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VARIABLE-LENGTH CD-CAT WITH SMALL SAMPLES

Abstract

This study examines innovative procedures for cognitive diagnostic computerized adaptive testing
(CD-CAT) in small-scale assessments. Traditional CD-CAT methods, based on parametric
cognitive diagnostic models (CDMs), often struggle with small calibration samples, leading to
overfitting and overestimated reliability. Nonparametric alternatives, while more robust in small-
scale settings, lack reliability information, limiting classification certainty and variable-length
adaptive testing. To address these challenges, we propose four CD-CAT procedures using the
parsimonious restricted deterministic input, noisy “and” gate (R-DINA) model, a parametric
CDM tailored for small samples. Two of these procedures use a calibration sample (R-GDI and R-
NPS), while the other two are calibration-free methods (R-NPSmi and R-NPSgwm). Through a
simulation study, where calibration sample size, number of attributes, and item quality were
manipulated, we compare these methods to the conventional CD-CAT based on the DINA model.
Results indicate that R-GDI and R-NPS consistently outperform the conventional CD-CAT in
terms of more accurate posterior probability recovery, classification accuracy, and balanced item
usage, although they administer a larger number of items. The calibration-free methods also
perform satisfactorily but exhibit reliability overestimation with low-quality items. Overall, the
proposed procedures offer practical solutions for formative assessments in educational contexts
characterized by small sample sizes and time constraints. We provide recommendations for the use
and scalability of these methods in real educational settings.

Keywords: cognitive diagnosis, computerized adaptive testing, nonparametric classification,

classification accuracy, reliability estimation
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Variable-Length Cognitive Diagnostic Computerized Adaptive Testing
in Small-Scale Assessments

Cognitive diagnosis modeling (CDM) is a family of statistical models that has gained
popularity in educational research as a tool for evaluating whether examinees have mastered a
series of attributes. This detailed information helps identify students’ strengths and weaknesses,
which can later guide targeted remedial instruction. CDM, therefore, aligns with the growing
interest in alternative formats of educational evaluation, such as formative assessments (de la Torre
& Minchen, 2014; Paulsen & Valdivia, 2021). Beyond education, CDM has been also applied to
other areas such as clinical psychology (e.g., Templin & Henson, 2006) and organizational
psychology (e.g., Sorrel et al., 2016). Attributes are defined as discrete (usually dichotomous)
latent variables that represent skills, competences, or psychological processes required to endorse
a series of test items. The primary output provided by CDM is the attribute profile classifications.
For example, consider a test measuring K = 3 attributes. Here, &; = {1,0,0} denotes that examinee
i has been classified in the attribute profile {1, 0, 0}, meaning that they have mastered the first
attribute but not the second or third. Beyond this categorical classification, CDM has undergone
numerous methodological developments in recent decades, making it a comprehensive
psychometric framework capable of extracting rich information, including reliability estimates,
relative and absolute model fit evaluation, and differential item functioning, among other features
(see von Davier & Lee, 2019, for a comprehensive review).

The area of CDMs is a growing field, driven by novel theoretical proposals that allow for
the modeling of different types of data (e.g., dichotomous, polytomous, continuous) while
considering various aspects, such as multiple strategies for responding to the same item or the

hierarchical structure of attributes, among others (for an introduction to recent developments in
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CDMs, see, for example, de la Torre & Sorrel, 2023). These modeling capabilities are often
associated with high parameterization, which entails a cost in terms of the sample size required to
obtain reliable classifications. This is compounded by the fact that these theoretical advances have
not yet been widely translated into practice, as highlighted by Sessoms and Henson (2018) in their
critical review of existing empirical applications. Considering the specific area of formative
assessment in education, it is common for practitioners to face situations with small sample sizes
and limited time availability (Paulsen & Valdivia, 2021; Ren et al., 2021). This has led, on the one
hand, to the most frequently applied model being a relatively simple one (Sessoms & Henson,
2018), such as the deterministic, input, noisy “and’ gate (DINA; Junker & Sijtsma, 2001), which
only requires two parameters per item. Nonparametric approaches offer an additional solution, as
they can potentially generate classifications without requiring a calibration sample or with a very
small sample size (Chiu et al., 2018). Regarding time constraints, proposals have been developed
to improve assessment efficiency, with the implementation of computerized adaptive testing
standing out as a key solution. These tests adjust to the respondent’s level during the test, allowing
for comparable classification reliability while reducing the number of items (Chang et al., 2019;
Sorrel et al., 2021). This area of applying CDMs in computerized adaptive testing has come to be
known as cognitive diagnostic computerized adaptive testing (CD-CAT; Cheng, 2009).

As detailed below, while simulation studies have shown that it is possible to obtain reliable
classifications using these nonparametric solutions and their application in CD-CAT, they have
generally focused on stopping criteria based on the number of items rather than stopping once a
desired reliability threshold is achieved, which could enhance efficiency. For example, although
30 items might be administered, if after 20 items the posterior probability that the individual

belongs to the assigned latent class is already very high (e.g., greater than .80), the test can stop.
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This reduction in the number of items frees up time for instruction, addressing the demand for
CDM applications to be implemented in time-constrained environments. The present article aims
to develop a solution for this variable-length application of CD-CAT, using the restricted DINA
(R-DINA) model (N4jera, Abad, et al., 2023) as a starting point. The reason for selecting this model
is that, as discussed in this article, it allows operation with small calibration samples, and even
without a calibration sample, providing classifications equivalent to those of nonparametric
procedures while incrementally incorporating the available information.

The remainder of the paper is organized as follows. First, a brief overview of parametric
CDM is provided. Second, diagnostic procedures for small-scale assessments are described,
including nonparametric CDM and the R-DINA model. Third, an introduction to CD-CAT is
presented. Fourth, we elaborate on our proposal to integrate the R-DINA model into CD-CAT,
detailing the four different procedures developed for this purpose. Fifth, the performance of the
proposed procedures is tested and compared to that of the traditional CD-CAT by means of a Monte
Carlo simulation study. Finally, a discussion section is included that summarizes the main
conclusions, limitations, and future research lines, as well as practical recommendations.
A Review of Parametric CDM

For CDM to classify examinees into attribute profiles, three inputs are required. First, the
responses of the N individuals to J items. These responses are typically dichotomous, indicating
correct or incorrect answers, although various response formats have been explored in the literature
(e.g., W. Ma & de la Torre, 2016; Gao et al., 2020). Second, a Q-matrix, which acts as a bridge
between the J items and the K attributes. The Q-matrix is usually constructed by domain experts
(see Sorrel et al., 2016), who determine which items measure which attributes. For example, with

K =3 attributes, q; = {1,0,1} represents the g-vector of item /, indicating that it measures the first
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and third attributes, but not the second. In addition to the expert judgment, several Q-matrix
estimation and validation (e.g., de la Torre & Chiu, 2016; Najera, Sorrel, et al., 2021) methods may
assist in the Q-matrix specification process from an empirical perspective. Third, as a family of
statistical models, CDM can adopt several item response functions, which reflect how attributes
interact to produce a correct or incorrect response to an item. Two well-known reduced models
include the deterministic input, noisy “and” gate (DINA) model (Junker & Sijtsma, 2001) and the
deterministic input, noisy “or” gate (DINO) model (Templin & Henson, 2006). The DINA model
assumes a non-compensatory response function, also referred to as conjunctive, which implies that
an examinee must master all the attributes involved in an item to endorse it. Conversely, the DINO
model assumes a compensatory (or disjunctive) response function, meaning that mastering only
one of the attributes measured by an item is sufficient to answer it correctly. The

conjunctive/disjunctive nature of the DINA and DINO models is reflected in the ideal response:

K
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where r]l(;) and r)l(]‘.i) denote the conjunctive (i.e., DINA) and disjunctive (i.e., DINO) ideal response

of examinees in latent class / to item j, respectively, a;y 1s the attribute £ mastery level of examinees
in latent class /, and g, indicates whether item j measures attribute k. These ideal responses are
binary and deterministic, but the DINA and DINO models are probabilistic. This means that there
is a probability of correctly answering an item for those examinees who are expected to fail (i.e.,

1n;j = 0), and a probability of failing the item for those who are expected to succeed (i.e., n;; = 1).
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These probabilities are captured by the guessing (g;) and slip (s;) parameters, respectively,
resulting in the following item response function:

P(y; = 1la) = g;* (1 ~s)", 3)
where 1 = Th(;) andn;; = nl(]‘-i) for the DINA and DINO models, respectively. Equation 3 implies
that, in the DINA and DINO models, there are only two parameters (s; and g;) per item. These
parameters differentiate between examinees expected to provide either a correct (1;; = 1) or
incorrect (17;; = 0) response to the item. The similarities between the DINA and DINO models are
such that they are equivalent under certain transformations (Kohn & Chiu, 2016). Moreover, the
DINA model is the most widely used CDM in applied settings (Sessoms & Henson, 2018).

The DINA and DINO models are special cases of the generalized DINA (G-DINA) model
(de la Torre, 2011), which is a saturated model in that it estimates a different item probability of
success for every possible latent group. This makes the G-DINA a more flexible model than DINA
and DINO. However, this increased flexibility comes with the trade-off of requiring larger sample
sizes to ensure stable and accurate estimation of item and person parameters (Sorrel et al., 2021).
This is a significant limitation, especially considering that even the reduced DINA and DINO
models require sample sizes of at least 500 individuals to yield accurate parameter estimates (Sen
& Cohen, 2021).
CDM for Small-Scale Assessments

The dependency on large sample sizes may be a practical issue, given that one of the most
promising applications of CDM is in small-scale assessments. Specifically, the detailed diagnostic
feedback provided by these models, delivered in a timely manner, can directly inform remedial
instruction or learning efforts at a classroom level (de la Torre & Minchen, 2014; Paulsen &

Valdivia, 2021). In this vein, some real CDM applications have been conducted with sample sizes
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as small as N = 105 (Ren et al., 2021) or even N = 44 (Jang et al., 2015). Despite these few
examples, the limited number of CDM applications (Sessoms & Henson, 2018) may partially be
due to the fact that most methodological developments are not well-suited to practical settings that
deal with small sample sizes.

To address this issue, Chiu and Douglas (2013) proposed the nonparametric classification
(NPC) method, a deterministic procedure that classifies examinees into latent classes without
relying on parameter estimation. Namely, the NPC method compares the ideal responses (see
Equation 1 and Equation 2) of all possible latent classes with the examinee’s observed responses

using the Hamming distance, as follows

J
dn(yium) = Zlyij — ), 4)
=

where 7;; can be 771(;) or 771(;'1) for a conjunctive (i.e., DINA) or disjunctive (i.e., DINO) rules,
respectively. Examinees are then classified into the most similar latent class: @; =

arg mlin dn(¥i,m;). The main benefit of the NPC method is that, by not relying on parameter

estimation, it provides more accurate attribute profile classifications in settings where the available
information for estimation is scarce or poor, such as with small sample sizes or low-quality items
(Chiu & Douglas, 2013; Chiu et al., 2018). However, this practical advantage comes with a
significant limitation: the inability to assess crucial psychometric properties such as reliability or
model fit. Consequently, a practitioner conducting a small-scale assessment with CDM would face
a dilemma: either use the NPC method and accept its classifications without additional information
on the adequacy of the results, or use a parametric CDM (e.g., DINA model), knowing that it may

provide less accurate classifications in suboptimal sample conditions.
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To address this, Najera, Abad, et al. (2023) proposed the restricted DINA (R-DINA) model,
which is a parametrization of the NPC method. This means that the R-DINA model can provide
the same exact attribute profile classifications as the NPC method but, more importantly, allows
for the computation of reliability and fit indices to assess its psychometric properties. Specifically,
the NPC method can be parametrized as a restricted version of the DINA or DINO model, where

the guessing and slip parameters for all items are constrained to have the same value:
P(y; = 1]a) = 9 (1 = )™, )
where n;; = 771(;) and n;; = nl(](-i) for the R-DINA and R-DINO models, respectively, and ¢

represents the overall proportion of observed responses that differ from their corresponding ideal
responses. Note that the R-DINA model has only one parameter for the entire model: ¢ = g; =
sjVj. Despite its over-restrictive nature, the R-DINA model has shown robust performance when
its assumptions are violated, outperforming the DINA model in terms of classification accuracy,
item parameter recovery, and reliability estimation accuracy under very small sample sizes (N =
25 to 100), even when the generating model was DINA (Ngjera, Abad, et al., 2023).
Cognitive Diagnostic Computerized Adaptive Testing

Despite these advancements, small-scale assessments often require longer tests to mitigate
the lack of information from the limited number of examinees. However, longer tests require more
time to complete, which can limit the feasibility of using these models for continuous formative
assessments throughout an academic year (Chang et al., 2018; Paulsen & Valdivia, 2021). A well-
established psychometric development that enhances the efficiency, accuracy, and security of
assessments is computerized adaptive testing (CAT). In CAT, a large item bank is initially
calibrated using a large sample size. Once the item parameters are calibrated, each examinee

receives a tailored test, with items presented based on their previous responses. When integrated
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within the CDM framework, this approach results in cognitive diagnostic CAT (CD-CAT; Cheng,
2009).

Since its introduction, CD-CAT has undergone significant advancements, including the
adaptation and formulation of various item selection rules, as well as the consideration of different
test stopping criteria and content restrictions. The item selection rule refers to the algorithm used
to determine the most optimal item to administer to an examinee at a given time, based on the
calibrated item parameters and the examinee’s responses to previous items. Some widely-explored
item selection rules are the general discrimination index (GDI; Kaplan et al., 2015), the Jensen-
Shannon divergence index (Kang et al., 2017), and the posterior-weighted Kullback-Leibler index
(Cheng, 2009) and its modified version (Kaplan et al., 2015). These rules rely on previously
calibrated item parameter estimates and the examinee’s responses to select the most discriminative
item at a given time. In this study, GDI will be used as a representative of parametric item selection
rules, as it is expected to perform similarly to other parametric rules and demonstrates
computational efficiency (Kaplan et al., 2015; W. Wang et al., 2020). It is a popular rule
implemented in open-access software, such as the R package ‘cdcatR’ (Sorrel et al., 2022). The

GDI is defined as

L

60l = n(a)O[P(y; = 1la) - B, ©

=1
where (a;)® is the posterior probability of latent class / at time ¢, P(yj =1 |al) is the probability
of a correct response for latent class / on item j, and P; is the weighted average success probability

for all latent classes on item j. The item to be administered at time ¢ + 1 is the one with the

maximum GDI.

10
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The main issue with all these parametric item selection rules is that, as mentioned earlier,
a large calibration sample is usually required to accurately estimate item parameters. To address
this practical concern, two nonparametric item selection rules based on Hamming distances have
been recently proposed. Chang et al. (2018) developed the nonparametric item selection (NPS)
rule, which is directly based on the NPC method, while Li and Zheng (2024) proposed the
nonparametric dynamic binary searching item (NDBS) rule building upon the work in binary
searching algorithms (Tatsuoka & Ferguson, 2003; Zheng & C. Wang, 2017). For the sake of
simplicity, in this study we will primarily focus on the NPS as a representative nonparametric item
selection rule, given its availability in open-access software (‘cdcatR’ package; Sorrel et al., 2022)
and the similar performance of both rules found in an auxiliary analysis presented in the Online
Appendix. The NPS rule begins by administering K items in a Q-optimal manner (Xu et al., 2016),
which ensures the distinguishability between latent classes. Once the first K items have been
administered, at time ¢, the NPC method is used to calculate the Hamming distance between the
examinee’s observed responses and the ideal response patterns of the latent classes. This process
defines @; as the most likely latent class (i.e., the one with the lowest Hamming distance) and &;
as the second most likely latent class (i.e., the one with the second lowest Hamming distance) for
examinee i. The NPS rule then randomly selects the next item to be administered from those that
elicit a different ideal response for @&; and @;. By discriminating between the two most likely
attribute profiles at a given time, the NPS rule aims to increase the gap between the most likely
attribute profile and the others (Chang et al., 2018). Compared to parametric item selection rules,
a key practical advantage of the NPS rule is that it is calibration-free, as it does not rely on a

calibration sample to estimate item parameters. In other words, items can be used directly in an
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adaptive assessment with the NPS rule without needing to be calibrated with a different sample
beforehand.

Test stopping criteria refer to the rule used to conclude the CAT for each examinee. They
can be broadly divided into fixed-length and variable-length criteria. In fixed-length CD-CAT, a
prespecified number of items is administered to all examinees. While this approach offers notable
advantages in terms of efficiency compared to traditional paper-and-pencil assessments, using the
same test length for all examinees might be suboptimal. Namely, it can lead to either inaccurate
assessments (i.e., the test stops before an accurate classification has been made for a particular
examinee) or inefficient assessments (i.e., the test continues even though an accurate classification
has already been made for a particular examinee). In contrast, variable-length criteria allow for
administering a different number of items to each examinee, with the test stopping when the
desired level of classification certainty is achieved for a particular test taker. Typically, the
examinees’ latent class posterior probabilities are considered for these criteria. For example, a
common variable-length criterion is to stop the assessment when the examinee’s maximum latent
class posterior probability exceeds a cutoff of .80. This variable-length criterion, here referred to
as ¢ = .80, implies that 80% of the examinees are expected to be classified into the correct latent
class. Thus, this stopping rule, originally introduced by Tatsuoka (2002), has the additional
advantage of serving as an estimate of reliability. Another possibility examined in Hsu et al. (2013)
is that not only must the largest latent class posterior probability meet or exceed a prespecified
value (e.g., .80), but also the second largest latent class posterior probability must not exceed a
prespecified value (e.g., .10). Naturally, as the threshold c increases, the differences between these
two approaches disappear, which has led open-access software like ‘cdcatR’ (Sorrel et al., 2022)

to default to the simpler rule that the largest latent class posterior probability exceeds .80. There

12
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have also been proposals based on information theory (Guo & Zheng, 2019). In general, these
rules tend to require an estimation of the latent class posterior probability. Recently, Li and Zheng
(2024) proposed the nonparametric dynamic binary searching index (NDBI), which, aligned with
the rationale of the NDBS item selection rule and based on binary searching algorithms and
Hamming distances, enables nonparametric variable-length CD-CAT (details about the NDBS and
NDBI are provided in the Online Appendix). Note that, unlike traditional stopping criteria based
on posterior probabilities (e.g., ¢ = .80 corresponds to an expected classification accuracy of .80),
rules like NDBI do not have this direct translation into reliability. Available studies show that, in
fact, this rule can lead to high attribute classification accuracy (Li & Zheng, 2024), but it becomes
challenging to associate the score obtained in a specific case with a concrete accuracy estimate.
This is a drawback, as score interpretation should be guided by reliability (AERA, APA, & NCME,
2014).

For these reasons, despite the significant advances that have been made, the application of
variable-length CD-CAT still poses some practical challenges. On the one hand, estimating latent
class posterior probabilities relies on item parameter estimates, which require large sample sizes
to be accurately calibrated (Sun et al., 2020). On the other hand, nonparametric approaches
available to date (i.e., NPS and NDBS) do not provide posterior probability estimates. This
highlights the need to develop an alternative that addresses these two issues.

Lastly, beyond the strictly mathematical aspects, some authors have emphasized the
importance of the validity argument in adaptative testing. Specifically, in the context of CDM,
content (i.e., attribute) balance is considered an important aspect of test construction (Henson &
Douglas, 2005). This relates to the model identifiability problem, where the number of items

measuring each attribute is significant (Gu & Xu, 2021). In response, content restrictions have
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been incorporated into CD-CAT procedures, either by including content balance as a feature in the
item selection rule (e.g., Cheng, 2010; Sun et al., 2021) or by directly imposing the restriction that
each attribute must be measured by a minimum number of items (see Cheng et al., 2007).
Integrating the R-DINA Model into CD-CAT

In this section, we explain three different approaches to integrate the R-DINA model within
the CD-CAT framework. Two of these procedures resemble traditional implementations because
they follow the established process of calibrating model parameters using a calibration sample
before conducting the adaptive assessment. The other method is a novel implementation that,
consistent with the calibration-free nature of the NPS, does not require a calibration sample.
Instead, it estimates the R-DINA parameter on-the-fly for each examinee.
When a Calibration Sample is Accessible

As with any parametric CDM, the R-DINA model can be directly implemented within the
traditional, parametric CD-CAT flowchart. This involves first estimating the ¢ model parameter
using a calibration sample, and then using this information to conduct the adaptive testing with the
desired parametric item selection rule, test stopping criterion, and content restriction. Compared
to other models (e.g., DINA, G-DINA), the R-DINA model allows for the use of parametric CD-
CAT even with a small calibration sample (N < 200; N4ajera, Abad, et al., 2023). In the remainder
of the paper, we will use the GDI item selection rule for this first CD-CAT implementation with a
calibration sample, which will be referred to as R-GDI.

Despite being a parametric model, the R-DINA has a strong connection with the NPC
method, as both procedures are equivalent in terms of attribute classifications due to the parallelism
between parametric likelihoods and nonparametric Hamming distances (C. Ma et al., 2023; N4jera,

Abad, et al., 2023). Consequently, the R-DINA model can be easily integrated into nonparametric
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CD-CAT. Namely, after calibrating the ¢ model parameter using a (small) calibration sample, a
CD-CAT using a nonparametric item selection rule (NPS or NDBS) can be normally conducted.
The primary purpose of estimating ¢ is to compute examinees’ posterior probabilities, thereby
enabling variable-length assessments in nonparametric CD-CAT, which was not feasible with
traditional methods. The NPS rule will be used in the remainder of the study, and thus this second
implementation will be referred to as R-NPS.

Note that the R-GDI and R-NPS variants are expected to perform very similarly. If both
procedures select the same items for a given examinee, the R-GDI and R-NPS will be equivalent
in terms of attribute profile classification and posterior probability estimates, since the underlying
model for these calculations is the same (i.e., the R-DINA model). However, the GDI and NPS
rules might not always select the same items for a given response pattern due to two reasons. First,
if more than one item meets the selection criteria for the GDI (i.e., maximum GDI) or the NPS
(i.e., discriminates between the two most likely attribute profiles), then the next item to be
administered is randomly selected among the eligible items. Second, while the NPS focuses solely
on the point estimates of the two most likely attribute profiles, the GDI considers the posterior
probability of all attribute profiles (Sorrel et al., 2020). Moreover, the NPS assumes that all
attribute profiles are equally likely in the population, whereas the GDI uses the estimated attribute
distribution to compute item discrimination (see Equation 6). These technical differences are not
expected to significantly affect CD-CAT performance, as both item selection rules are anticipated
to select appropriate items for each examinee throughout the assessment, leading to sound and
efficient classifications. This, however, will be one of the questions explored in the simulation
study.

When a Calibration Sample is Not Accessible

15
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One of the main practical advantages of nonparametric item selection rules is their direct
applicability without requiring a calibration sample (Chang et al., 2018). However, this comes at
the significant cost of not providing information on reliability or enabling variable-length
assessments. Leveraging the simplicity of the R-DINA model, we propose a calibration-free CD-
CAT implementation that supports variable-length tests, thus combining the benefits of both
parametric and nonparametric CD-CAT approaches.

This approach utilizes the NPS rule to select items for administration at each stage of the
adaptive assessment, although note that the NDBS could be also used in the same fashion. The
proposal involves using the R-DINA model to estimate the ¢ parameter on-the-fly at the examinee-
level, meaning with N = 1. This parameter is then used to calculate the posterior probabilities of
the latent classes, which in turn are used to determine when to stop the CD-CAT based on a
variable-length stopping criterion. The pseudo-algorithm for this on-the-fly approach is as follows:

1) Administer K items according to the Q-optimal criterion (Xu et al., 2016) to ensure
distinguishability among all latent classes. This starting rule is identical to the one used in
the NPS method.

2) Estimate the R-DINA model using the examinee’s responses to these items.

3) Calculate the posterior probabilities based on the estimated ¢ parameter.

4) If the variable-length stopping criterion (e.g., ¢ = .80) is met, terminate the CD-CAT.

Otherwise, use the NPS rule to select the next item to administer.

5) Repeat steps 2 to 4 until the stopping criterion is satisfied.

The straightforward implementation of this pseudo-algorithm involves estimating the R-

DINA model using marginal maximum likelithood (ML) in a standard fashion (N4ajera, Abad, et

al., 2023), although with N = 1, and will henceforth be referred to as R-NPSyi. The R-NPSwmr
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implementation facilitates variable-length CD-CAT without requiring a calibration sample, by
using the responses of each examinee as the calibration dataset. However, there is an important
limitation to this approach. Although the R-DINA model is simple enough to provide accurate
parameter estimates with small sample sizes, relying on only a few responses from a single
examinee might provide insufficient data, potentially compromising the reliability of the estimate.
It is likely that, after responding to only a few items, the observed response pattern of examinee i
will perfectly match the ideal response pattern of latent class /. In such an overfitting scenario, the
Hamming distance between the response patterns will be zero, leading to ¢; = 0. This boundary
problem, which has also been observed in other more complex CDMs under small sample
conditions (Garre & Vermunt, 2006; Kreitchmann et al., 2023; W. Ma & Guo, 2019; W. Ma &
Jiang, 2021), will lead to the posterior probability for latent class / being equal to 1. Consequently,
the CD-CAT might terminate at a very early stage of the assessment, potentially resulting in a
greatly overestimated reliability estimate.

To address this problem, we propose using a Bayes modal (BM) estimation algorithm. BM
was first applied to CDM by W. Ma and Jiang (2021), who introduced it to overcome boundary
issues in the G-DINA model when using ML estimation in small-scale scenarios. In ML estimation,
the probability of success for latent class / on item j is estimated as I3j(al) = 1j,/n;, where n; is
the expected number of individuals in latent class / and rj; is the expected number of correct
responses among those individuals (de la Torre, 2011). Boundary problems are likely to occur
when latent class / is sparse, causing the proportion of correct responses to skew towards 0 or 1.
In contrast, BM estimation uses a Beta prior distribution, Beta(f;, ), to mitigate these extreme
estimates. The BM estimation focuses on the mode of the posterior distribution, providing a single

point estimate for each probability of success. The BM estimate is calculated as follows:
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T+ (B — 1)

13]-(0([) B n+ B+ B—2)

(7

W. Ma and Jiang (2021) used Beta(1.5,2.5) as the prior distribution of the guessing parameter,
which improved the estimates under challenging conditions by mitigating boundary issues.

Following their work, we propose using a Beta(1.5, 2.5) prior distribution for ¢; to prevent
the CD-CAT from stopping prematurely before an accurate estimate has been reached. Under this
approach, ¢; is defined as the mode of the posterior probability, obtained by combining the prior
distribution with the likelihood function. This CD-CAT implementation of the R-DINA model,
referred to as R-NPSgw, is illustrated in Figure 1 alongside the R-NPSyr method. Note that BM
estimation prevents premature stopping by adding stability to the estimate. As more items are
administered, the likelihood function becomes more informative, and the influence of the prior
diminishes. This approach ensures that the assessment is more robust and less likely to be halted
due to early overfitting.

Simulation Study

The main goal of this study is to evaluate the performance of four different implementations
of the R-DINA model within the CD-CAT framework. Two of these implementations require a
(small) calibration sample (R-GDI and R-NPS), while the other two are directly applicable without
a calibration step (R-NPSmr and R-NPSgwm). These procedures will also be compared to the
traditional parametric CD-CAT based on a DINA-calibrated model and the GDI item selection rule
(referred to here as the D-GDI procedure). The focus of the study will be on variable-length CD-
CAT, given its abovementioned advantages over fixed-length CD-CAT. This approach will allow
for a more appropriate assessment of the precision of the different procedures in terms of parameter
estimates throughout the adaptive implementations, as a poor estimate might lead to CD-CAT

stopping either prematurely (inaccuracy) or unnecessarily (inefficiency).
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Figure 1
lllustration of the On-the-Fly Estimation of @; throughout an Adaptive Implementation of the R-DINA Model
Prior -- Lik — Post

After 4 items After 9 items After 14 items After 19 items After 24 items After 29 items
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Note. Prior = Beta(1.5, 2.5) prior distribution (represented as a light gray dotted line); Lik = likelihood distribution (represented as a dark gray
dashed line); Post = posterior distribution (represented as a solid black line); ML = maximum likelihood (represented as a dark gray dashed line);
BM = Bayes modal (represented as a solid black line). The upper panel displays the prior, likelihood, and posterior distribution of @; after examinee
i has taken a different number of items. Based on that information, the lower panel shows the value of @; under each moment in the CD-CAT
application for both ML (the maximum of the likelihood distribution) and BM (the maximum of the posterior distribution). The dotted line in the
lower panel represents the true, generating ¢ in this example.
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Given the dual nature of the R-DINA model, which bridges the parametric DINA model
and the nonparametric NPC method (N4jera, Abad, et al., 2023), we anticipate that the R-GDI and
R-NPS will exhibit similar performance. We also expect these procedures to outperform the
calibration-free alternatives (R-NPSyr and R-NPSgw), as the ¢ parameter will be more accurately
estimated, even with a small calibration sample. Additionally, R-NPSgwm is expected to outperform
R-NPSmr due to the latter’s potential boundary issues during the early stages of adaptive testing.
CD-CAT Implementation

Six CD-CAT procedures are tested in the present simulation study: T-GDI, D-GDI, R-GDI,
R-NPS, R-NPSgm, and R-NPSmi. Table 1 summarizes the characteristics of these
implementations. As detailed later, the DINA model, given its popularity (Sessoms & Henson,
2018), was chosen as the data-generating model. The T-GDI procedure serves as an upper baseline,
representing a parametric CD-CAT that uses the true, generating item parameters (i.e., there is no
calibration error) in the computation of GDI (Equation 6). On the other hand, in D-GDI, the
parameters will be estimated using a calibration sample. Smaller sample sizes in the calibration
sample will lead to higher item calibration error, which will affect the performance of the CD-CAT
procedure. All procedures employ a variable-length stopping criterion with a cutoff of ¢ = .80 (i.e.,
the test stops once the maximum posterior probability for a latent class is equal to or higher than
.80). As indicated earlier, we selected this rule because it is the simplest and is included by default
in the available open-source software. As stated in the section on performance measures, the focus
of the article is on determining whether the procedures operate under an estimated posterior
probability close to the true estimated probability. As long as different stopping rules use this
estimated posterior probability, the results are generalizable to other stopping rules. Additionally,

content restrictions are imposed, requiring that each attribute must be measured by at least three
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items before the CD-CAT can terminate. Specifically, after applying either the GDI (T-GDI, D-
GDI, and R-GDI) or NPS (R-NPS, R-NPSgMm, and R-NPSwmp ) item selection rule, if the cutoff of ¢
= .80 is reached, it is verified that all attributes have been measured by at least three items. If not,
the most optimal item (according to either the GDI or NPS rule) among those measuring the
insufficiently explored attributes is administered. This process continues until both the ¢ = .80
cutoff and the three-items-per-attribute criteria are met. Attribute profiles were estimated using
maximum a posteriori (MAP) in all CD-CAT procedures.

Table 1
Specification of the CD-CAT Procedures

Procedure Model Calibration sample ISR Estimation method
T-GDI DINA (TRUE) Yes GDI ML
D-GDI DINA Yes GDI ML
R-GDI R-DINA Yes GDI ML
R-NPS R-DINA Yes NPS ML
R-NPSmL R-DINA No NPS ML
R-NPSgm R-DINA No NPS BM

Note. ISR = item selection rule; ML = maximum likelihood; BM = Bayes modal.

Design and Data Generation

Data were generated using the DINA model. Three independent variables were
systematically manipulated: calibration sample size (N = 25, 50, 100), number of attributes (K =
3,5), and item quality (/Q = low, medium, high, mixed). The chosen calibration sample size levels
reflect those from applied small-scale assessments (e.g., Jang et al., 2015; Ren et al., 2021) as well
as simulation studies focused on small sample sizes (e.g., Oka & Okada, 2021). Note that a
calibration sample is required for the D-GDI, R-GDI, and R-NPS, but not for R-NPSwmr or R-
NPSgwm (see Table 1). Regarding the number of attributes, Sessoms and Henson (2018) found that
four attributes are most common in applied research.

Item quality was varied by manipulating the probability of correctly answering an item for

latent class {0} (i.e., non-masters of all attributes) and latent class {1} (i.e., masters of all
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attributes) as follows: P(0)~U(0.2,0.4) and P(1)~U(0.6,0.8) for low-quality items,
P(0)~U(0.1,0.3) and P(1)~U(0.7,0.9) for medium-quality items, and P(0)~U(0,0.2) and
P(1)~U(0.8,1) for high-quality items. This results in average item quality of IQ = P(1) —
P(0) = 0.4, 0.6, and 0.8 for low, medium, and high item quality, respectively. Furthermore, the
mixed item quality condition combined P(0)~U(0,0.2) and P(1)~U(0.6,0.8) for half of the
items, and P(0)~U(0.2,0.4) and P(1)~U(0.8,1) for the other half. This mixed condition directly
violates the assumptions of the R-DINA model (i.e., same guessing and slip parameters for all
items), making it particularly challenging for this model (N4jera, Abad, et al., 2023).

The item bank consisted of 300 items. The Q-matrices were randomly generated with the
constraint of containing 150 one-attribute items, 120 two-attribute items, and 30 three-attribute
items. This distribution ensures the completeness of the Q-matrices (K6hn & Chiu, 2017) while
mimicking the complexity typically found in applied studies (N4jera, Abad, et al., 2021).
Additionally, attribute profiles were generated using the multivariate normal threshold model
(Chiu et al., 2009). Specifically, K continuous latent variables were drawn from a multivariate
normal distribution with a mean of 0 and correlations of 0.5, reflecting the moderately large
attribute correlations found in applied studies (Sessoms & Henson, 2018). These continuous latent
variables were then dichotomized by assigning a;;, = 0 or 1 depending on whether the continuous
score was lower or higher than 0, respectively.

Data generation and analyses were performed using R (R Core Team, 2023) with several
packages: ‘GDINA’ version 2.8.7 (W. Ma & de la Torre, 2020), ‘cdmTools’ version 1.0.2 (Ngjera,
Sorrel, et al., 2023), ‘NPCD’ version 1.0-11 (Zheng & Chiu, 2022), and ‘cdcatR’ version 1.0.6
(Sorrel et al., 2022). The R code for the simulations and analyses is publicly available at

https://osf.io/mn86s.
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Performance Measures

All CD-CAT methods were evaluated in terms of attribute classification accuracy, item
parameter recovery, and efficiency. The primary dependent variable of the study was the relative
measurement precision (RMP; Huang, 2018), as it serves as an omnibus measure encompassing

classification accuracy, parameter recovery, and efficiency. Specifically, the RMP is defined as

¥ max[P(au ., )]

RMP = :
icy max[P(aly; 8)]

®)

where P(al | vi, 3) denotes the posterior probability of latent class / for examinee i based on the
estimated item parameters, and P(a;|y;, 8) is based on the generating item parameters. Table 2
summarizes the relationship between RMP, true classification accuracy, and the number of items
administered in the CD-CAT application (i.e., test length). RMP reflects the overall accuracy of
item parameter estimates. Item parameter estimates directly affect the calculation of posterior
probabilities of attribute mastery, which are used to determine reliability (e.g., estimated
classification accuracy) and, particularly in CD-CAT, as a stopping criterion for the test. An RMP
close to 1 indicates that the posterior probabilities of attribute profiles are accurately recovered,
implying that item parameters have been correctly estimated. In contrast, A CD-CAT method that
overestimates reliability, as indicated by an RMP greater than 1, will meet the stopping criterion
prematurely, potentially resulting in overly short and inaccurate CD-CAT applications. Conversely,
methods that underestimate reliability, as indicated by an RMP less than 1, may fail to meet the
stopping criterion, leading to longer and less efticient CD-CAT applications.

Although the RMP indicates whether the desired classification accuracy has been reached,

classification accuracy was directly assessed using the proportion of correctly classified vectors

(PCV):
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PCV = i=1 (Nl l)’ (9)

where I(+) is the indicator function, and @; and a; represent the estimated and generated attribute
profile for examinee i, respectively.

Table 2

Expected Relation Between Several Performance Measures

RMP PCV Test Length Label
RMP <1 PCV>c Overly long Inefficient
RMP =1 PCV=c Optimal Optimal
RMP > 1 PCV<c¢ Overly short Inaccurate

Note. RMP = relative measurement precision; PCV = proportion of correctly classified vectors.

Additionally, CD-CAT efficiency was evaluated based on the average test length (TL),
which reflects the average number of items administered to examinees, and the fest overlap rate
(TOR; Chen et al., 2003), defined as:

Ji I
TOR = =52 +—,
7T

(10)
where J is the number of items administered, J* is the item bank length (i.e., 300), and S? is the
sample variance of item exposure rates. A high TOR implies that some items have been
overexposed while many items have been underused, suggesting potential issues with test security.
Results
Relative Measurement Precision

Table 3 presents the RMP for the six CD-CAT procedures across the different levels of the
number of attributes (K) and item quality (/Q). Note that the calibration sample size (N) is not
included as an independent variable, given its negligible effect on all CD-CAT procedures except
for D-GDI (note the small standard deviations in Table 3). Therefore, given that calibration sample

size only significantly impacted D-GDI, the results for this procedure are separated into D-GDI>s,

D-GDIso, and D-GDligo, corresponding to the different calibration sample sizes.
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Table 3

Means (and Standard Deviations) of the CD-CAT Procedures

K 10 T-GDI D-GDI;s D-GDIsp D-GDlIipo R-GDI R-NPS R-NPSyL R-NPSsm
Relative Measurement Precision (RMP)
Low 1.000 1.694 (.106) 1.339 (.061) 1.166 (.026) 0.999 (.012) 0.999 (.012) 1.155(.012) 1.143 (.011)
3 Mixed 1.000 1.244 (.048) 1.132(.031) 1.066 (.018) 0.996 (.007) 0.996 (.007) 1.010 (.005) 0.998 (.005)
Medium 1.000  1.295(.037) 1.175(.031) 1.083 (.016) 0.999 (.007) 1.000 (.006) 1.012 (.005) 0.999 (.004)
High 1.000  1.026 (.007) 1.020(.010) 1.016 (.007) 0.998 (.003) 0.997 (.004) 0.979 (.002) 0.970 (.002)
Low 1.000 2.298 (.222) 1.502 (.102) 1.212(.039) 0.999 (.015) 0.999 (.015) 1.232(.016) 1.208 (.018)
5 Mixed 1.000 1.404 (.077) 1.203 (.044) 1.090 (.018) 0.994 (.009) 0.994 (.008) 1.039 (.008) 1.018 (.007)
Medium 1.000 1.523 (.068) 1.277 (.058) 1.112(.020) 1.000 (.009) 1.000 (.008) 1.041 (.007) 1.020 (.006)
High 1.000 1.046 (.012) 1.044 (.013) 1.026 (.010) 0.997 (.004) 0.997 (.004) 0.984 (.003) 0.972 (.003)
Proportion of Correctly Classified Vector (PCV)
Low .855 (.016) 468 (.055)  .634(.043)  .730(.026)  .827(.020)  .829(.019)  .772(.019)  .775(.019)
3 Mixed 943 (.013) 698 (.052)  .798 (.048)  .873(.026)  .881(.015)  .881(.015)  .910(.014) .914 (.014)
Medium  .920 (.013) 657 (.038)  .734(.039)  .836(.027)  .881(.015)  .880(.016)  .907 (.014)  .912(.013)
High 990 (.007)  .967 (.010)  .961 (.019) .961 (.017)  .947 (.011) 942 (.011)  .980 (.006)  .983 (.006)
Low .827 (.017) 309 (.049) 531 (.051)  .676(.033)  .796 (.020)  .802 (.021)  .696 (.020)  .706 (.021)
5 Mixed 921 (.014) 565 (.062) 722 (.050)  .831(.027) .869(.017)  .870(.016)  .858(.015)  .872(.015)
Medium  .898 (.014) 488 (.043)  .641(.055) .790(.032) .867(.015)  .871(.016) .860 (.016) .873(.016)
High 979 (.009) 932 (.024)  .909 (.027)  .934 (.025)  .940 (.011)  .931(.012)  .960 (.009)  .968 (.008)

Note. K = number of attributes; /Q = item quality. For the sake of simplicity, T-GDI, R-GDI, and R-NPS are not split by sample size due to the
negligible effect of this variable on their performance, as indicated by the small standard deviations reported in this table. RMP values between 1.050
and 0.950 are shown in bold (excluding the T-GDI procedure). PCV values higher than 0.800 are shown in bold (excluding the T-GDI procedure).
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123 Table 3 (Continued)
124 Means (and Standard Deviations) of the CD-CAT Procedures
K 10 T-GDI D-GDI;s D-GDIsp D-GDIigo R-GDI R-NPS R-NPSmL R-NPSsm
Test Length (TL)

Low 11.8(0.35)  7.8(0.43)  9.4(0.47) 10.5(038) 19.8(1.03) 202(1.01) 19.2(0.81) 19.0(0.80)

; Mixed 75(0.16)  7.0(0.16)  7.3(021)  7.4(0.18) 10.1(0.17) 10.5(0.17) 12.0(0.30) 12.1(0.29)
Medium  7.8(0.14)  6.9(0.19)  7.3(0.18)  7.5(0.18) 10.0(0.18) 10.5(0.17) 12.0(0.30)  12.1 (0.29)

High 6.7(0.14)  71(0.09)  6.9(0.18)  6.7(0.14)  7.6(0.12)  8.0(0.13)  89(0.13)  9.0(0.13)

Low 23.6(1.07)  14.0(0.96) 18.5(1.30) 21.6(1.23) 39.5(1.82) 41.7(2.04) 36.3(1.86) 36.7(1.89)

5 Mixed  12.9(024) 11.8(0.33) 12.5(0.33) 12.8(0.27) 182(044) 19.3(043) 20.0 (0.48)  20.5(0.50)
Medium  13.6 (0.25)  11.6(027) 12.6(0.32) 13.2(028) 18.2(0.38) 19.4(0.39) 20.1 (0.49) 20.5 (0.47)

High 11.2 (0.22) 12.0 (0.21) 11.4 (0.24) 11.2 (0.24) 13.1(0.16) 13.6(0.14) 14.4(0.20) 14.7 (0.20)

Test Overlap Rate (TOR)

Low 488 (.031)  .527(.042)  .502(.034)  .495(.029) .107(.014) .103 (.013) .096 (.014)  .096 (.015)

; Mixed 490 (.035)  .488(.045) 489 (.041)  .482(.035) .067(.013) .065(.012) .070(.012) .071(.012)
Medium 497 ((032) 478 (.051)  .498 (.036)  .489(.030) .067 (.013) .065(.013) .071(.013) .071(.013)

High 467 (.035)  258(.053)  .417(.047)  441(.037) .057(.013) .056(.013) .059 (.013) .059 (.013)

Low 478 (035)  .539(.039)  .503(.039)  .477(.028) .176(.018) .174(.017) .151(.019) .153(.019)

5 Mixed  .511(.030) .513(.037) .507(.033)  .504(.029) .103(.013) .097(.013) .097(.013) .100 (.014)
Medium 504 (.028)  .512(.038) .516(.034)  .501(.026) .103(.013) .097(.014) .098(.014) .100(.014)

High  .482(027) .381(.045) .458(.030)  .466(.025) .085(.012) .075(.012) .077(.012) .079 (.012)

125  Note. K = number of attributes; /Q = item quality. For the sake of simplicity, T-GDI, R-GDI, and R-NPS are not split by sample size due to the
126  negligible effect of this variable on their performance, as indicated by the small standard deviations reported in this table. Lowest TL values
127  (differences lower than 2 are not considered) are shown in bold (excluding the T-GDI procedure). Lowest TOR values (differences lower than 0.050
128  are not considered) are shown in bold (excluding the T-GDI procedure).
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Overall, R-GDI and R-NPS (0.994 < RMP < 1.000) produced the best results in terms of
RMP, accurately recovering posterior probabilities across all conditions. The two calibration-free
procedures (R-NPSwmr and R-NPSgm) also provided accurate posterior probabilities across all
conditions (0.972 < RMP < 1.041), except for low-quality items, where they exhibited a tendency
to overestimate reliability, resulting in higher RMP values (1.143 < RMP < 1.232). Finally, the D-
GDI procedure only yielded accurate posterior probabilities with high-quality items (1.016 < RMP
< 1.046). In the remaining conditions, it consistently overestimated reliability (1.066 < RMP <
2.298), with this tendency becoming more pronounced with smaller calibration sample sizes and
larger number of attributes.
Classification Accuracy

As shown in Table 3, and consistent with the RMP results, the D-GDI procedure
consistently provided the lowest classification accuracies. Given that the variable-length stopping
criterion was ¢ = .80, D-GDI2s and D-GDIso only achieved a PCV > .80 with high-quality items,
exhibiting poor classification accuracy (.309 < PCV <.798) under the remaining conditions. With
a larger calibration sample size, D-GDI 100 managed to reach the desired classification accuracy in
more situations: namely, when item quality was not low and 3 attributes were measured (.873 <
PCV <.961), and when item quality was mixed or high and 5 attributes were measured (.831 <
PCV <.934). However, with low item quality, it produced unsatisfactory results with 3 attributes
(PCV =.730) and 5 attributes (PCV = .676).

In contrast, R-GDI and R-NPS achieved a PCV > .80 under all conditions (.802 < PCV <
.947), with the only exception being R-GDI under 5 attributes and low-quality items, where the
PCV was still close to the desired cutoff (PCV = .796). Lastly, R-NPSwmr and R-NPSgMm provided

satisfactory classification accuracy across all conditions (.858 < PCV < .983), except for low-
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quality items (.696 < PCV < .775). These results align with those of the RMP, where the two
calibration-free procedures only performed poorly when item quality was low. Lastly, and
expectedly, the T-GDI procedure achieved a satisfactory classification accuracy (PCV > .827)
under all conditions.
Test Efficiency

Table 3 also presents the average test length and test overlap rate across all conditions. As
expected, given the large RMP values obtained by the D-GDI procedure, its consistent tendency to
overestimate reliability led to tests being stopped prematurely after administering only a few items.
Consequently, D-GDI resulted in the shortest test lengths, particularly when the calibration sample
size was smallest (N = 25). In contrast, the four procedures based on the R-DINA model
administered more items. These differences were especially pronounced with low-quality items,
where the test lengths of these procedures were up to 1.77 times that of the TRUE procedure.
However, with medium or high-quality items, these differences were less pronounced, particularly
for R-GDI and R-NPS (up to 1.43 times the test length of the TRUE procedure).

Table 4

Observed Relation Between Several Performance Measures

K 10 #(RMP, PCV) *(RMP, TL) r(PCV, TL)
Low -.967 ~.810 852
3 Mixed -.902 ~739 754
Medium —.944 ~774 836
High —.545 ~.931 552
Low -971 ~.819 873
5 Mixed —.964 ~778 756
Medium -977 ~.816 845
High —719 ~.907 652

Note. K=number of attributes; /Q = item quality; RMP = relative measurement precision; PCV = proportion
of correctly classified vectors; TL = test length.

Table 4 displays the correlations between RMP, PCV, and test length, considering all CD-
CAT procedures except T-GDI (which does not exhibit variability in RMP). Specifically, RMP was
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inversely correlated with PCV (-.977 < r < -.545) and test length (-.931 <r < -.739), while PCV
and test length were positively correlated (.552 < r <.873). These results align with the expected
relationships among these three variables summarized in Table 2.

Lastly, the parametric procedures (T-GDI and D-GDI) exhibited a large test overlap rate
(.258 < TOR <.539), indicating that some items were overexposed while others were underused.
On the other hand, the procedures based on the R-DINA model showed a much lower TOR (.056
<TOR <.176), suggesting a more balanced use of the item bank.

Discussion

CDM is a family of restricted latent class models that can enhance educational formative
assessments by identifying students’ strengths and weaknesses (de la Torre & Minchen, 2014;
Paulsen & Valdivia, 2021). Despite the significant methodological advancements within the CDM
framework, the number of applied studies remains limited (Sessoms & Henson, 2018). One
potential reason for this could be a misalignment between the focus of theoretical research and
practical needs. Although recent efforts have concentrated on developing and testing CDM
procedures for small-scale assessments or suboptimal conditions (e.g., Chiu & Douglas, 2013;
Chiu et al., 2018; W. Ma & Jiang, 2021; N§jera, Abad, et al., 2023; Oka & Okada, 2021; Paulsen
& Valdivia, 2021), these developments have primarily focused on traditional “paper-and-pencil”
assessments. However, the educational goals of CDM require efficient testing to be effectively
integrated as an evaluation tool throughout a course to guide formative assessment. To address
this, the present paper proposes and evaluates a procedure that combines the R-DINA model with
the CD-CAT framework, enabling diagnostic, contrastable, and efficient assessments in small-
scale contexts, such as those typical in educational settings. This new approach is flexible enough

to accommodate two types of scenarios: a traditional one where a calibration sample is used to
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estimate item parameters, which are then administered adaptively to new examinees, and a more
innovative approach aligned with the NPS method (Chang et al., 2018), where the CD-CAT can
be applied without a calibration sample, as the parameter of the R-DINA model is calibrated on-
the-fly. In this paper, two different variants have been proposed for each scenario. In the former,
after calibrating the item bank, either the GDI or the NPS item selection rule can be used for the
adaptive administration. In the latter, ML or BM estimation can be employed for calibrating the ¢
parameter on-the-fly.

In the simulation study, the performance of the four different implementations of the
proposed method was compared to that of the traditional CD-CAT, using the well-known DINA
model for calibration and the GDI item selection rule. The results indicate that when the calibration
sample is smaller than 100 examinees, the DINA model struggles to obtain accurate item
parameters due to overfitting, leading to extreme posterior probabilities and, in turn, to reliability
overestimation. These findings are particularly problematic in an adaptative testing situation, as
they cause the CD-CAT to stop before reaching the desired level of precision, resulting in
inaccurate assessments. In contrast, the two new procedures based on the R-DINA with a
calibration sample, namely the R-GDI and R-NPS, performed satisfactorily across all conditions
in terms of posterior probability recovery (relative measurement precision), classification
accuracy, and test overlap rate. These results are consistent with previous work comparing models
with varying degrees of complexity, which has found that simpler models may be preferred over
more complex ones, even when the latter are closer to the data generation process, in conditions
where the available information is insufficient to estimate several parameters (Néjera, Abad et al.,
2023; Sorrel, N4jera et al., 2021). While GDI and NPS differ in how they define item discrimination

and treat prior information, their comparable performance under the R-DINA model likely stems
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from relying on the same underlying classification mechanism. When both rules select similar
items, the resulting classifications tend to align. This practical convergence, despite theoretical
differences, highlights a potential pathway for connecting parametric and nonparametric CDMs,
and invites further exploration into the conditions under which such alignment occurs (C. Ma et
al., 2023; Najera, Abad et al., 2023). To achieve these satisfactory results, the new R-GDI and R-
NPS methods tended to administer a larger number of items. However, these longer tests are offset
by much greater confidence in the estimates and classification accuracy they provided compared
to the traditional CD-CAT when the calibration sample size is small.

Regarding the two proposed calibration-free procedures, both methods provided similar
results, which were generally satisfactory except for low-quality items, where they tended to
overestimate reliability and, like the DINA model, resulted in low classification accuracy. It should
be highlighted that these generally satisfactory results were obtained using an on-the-fly estimation
approach with responses from single individuals (i.e., N=1). One reason why R-NPSw performed
very similarly to the R-NPSgum is the content restriction imposed in the CD-CAT; without this
restriction, R-NPSmr, would have terminated the test much earlier than R-NPSgm due to the
boundary problem (see Figure 1). The need to administer additional items to comply with the
content restriction helped achieve a more accurate estimation of the ¢ parameter using maximum
likelihood.

Limitations, Future Research, and Practical Recommendations

The study is not without limitations, which are listed here to be considered when
interpreting these results and in future research. First, it is worth noting that this study employed
GDI as a representative of parametric item selection rules, but many other alternatives are available

(e.g., Kaplan et al., 2015; C. Wang, 2013; Xu et al., 2016). However, it should also be noted that
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many of these selection rules are expected to yield similar results when considering the
relationships between them (W. Wang et al., 2020). There is a similar situation with nonparametric
item selection rules: an auxiliary analysis revealed that CD-CAT using the R-DINA model
performed similarly with either the NPS or NDBS rule (see Online Appendix). For studies focusing
more on the comparison between parametric and nonparametric rules, Chiu and Chang (2021) can
be consulted. Second, the data were generated using a single model, the DINA model, due to its
popularity. The results should be generalizable to other models, such as DINO (Templin & Henson,
2006), considering it is equally complex (Kéhn & Chiu, 2016). It would be beneficial to extend
the proposal to other types of data (e.g., polytomous data, Gao et al., 2020) and models (e.g.,
multiple strategies, D. Wang et al., 2024; coded distractors, Y. Wang et al., 2024). Finally, a simple
and widely used stopping rule was chosen, aligned with those commonly employed in existing
CD-CAT applications (Li et al., 2023) and incorporated into freely available software, such as the
R package ‘cdcatR’ (Sorrel et al., 2022). This rule, based on posterior probabilities, can be directly
interpreted in terms of expected reliability; in this regard, the use of the R-DINA as a bridge
between parametric and nonparametric CDM enables retrieving this reliability information from
nonparametric procedures (e.g., NPC, NPS, NDBS). Moreover, as long as the posterior probability
and item parameters are accurately estimated, any other stopping rules based on this information
are expected to perform adequately. Future studies may focus on the comparison of different
stopping criteria to discuss potential benefits of other alternatives (e.g., Guo & Zheng, 2019; Li
and Zheng, 2024).

The proposed procedures can be employed to enhance formative assessments in real-world
settings, as they offer solutions to the challenges of small sample sizes and time constraints that

are common in many educational contexts. Specifically, the use of a model with low
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parameterization, such as the R-DINA developed here for its application in variable test length
adaptive testing, should allow for efficient, accurate classifications. This enables teachers to focus
less on testing time and implement tailored instruction based on the strengths and weaknesses
detected in students. There are a few important considerations. The first concerns the restrictive
nature of the R-DINA model, which underpins the four proposed CD-CAT procedures. The R-
DINA model assumes a conjunctive relationship between attributes, which may or may not be
appropriate. Although the R-DINA model has been shown to outperform the DINA model in small-
scale settings, even when the DINA model was the generating model, it is essential to carefully
check model fit to ensure that the conjunctive item response function is suitable for the data
(N4jera, Abad, et al., 2023). The same caution applies to the disjunctive rule used in the R-DINO
and DINO models. It is possible that no reduced model can fully capture the complexity of a given
dataset, in which case a more general model should be preferred. However, general models require
larger sample sizes to achieve accurate estimates, so there is currently no optimal solution for this
inconvenient scenario. Thus, it is particularly important to carefully design the assessment when
working with small samples, reflecting on the item response process (e.g., conjunctive, disjunctive,
general). In this vein, evaluations of mathematical abilities and language mastery have commonly
found that, in these domains, the conjunctive rule (i.e., DINA model) often reflects the relationship
between the attributes (e.g., George & Robitzsch, 2021; Grof3 et al., 2016).

Given these considerations, we recommend using the proposed methods primarily in low-
stakes contexts, which naturally align with the purpose of formative assessment (Paulsen &
Valdivia, 2021). Additionally, when designing an educational CD-CAT project, the R-NPSm and
R-NPSgMm methods could be utilized with the first cohort when there is no prior informative

available for model calibration. For subsequent cohorts, a small calibration sample from previous

33



VARIABLE-LENGTH CD-CAT WITH SMALL SAMPLES

287  cohorts would be available, making the R-GDI and R-NPS methods more appropriate. Once the
288  calibration sample is sufficiently large, more complex models, such as the DINA or even the G-

289  DINA model, could be compared in terms of fit and reliability to achieve an optimal solution.
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