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Abstract 

This study examines innovative procedures for cognitive diagnostic computerized adaptive testing 

(CD-CAT) in small-scale assessments. Traditional CD-CAT methods, based on parametric 

cognitive diagnostic models (CDMs), often struggle with small calibration samples, leading to 

overfitting and overestimated reliability. Nonparametric alternatives, while more robust in small-

scale settings, lack reliability information, limiting classification certainty and variable-length 

adaptive testing. To address these challenges, we propose four CD-CAT procedures using the 

parsimonious restricted deterministic input, noisy “and” gate (R-DINA) model, a parametric 

CDM tailored for small samples. Two of these procedures use a calibration sample (R-GDI and R-

NPS), while the other two are calibration-free methods (R-NPSML and R-NPSBM). Through a 

simulation study, where calibration sample size, number of attributes, and item quality were 

manipulated, we compare these methods to the conventional CD-CAT based on the DINA model. 

Results indicate that R-GDI and R-NPS consistently outperform the conventional CD-CAT in 

terms of more accurate posterior probability recovery, classification accuracy, and balanced item 

usage, although they administer a larger number of items. The calibration-free methods also 

perform satisfactorily but exhibit reliability overestimation with low-quality items. Overall, the 

proposed procedures offer practical solutions for formative assessments in educational contexts 

characterized by small sample sizes and time constraints. We provide recommendations for the use 

and scalability of these methods in real educational settings. 

Keywords: cognitive diagnosis, computerized adaptive testing, nonparametric classification, 

classification accuracy, reliability estimation 
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Variable-Length Cognitive Diagnostic Computerized Adaptive Testing  

in Small-Scale Assessments 

 Cognitive diagnosis modeling (CDM) is a family of statistical models that has gained 

popularity in educational research as a tool for evaluating whether examinees have mastered a 

series of attributes. This detailed information helps identify students’ strengths and weaknesses, 

which can later guide targeted remedial instruction. CDM, therefore, aligns with the growing 

interest in alternative formats of educational evaluation, such as formative assessments (de la Torre 

& Minchen, 2014; Paulsen & Valdivia, 2021). Beyond education, CDM has been also applied to 

other areas such as clinical psychology (e.g., Templin & Henson, 2006) and organizational 

psychology (e.g., Sorrel et al., 2016). Attributes are defined as discrete (usually dichotomous) 

latent variables that represent skills, competences, or psychological processes required to endorse 

a series of test items. The primary output provided by CDM is the attribute profile classifications. 

For example, consider a test measuring K = 3 attributes. Here, 𝜶̂𝑖 = {1,0,0} denotes that examinee 

i has been classified in the attribute profile {1, 0, 0}, meaning that they have mastered the first 

attribute but not the second or third. Beyond this categorical classification, CDM has undergone 

numerous methodological developments in recent decades, making it a comprehensive 

psychometric framework capable of extracting rich information, including reliability estimates, 

relative and absolute model fit evaluation, and differential item functioning, among other features 

(see von Davier & Lee, 2019, for a comprehensive review). 

The area of CDMs is a growing field, driven by novel theoretical proposals that allow for 

the modeling of different types of data (e.g., dichotomous, polytomous, continuous) while 

considering various aspects, such as multiple strategies for responding to the same item or the 

hierarchical structure of attributes, among others (for an introduction to recent developments in 
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CDMs, see, for example, de la Torre & Sorrel, 2023). These modeling capabilities are often 

associated with high parameterization, which entails a cost in terms of the sample size required to 

obtain reliable classifications. This is compounded by the fact that these theoretical advances have 

not yet been widely translated into practice, as highlighted by Sessoms and Henson (2018) in their 

critical review of existing empirical applications. Considering the specific area of formative 

assessment in education, it is common for practitioners to face situations with small sample sizes 

and limited time availability (Paulsen & Valdivia, 2021; Ren et al., 2021). This has led, on the one 

hand, to the most frequently applied model being a relatively simple one (Sessoms & Henson, 

2018), such as the deterministic, input, noisy “and” gate (DINA; Junker & Sijtsma, 2001), which 

only requires two parameters per item. Nonparametric approaches offer an additional solution, as 

they can potentially generate classifications without requiring a calibration sample or with a very 

small sample size (Chiu et al., 2018). Regarding time constraints, proposals have been developed 

to improve assessment efficiency, with the implementation of computerized adaptive testing 

standing out as a key solution. These tests adjust to the respondent’s level during the test, allowing 

for comparable classification reliability while reducing the number of items (Chang et al., 2019; 

Sorrel et al., 2021). This area of applying CDMs in computerized adaptive testing has come to be 

known as cognitive diagnostic computerized adaptive testing (CD-CAT; Cheng, 2009). 

As detailed below, while simulation studies have shown that it is possible to obtain reliable 

classifications using these nonparametric solutions and their application in CD-CAT, they have 

generally focused on stopping criteria based on the number of items rather than stopping once a 

desired reliability threshold is achieved, which could enhance efficiency. For example, although 

30 items might be administered, if after 20 items the posterior probability that the individual 

belongs to the assigned latent class is already very high (e.g., greater than .80), the test can stop. 
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This reduction in the number of items frees up time for instruction, addressing the demand for 

CDM applications to be implemented in time-constrained environments. The present article aims 

to develop a solution for this variable-length application of CD-CAT, using the restricted DINA 

(R-DINA) model (Nájera, Abad, et al., 2023) as a starting point. The reason for selecting this model 

is that, as discussed in this article, it allows operation with small calibration samples, and even 

without a calibration sample, providing classifications equivalent to those of nonparametric 

procedures while incrementally incorporating the available information. 

The remainder of the paper is organized as follows. First, a brief overview of parametric 

CDM is provided. Second, diagnostic procedures for small-scale assessments are described, 

including nonparametric CDM and the R-DINA model. Third, an introduction to CD-CAT is 

presented. Fourth, we elaborate on our proposal to integrate the R-DINA model into CD-CAT, 

detailing the four different procedures developed for this purpose. Fifth, the performance of the 

proposed procedures is tested and compared to that of the traditional CD-CAT by means of a Monte 

Carlo simulation study. Finally, a discussion section is included that summarizes the main 

conclusions, limitations, and future research lines, as well as practical recommendations. 

A Review of Parametric CDM 

 For CDM to classify examinees into attribute profiles, three inputs are required. First, the 

responses of the N individuals to J items. These responses are typically dichotomous, indicating 

correct or incorrect answers, although various response formats have been explored in the literature 

(e.g., W. Ma & de la Torre, 2016; Gao et al., 2020). Second, a Q-matrix, which acts as a bridge 

between the J items and the K attributes. The Q-matrix is usually constructed by domain experts 

(see Sorrel et al., 2016), who determine which items measure which attributes. For example, with 

K = 3 attributes, 𝒒𝑗 = {1,0,1} represents the q-vector of item j, indicating that it measures the first 
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and third attributes, but not the second. In addition to the expert judgment, several Q-matrix 

estimation and validation (e.g., de la Torre & Chiu, 2016; Nájera, Sorrel, et al., 2021) methods may 

assist in the Q-matrix specification process from an empirical perspective. Third, as a family of 

statistical models, CDM can adopt several item response functions, which reflect how attributes 

interact to produce a correct or incorrect response to an item. Two well-known reduced models 

include the deterministic input, noisy “and” gate (DINA) model (Junker & Sijtsma, 2001) and the 

deterministic input, noisy “or” gate (DINO) model (Templin & Henson, 2006). The DINA model 

assumes a non-compensatory response function, also referred to as conjunctive, which implies that 

an examinee must master all the attributes involved in an item to endorse it. Conversely, the DINO 

model assumes a compensatory (or disjunctive) response function, meaning that mastering only 

one of the attributes measured by an item is sufficient to answer it correctly. The 

conjunctive/disjunctive nature of the DINA and DINO models is reflected in the ideal response: 

𝜂𝑙𝑗
(𝑐)

=∏𝛼𝑙𝑘
𝑞𝑘𝑗

𝐾

𝑘=1

, (1) 

and 

𝜂𝑙𝑗
(𝑑) = 1 −∏(1 − 𝛼𝑙𝑘)

𝑞𝑗𝑘

𝐾

𝑘=1

, (2) 

where 𝜂𝑙𝑗
(𝑐)

 and 𝜂𝑙𝑗
(𝑑)

 denote the conjunctive (i.e., DINA) and disjunctive (i.e., DINO) ideal response 

of examinees in latent class l to item j, respectively, 𝛼𝑙𝑘 is the attribute k mastery level of examinees 

in latent class l, and 𝑞𝑗𝑘 indicates whether item j measures attribute k. These ideal responses are 

binary and deterministic, but the DINA and DINO models are probabilistic. This means that there 

is a probability of correctly answering an item for those examinees who are expected to fail (i.e., 

𝜂𝑙𝑗 = 0), and a probability of failing the item for those who are expected to succeed (i.e., 𝜂𝑙𝑗 = 1). 
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These probabilities are captured by the guessing (𝑔𝑗) and slip (𝑠𝑗) parameters, respectively, 

resulting in the following item response function: 

𝑃(𝑦𝑗 = 1|𝜶𝑙) = 𝑔𝑗
1−𝜂𝑙𝑗(1 − 𝑠𝑗)

𝜂𝑙𝑗
, (3) 

where 𝜂𝑙𝑗 = 𝜂𝑙𝑗
(𝑐)

 and 𝜂𝑙𝑗 = 𝜂𝑙𝑗
(𝑑)

 for the DINA and DINO models, respectively. Equation 3 implies 

that, in the DINA and DINO models, there are only two parameters (𝑠𝑗 and 𝑔𝑗) per item. These 

parameters differentiate between examinees expected to provide either a correct (𝜂𝑙𝑗 = 1) or 

incorrect (𝜂𝑙𝑗 = 0) response to the item. The similarities between the DINA and DINO models are 

such that they are equivalent under certain transformations (Köhn & Chiu, 2016). Moreover, the 

DINA model is the most widely used CDM in applied settings (Sessoms & Henson, 2018). 

 The DINA and DINO models are special cases of the generalized DINA (G-DINA) model 

(de la Torre, 2011), which is a saturated model in that it estimates a different item probability of 

success for every possible latent group. This makes the G-DINA a more flexible model than DINA 

and DINO. However, this increased flexibility comes with the trade-off of requiring larger sample 

sizes to ensure stable and accurate estimation of item and person parameters (Sorrel et al., 2021). 

This is a significant limitation, especially considering that even the reduced DINA and DINO 

models require sample sizes of at least 500 individuals to yield accurate parameter estimates (Sen 

& Cohen, 2021). 

CDM for Small-Scale Assessments 

The dependency on large sample sizes may be a practical issue, given that one of the most 

promising applications of CDM is in small-scale assessments. Specifically, the detailed diagnostic 

feedback provided by these models, delivered in a timely manner, can directly inform remedial 

instruction or learning efforts at a classroom level (de la Torre & Minchen, 2014; Paulsen & 

Valdivia, 2021). In this vein, some real CDM applications have been conducted with sample sizes 
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as small as N = 105 (Ren et al., 2021) or even N = 44 (Jang et al., 2015). Despite these few 

examples, the limited number of CDM applications (Sessoms & Henson, 2018) may partially be 

due to the fact that most methodological developments are not well-suited to practical settings that 

deal with small sample sizes. 

To address this issue, Chiu and Douglas (2013) proposed the nonparametric classification 

(NPC) method, a deterministic procedure that classifies examinees into latent classes without 

relying on parameter estimation. Namely, the NPC method compares the ideal responses (see 

Equation 1 and Equation 2) of all possible latent classes with the examinee’s observed responses 

using the Hamming distance, as follows 

𝑑ℎ(𝒚𝑖, 𝜼𝑙) = ∑|𝑦𝑖𝑗 − 𝜂𝑙𝑗|

𝐽

𝑗=1

, (4) 

where 𝜂𝑙𝑗 can be 𝜂𝑙𝑗
(𝑐)

 or 𝜂𝑙𝑗
(𝑑)

 for a conjunctive (i.e., DINA) or disjunctive (i.e., DINO) rules, 

respectively. Examinees are then classified into the most similar latent class: 𝜶̂𝑖 =

argmin
𝑙
𝑑ℎ(𝒚𝑖, 𝜼𝑙). The main benefit of the NPC method is that, by not relying on parameter 

estimation, it provides more accurate attribute profile classifications in settings where the available 

information for estimation is scarce or poor, such as with small sample sizes or low-quality items 

(Chiu & Douglas, 2013; Chiu et al., 2018). However, this practical advantage comes with a 

significant limitation: the inability to assess crucial psychometric properties such as reliability or 

model fit. Consequently, a practitioner conducting a small-scale assessment with CDM would face 

a dilemma: either use the NPC method and accept its classifications without additional information 

on the adequacy of the results, or use a parametric CDM (e.g., DINA model), knowing that it may 

provide less accurate classifications in suboptimal sample conditions. 
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 To address this, Nájera, Abad, et al. (2023) proposed the restricted DINA (R-DINA) model, 

which is a parametrization of the NPC method. This means that the R-DINA model can provide 

the same exact attribute profile classifications as the NPC method but, more importantly, allows 

for the computation of reliability and fit indices to assess its psychometric properties. Specifically, 

the NPC method can be parametrized as a restricted version of the DINA or DINO model, where 

the guessing and slip parameters for all items are constrained to have the same value: 

𝑃(𝑦𝑗 = 1|𝜶𝑙) = 𝜑1−𝜂𝑙𝑗(1 − 𝜑)𝜂𝑙𝑗 , (5) 

where 𝜂𝑙𝑗 = 𝜂𝑙𝑗
(𝑐)

 and 𝜂𝑙𝑗 = 𝜂𝑙𝑗
(𝑑)

 for the R-DINA and R-DINO models, respectively, and 𝜑 

represents the overall proportion of observed responses that differ from their corresponding ideal 

responses. Note that the R-DINA model has only one parameter for the entire model: 𝜑 = 𝑔𝑗 =

𝑠𝑗∀𝑗. Despite its over-restrictive nature, the R-DINA model has shown robust performance when 

its assumptions are violated, outperforming the DINA model in terms of classification accuracy, 

item parameter recovery, and reliability estimation accuracy under very small sample sizes (N = 

25 to 100), even when the generating model was DINA (Nájera, Abad, et al., 2023). 

Cognitive Diagnostic Computerized Adaptive Testing 

 Despite these advancements, small-scale assessments often require longer tests to mitigate 

the lack of information from the limited number of examinees. However, longer tests require more 

time to complete, which can limit the feasibility of using these models for continuous formative 

assessments throughout an academic year (Chang et al., 2018; Paulsen & Valdivia, 2021). A well-

established psychometric development that enhances the efficiency, accuracy, and security of 

assessments is computerized adaptive testing (CAT). In CAT, a large item bank is initially 

calibrated using a large sample size. Once the item parameters are calibrated, each examinee 

receives a tailored test, with items presented based on their previous responses. When integrated 



VARIABLE-LENGTH CD-CAT WITH SMALL SAMPLES 

10 
 

within the CDM framework, this approach results in cognitive diagnostic CAT (CD-CAT; Cheng, 

2009). 

Since its introduction, CD-CAT has undergone significant advancements, including the 

adaptation and formulation of various item selection rules, as well as the consideration of different 

test stopping criteria and content restrictions. The item selection rule refers to the algorithm used 

to determine the most optimal item to administer to an examinee at a given time, based on the 

calibrated item parameters and the examinee’s responses to previous items. Some widely-explored 

item selection rules are the general discrimination index (GDI; Kaplan et al., 2015), the Jensen-

Shannon divergence index (Kang et al., 2017), and the posterior-weighted Kullback-Leibler index 

(Cheng, 2009) and its modified version (Kaplan et al., 2015). These rules rely on previously 

calibrated item parameter estimates and the examinee’s responses to select the most discriminative 

item at a given time. In this study, GDI will be used as a representative of parametric item selection 

rules, as it is expected to perform similarly to other parametric rules and demonstrates 

computational efficiency (Kaplan et al., 2015; W. Wang et al., 2020). It is a popular rule 

implemented in open-access software, such as the R package ‘cdcatR’ (Sorrel et al., 2022). The 

GDI is defined as 

𝐺𝐷𝐼𝑗 =∑𝜋(𝜶𝑙)
(𝑡)[𝑃(𝑦𝑗 = 1|𝜶𝑙) − 𝑃̅𝑗]

2
𝐿

𝑙=1

, (6) 

where 𝜋(𝜶𝑙)
(𝑡) is the posterior probability of latent class l at time t, 𝑃(𝑦𝑗 = 1|𝜶𝑙) is the probability 

of a correct response for latent class l on item j, and 𝑃̅𝑗 is the weighted average success probability 

for all latent classes on item j. The item to be administered at time t + 1 is the one with the 

maximum GDI.  
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The main issue with all these parametric item selection rules is that, as mentioned earlier, 

a large calibration sample is usually required to accurately estimate item parameters. To address 

this practical concern, two nonparametric item selection rules based on Hamming distances have 

been recently proposed. Chang et al. (2018) developed the nonparametric item selection (NPS) 

rule, which is directly based on the NPC method, while Li and Zheng (2024) proposed the 

nonparametric dynamic binary searching item (NDBS) rule building upon the work in binary 

searching algorithms (Tatsuoka & Ferguson, 2003; Zheng & C. Wang, 2017). For the sake of 

simplicity, in this study we will primarily focus on the NPS as a representative nonparametric item 

selection rule, given its availability in open-access software (‘cdcatR’ package; Sorrel et al., 2022) 

and the similar performance of both rules found in an auxiliary analysis presented in the Online 

Appendix. The NPS rule begins by administering K items in a Q-optimal manner (Xu et al., 2016), 

which ensures the distinguishability between latent classes. Once the first K items have been 

administered, at time t, the NPC method is used to calculate the Hamming distance between the 

examinee’s observed responses and the ideal response patterns of the latent classes. This process 

defines 𝜶̂𝑖 as the most likely latent class (i.e., the one with the lowest Hamming distance) and 𝜶̃𝑖 

as the second most likely latent class (i.e., the one with the second lowest Hamming distance) for 

examinee i. The NPS rule then randomly selects the next item to be administered from those that 

elicit a different ideal response for 𝜶̂𝑖 and 𝜶̃𝑖. By discriminating between the two most likely 

attribute profiles at a given time, the NPS rule aims to increase the gap between the most likely 

attribute profile and the others (Chang et al., 2018). Compared to parametric item selection rules, 

a key practical advantage of the NPS rule is that it is calibration-free, as it does not rely on a 

calibration sample to estimate item parameters. In other words, items can be used directly in an 
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adaptive assessment with the NPS rule without needing to be calibrated with a different sample 

beforehand. 

Test stopping criteria refer to the rule used to conclude the CAT for each examinee. They 

can be broadly divided into fixed-length and variable-length criteria. In fixed-length CD-CAT, a 

prespecified number of items is administered to all examinees. While this approach offers notable 

advantages in terms of efficiency compared to traditional paper-and-pencil assessments, using the 

same test length for all examinees might be suboptimal. Namely, it can lead to either inaccurate 

assessments (i.e., the test stops before an accurate classification has been made for a particular 

examinee) or inefficient assessments (i.e., the test continues even though an accurate classification 

has already been made for a particular examinee). In contrast, variable-length criteria allow for 

administering a different number of items to each examinee, with the test stopping when the 

desired level of classification certainty is achieved for a particular test taker. Typically, the 

examinees’ latent class posterior probabilities are considered for these criteria. For example, a 

common variable-length criterion is to stop the assessment when the examinee’s maximum latent 

class posterior probability exceeds a cutoff of .80. This variable-length criterion, here referred to 

as c = .80, implies that 80% of the examinees are expected to be classified into the correct latent 

class. Thus, this stopping rule, originally introduced by Tatsuoka (2002), has the additional 

advantage of serving as an estimate of reliability. Another possibility examined in Hsu et al. (2013) 

is that not only must the largest latent class posterior probability meet or exceed a prespecified 

value (e.g., .80), but also the second largest latent class posterior probability must not exceed a 

prespecified value (e.g., .10). Naturally, as the threshold c increases, the differences between these 

two approaches disappear, which has led open-access software like ‘cdcatR’ (Sorrel et al., 2022) 

to default to the simpler rule that the largest latent class posterior probability exceeds .80. There 
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have also been proposals based on information theory (Guo & Zheng, 2019). In general, these 

rules tend to require an estimation of the latent class posterior probability. Recently, Li and Zheng 

(2024) proposed the nonparametric dynamic binary searching index (NDBI), which, aligned with 

the rationale of the NDBS item selection rule and based on binary searching algorithms and 

Hamming distances, enables nonparametric variable-length CD-CAT (details about the NDBS and 

NDBI are provided in the Online Appendix). Note that, unlike traditional stopping criteria based 

on posterior probabilities (e.g., c = .80 corresponds to an expected classification accuracy of .80), 

rules like NDBI do not have this direct translation into reliability. Available studies show that, in 

fact, this rule can lead to high attribute classification accuracy (Li & Zheng, 2024), but it becomes 

challenging to associate the score obtained in a specific case with a concrete accuracy estimate. 

This is a drawback, as score interpretation should be guided by reliability (AERA, APA, & NCME, 

2014). 

For these reasons, despite the significant advances that have been made, the application of 

variable-length CD-CAT still poses some practical challenges. On the one hand, estimating latent 

class posterior probabilities relies on item parameter estimates, which require large sample sizes 

to be accurately calibrated (Sun et al., 2020). On the other hand, nonparametric approaches 

available to date (i.e., NPS and NDBS) do not provide posterior probability estimates. This 

highlights the need to develop an alternative that addresses these two issues. 

Lastly, beyond the strictly mathematical aspects, some authors have emphasized the 

importance of the validity argument in adaptative testing. Specifically, in the context of CDM, 

content (i.e., attribute) balance is considered an important aspect of test construction (Henson & 

Douglas, 2005). This relates to the model identifiability problem, where the number of items 

measuring each attribute is significant (Gu & Xu, 2021). In response, content restrictions have 
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been incorporated into CD-CAT procedures, either by including content balance as a feature in the 

item selection rule (e.g., Cheng, 2010; Sun et al., 2021) or by directly imposing the restriction that 

each attribute must be measured by a minimum number of items (see Cheng et al., 2007). 

Integrating the R-DINA Model into CD-CAT 

In this section, we explain three different approaches to integrate the R-DINA model within 

the CD-CAT framework. Two of these procedures resemble traditional implementations because 

they follow the established process of calibrating model parameters using a calibration sample 

before conducting the adaptive assessment. The other method is a novel implementation that, 

consistent with the calibration-free nature of the NPS, does not require a calibration sample. 

Instead, it estimates the R-DINA parameter on-the-fly for each examinee. 

When a Calibration Sample is Accessible 

 As with any parametric CDM, the R-DINA model can be directly implemented within the 

traditional, parametric CD-CAT flowchart. This involves first estimating the 𝜑 model parameter 

using a calibration sample, and then using this information to conduct the adaptive testing with the 

desired parametric item selection rule, test stopping criterion, and content restriction. Compared 

to other models (e.g., DINA, G-DINA), the R-DINA model allows for the use of parametric CD-

CAT even with a small calibration sample (N < 200; Nájera, Abad, et al., 2023). In the remainder 

of the paper, we will use the GDI item selection rule for this first CD-CAT implementation with a 

calibration sample, which will be referred to as R-GDI. 

 Despite being a parametric model, the R-DINA has a strong connection with the NPC 

method, as both procedures are equivalent in terms of attribute classifications due to the parallelism 

between parametric likelihoods and nonparametric Hamming distances (C. Ma et al., 2023; Nájera, 

Abad, et al., 2023). Consequently, the R-DINA model can be easily integrated into nonparametric 
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CD-CAT. Namely, after calibrating the 𝜑 model parameter using a (small) calibration sample, a 

CD-CAT using a nonparametric item selection rule (NPS or NDBS) can be normally conducted. 

The primary purpose of estimating 𝜑 is to compute examinees’ posterior probabilities, thereby 

enabling variable-length assessments in nonparametric CD-CAT, which was not feasible with 

traditional methods. The NPS rule will be used in the remainder of the study, and thus this second 

implementation will be referred to as R-NPS. 

 Note that the R-GDI and R-NPS variants are expected to perform very similarly. If both 

procedures select the same items for a given examinee, the R-GDI and R-NPS will be equivalent 

in terms of attribute profile classification and posterior probability estimates, since the underlying 

model for these calculations is the same (i.e., the R-DINA model). However, the GDI and NPS 

rules might not always select the same items for a given response pattern due to two reasons. First, 

if more than one item meets the selection criteria for the GDI (i.e., maximum GDI) or the NPS 

(i.e., discriminates between the two most likely attribute profiles), then the next item to be 

administered is randomly selected among the eligible items. Second, while the NPS focuses solely 

on the point estimates of the two most likely attribute profiles, the GDI considers the posterior 

probability of all attribute profiles (Sorrel et al., 2020). Moreover, the NPS assumes that all 

attribute profiles are equally likely in the population, whereas the GDI uses the estimated attribute 

distribution to compute item discrimination (see Equation 6). These technical differences are not 

expected to significantly affect CD-CAT performance, as both item selection rules are anticipated 

to select appropriate items for each examinee throughout the assessment, leading to sound and 

efficient classifications. This, however, will be one of the questions explored in the simulation 

study. 

When a Calibration Sample is Not Accessible 



VARIABLE-LENGTH CD-CAT WITH SMALL SAMPLES 

16 
 

 One of the main practical advantages of nonparametric item selection rules is their direct 

applicability without requiring a calibration sample (Chang et al., 2018). However, this comes at 

the significant cost of not providing information on reliability or enabling variable-length 

assessments. Leveraging the simplicity of the R-DINA model, we propose a calibration-free CD-

CAT implementation that supports variable-length tests, thus combining the benefits of both 

parametric and nonparametric CD-CAT approaches. 

This approach utilizes the NPS rule to select items for administration at each stage of the 

adaptive assessment, although note that the NDBS could be also used in the same fashion. The 

proposal involves using the R-DINA model to estimate the 𝜑 parameter on-the-fly at the examinee-

level, meaning with N = 1. This parameter is then used to calculate the posterior probabilities of 

the latent classes, which in turn are used to determine when to stop the CD-CAT based on a 

variable-length stopping criterion. The pseudo-algorithm for this on-the-fly approach is as follows: 

1) Administer K items according to the Q-optimal criterion (Xu et al., 2016) to ensure 

distinguishability among all latent classes. This starting rule is identical to the one used in 

the NPS method. 

2) Estimate the R-DINA model using the examinee’s responses to these items. 

3) Calculate the posterior probabilities based on the estimated 𝜑 parameter. 

4) If the variable-length stopping criterion (e.g., c = .80) is met, terminate the CD-CAT. 

Otherwise, use the NPS rule to select the next item to administer. 

5) Repeat steps 2 to 4 until the stopping criterion is satisfied. 

The straightforward implementation of this pseudo-algorithm involves estimating the R-

DINA model using marginal maximum likelihood (ML) in a standard fashion (Nájera, Abad, et 

al., 2023), although with N = 1, and will henceforth be referred to as R-NPSML. The R-NPSML 
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implementation facilitates variable-length CD-CAT without requiring a calibration sample, by 

using the responses of each examinee as the calibration dataset. However, there is an important 

limitation to this approach. Although the R-DINA model is simple enough to provide accurate 

parameter estimates with small sample sizes, relying on only a few responses from a single 

examinee might provide insufficient data, potentially compromising the reliability of the estimate. 

It is likely that, after responding to only a few items, the observed response pattern of examinee i 

will perfectly match the ideal response pattern of latent class l. In such an overfitting scenario, the 

Hamming distance between the response patterns will be zero, leading to 𝜑̂𝑖 = 0. This boundary 

problem, which has also been observed in other more complex CDMs under small sample 

conditions (Garre & Vermunt, 2006; Kreitchmann et al., 2023; W. Ma & Guo, 2019; W. Ma & 

Jiang, 2021), will lead to the posterior probability for latent class l being equal to 1. Consequently, 

the CD-CAT might terminate at a very early stage of the assessment, potentially resulting in a 

greatly overestimated reliability estimate. 

To address this problem, we propose using a Bayes modal (BM) estimation algorithm. BM 

was first applied to CDM by W. Ma and Jiang (2021), who introduced it to overcome boundary 

issues in the G-DINA model when using ML estimation in small-scale scenarios. In ML estimation, 

the probability of success for latent class l on item j is estimated as 𝑃̂𝑗(𝜶𝑙) = 𝑟𝑗𝑙/𝑛𝑙, where 𝑛𝑙 is 

the expected number of individuals in latent class l and 𝑟𝑗𝑙 is the expected number of correct 

responses among those individuals (de la Torre, 2011). Boundary problems are likely to occur 

when latent class l is sparse, causing the proportion of correct responses to skew towards 0 or 1. 

In contrast, BM estimation uses a Beta prior distribution, Beta(𝛽1, 𝛽2), to mitigate these extreme 

estimates. The BM estimation focuses on the mode of the posterior distribution, providing a single 

point estimate for each probability of success. The BM estimate is calculated as follows: 



VARIABLE-LENGTH CD-CAT WITH SMALL SAMPLES 

18 
 

𝑃̂𝑗(𝜶𝑙) =
𝑟𝑗𝑙 + (𝛽1 − 1)

𝑛𝑙 + (𝛽1 + 𝛽2 − 2)
. (7) 

W. Ma and Jiang (2021) used Beta(1.5, 2.5) as the prior distribution of the guessing parameter, 

which improved the estimates under challenging conditions by mitigating boundary issues. 

 Following their work, we propose using a Beta(1.5, 2.5) prior distribution for 𝜑𝑖 to prevent 

the CD-CAT from stopping prematurely before an accurate estimate has been reached. Under this 

approach, 𝜑̂𝑖 is defined as the mode of the posterior probability, obtained by combining the prior 

distribution with the likelihood function. This CD-CAT implementation of the R-DINA model, 

referred to as R-NPSBM, is illustrated in Figure 1 alongside the R-NPSML method. Note that BM 

estimation prevents premature stopping by adding stability to the estimate. As more items are 

administered, the likelihood function becomes more informative, and the influence of the prior 

diminishes. This approach ensures that the assessment is more robust and less likely to be halted 

due to early overfitting. 

 Simulation Study 

 The main goal of this study is to evaluate the performance of four different implementations 

of the R-DINA model within the CD-CAT framework. Two of these implementations require a 

(small) calibration sample (R-GDI and R-NPS), while the other two are directly applicable without 

a calibration step (R-NPSML and R-NPSBM). These procedures will also be compared to the 

traditional parametric CD-CAT based on a DINA-calibrated model and the GDI item selection rule 

(referred to here as the D-GDI procedure). The focus of the study will be on variable-length CD-

CAT, given its abovementioned advantages over fixed-length CD-CAT. This approach will allow 

for a more appropriate assessment of the precision of the different procedures in terms of parameter 

estimates throughout the adaptive implementations, as a poor estimate might lead to CD-CAT 

stopping either prematurely (inaccuracy) or unnecessarily (inefficiency).
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Figure 1 1 

Illustration of the On-the-Fly Estimation of 𝜑𝑖 throughout an Adaptive Implementation of the R-DINA Model 2 

 3 
Note. Prior = Beta(1.5, 2.5) prior distribution (represented as a light gray dotted line); Lik = likelihood distribution (represented as a dark gray 4 

dashed line); Post = posterior distribution (represented as a solid black line); ML = maximum likelihood (represented as a dark gray dashed line); 5 

BM = Bayes modal (represented as a solid black line). The upper panel displays the prior, likelihood, and posterior distribution of 𝜑̂𝑖 after examinee 6 

i has taken a different number of items. Based on that information, the lower panel shows the value of 𝜑̂𝑖 under each moment in the CD-CAT 7 

application for both ML (the maximum of the likelihood distribution) and BM (the maximum of the posterior distribution). The dotted line in the 8 

lower panel represents the true, generating 𝜑 in this example. 9 
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Given the dual nature of the R-DINA model, which bridges the parametric DINA model 10 

and the nonparametric NPC method (Nájera, Abad, et al., 2023), we anticipate that the R-GDI and 11 

R-NPS will exhibit similar performance. We also expect these procedures to outperform the 12 

calibration-free alternatives (R-NPSML and R-NPSBM), as the 𝜑 parameter will be more accurately 13 

estimated, even with a small calibration sample. Additionally, R-NPSBM is expected to outperform 14 

R-NPSML due to the latter’s potential boundary issues during the early stages of adaptive testing. 15 

CD-CAT Implementation 16 

 Six CD-CAT procedures are tested in the present simulation study: T-GDI, D-GDI, R-GDI, 17 

R-NPS, R-NPSBM, and R-NPSML. Table 1 summarizes the characteristics of these 18 

implementations. As detailed later, the DINA model, given its popularity (Sessoms & Henson, 19 

2018), was chosen as the data-generating model. The T-GDI procedure serves as an upper baseline, 20 

representing a parametric CD-CAT that uses the true, generating item parameters (i.e., there is no 21 

calibration error) in the computation of GDI (Equation 6). On the other hand, in D-GDI, the 22 

parameters will be estimated using a calibration sample. Smaller sample sizes in the calibration 23 

sample will lead to higher item calibration error, which will affect the performance of the CD-CAT 24 

procedure. All procedures employ a variable-length stopping criterion with a cutoff of c = .80 (i.e., 25 

the test stops once the maximum posterior probability for a latent class is equal to or higher than 26 

.80). As indicated earlier, we selected this rule because it is the simplest and is included by default 27 

in the available open-source software. As stated in the section on performance measures, the focus 28 

of the article is on determining whether the procedures operate under an estimated posterior 29 

probability close to the true estimated probability. As long as different stopping rules use this 30 

estimated posterior probability, the results are generalizable to other stopping rules. Additionally, 31 

content restrictions are imposed, requiring that each attribute must be measured by at least three 32 
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items before the CD-CAT can terminate. Specifically, after applying either the GDI (T-GDI, D-33 

GDI, and R-GDI) or NPS (R-NPS, R-NPSBM, and R-NPSML) item selection rule, if the cutoff of c 34 

= .80 is reached, it is verified that all attributes have been measured by at least three items. If not, 35 

the most optimal item (according to either the GDI or NPS rule) among those measuring the 36 

insufficiently explored attributes is administered. This process continues until both the c = .80 37 

cutoff and the three-items-per-attribute criteria are met. Attribute profiles were estimated using 38 

maximum a posteriori (MAP) in all CD-CAT procedures. 39 

Table 1 40 

Specification of the CD-CAT Procedures 41 

Procedure Model Calibration sample ISR Estimation method 

T-GDI DINA (TRUE) Yes GDI ML 

D-GDI DINA Yes GDI ML 

R-GDI R-DINA Yes GDI ML 

R-NPS R-DINA Yes NPS ML 

R-NPSML R-DINA No NPS ML 

R-NPSBM R-DINA No NPS BM 

Note. ISR = item selection rule; ML = maximum likelihood; BM = Bayes modal. 42 

Design and Data Generation 43 

 Data were generated using the DINA model. Three independent variables were 44 

systematically manipulated: calibration sample size (N = 25, 50, 100), number of attributes (K = 45 

3, 5), and item quality (IQ = low, medium, high, mixed). The chosen calibration sample size levels 46 

reflect those from applied small-scale assessments (e.g., Jang et al., 2015; Ren et al., 2021) as well 47 

as simulation studies focused on small sample sizes (e.g., Oka & Okada, 2021). Note that a 48 

calibration sample is required for the D-GDI, R-GDI, and R-NPS, but not for R-NPSML or R-49 

NPSBM (see Table 1). Regarding the number of attributes, Sessoms and Henson (2018) found that 50 

four attributes are most common in applied research. 51 

  Item quality was varied by manipulating the probability of correctly answering an item for 52 

latent class {0} (i.e., non-masters of all attributes) and latent class {1} (i.e., masters of all 53 
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attributes) as follows: 𝑃(𝟎)~𝑈(0.2,0.4) and 𝑃(𝟏)~𝑈(0.6,0.8) for low-quality items, 54 

𝑃(𝟎)~𝑈(0.1,0.3) and 𝑃(𝟏)~𝑈(0.7,0.9) for medium-quality items, and 𝑃(𝟎)~𝑈(0,0.2) and 55 

𝑃(𝟏)~𝑈(0.8,1) for high-quality items. This results in average item quality of 𝐼𝑄̅̅ ̅ = 𝑃(𝟏) −56 

𝑃(𝟎) ≈ 0.4, 0.6, and 0.8 for low, medium, and high item quality, respectively. Furthermore, the 57 

mixed item quality condition combined 𝑃(𝟎)~𝑈(0,0.2) and 𝑃(𝟏)~𝑈(0.6,0.8) for half of the 58 

items, and 𝑃(𝟎)~𝑈(0.2,0.4) and 𝑃(𝟏)~𝑈(0.8,1) for the other half. This mixed condition directly 59 

violates the assumptions of the R-DINA model (i.e., same guessing and slip parameters for all 60 

items), making it particularly challenging for this model (Nájera, Abad, et al., 2023). 61 

 The item bank consisted of 300 items. The Q-matrices were randomly generated with the 62 

constraint of containing 150 one-attribute items, 120 two-attribute items, and 30 three-attribute 63 

items. This distribution ensures the completeness of the Q-matrices (Köhn & Chiu, 2017) while 64 

mimicking the complexity typically found in applied studies (Nájera, Abad, et al., 2021). 65 

Additionally, attribute profiles were generated using the multivariate normal threshold model 66 

(Chiu et al., 2009). Specifically, K continuous latent variables were drawn from a multivariate 67 

normal distribution with a mean of 0 and correlations of 0.5, reflecting the moderately large 68 

attribute correlations found in applied studies (Sessoms & Henson, 2018). These continuous latent 69 

variables were then dichotomized by assigning 𝛼𝑖𝑘 = 0 or 1 depending on whether the continuous 70 

score was lower or higher than 0, respectively. 71 

 Data generation and analyses were performed using R (R Core Team, 2023) with several 72 

packages: ‘GDINA’ version 2.8.7 (W. Ma & de la Torre, 2020), ‘cdmTools’ version 1.0.2 (Nájera, 73 

Sorrel, et al., 2023), ‘NPCD’ version 1.0-11 (Zheng & Chiu, 2022), and ‘cdcatR’ version 1.0.6 74 

(Sorrel et al., 2022). The R code for the simulations and analyses is publicly available at 75 

https://osf.io/mn86s. 76 
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Performance Measures 77 

 All CD-CAT methods were evaluated in terms of attribute classification accuracy, item 78 

parameter recovery, and efficiency. The primary dependent variable of the study was the relative 79 

measurement precision (RMP; Huang, 2018), as it serves as an omnibus measure encompassing 80 

classification accuracy, parameter recovery, and efficiency. Specifically, the RMP is defined as  81 

RMP =
∑ 𝑚𝑎𝑥

𝑙
[𝑃(𝜶𝑙|𝒚𝑖, 𝜹̂)]

𝑁
𝑖=1

∑ 𝑚𝑎𝑥
𝑙

[𝑃(𝜶𝑙|𝒚𝑖, 𝜹)]
𝑁
𝑖=1

, (8) 

where 𝑃(𝜶𝑙|𝒚𝑖, 𝜹̂) denotes the posterior probability of latent class l for examinee i based on the 82 

estimated item parameters, and 𝑃(𝜶𝑙|𝒚𝑖, 𝜹) is based on the generating item parameters. Table 2 83 

summarizes the relationship between RMP, true classification accuracy, and the number of items 84 

administered in the CD-CAT application (i.e., test length). RMP reflects the overall accuracy of 85 

item parameter estimates. Item parameter estimates directly affect the calculation of posterior 86 

probabilities of attribute mastery, which are used to determine reliability (e.g., estimated 87 

classification accuracy) and, particularly in CD-CAT, as a stopping criterion for the test. An RMP 88 

close to 1 indicates that the posterior probabilities of attribute profiles are accurately recovered, 89 

implying that item parameters have been correctly estimated. In contrast, A CD-CAT method that 90 

overestimates reliability, as indicated by an RMP greater than 1, will meet the stopping criterion 91 

prematurely, potentially resulting in overly short and inaccurate CD-CAT applications. Conversely, 92 

methods that underestimate reliability, as indicated by an RMP less than 1, may fail to meet the 93 

stopping criterion, leading to longer and less efficient CD-CAT applications. 94 

 Although the RMP indicates whether the desired classification accuracy has been reached, 95 

classification accuracy was directly assessed using the proportion of correctly classified vectors 96 

(PCV): 97 
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PCV =
∑ 𝐼(𝜶̂𝑖 = 𝜶𝑖)
𝑁
𝑖=1

𝑁
, (9) 

where 𝐼(·) is the indicator function, and 𝜶̂𝑖 and 𝜶𝑖 represent the estimated and generated attribute 98 

profile for examinee i, respectively. 99 

Table 2 100 

Expected Relation Between Several Performance Measures 101 

RMP PCV Test Length Label 

RMP < 1 PCV > c Overly long Inefficient 

RMP ≈ 1 PCV ≈ c Optimal Optimal 

RMP > 1 PCV < c Overly short Inaccurate 

Note. RMP = relative measurement precision; PCV = proportion of correctly classified vectors. 102 

 Additionally, CD-CAT efficiency was evaluated based on the average test length (TL), 103 

which reflects the average number of items administered to examinees, and the test overlap rate 104 

(TOR; Chen et al., 2003), defined as: 105 

TOR =
𝐽

𝐽∗
𝑆𝑟
2 +

𝐽∗

𝐽
, (10) 

where J is the number of items administered, 𝐽∗ is the item bank length (i.e., 300), and 𝑆𝑟
2 is the 106 

sample variance of item exposure rates. A high TOR implies that some items have been 107 

overexposed while many items have been underused, suggesting potential issues with test security. 108 

Results 109 

Relative Measurement Precision 110 

 Table 3 presents the RMP for the six CD-CAT procedures across the different levels of the 111 

number of attributes (K) and item quality (IQ). Note that the calibration sample size (N) is not 112 

included as an independent variable, given its negligible effect on all CD-CAT procedures except 113 

for D-GDI (note the small standard deviations in Table 3). Therefore, given that calibration sample 114 

size only significantly impacted D-GDI, the results for this procedure are separated into D-GDI25, 115 

D-GDI50, and D-GDI100, corresponding to the different calibration sample sizes. 116 

117 
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Table 3 118 

Means (and Standard Deviations) of the CD-CAT Procedures 119 

K IQ T-GDI D-GDI25 D-GDI50 D-GDI100 R-GDI R-NPS R-NPSML R-NPSBM 

  Relative Measurement Precision (RMP) 

3 

Low 1.000 1.694 (.106) 1.339 (.061) 1.166 (.026) 0.999 (.012) 0.999 (.012) 1.155 (.012) 1.143 (.011) 

Mixed 1.000 1.244 (.048) 1.132 (.031) 1.066 (.018) 0.996 (.007) 0.996 (.007) 1.010 (.005) 0.998 (.005) 

Medium 1.000 1.295 (.037) 1.175 (.031) 1.083 (.016) 0.999 (.007) 1.000 (.006) 1.012 (.005) 0.999 (.004) 

High 1.000 1.026 (.007) 1.020 (.010) 1.016 (.007) 0.998 (.003) 0.997 (.004) 0.979 (.002) 0.970 (.002) 

5 

Low 1.000 2.298 (.222) 1.502 (.102) 1.212 (.039) 0.999 (.015) 0.999 (.015) 1.232 (.016) 1.208 (.018) 

Mixed 1.000 1.404 (.077) 1.203 (.044) 1.090 (.018) 0.994 (.009) 0.994 (.008) 1.039 (.008) 1.018 (.007) 

Medium 1.000 1.523 (.068) 1.277 (.058) 1.112 (.020) 1.000 (.009) 1.000 (.008) 1.041 (.007) 1.020 (.006) 

High 1.000 1.046 (.012) 1.044 (.013) 1.026 (.010) 0.997 (.004) 0.997 (.004) 0.984 (.003) 0.972 (.003) 

  Proportion of Correctly Classified Vector (PCV) 

3 

Low .855 (.016) .468 (.055) .634 (.043) .730 (.026) .827 (.020) .829 (.019) .772 (.019) .775 (.019) 

Mixed .943 (.013) .698 (.052) .798 (.048) .873 (.026) .881 (.015) .881 (.015) .910 (.014) .914 (.014) 

Medium .920 (.013) .657 (.038) .734 (.039) .836 (.027) .881 (.015) .880 (.016) .907 (.014) .912 (.013) 

High .990 (.007) .967 (.010) .961 (.019) .961 (.017) .947 (.011) .942 (.011) .980 (.006) .983 (.006) 

5 

Low .827 (.017) .309 (.049) .531 (.051) .676 (.033) .796 (.020) .802 (.021) .696 (.020) .706 (.021) 

Mixed .921 (.014) .565 (.062) .722 (.050) .831 (.027) .869 (.017) .870 (.016) .858 (.015) .872 (.015) 

Medium .898 (.014) .488 (.043) .641 (.055) .790 (.032) .867 (.015) .871 (.016) .860 (.016) .873 (.016) 

High .979 (.009) .932 (.024) .909 (.027) .934 (.025) .940 (.011) .931 (.012) .960 (.009) .968 (.008) 

Note. K = number of attributes; IQ = item quality. For the sake of simplicity, T-GDI, R-GDI, and R-NPS are not split by sample size due to the 120 

negligible effect of this variable on their performance, as indicated by the small standard deviations reported in this table. RMP values between 1.050 121 

and 0.950 are shown in bold (excluding the T-GDI procedure). PCV values higher than 0.800 are shown in bold (excluding the T-GDI procedure).  122 
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Table 3 (Continued) 123 

Means (and Standard Deviations) of the CD-CAT Procedures 124 

K IQ T-GDI D-GDI25 D-GDI50 D-GDI100 R-GDI R-NPS R-NPSML R-NPSBM 

  Test Length (TL) 

3 

Low 11.8 (0.35) 7.8 (0.43) 9.4 (0.47) 10.5 (0.38) 19.8 (1.03) 20.2 (1.01) 19.2 (0.81) 19.0 (0.80) 

Mixed 7.5 (0.16) 7.0 (0.16) 7.3 (0.21) 7.4 (0.18) 10.1 (0.17) 10.5 (0.17) 12.0 (0.30) 12.1 (0.29) 

Medium 7.8 (0.14) 6.9 (0.19) 7.3 (0.18) 7.5 (0.18) 10.0 (0.18) 10.5 (0.17) 12.0 (0.30) 12.1 (0.29) 

High 6.7 (0.14) 7.1 (0.09) 6.9 (0.18) 6.7 (0.14) 7.6 (0.12) 8.0 (0.13) 8.9 (0.13) 9.0 (0.13) 

5 

Low 23.6 (1.07) 14.0 (0.96) 18.5 (1.30) 21.6 (1.23) 39.5 (1.82) 41.7 (2.04) 36.3 (1.86) 36.7 (1.89) 

Mixed 12.9 (0.24) 11.8 (0.33) 12.5 (0.33) 12.8 (0.27) 18.2 (0.44) 19.3 (0.43) 20.0 (0.48) 20.5 (0.50) 

Medium 13.6 (0.25) 11.6 (0.27) 12.6 (0.32) 13.2 (0.28) 18.2 (0.38) 19.4 (0.39) 20.1 (0.49) 20.5 (0.47) 

High 11.2 (0.22) 12.0 (0.21) 11.4 (0.24) 11.2 (0.24) 13.1 (0.16) 13.6 (0.14) 14.4 (0.20) 14.7 (0.20) 

  Test Overlap Rate (TOR) 

3 

Low .488 (.031) .527 (.042) .502 (.034) .495 (.029) .107 (.014) .103 (.013) .096 (.014) .096 (.015) 

Mixed .490 (.035) .488 (.045) .489 (.041) .482 (.035) .067 (.013) .065 (.012) .070 (.012) .071 (.012) 

Medium .497 (.032) .478 (.051) .498 (.036) .489 (.030) .067 (.013) .065 (.013) .071 (.013) .071 (.013) 

High .467 (.035) .258 (.053) .417 (.047) .441 (.037) .057 (.013) .056 (.013) .059 (.013) .059 (.013) 

5 

Low .478 (.035) .539 (.039) .503 (.039) .477 (.028) .176 (.018) .174 (.017) .151 (.019) .153 (.019) 

Mixed .511 (.030) .513 (.037) .507 (.033) .504 (.029) .103 (.013) .097 (.013) .097 (.013) .100 (.014) 

Medium .504 (.028) .512 (.038) .516 (.034) .501 (.026) .103 (.013) .097 (.014) .098 (.014) .100 (.014) 

High .482 (.027) .381 (.045) .458 (.030) .466 (.025) .085 (.012) .075 (.012) .077 (.012) .079 (.012) 

Note. K = number of attributes; IQ = item quality. For the sake of simplicity, T-GDI, R-GDI, and R-NPS are not split by sample size due to the 125 

negligible effect of this variable on their performance, as indicated by the small standard deviations reported in this table. Lowest TL values 126 

(differences lower than 2 are not considered) are shown in bold (excluding the T-GDI procedure). Lowest TOR values (differences lower than 0.050 127 

are not considered) are shown in bold (excluding the T-GDI procedure). 128 
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Overall, R-GDI and R-NPS (0.994 ≤ RMP ≤ 1.000) produced the best results in terms of 129 

RMP, accurately recovering posterior probabilities across all conditions. The two calibration-free 130 

procedures (R-NPSML and R-NPSBM) also provided accurate posterior probabilities across all 131 

conditions (0.972 ≤ RMP ≤ 1.041), except for low-quality items, where they exhibited a tendency 132 

to overestimate reliability, resulting in higher RMP values (1.143 ≤ RMP ≤ 1.232). Finally, the D-133 

GDI procedure only yielded accurate posterior probabilities with high-quality items (1.016 ≤ RMP 134 

≤ 1.046). In the remaining conditions, it consistently overestimated reliability (1.066 ≤ RMP ≤ 135 

2.298), with this tendency becoming more pronounced with smaller calibration sample sizes and 136 

larger number of attributes. 137 

Classification Accuracy 138 

 As shown in Table 3, and consistent with the RMP results, the D-GDI procedure 139 

consistently provided the lowest classification accuracies. Given that the variable-length stopping 140 

criterion was c = .80, D-GDI25 and D-GDI50 only achieved a PCV ≥ .80 with high-quality items, 141 

exhibiting poor classification accuracy (.309 ≤ PCV ≤ .798) under the remaining conditions. With 142 

a larger calibration sample size, D-GDI100 managed to reach the desired classification accuracy in 143 

more situations: namely, when item quality was not low and 3 attributes were measured (.873 ≤ 144 

PCV ≤ .961), and when item quality was mixed or high and 5 attributes were measured (.831 ≤ 145 

PCV ≤ .934). However, with low item quality, it produced unsatisfactory results with 3 attributes 146 

(PCV = .730) and 5 attributes (PCV = .676). 147 

 In contrast, R-GDI and R-NPS achieved a PCV ≥ .80 under all conditions (.802 ≤ PCV ≤ 148 

.947), with the only exception being R-GDI under 5 attributes and low-quality items, where the 149 

PCV was still close to the desired cutoff (PCV = .796). Lastly, R-NPSML and R-NPSBM provided 150 

satisfactory classification accuracy across all conditions (.858 ≤ PCV ≤ .983), except for low-151 
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quality items (.696 ≤ PCV ≤ .775). These results align with those of the RMP, where the two 152 

calibration-free procedures only performed poorly when item quality was low. Lastly, and 153 

expectedly, the T-GDI procedure achieved a satisfactory classification accuracy (PCV ≥ .827) 154 

under all conditions. 155 

Test Efficiency 156 

 Table 3 also presents the average test length and test overlap rate across all conditions. As 157 

expected, given the large RMP values obtained by the D-GDI procedure, its consistent tendency to 158 

overestimate reliability led to tests being stopped prematurely after administering only a few items. 159 

Consequently, D-GDI resulted in the shortest test lengths, particularly when the calibration sample 160 

size was smallest (N = 25). In contrast, the four procedures based on the R-DINA model 161 

administered more items. These differences were especially pronounced with low-quality items, 162 

where the test lengths of these procedures were up to 1.77 times that of the TRUE procedure. 163 

However, with medium or high-quality items, these differences were less pronounced, particularly 164 

for R-GDI and R-NPS (up to 1.43 times the test length of the TRUE procedure). 165 

Table 4 166 

Observed Relation Between Several Performance Measures 167 

K IQ r(RMP, PCV) r(RMP, TL) r(PCV, TL) 

3 

Low −.967 −.810 .852 

Mixed −.902 −.739 .754 

Medium −.944 −.774 .836 

High −.545 −.931 .552 

5 

Low −.971 −.819 .873 

Mixed −.964 −.778 .756 

Medium −.977 −.816 .845 

High −.719 −.907 .652 

Note. K = number of attributes; IQ = item quality; RMP = relative measurement precision; PCV = proportion 168 

of correctly classified vectors; TL = test length. 169 

 Table 4 displays the correlations between RMP, PCV, and test length, considering all CD-170 

CAT procedures except T-GDI (which does not exhibit variability in RMP). Specifically, RMP was 171 
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inversely correlated with PCV (−.977 ≤ r ≤ −.545) and test length (−.931 ≤ r ≤ −.739), while PCV 172 

and test length were positively correlated (.552 ≤ r ≤ .873). These results align with the expected 173 

relationships among these three variables summarized in Table 2. 174 

 Lastly, the parametric procedures (T-GDI and D-GDI) exhibited a large test overlap rate 175 

(.258 ≤ TOR ≤ .539), indicating that some items were overexposed while others were underused. 176 

On the other hand, the procedures based on the R-DINA model showed a much lower TOR (.056 177 

≤ TOR ≤ .176), suggesting a more balanced use of the item bank. 178 

Discussion 179 

 CDM is a family of restricted latent class models that can enhance educational formative 180 

assessments by identifying students’ strengths and weaknesses (de la Torre & Minchen, 2014; 181 

Paulsen & Valdivia, 2021). Despite the significant methodological advancements within the CDM 182 

framework, the number of applied studies remains limited (Sessoms & Henson, 2018). One 183 

potential reason for this could be a misalignment between the focus of theoretical research and 184 

practical needs. Although recent efforts have concentrated on developing and testing CDM 185 

procedures for small-scale assessments or suboptimal conditions (e.g., Chiu & Douglas, 2013; 186 

Chiu et al., 2018; W. Ma & Jiang, 2021; Nájera, Abad, et al., 2023; Oka & Okada, 2021; Paulsen 187 

& Valdivia, 2021), these developments have primarily focused on traditional “paper-and-pencil” 188 

assessments. However, the educational goals of CDM require efficient testing to be effectively 189 

integrated as an evaluation tool throughout a course to guide formative assessment. To address 190 

this, the present paper proposes and evaluates a procedure that combines the R-DINA model with 191 

the CD-CAT framework, enabling diagnostic, contrastable, and efficient assessments in small-192 

scale contexts, such as those typical in educational settings. This new approach is flexible enough 193 

to accommodate two types of scenarios: a traditional one where a calibration sample is used to 194 
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estimate item parameters, which are then administered adaptively to new examinees, and a more 195 

innovative approach aligned with the NPS method (Chang et al., 2018), where the CD-CAT can 196 

be applied without a calibration sample, as the parameter of the R-DINA model is calibrated on-197 

the-fly. In this paper, two different variants have been proposed for each scenario. In the former, 198 

after calibrating the item bank, either the GDI or the NPS item selection rule can be used for the 199 

adaptive administration. In the latter, ML or BM estimation can be employed for calibrating the φ 200 

parameter on-the-fly. 201 

 In the simulation study, the performance of the four different implementations of the 202 

proposed method was compared to that of the traditional CD-CAT, using the well-known DINA 203 

model for calibration and the GDI item selection rule. The results indicate that when the calibration 204 

sample is smaller than 100 examinees, the DINA model struggles to obtain accurate item 205 

parameters due to overfitting, leading to extreme posterior probabilities and, in turn, to reliability 206 

overestimation. These findings are particularly problematic in an adaptative testing situation, as 207 

they cause the CD-CAT to stop before reaching the desired level of precision, resulting in 208 

inaccurate assessments. In contrast, the two new procedures based on the R-DINA with a 209 

calibration sample, namely the R-GDI and R-NPS, performed satisfactorily across all conditions 210 

in terms of posterior probability recovery (relative measurement precision), classification 211 

accuracy, and test overlap rate. These results are consistent with previous work comparing models 212 

with varying degrees of complexity, which has found that simpler models may be preferred over 213 

more complex ones, even when the latter are closer to the data generation process, in conditions 214 

where the available information is insufficient to estimate several parameters (Nájera, Abad et al., 215 

2023; Sorrel, Nájera et al., 2021).While GDI and NPS differ in how they define item discrimination 216 

and treat prior information, their comparable performance under the R-DINA model likely stems 217 
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from relying on the same underlying classification mechanism. When both rules select similar 218 

items, the resulting classifications tend to align. This practical convergence, despite theoretical 219 

differences, highlights a potential pathway for connecting parametric and nonparametric CDMs, 220 

and invites further exploration into the conditions under which such alignment occurs (C. Ma et 221 

al., 2023; Nájera, Abad et al., 2023). To achieve these satisfactory results, the new R-GDI and R-222 

NPS methods tended to administer a larger number of items. However, these longer tests are offset 223 

by much greater confidence in the estimates and classification accuracy they provided compared 224 

to the traditional CD-CAT when the calibration sample size is small.  225 

Regarding the two proposed calibration-free procedures, both methods provided similar 226 

results, which were generally satisfactory except for low-quality items, where they tended to 227 

overestimate reliability and, like the DINA model, resulted in low classification accuracy. It should 228 

be highlighted that these generally satisfactory results were obtained using an on-the-fly estimation 229 

approach with responses from single individuals (i.e., N = 1). One reason why R-NPSML performed 230 

very similarly to the R-NPSBM is the content restriction imposed in the CD-CAT; without this 231 

restriction, R-NPSML would have terminated the test much earlier than R-NPSBM due to the 232 

boundary problem (see Figure 1). The need to administer additional items to comply with the 233 

content restriction helped achieve a more accurate estimation of the φ parameter using maximum 234 

likelihood. 235 

Limitations, Future Research, and Practical Recommendations 236 

 The study is not without limitations, which are listed here to be considered when 237 

interpreting these results and in future research. First, it is worth noting that this study employed 238 

GDI as a representative of parametric item selection rules, but many other alternatives are available 239 

(e.g., Kaplan et al., 2015; C. Wang, 2013; Xu et al., 2016). However, it should also be noted that 240 
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many of these selection rules are expected to yield similar results when considering the 241 

relationships between them (W. Wang et al., 2020). There is a similar situation with nonparametric 242 

item selection rules: an auxiliary analysis revealed that CD-CAT using the R-DINA model 243 

performed similarly with either the NPS or NDBS rule (see Online Appendix). For studies focusing 244 

more on the comparison between parametric and nonparametric rules, Chiu and Chang (2021) can 245 

be consulted. Second, the data were generated using a single model, the DINA model, due to its 246 

popularity. The results should be generalizable to other models, such as DINO (Templin & Henson, 247 

2006), considering it is equally complex (Köhn & Chiu, 2016). It would be beneficial to extend 248 

the proposal to other types of data (e.g., polytomous data, Gao et al., 2020) and models (e.g., 249 

multiple strategies, D. Wang et al., 2024; coded distractors, Y. Wang et al., 2024). Finally, a simple 250 

and widely used stopping rule was chosen, aligned with those commonly employed in existing 251 

CD-CAT applications (Li et al., 2023) and incorporated into freely available software, such as the 252 

R package ‘cdcatR’ (Sorrel et al., 2022). This rule, based on posterior probabilities, can be directly 253 

interpreted in terms of expected reliability; in this regard, the use of the R-DINA as a bridge 254 

between parametric and nonparametric CDM enables retrieving this reliability information from 255 

nonparametric procedures (e.g., NPC, NPS, NDBS). Moreover, as long as the posterior probability 256 

and item parameters are accurately estimated, any other stopping rules based on this information 257 

are expected to perform adequately. Future studies may focus on the comparison of different 258 

stopping criteria to discuss potential benefits of other alternatives (e.g., Guo & Zheng, 2019; Li 259 

and Zheng, 2024). 260 

The proposed procedures can be employed to enhance formative assessments in real-world 261 

settings, as they offer solutions to the challenges of small sample sizes and time constraints that 262 

are common in many educational contexts. Specifically, the use of a model with low 263 
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parameterization, such as the R-DINA developed here for its application in variable test length 264 

adaptive testing, should allow for efficient, accurate classifications. This enables teachers to focus 265 

less on testing time and implement tailored instruction based on the strengths and weaknesses 266 

detected in students. There are a few important considerations. The first concerns the restrictive 267 

nature of the R-DINA model, which underpins the four proposed CD-CAT procedures. The R-268 

DINA model assumes a conjunctive relationship between attributes, which may or may not be 269 

appropriate. Although the R-DINA model has been shown to outperform the DINA model in small-270 

scale settings, even when the DINA model was the generating model, it is essential to carefully 271 

check model fit to ensure that the conjunctive item response function is suitable for the data 272 

(Nájera, Abad, et al., 2023). The same caution applies to the disjunctive rule used in the R-DINO 273 

and DINO models. It is possible that no reduced model can fully capture the complexity of a given 274 

dataset, in which case a more general model should be preferred. However, general models require 275 

larger sample sizes to achieve accurate estimates, so there is currently no optimal solution for this 276 

inconvenient scenario. Thus, it is particularly important to carefully design the assessment when 277 

working with small samples, reflecting on the item response process (e.g., conjunctive, disjunctive, 278 

general). In this vein, evaluations of mathematical abilities and language mastery have commonly 279 

found that, in these domains, the conjunctive rule (i.e., DINA model) often reflects the relationship 280 

between the attributes (e.g., George & Robitzsch, 2021; Groß et al., 2016). 281 

Given these considerations, we recommend using the proposed methods primarily in low-282 

stakes contexts, which naturally align with the purpose of formative assessment (Paulsen & 283 

Valdivia, 2021). Additionally, when designing an educational CD-CAT project, the R-NPSML and 284 

R-NPSBM methods could be utilized with the first cohort when there is no prior informative 285 

available for model calibration. For subsequent cohorts, a small calibration sample from previous 286 
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cohorts would be available, making the R-GDI and R-NPS methods more appropriate. Once the 287 

calibration sample is sufficiently large, more complex models, such as the DINA or even the G-288 

DINA model, could be compared in terms of fit and reliability to achieve an optimal solution.  289 
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