR(1- )

Fig. 7. VaR and CVaR illustration.

A SP model that incorporates risk measures obtains a final solution (cost
or profit random variable) with less volatility than the final solution of a
model that does not incorporate any measure of risk control. This is observed
in the next figure 8. Different distribution functions are depicted for the profit
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random variable in a mid-term operation planning. It can be observed that
the higher the upper limit imposed to the CVaR, the more concentrate the
scenarios’ profit values. In the following figure 9 the efficient frontier curve is
obtained for expected profit and CVaR for the same case.

— CVaR = 2000
== CVaR =2100
09F = CVaR =2150
== CVaR =2200
— CVaR =2274
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Fig. 8. Comparison of profit’s distributions.
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Fig. 9. Efficient frontier.
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6 Conclusions

Electric energy systems have been for long time a continuous source of ad-
vances and applications of planning under uncertainty and a test bed for
many developments to include stochastic parameters. In this chapter, we
have presented a review and summary of the impact that the uncertainty
may have in electric energy systems. We have presented the methods used to
estimate the main stochastic parameters to be considered in power systems,
namely demand and hydro inflows. Then, we have examined the two main
methodologies that deal with uncertainty. One is reliability computation and
the other is stochastic optimisation. Finally, we have presented some charac-
teristic models that include an explicit treatment of parameter uncertainty.
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