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Abstract

This paper introduces cognitive adaptivity as a novel framework for addressing human
factors in cybersecurity during the Industry 5.0-6.0 transition, with a focus on hard-to-abate
industries where digital transformation intersects sustainability constraints. While the
integration of IoT, automation, digital twins, and artificial intelligence expands industrial
efficiency, it simultaneously exposes organizations to increasingly sophisticated social
engineering and Al-powered attack vectors. Traditional resilience-based models, centered
on recovery to baseline, prove insufficient in these dynamic socio-technical ecosystems. We
propose cognitive adaptivity as an advancement beyond resilience and antifragility, de-
fined by three interrelated dimensions: learning, anticipation, and human-AlI co-evolution.
Through an in-depth case study of the ceramic value chain, this research develops a con-
ceptual model demonstrating how organizations can embed trust calibration, behavioral
evolution, sustainability integration, and systemic antifragility into their cybersecurity
strategies. The findings highlight that effective protection in Industry 6.0 environments
requires continuous behavioral adaptation and collaborative intelligence rather than static
controls. This study contributes to cybersecurity literature by positioning cognitive adap-
tivity as a socio-technical capability that redefines the human—-Al interface in industrial
security. Practically, it shows how organizations in hard-to-abate sectors can align cyber-
security governance with sustainability imperatives and regulatory frameworks such as
the CSRD, turning security from a compliance burden into a strategic enabler of resilience,
competitiveness, and responsible digital transformation.

Keywords: Al-enabled cybersecurity; human factors in cybersecurity; cognitive adaptivity;
Industry 5.0; Industry 6.0; hard-to-abate industries

1. Introduction

The industrial landscape is experiencing profound transformations as organizations
navigate the transition from Industry 5.0’s human-centric paradigm toward the emerging
cognitive ecosystems of Industry 6.0. This evolution presents challenges for hard-to-abate
industries, sectors characterized by high energy consumption, complex supply chains, and
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significant environmental impact, where the imperative for digital transformation must be
balanced against sustainability constraints and regulatory compliance requirements [1].

While the integration of IoT devices, automation systems, digital twins, and artificial
intelligence offers unprecedented opportunities for operational efficiency and competitive
advantage, it simultaneously exposes organizations to new categories of cyber threats. Tra-
ditional cybersecurity frameworks, largely designed for static technological environments,
prove inadequate when confronted with the dynamic, human-Al collaborative systems that
characterize modern industrial ecosystems [2]. The ceramic industry exemplifies these chal-
lenges, representing a paradigmatic case of how hard-to-abate sectors must simultaneously
pursue digital innovation, environmental responsibility, and cybersecurity resilience [3].

Current cybersecurity approaches in industrial contexts predominantly focus on tech-
nical vulnerabilities (network security, system hardening, and threat detection) while
underestimating the critical role of human factors [4]. Social engineering attacks, which
exploit behavioral vulnerabilities rather than technical flaws, represent an increasingly
sophisticated threat vector that traditional security measures struggle to address [5]. The
emergence of Al-powered phishing, deepfakes, and behavioral manipulation techniques
requires a fundamental reconceptualization of cybersecurity strategy, moving beyond
reactive defense mechanisms toward proactive adaptation capabilities [6].

The gap between traditional resilience-focused cybersecurity [7] models and the
requirements of Industry 5.0-6.0 [8] environments becomes particularly evident in hard-to-
abate industries. These sectors face the dual challenge of implementing advanced digital
technologies while maintaining operational continuity under stringent environmental and
regulatory constraints [9]. The concept of resilience, the ability to withstand and recover
from disruptions, while valuable, proves insufficient for environments where threats are
not merely external disruptions but integral components of an evolving socio-technical
ecosystem [10].

This paper introduces the concept of cognitive adaptivity as a theoretical framework
for understanding and managing human factors in cybersecurity during the Industry
5.0-6.0 transition. Cognitive adaptivity encompasses the ability of individuals and or-
ganizations to learn from security incidents, anticipate emerging threats, and co-evolve
with intelligent systems to convert potential vulnerabilities into opportunities for systemic
improvement. Unlike traditional resilience models that emphasize recovery and return to
baseline functionality [11], cognitive adaptivity prioritizes continuous learning, behavioral
evolution, and human-AI symbiosis as foundational elements of cybersecurity strategy.
The ceramic value chain serves as our empirical foundation, providing insights into how
cognitive adaptivity manifests across different stages of industrial evolution. From the lin-
ear, automation-focused systems of Industry 4.0 [12] through the human-centric approaches
of Industry 5.0 [13] to the emerging cognitive ecosystems of Industry 6.0 [3], the ceramic
industry’s transformation illustrates the evolving nature of cybersecurity challenges and
the corresponding need for adaptive security frameworks [14].

This study addresses three interconnected research questions:

e RQ1: How do human factors in cybersecurity evolve during the transition from
Industry 5.0 to Industry 6.0, particularly in hard-to-abate industries?

e RQ2: What distinguishes cognitive adaptivity from traditional resilience approaches
in addressing behavioral cybersecurity vulnerabilities?

e  RQ3: How can organizations in hard-to-abate industries implement cognitive adaptiv-
ity frameworks to enhance both cybersecurity posture and operational sustainability?
The paper contributes to cybersecurity literature by developing a novel theoretical

framework that integrates human behavioral dynamics with technological evolution in
industrial contexts. It advances understanding of how cognitive adaptivity can serve as a
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bridge between human-centric Industry 5.0 principles and the cognitive ecosystems of In-
dustry 6.0. The empirical application to the ceramic industry [15] provides practical insights
for hard-to-abate sectors navigating similar digital transformations while maintaining focus
on sustainability and regulatory compliance.

2. Theoretical Background
2.1. From Industry 3.0 to Industry 6.0: The Evolution of Human-Technology Interaction

The progression from Industry 3.0 to the emerging Industry 6.0 paradigm represents
a fundamental shift in how humans interact with technological systems, with profound
implications for cybersecurity. Industry 3.0, characterized by electronic automation and
computerized manufacturing, established the foundation for digital vulnerabilities while
maintaining clear boundaries between human operators and automated systems [16].
Cybersecurity concerns in this era were predominantly technical, focusing on system
protection and access control within relatively predictable operational environments [17].

Industry 4.0 introduced cyber-physical systems, IoT connectivity, and data-driven
decision-making, dramatically expanding the attack surface while simultaneously increas-
ing the complexity of human-system interactions [18]. The interconnectedness of Industry
4.0 systems created new categories of vulnerabilities, where human behavior could have
cascading effects across networked manufacturing environments. Social engineering at-
tacks began to exploit not only individual vulnerabilities but also the interdependencies
between human operators and connected systems [19].

The transition to Industry 5.0 marked a paradigm shift toward human centricity,
emphasizing collaboration between humans and intelligent machines. This evolution posi-
tioned humans not merely as operators of technological systems but as active participants
in adaptive manufacturing processes [20]. While this human-centric approach enhanced
flexibility and innovation capacity, it also introduced new behavioral vulnerabilities. The
increased reliance on human judgment, creativity, and adaptability created opportunities
for sophisticated social engineering attacks that could manipulate human decision-making
within collaborative human-Al systems [21].

Industry 6.0, while still emergent, promises to integrate cognitive technologies, au-
tonomous learning systems, and systemic sustainability principles into manufacturing
environments. This paradigm envisions cognitive ecosystems where humans, Al systems,
and physical processes co-evolve in real-time, creating unprecedented opportunities for op-
erational efficiency and environmental responsibility. However, this cognitive integration
also presents novel cybersecurity challenges, as threats can now target not only individual
human behavior but also the learning and adaptation mechanisms that govern human-AI
collaboration. The progression across these industrial paradigms reveals an increasing
emphasis on human agency within technological systems, accompanied by growing sophis-
tication in the behavioral dimensions of cybersecurity threats. Traditional security models,
designed for static technological environments with clear human-machine boundaries,
prove inadequate for the dynamic, collaborative ecosystems that characterize contemporary
industrial settings.

The evolution of cybersecurity threats across industrial paradigms reveals a concerning
trajectory where human factor vulnerabilities have become increasingly prominent and
sophisticated [22]. Table 1 synthesizes empirical evidence from the ceramic industry and
broader manufacturing sectors to illustrate how the nature of cybersecurity challenges
has fundamentally shifted from predominantly technical vulnerabilities toward complex
behavioral and cognitive exploitations.
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Table 1. Evolution of Cybersecurity Threats Across Industrial Paradigms in Hard-to-Abate Industries.

INDUSTRIAL PRIMARY THREAT HUMAN FACTOR %%gggﬁgg £ gé]gSKS
ERA CATEGORIES VULNERABILITIES APPROACH RATE (%)
Industry 3.0 Basic rpalware, Limited interaction, Technical controls,
(1970-2010) unauthorized access, operator error. access management 15-20
data theft. p ’ & '
IoT exploitation, supply Cognitive overload, Hybrid
Industry 4.0 : . . .
(2011-2020) chain attacks, data automation bias, technical-human 25-35
manipulation. complexity confusion. controls.
Advanced social Trust exploitation, '
: . . human-AI Human-centric
Industry 5.0 engineering, Al-assisted o . .
. . miscalibration, security, behavioral 40-50
(2021-2025) phishing, collaborative . .
. . collaborative training.
system manipulation. vulnerabilities.
Deepfakes, cognitive Symbiotic
Industry 6.0 manipulation, autonomous dependencies, Cognitive adaptivity 20-30
(2025+) attack systems, learning cognitive adaptation frameworks.
system poisoning. exploitation.

The data reveal a particularly troubling pattern: while technical security measures
have advanced significantly, attack success rates have paradoxically increased through
Industry 4.0 and 5.0, peaking at 40-50% in human-centric Industry 5.0 environments. This
trend reflects the growing sophistication of adversaries in exploiting human behavioral
patterns rather than technical system weaknesses. The projected reduction in Industry
6.0 environments assumes successful implementation of cognitive adaptivity frameworks,
though this remains empirically unvalidated given the emergent nature of these systems.
Of particular significance is the shift in human factor vulnerabilities from simple operator
errors in Industry 3.0 to complex symbiotic dependencies in Industry 6.0. This evolution
suggests that traditional cybersecurity training and awareness programs, designed for
discrete human-system interactions, may prove inadequate for environments characterized
by continuous human-AlI collaboration and mutual adaptation.

2.2. Human Factors in Cybersecurity: Beyond Technical Vulnerabilities

Human factors in cybersecurity encompass the behavioral, cognitive, and social di-
mensions of security vulnerabilities that arise from human interaction with technological
systems. Unlike technical vulnerabilities that can be addressed through system updates or
configuration changes, human factors involve complex psychological and social dynamics
that resist simple technical solutions [23].

Social engineering represents the most significant manifestation of human factors in
cybersecurity, exploiting psychological principles such as authority bias, reciprocity, and
time pressure to manipulate human behavior. Traditional social engineering attacks, such as
phishing emails and pretexting, relied on relatively simple deception techniques. However,
the advent of Al-powered attack vectors has dramatically increased the sophistication
and effectiveness of behavioral manipulation. Al enables realistic content creation and
advanced targeting that amplifies traditional SE attacks [24].

The current cybersecurity literature identifies several key human factors that con-
tribute to organizational vulnerability: cognitive overload resulting from complex security
protocols, automation bias leading to over-reliance on technological safeguards, and social
dynamics that create pressure to bypass security measures for operational efficiency [25].
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These factors are particularly pronounced in industrial settings where operational continu-
ity often takes precedence over security considerations.

Existing approaches to addressing human factors in cybersecurity typically focus on
training programs, awareness campaigns, and behavioral interventions designed to modify
individual behavior [26]. However, these approaches often fail to account for the systemic
nature of human-technology interaction in modern industrial environments. They treat
human behavior as a variable to be controlled rather than as an adaptive capacity to be
developed and leveraged [27].

The limitations of the current human factors approach become particularly evident in
the context of Industry 5.0 [20] and 6.0 [28] environments, where human-AI collaboration
requires continuous adaptation and learning. Static training programs and fixed security
protocols cannot adequately prepare individuals for the dynamic, evolving threat landscape
that characterizes cognitive industrial ecosystems [29].

2.3. From Resilience to Cognitive Adaptivity: A Theoretical Framework

The traditional notion of resilience in cybersecurity emphasizes robustness and re-
covery after disruption [30]. However, such approaches remain static within increasingly
dynamic socio-technical systems. Cognitive adaptivity advances this view by integrating
learning, anticipation, and human—AlI co-evolution into a continuous cycle of behavioral
evolution. It reframes cybersecurity not as a return to normality but as a capacity for
ongoing improvement driven by human-machine collaboration. Empirical reviews in
Cyber-Physical Systems show that adaptive anomaly detection methods, which combine
model adaptation and continuous learning, outperform static detection models when facing
evolving attacks [31].

Cognitive adaptivity represents a theoretical advancement beyond traditional re-
silience models, encompassing three fundamental dimensions: learning, anticipation, and
co-evolution. Learning involves the capacity to extract actionable insights from security
incidents, behavioral patterns, and threat intelligence to inform future security decisions.
Anticipation refers to the ability to identify emerging threats, recognize behavioral risk
factors, and proactively adjust security strategies before incidents occur. Co-evolution
describes the dynamic process through which humans and Al systems mutually adapt their
behaviors, capabilities, and interaction patterns to enhance overall system security. Studies
exploring adaptive strategic approaches that integrate Al for cybersecurity demonstrate
that firms employing predictive Al capabilities and feedback loops are better positioned to
anticipate emerging threats [32].

Unlike resilience, which focuses on maintaining stability in the face of disruption,
cognitive adaptivity embraces change as a fundamental characteristic of secure systems. It
recognizes that effective cybersecurity in Industry 6.0 environments requires continuous
behavioral evolution, where humans and Al systems collaboratively develop increasingly
sophisticated responses to emerging threats. Agentic Al research underscores the risks of
human-AlI systems in which the Al component itself requires adaptation, not merely as a
tool, but as a partner in evolving threat contexts [33].

Cognitive adaptivity differs from related concepts such as antifragility, which focuses
on gaining strength from stressors, by emphasizing the collaborative and cognitive di-
mensions of adaptation. While antifragile systems become stronger through exposure to
volatility, cognitively adaptive systems become smarter through collaborative learning
and behavioral evolution. Reviews of resilient services in dynamic environments suggest
that strategies combining adaptability, learning mechanisms, and behavioral feedback
outperform purely resilient designs [34].
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The theoretical framework of cognitive adaptivity is particularly relevant for hard-
to-abate industries, where the constraints of environmental sustainability and regulatory
compliance create additional complexity in cybersecurity strategy [35]. These industries
cannot simply adopt generic cybersecurity solutions but must develop adaptive approaches
that balance security requirements with operational sustainability and regulatory align-
ment [36]. Recent advances in Al-enabled cybersecurity confirm the growing integration
of adaptive analytics and human-centric interfaces for threat anticipation. These develop-
ments reinforce the theoretical assumptions of cognitive adaptivity, particularly in aligning
behavioral learning with automated detection and decision-support mechanisms [37].

3. Methodological Approach
3.1. Research Design and Philosophical Foundations

This research employs a single-case study design with embedded units of analysis,
focusing on the ceramic value chain as a paradigmatic example of hard-to-abate industries
navigating cybersecurity challenges during the Industry 5.0-6.0 transition. The method-
ological approach is grounded in critical realist epistemology, which acknowledges that
while empirical observations are theory-laden, underlying causal mechanisms can be iden-
tified through systematic investigation of observable phenomena and their contextual
conditions [38].

The choice of single-case methodology is justified by the ceramic industry’s charac-
teristics as a revelatory case that provides unique insights into cybersecurity challenges
facing hard-to-abate sectors. The ceramic industry exhibits high energy intensity, averaging
4-5 GJ per ton of finished product, with approximately 85% derived from natural gas for
kilns and drying processes [39]. Combined with complex supply chain interdependencies,
significant environmental regulatory pressures, and ongoing digital transformation ini-
tiatives, these characteristics make it representative of broader challenges facing similar
industrial sectors [40]. This focus on a single, deeply investigated case aligns with recent
empirical cybersecurity research that emphasizes depth over breadth to uncover latent
mechanism [41].

The research adopts an abductive reasoning approach, iteratively moving between em-
pirical observations and theoretical development to construct explanatory frameworks that
account for observed phenomena while extending existing theoretical understanding [42].
This approach proves particularly appropriate for investigating emerging concepts such
as cognitive adaptivity and Industry 6.0, where deductive hypothesis testing may be pre-
mature and purely inductive approaches may miss important theoretical connections [43].
Previous works on cyber-resilience and sensemaking show that abductive designs help
expose latent causal structures in complex socio-technical settings [44].

3.2. Data Collection Strategy
3.2.1. Primary Data Collection: Semi-Structured Interviews

The primary data collection centered on semi-structured interviews conducted be-
tween March 2025 and August 2025 with key stakeholders across the ceramic value chain.
The interview approach was selected to balance systematic data collection with flexibility
to explore emergent themes and contextual nuances that might not be captured through
structured surveys or purely observational methods.

Sampling Strategy and Participant Selection

Purposive sampling was employed to ensure representation across different segments
of the ceramic value chain and varying levels of digital maturity. Selection criteria in-
cluded: (1) formal decision-making authority in cybersecurity, digital transformation, or
risk management; (2) minimum five years of experience in the ceramic industry; (3) direct
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involvement in Industry 4.0 or 5.0 technology implementation; and (4) willingness to
discuss cybersecurity challenges and adaptive strategies. The final sample comprised 86
participants distributed across five stakeholder categories:

e  Tile Manufacturers (n = 67): Including production managers (n = 23), IT/cybersecurity
personnel (n = 19), quality control managers (n = 15), and senior executives (n = 10)

e  Raw Material Suppliers (n = 5): Supply chain managers and sustainability officers

e  Glaze and Ink Producers (n = 6): R&D managers and production supervisors

e  Machinery Manufacturers (n = 5): Technical sales managers and IoT implementation
specialists

e Industry Associations (n = 3): Policy analysts and member services coordinators

Interview Protocol Development

The semi-structured interview protocol was developed through iterative pilot testing
with three industry experts and refined based on feedback regarding question clarity, topic
coverage, and interview duration. The protocol comprised four main sections:

1. Organizational Context (10-15 min): Participant background, organizational structure,
digital transformation timeline, and current cybersecurity posture

2. Human Factors in Cybersecurity (20-25 min): Experiences with social engineering, be-
havioral vulnerabilities, human-Al interaction challenges, and training effectiveness

3. Evolutionary Perspectives (15-20 min): Changes in cybersecurity threats and responses
across Industry 3.0-6.0 transition, adaptation strategies, and learning mechanisms

4.  Future Orientations (10-15 min): Expectations for Industry 6.0 development, cognitive
adaptivity concepts, and implementation challenges

Interview Execution and Quality Assurance

All interviews were conducted via secure video conferencing platforms (Microsoft
Teams or Zoom) to accommodate the geographic distribution of participants across major
ceramic production regions in Italy, Spain, and Germany. Interviews were recorded with
explicit participant consent and transcribed using professional transcription services with
subsequent accuracy verification by the research team.

Interview duration ranged from 55 to 90 min (average: 72 min), with longer inter-
views typically involving senior executives or participants with extensive cybersecurity
experience. The interview process employed several quality assurance measures:

e  Bracketing techniques to minimize researcher bias through explicit acknowledgment
of prior assumptions

e  Member checking with 25% of participants to verify interpretation accuracy

e  Peer debriefing sessions following each interview batch to identify emerging patterns
and potential analytical blind spots

e  Saturation monitoring through tracking of new themes and concepts to determine
data collection sufficiency

Ethical Considerations and Data Protection

The research protocol received ethics approval from the institutional review board,
with particular attention to cybersecurity sensitivity and competitive information protection.
Participants provided informed consent for interview recording and data use, with explicit
guarantees of anonymity and confidentiality. All data were stored on encrypted servers
with access restricted to core research team members.

Given the sensitive nature of cybersecurity information, the research employed several
protective measures:

e  Anonymization protocols removing all identifying information from transcripts
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e  Aggregate reporting ensuring individual responses could not be traced to specific
organizations

e  Sensitive information exclusion allowing participants to designate certain information
as off-record

e Data retention limits with automatic deletion of identifying information after
two years

3.2.2. Secondary Data Collection

Secondary data collection complemented primary interviews through systematic re-
view of industry reports, regulatory documents, academic literature, and trade publications
published between 2020 and 2024. This temporal focus captured the Industry 5.0 transition
period while providing baseline data for Industry 4.0 comparisons.

Industry Reports and White Papers

e  Annual cybersecurity reports from major ceramics industry associations
e  Technology adoption surveys from manufacturing consultancies
e  Threat intelligence reports from industrial cybersecurity vendors
e  Digital transformation case studies from leading ceramic manufacturers

Regulatory and Policy Documents

European Union cybersecurity directives and implementation guidance
CSRD requirements and industry-specific sustainability reporting standards
National Industry 4.0 strategy documents from major ceramic-producing countries

Insurance industry risk assessments for manufacturing cybersecurity
Academic and Technical Literature

Peer-reviewed articles on industrial cybersecurity and human factors (2020-2024)
Conference proceedings from manufacturing technology and cybersecurity conferences
Technical standards documents for industrial IoT and cyber-physical systems

Dissertation research on related topics from European technical universities

3.3. Data Analysis Approach
3.3.1. Qualitative Data Analysis

Interview transcripts underwent systematic thematic analysis using a hybrid deductive-
inductive coding approach. Initial deductive codes derived from existing cybersecurity
and industrial transition literature, while inductive codes emerged from patterns observed
in interview data. First-cycle coding employed both descriptive and process coding tech-
niques to capture what participants discussed and how they described their experiences.
Second-cycle coding utilized pattern coding to identify relationships between initial codes
and develop higher-order thematic categories. Third-cycle coding focused on theoretical
development, connecting empirical patterns to conceptual frameworks and identifying
areas where existing theory proved inadequate. The coding process employed a hybrid
approach combining commercially available Al language models with human analytical
oversight. Initial coding utilized ChatGPT-5 for thematic pattern recognition and Claude-
3.5 Sonnet for conceptual analysis, enabling rapid processing of the 86 interview transcripts
while maintaining analytical rigor.

Multi-AI Collaborative Analysis Protocol

The research team developed a three-stage analytical framework leveraging different
Al capabilities while maintaining human interpretive control:

1.  Primary Thematic Analysis (ChatGPT-5): Custom prompts were developed to identify
recurring themes, behavioral patterns, and cybersecurity vulnerabilities across tran-
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scripts. ChatGPT-5’s large context window enabled analysis of complete interviews
while maintaining thematic consistency.

2. Conceptual Validation (Claude-3.5): Claude was employed for deeper conceptual anal-
ysis, particularly for identifying theoretical connections and validating the emergence
of the cognitive adaptivity framework. Its analytical capabilities proved valuable for
connecting empirical observations to theoretical constructs.

3. Comparative Analysis (Microsoft Copilot): Copilot’s integration with enterprise
search capabilities enabled cross-referencing of interview findings with secondary data
sources, identifying convergences and divergences between stakeholder perceptions
and documented industry trends.

Quality Assurance and Human Oversight

e Inter-Al Validation: Each transcript underwent analysis by at least two different Al
models, with outputs compared for consistency and completeness

° Human Verification: Two independent researchers validated all Al-generated codes,
achieving 89% agreement on thematic categorizations

e  Triangulation Protocol: Al-identified patterns were systematically cross-checked
against secondary data sources and existing literature

Prompt Engineering for Domain Specificity

e  Custom prompts were developed for cybersecurity and industrial transition analysis,
including;:

e  Industry-specific terminology recognition (ceramic manufacturing processes, cyberse-
curity threats)

e  Behavioral pattern identification in human-Al interaction contexts

e  Temporal analysis across Industry 3.0-6.0 transitions

Methodological Transparency

All Al-generated analyses remained under human supervision, with no interpreta-
tions accepted without explicit researcher validation. The multi-Al approach enabled
cross-validation of findings while maintaining the nuanced interpretation essential for the-
oretical development. This methodology demonstrates practical integration of Al tools in
qualitative research while preserving analytical rigor and interpretive validity. Ultimately,
responsibility for all analytical judgments and theoretical conclusions resided with the
human researchers.

3.3.2. Mixed-Methods Integration

The integration of qualitative interview data with quantitative secondary data fol-
lowed a concurrent triangulation design, where different data types were analyzed sep-
arately and then compared for convergence, complementarity, and contradiction. This
approach enabled identification of areas where stakeholder perceptions aligned with or
diverged from documented industry trends.

4. The Ceramic Value Chain and Cybersecurity Challenges

The cybersecurity landscape within the ceramic value chain has undergone a dramatic
transformation over the past decade, with implications that extend far beyond simple cost
calculations. Table 2 presents empirical data gathered from industry stakeholders, revealing
patterns that challenge conventional assumptions about industrial cybersecurity trends
and the effectiveness of human-centric approaches.
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Table 2. Cybersecurity Incident Analysis in the Ceramic Value Chain (2015-2024).
RECOVERY
STAKEHOLDER INDUSTRY 4.0 ERA INDUSTRY 5.0 ERA COGNITIVE LOAD IMPROVEMENT
CATEGORY (2015-2020) (2021-2024) IMPACT WITH
ADAPTIVITY
Tile Incidents: 24/year, Incidents: 16/year, High—Complex 65% faster recover
Manufacturers Cost: €180K avg Cost: €320K avg HMI systems ? y

Raw Material

Incidents: 8/year,

Incidents: 12/year,

Medium—Supply

45% faster recovery

Suppliers Cost: €45K avg Cost: €85K avg chain integration
Glaze/Ink Incidents: 6/year, Incidents: 10/year, High—R&D 70% faster recover
Producers Cost: €65K avg Cost: €120K avg system targets ? y
Machinery Incidents: 12/year, Incidents: 8/year, Medium—Technical o
Manufacturers Cost: €95K avg Cost: €150K avg expertise buffer 50% faster recovery
Industry Incidents: 3/year, Incidents: 5/year, Low—Shared o
Associations Cost: €25K avg Cost: €40K avg intelligence benefits 80% faster recovery

Total Industry
Impact

€2.1M/year average

€3.8M/year average

Projected 60%
cost reduction

The apparent paradox of fewer incidents but higher costs per incident during the
Industry 5.0 era reflects the increasing sophistication and targeted nature of attacks on
human-centric systems. While tile manufacturers experienced a 33% reduction in incident
frequency, the average cost per incident nearly doubled, suggesting that attackers have
shifted from opportunistic broad-spectrum attacks to carefully orchestrated campaigns
that exploit the collaborative nature of Industry 5.0 systems. The cognitive load impact
assessments reveal significant variation across different stakeholder categories within the
ceramic value chain. Organizations with high research and development activities, such
as glaze and ink producers, demonstrate elevated vulnerability to cognitive manipula-
tion attacks, while those benefiting from shared intelligence networks, such as industry
associations, show enhanced resilience. This variation suggests that cognitive adaptivity im-
plementation strategies must be tailored to specific operational contexts rather than applied
uniformly across industrial sectors. The projected recovery improvements with cognitive
adaptivity implementation reflect stakeholder assessments of pilot programs and early-
stage deployments rather than comprehensive empirical validation. These estimates should
be interpreted as indicators of potential rather than guaranteed outcomes, particularly
given the nascent state of Industry 6.0 technologies and cognitive adaptivity frameworks.

Figure 1 traces the evolution of cyberattack sophistication and defense capabilities
from 2000 to 2030, contextualized across the industrial transitions from Industry 3.0 to
Industry 6.0. The red curve illustrates the rising sophistication of attacks, starting with
basic malware and simple social engineering in 2000, escalating through the emergence
of organized cybercrime and phishing campaigns in 2005, and advancing to advanced
persistent threats (APTs) and targeted industrial attacks by 2010. The intensity increased
further with nation-state actors and supply chain compromises in 2015, culminating in
Al-assisted attacks and COVID-related exploitation in 2020. The peak of sophistication is
projected in 2025, driven by deep fakes, behavioral manipulation, and IoT botnets, before
a decline by 2030 due to the deployment of cognitive adaptivity countermeasures. The
blue curve represents the evolution of defense capabilities, which lagged behind during the
critical years of Industry 4.0-5.0. Starting with antivirus and firewalls in 2000, the sector
advanced to IDS/IPS systems and awareness training by 2005, SIEM and compliance frame-
works by 2010, and later integrated threat intelligence and incident response mechanisms
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in 2015. By 2020, Al-powered detection and early zero-trust architectures emerged, with
projections of advanced Al security and behavioral analytics reaching maturity by 2025.
Full cognitive adaptivity frameworks and human—AlI symbiosis is expected to raise defense
capabilities to their peak by 2030. The shaded area (2010-2025) highlights the “Critical
Vulnerability Window,” where attack sophistication substantially outpaced defense. This
gap illustrates the heightened exposure faced by industries, particularly during the Indus-
try 4.0-5.0 transition. The projected convergence by 2030 underscores the importance of
embedding cognitive adaptivity to secure future industrial ecosystems under Industry 6.0.

100.00 ! 1 Cognitive
1 s 2
INDUSTRY 3.0 INDUSTRY 4.0 i INDUSTRY 5.0 . Adaptivity
90.00 1
I
1
80.00 '

INDUSTRY 6.0

Sophistication Level
3 3
8 8

1
)
[
'
2000 2005 2010 2015 2020 2025 2030
Timeline

—a— Attack Sophistication —+—Defense Capabilities

Figure 1. Evolution of cyberattack sophistication and defense capabilities from Industry 3.0 to
Industry 6.0 (2000-2030). The figure highlights the critical vulnerability window (2010-2025) and the
projected convergence enabled by cognitive adaptivity. The yellow area has been explained in the
text, referring to it as a “shaded area”.

4.1. Industry 3.0-4.0: Foundation of Digital Vulnerabilities

The ceramic industry’s journey through Industry 3.0 was characterized by the introduc-
tion of electronic automation systems that replaced manual processes with computerized
controls. During this period, cybersecurity threats were relatively straightforward, con-
sisting primarily of unauthorized access attempts and basic malware infections. Human
factors played a limited role in cybersecurity, as most workers interacted with standalone
systems that had minimal connectivity to external networks. The primary cybersecurity
challenges during this era involved protecting centralized control systems and ensuring
data integrity for production management systems. Phishing attacks, when they occurred,
typically targeted administrative personnel with access to business systems rather than
production operators. The clear separation between information technology (IT) and op-
erational technology (OT) systems provided natural barriers that contained the impact of
most security incidents.

However, even in this relatively simple technological environment, early indicators of
human factors vulnerabilities emerged. Production managers and quality control personnel
began to rely on digital systems for critical decision-making, creating opportunities for
manipulation through data integrity attacks. Social engineering attempts focused on
gaining access to production schedules, quality control data, and customer information
through deception of office personnel.

The transition to Industry 4.0 introduced IoT sensors, connected machinery, and data
integration platforms that dramatically expanded both the attack surface and the complex-
ity of human-system interactions. Predictive maintenance systems, quality monitoring
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sensors, and supply chain integration platforms created new categories of vulnerability
while simultaneously increasing operational dependence on digital systems. In Industry
4.0 environments, cyber-attacks began to target not only data confidentiality but also pro-
duction continuity and product quality. A successful attack on temperature monitoring
systems could compromise entire production batches, while manipulation of supply chain
data could disrupt just-in-time delivery schedules. These attacks required a more sophisti-
cated understanding of ceramic manufacturing processes and created greater potential for
physical and financial damage.

Human factors vulnerabilities during the Industry 4.0 transition manifested primarily
through social engineering attacks that exploited the increasing complexity of integrated
systems. Operators who were comfortable with mechanical processes found themselves
responsible for managing digital interfaces that they did not fully understand. This knowl-
edge gap created opportunities for attackers to manipulate human behavior by exploiting
uncertainty and providing false guidance or malicious instructions.

4.2. Industry 5.0: Human-Centric Vulnerabilities and Collaborative Risks

Industry 5.0’s emphasis on human-machine collaboration introduced fundamentally
new categories of cybersecurity challenges. The ceramic industry’s adoption of collab-
orative robotics (cobots), Al-assisted design systems, and human—AI decision-making
platforms created environments where human behavior directly influenced system security
through continuous interaction rather than discrete operational tasks.

The human-centric nature of Industry 5.0 systems created vulnerabilities that could
not be addressed through traditional technical controls. Collaborative design platforms
that enabled real-time interaction between human designers and Al systems became targets
for attacks that sought to manipulate design parameters, compromise intellectual property,
or introduce defects into production specifications. These attacks required sophisticated
understanding of both human psychology and technical systems.

Figure 2 maps the main cybersecurity vulnerabilities along the ceramic value chain,
highlighting how risks propagate from raw material suppliers to end customers. The
color coding indicates risk levels, with green for low risk, blue for medium risk, and red
for high risk. This visualization shows how critical vulnerabilities are concentrated at
the production and machinery stages, while lower risks are observed at the supplier and
customer interfaces. The figure also identifies points where cognitive adaptivity can be
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Figure 2. Ceramic Value Chain Vulnerability Mapping. The model illustrates data flow, risk levels,
and points of adaptive intervention integrated within digital-twin-based feedback systems.
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Social engineering attacks in Industry 5.0 environments became more targeted and
contextually sophisticated. Attackers began to leverage detailed knowledge of ceramic
manufacturing processes, organizational structures, and individual work patterns to create
highly personalized deception campaigns. For example, attackers might impersonate
equipment vendors to convince production managers to install malicious software updates
or modify safety parameters on collaborative systems.

The cognitive load associated with managing human-AlI collaborative systems created
new categories of human error that could be exploited for malicious purposes. Operators
working with Al-assisted quality control systems, for instance, might develop over-reliance
on automated recommendations, making them susceptible to attacks that manipulated Al
outputs to mask quality defects or production anomalies.

Trust relationships between humans and Al systems became critical attack vectors
in Industry 5.0 environments. Successful attacks often involve undermining human con-
fidence in Al recommendations while simultaneously positioning attackers as reliable
sources of alternative guidance. This manipulation of trust dynamics could lead to compro-
mise of both human judgment and Al system integrity.

The emphasis on customization and flexibility in Industry 5.0 manufacturing created
additional cybersecurity challenges as production systems needed to accommodate fre-
quent changes in specifications, processes, and operational parameters. This flexibility,
while valuable for meeting customer requirements, created opportunities for attackers to
introduce malicious changes disguised as legitimate customization requests.

4.3. Industry 6.0: Cognitive Ecosystems and Adaptive Threats

The emerging Industry 6.0 paradigm in the ceramic industry envisions cognitive
ecosystems where Al systems, human operators, and physical processes engage in con-
tinuous co-evolution to optimize performance, sustainability, and resilience. This vision
introduces unprecedented cybersecurity challenges that require fundamental reconcep-
tualization of threat models and defensive strategies. Cognitive manufacturing systems
in Industry 6.0 environments continuously learn from operational data, human behavior
patterns, and environmental conditions to improve performance and adapt to changing re-
quirements. This learning capability creates vulnerabilities where attackers can manipulate
training data, behavioral inputs, or environmental signals to influence system evolution in
malicious directions.

Al-powered threat actors represent a qualitative shift in the cybersecurity landscape
for Industry 6.0 systems. These sophisticated attacks can generate deepfakes of trusted
personnel, create convincing synthetic communications, and manipulate behavioral cues
to deceive human operators in cognitive manufacturing environments. The ability of
Al systems to learn and adapt human communication patterns makes traditional social
engineering detection techniques increasingly ineffective. The integration of sustainability
monitoring and regulatory compliance systems in Industry 6.0 creates additional attack
vectors where cybersecurity incidents can have environmental and regulatory consequences.
Attackers might manipulate emissions monitoring data, energy consumption reports, or
waste management systems to create compliance violations or environmental damage
while concealing their activities within normal operational variance.

Cognitive adaptation mechanisms that enable Industry 6.0 systems to learn from
security incidents and adjust defensive strategies can themselves become targets for attack.
Adversarial learning attacks can train defensive systems to ignore genuine threats while
over-responding to benign activities, effectively weaponizing the adaptive capabilities
that are intended to enhance security. The systemic nature of Industry 6.0 cognitive
ecosystems means that successful attacks can propagate across multiple organizational
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boundaries, affecting suppliers, customers, and partners through shared learning systems
and integrated decision-making platforms. A successful attack on one organization’s
cognitive manufacturing system could potentially influence the behavior of connected
systems throughout the value chain.

5. Conceptual Model: Cognitive Adaptivity in Hard-to-Abate Industries

The transition from resilience-based to cognitive adaptivity-based cybersecurity ap-
proaches in hard-to-abate industries can be conceptualized through a multi-dimensional
framework that addresses the unique constraints and requirements of these sectors.
This conceptual model integrates four fundamental axes: human-Al trust dynamics,
behavioral evolution mechanisms, sustainability constraints integration, and systemic
antifragility development.

Figure 3 illustrates the conceptual model of the Cognitive Adaptivity Framework. The
model is structured around four interconnected dimensions (Human-AI Trust Dynamics,
Behavioral Evolution Mechanisms, Sustainability Constraints Integration, and Systemic An-
tifragility Development) whose interactions converge in the Cognitive Adaptivity Ecosys-
tem. The clockwise flow represents the progressive reinforcement of adaptive capabilities,
while the dotted feedback arrows highlight cross-dimensional learning processes.
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Systems, Mutual
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sus ::ﬁ.” COGNITIVE BEHAVIORAL EVOLUTION
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Figure 3. Ceramic Value Chain Vulnerability Mapping. The model highlights data flow, risk levels,
and points of adaptive intervention integrated within digital-twin-based feedback systems.

5.1. Human—AI Trust Dynamics

The foundation of cognitive adaptivity rests on the development of robust trust
relationships between human operators and Al systems. Unlike traditional cybersecurity
approaches that treat trust as a binary condition (trusted vs. untrusted), cognitive adaptivity
recognizes trust as a dynamic, contextual, and continuously evolving relationship that
requires active management and sophisticated assessment capabilities.

In the ceramic industry context, human—Al trust dynamics manifest through several
key mechanisms. Production operators develop trust in Al-assisted quality control systems
through repeated positive interactions where Al recommendations prove accurate and valu-
able. However, this trust can become a vulnerability if attackers successfully manipulate
Al outputs to provide false guidance while maintaining the appearance of reliability.
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Cognitive adaptivity addresses this challenge by implementing multi-dimensional
trust assessment frameworks that evaluate not only the immediate accuracy of Al recom-
mendations but also the consistency of recommendations with broader operational patterns,
the transparency of decision-making processes, and the alignment of recommendations
with human expertise and intuition.

The ceramic case study reveals that effective human—AlI trust dynamics require con-
tinuous calibration rather than static configuration. Operators working with Al-powered
kiln management systems, for example, develop sophisticated understanding of when to
rely on Al recommendations, when to seek additional validation, and when to override
automated decisions based on contextual factors that may not be captured in Al training
data. Trust calibration mechanisms in cognitive adaptivity include real-time explanation
capabilities that provide human operators with insight into Al decision-making processes,
anomaly detection systems that identify when Al behavior deviates from established pat-
terns, and feedback loops that enable human operators to communicate the effectiveness of
Al recommendations back to learning systems.

The distinction between traditional resilience approaches and cognitive adaptivity
frameworks becomes apparent when comparing their operational characteristics and perfor-
mance indicators. A key characteristic of cognitive adaptivity lies in its temporal elasticity,
the ability of organizations to modulate learning and anticipation speeds relative to the
pace of emerging threats. Learning velocity is governed by the organization’s feedback
frequency, data availability, and cognitive load capacity, whereas anticipation depends
on predictive intelligence and trust calibration between humans and Al The model as-
sumes that adaptive efficiency increases when the rate of behavioral learning equals or
exceeds the rate of threat evolution, represented through indicative metrics such as the
adaptivity coefficient and learning velocity index summarized in Table 3. Temporal analysis
therefore becomes a diagnostic dimension of cognitive adaptivity, distinguishing reactive
adaptation from proactive evolution. Table 3 demonstrates that cognitive adaptivity repre-
sents not merely an incremental improvement over existing approaches but a fundamental
reconceptualization of how organizations develop and maintain cybersecurity capabilities.

The implementation timeline data reveals that cognitive adaptivity requires sustained
organizational commitment extending well beyond typical cybersecurity project cycles.
The 24-36 months required for full system response transformation reflects the deep organi-
zational and behavioral changes necessary to shift from recovery-focused to enhancement-
focused security strategies. This extended timeline may present challenges for organizations
operating under quarterly performance pressures, though the long-term benefits justify
the investment.

The performance indicators associated with cognitive adaptivity introduce novel met-
rics that extend beyond traditional cybersecurity measurements. Trust calibration indices
and symbiotic efficiency scores represent attempts to quantify the quality of human-AlI
collaboration in security contexts. While these metrics require further empirical validation,
they offer promising approaches for measuring the effectiveness of cognitive adaptivity in
ways that traditional incident response times and detection rates cannot capture.

The knowledge management dimension reveals perhaps the most significant departure
from traditional approaches. The shift from centralized documentation to distributed
learning networks reflects the systemic nature of cognitive adaptivity, where individual
organizational learning contributes to broader industry-wide capability development.
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Table 3. Cognitive Adaptivity Framework Dimensions vs. Traditional Resilience Approaches.

FRAMEWORK TRADITIONAL COGNITIVE PERF OITKEI\\/{[ ANCE IMPLEMENTATION
DIMENSION RESILIENCE ADAPTIVITY INDICATORS TIMELINE
Post-incident Contln}lous Ijea.rmng velocity
. . . behavioral (insights/month),
LearningMechanism analysis, lessons . . 6-12 months
adaptation, real-time knowledge
learned documents e . .
insight extraction retention rate
Reactive detection, = Proactive behavioral = Prediction accuracy
Threat . . o .
R signature-based modeling, pattern (%), early warning 12-18 months
Anticipation o .
systems recognition effectiveness
Human-AI Fixed roles, Dynamic Trust calibration
. hierarchical collaboration, index, symbiotic 18-24 months
Interaction Iy . X .,
decision-making mutual adaptation efficiency score
. Performance Adaptivity
Ri}slsfrrll;e Reccf)zrel?t]i(t;:ﬁfdme enhancement coefficient, capability 24-36 months
P y through adversity growth rate
. Distributed learning ~ Knowledge diffusion
Centralized
Knowledge . networks, speed,
documentation, .. N 12-24 months
Management .. experiential cross-organizational
training programs .
knowledge learning

5.2. Behavioral Evolution Mechanisms

Cognitive adaptivity extends beyond individual human-AlI interactions to encompass
organizational and systemic behavioral evolution. This dimension addresses how entire
organizations learn from security incidents, adapt their operational practices, and develop
more sophisticated responses to emerging threats through collective learning processes.

The behavioral evolution dimension recognizes that effective cybersecurity in Industry
6.0 environments requires organizations to function as learning systems that continu-
ously extract insights from security events, near-misses, and operational anomalies. This
learning process extends beyond traditional incident response procedures to encompass
proactive identification of emerging vulnerabilities and collaborative development of
adaptive countermeasures.

Figure 4 presents the Human Factors Risk Matrix, mapping how different types of
human-AlI interactions vary in terms of frequency and cognitive complexity, and how
cognitive adaptivity can shift activities from high-risk to safer operational zones. In ceramic
manufacturing contexts, behavioral evolution mechanisms operate across multiple orga-
nizational levels. Individual operators develop enhanced situational awareness through
exposure to diverse security scenarios and feedback on their responses. Work teams de-
velop collaborative protocols for identifying and responding to anomalous system behavior.
Organizational units develop systematic approaches for sharing threat intelligence and
coordinating defensive responses across different operational domains.

The ceramic industry case study demonstrates how behavioral evolution mechanisms
can transform routine operational activities into opportunities for security enhancement.
Quality control processes that historically focused solely on product specifications begin
to incorporate security considerations, such as identifying anomalous patterns that might
indicate data manipulation or system compromise.



Information 2025, 16, 881

17 of 26

COMPLEX SPORADIC
TASKS
* Strategic planning.
¢ Crisis management.

HIGH

FREQUENT SIMPLE
INTERACTIONS
* Al-assisted monitoring
¢ Automated reporting

Low HIGH

Low

Coghnitive Load/Complexity

Frequency of Human-Al Interaction

Figure 4. Human Factors Risk Matrix, identifying vulnerability levels based on cognitive load
and frequency of human—AlI interaction. Cognitive adaptivity strategies aim to transition high-risk
activities toward safer operational zones.

Behavioral evolution in cognitive adaptivity is facilitated through several key mech-
anisms: scenario-based training that exposes personnel to diverse threat scenarios and
response options; collaborative learning platforms that enable sharing of experiences and in-
sights across organizational boundaries; and continuous improvement processes that treat
security incidents as learning opportunities rather than simply disruptions to be contained.

5.3. Sustainability Constraints Integration

Hard-to-abate industries face unique challenges in cybersecurity strategy development
due to the intersection of digital transformation requirements with stringent environmental
sustainability and regulatory compliance constraints. Cognitive adaptivity frameworks
must explicitly address these constraints rather than treating them as external limitations
on cybersecurity strategy.

The integration of sustainability constraints into cybersecurity strategy creates oppor-
tunities for innovative approaches that leverage environmental monitoring systems, energy
efficiency optimization platforms, and circular economy principles [45] as components
of comprehensive security frameworks. These systems provide additional data streams
for anomaly detection, alternative communication channels for security coordination, and
redundant verification mechanisms for critical operational decisions.

In the ceramic industry, sustainability constraints integration manifests through sev-
eral innovative approaches. Energy monitoring systems designed to optimize kiln efficiency
can also serve as anomaly detection platforms for identifying suspicious changes in opera-
tional patterns. Waste management systems that track material flows through production
processes provide verification mechanisms for detecting unauthorized modifications to
production specifications.

The regulatory compliance requirements associated with environmental sustainability
create additional layers of verification and audit that can enhance overall security posture.
CSRD reporting requirements, for example, necessitate detailed tracking of environmental
impact metrics that can serve as indicators of operational anomalies potentially associated
with security incidents.
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Cognitive adaptivity frameworks leverage sustainability constraints as design princi-
ples rather than limitations. Security strategies that integrate energy efficiency optimization,
waste reduction goals, and regulatory compliance requirements often prove more robust
and sustainable than approaches that treat these factors as competing priorities.

The Cognitive Adaptivity Framework aligns with the regulatory evolution of sus-
tainability and risk governance under the Corporate Sustainability Reporting Directive
(CSRD). Adaptive loops within the model incorporate compliance verification and report-
ing consistency mechanisms, ensuring that cybersecurity and sustainability metrics are
monitored concurrently. These include cross-validation between environmental data in-
tegrity, emissions disclosure, and cyber-risk accountability indicators required by the CSRD
and related EU taxonomies. By embedding compliance checkpoints within the adaptive
feedback cycles, organizations can transform regulatory adherence from a static obligation
into a dynamic learning process that continuously refines both operational transparency
and cyber-governance maturity (Boggini et al., 2024; Saeed et al., 2024 [46,47]).

5.4. Systemic Antifragility Development

The fourth dimension of cognitive adaptivity addresses the development of systemic
capabilities that enable organizations and industry ecosystems to not merely withstand
cybersecurity challenges but to gain strength and improve performance through exposure
to adversity. This concept extends beyond traditional resilience to encompass the devel-
opment of adaptive capabilities that transform security challenges into opportunities for
systemic improvement.

Systemic antifragility in hard-to-abate industries requires the development of dis-
tributed learning networks that span organizational boundaries, supply chain relationships,
and regulatory frameworks. These networks enable rapid sharing of threat intelligence,
collaborative development of countermeasures, and coordinated response to industry-wide
security challenges.

The ceramic industry demonstrates systemic antifragility through the development
of industry associations, collaborative research initiatives, and shared cybersecurity plat-
forms that enable small and medium-sized manufacturers to access sophisticated security
capabilities that would be prohibitively expensive to develop independently.

Antifragile systems in cognitive adaptive frameworks exhibit several key characteris-
tics: they maintain diversity of approaches and capabilities that prevent single points of
failure; they incorporate redundancy that enables continued operation even when specific
components are compromised; they demonstrate adaptive capacity that enables learning
and improvement from security incidents; and they exhibit emergent properties that create
capabilities greater than the sum of individual components.

5.5. Implementation in the Ceramic Value Chain

The practical implementation of cognitive adaptivity frameworks in the ceramic value
chain reveals both opportunities and challenges associated with this theoretical approach.
Manufacturing organizations that successfully implement cognitive adaptivity demonstrate
several common characteristics: they treat cybersecurity as a strategic capability rather
than a compliance requirement; they invest in developing human capabilities alongside
technological solutions; they maintain active engagement with industry networks and col-
laborative platforms; and they integrate cybersecurity considerations into business strategy
development rather than treating security as a separate operational domain. The imple-
mentation of cognitive adaptivity in industrial environments is technologically supported
by digital twin architectures, Al-driven monitoring systems, behavioral analytics, and
secure data-trust layers that connect operational and human-behavioral feedback loops.
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These technologies enable continuous sensing, anticipation of anomalies, and knowledge
co-evolution across human and machine agents, ensuring that learning cycles are grounded
in real-time operational evidence.

The ceramic case study indicates that cognitive adaptivity implementation requires
sustained commitment from organizational leadership, continuous investment in human
capability development, and active participation in industry-wide collaborative initia-
tives. Organizations that approach cognitive adaptivity as a discrete project or technical
implementation typically fail to realize the full benefits of the framework.

Successful implementation typically follows a developmental progression from basic
resilience capabilities through enhanced adaptive capabilities to full cognitive adaptivity.
This progression allows organizations to build foundational capabilities while gradually
developing more sophisticated approaches to cybersecurity strategy.

5.6. Quantitative Representation of Adaptive Dynamics

Although the Cognitive Adaptivity Framework is primarily conceptual, its internal
dynamics can be represented quantitatively through a simplified relationship between
learning velocity (L), anticipation rate (A;), and the rate of threat evolution (T). These
parameters jointly determine an organization’s ability to maintain adaptive advantage
within dynamic industrial ecosystems.

where A, denotes the Adaptivity Coefficient, a synthetic indicator of the relative capacity of
human-AlI systems to anticipate and counter evolving cyber threats. When A, > 1, learning
and anticipation outpace threat evolution, indicating proactive adaptation. Conversely
when A, < 1, signals a reactive condition, where adaptation lags behind environmental
and behavioral change. The coefficient is intended as a diagnostic proxy rather than a
deterministic measure, enabling the monitoring of adaptive maturity across organizations
and over time. This formulation complements the qualitative dimensions of the frame-
work and supports future empirical validation through adaptive performance metrics and
learning-rate analytics.

6. Discussion
6.1. Theoretical Contributions and Distinctions

The cognitive adaptivity framework advances cybersecurity theory by integrating
human factors with technological changes, especially in industrial settings. Unlike tradi-
tional resilience models focused on recovery, cognitive adaptivity treats security challenges
as learning and improvement opportunities. Research on cognitive security shows these
frameworks address key gaps left by static threat assumptions environments [22].

Differentiating cognitive adaptivity from related ideas requires precision. Traditional
resilience strategies aim to help organizations resume normal operations after security
incidents but often view threats as outside disruptions. Research on cyber-resilience in
industry notes that adaptation and sensemaking are typically reactive, not embedded
proactively in system design [44].

Antifragility, as conceptualized by Nassim Taleb [48], emphasizes gaining strength
from stressors and volatility. While cognitive adaptivity shares this emphasis on deriving
benefit from challenges, it extends beyond individual organizational strength to encompass
collaborative learning, behavioral co-evolution, and systemic capability development across
industry ecosystems. For instance, ref. [32] demonstrates that Al-driven detection systems
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combined with human feedback loops produce more robust defense postures than purely
reactive resilience models

Adaptive security models in cybersecurity literature typically focus on technological
adaptations such as machine learning-based threat detection and automated response
systems. Cognitive adaptivity encompasses these technological dimensions while empha-
sizing the human behavioral and organizational learning aspects that are often overlooked
in purely technical approaches.

The human-AI symbiosis dimension of cognitive adaptivity distinguishes it from
both human-centric and Al-centric cybersecurity approaches. Rather than treating hu-
mans and Al systems as separate entities with distinct roles and responsibilities, cognitive
adaptivity recognizes that effective security in Industry 6.0 environments emerges from
collaborative intelligence that leverages the unique strengths of both human and artificial
cognitive capabilities.

6.2. Implications for Hard-to-Abate Industries

The application of cognitive adaptivity frameworks to hard-to-abate industries re-
veals several important implications for cybersecurity strategy development in sectors
facing the dual challenges of digital transformation and sustainability constraints. These
industries cannot simply adopt generic cybersecurity solutions but must develop adaptive
approaches that integrate security requirements with environmental responsibility and
regulatory compliance [46]. Although the ceramic value chain provides the empirical foun-
dation of this study, the proposed framework is readily extendable to other hard-to-abate
sectors such as steel, cement, and chemicals. These industries share structural condi-
tions (high energy intensity, complex multi-tier supply chains, and stringent regulatory
and environmental constraints) that make them suitable contexts for cognitive adaptivity.
Nevertheless, successful transferability depends on the sector-specific maturity of digi-
tal infrastructures, workforce skill profiles, and organizational cultures. Consequently,
while the theoretical architecture of cognitive adaptivity remains constant, its operational
calibration requires contextual adjustment to reflect each industry’s socio-technical and
regulatory configuration.

The sustainability constraints that characterize hard-to-abate industries create both
challenges and opportunities for cognitive adaptivity implementation. Environmental
monitoring systems, energy efficiency optimization platforms, and regulatory compliance
frameworks provide additional data streams and verification mechanisms that can enhance
security posture when properly integrated into cognitive adaptive frameworks. The en-
ergy sector review by Saeed et al. [47], illustrates how such monitoring systems augment
cybersecurity risk assessment in infrastructure-intensive contexts.

The regulatory environment facing hard-to-abate industries, particularly the emer-
gence of comprehensive sustainability reporting requirements such as CSRD, creates ac-
countability mechanisms that can be leveraged to enhance cybersecurity governance. Orga-
nizations that integrate cybersecurity considerations into sustainability reporting demon-
strate a more sophisticated understanding of the interconnections between operational risk,
environmental impact, and strategic resilience. Boggini [46] provides empirical evidence
that CSRD mandates are now promoting disclosure of cyber risks and driving investment
in cyber risk management. The supply chain complexity that characterizes many hard-
to-abate industries necessitates cybersecurity approaches that extend beyond individual
organizational boundaries to encompass ecosystem-wide collaboration and shared learning.
Innovation ecosystems that share threat information and offer common learning platforms
help reduce related risks [49]. Cognitive adaptivity frameworks provide mechanisms for
developing these collaborative capabilities while maintaining competitive advantage and
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operational autonomy. The practical implementation of cognitive adaptivity frameworks
in hard-to-abate industries requires systematic planning and realistic resource allocation
that extends well beyond traditional cybersecurity project timelines. Dynamics of business
ecosystems support the view that transformation momentum across partners is required,
not just internal investment [50]. Table 4 synthesizes insights from early adopter orga-
nizations and pilot programs to provide guidance for industry practitioners considering

cognitive adaptivity implementation.

Table 4. Cognitive Adaptivity Implementation Roadmap for Hard-to-Abate Industries.

RISK
IMPLEMENTATION KEY SUCCESS INVESTMENT
DURATION MITIGATION
PHASE ACTIVITIES METRICS RANGE (€) STRATEGIES
Baseline Staff engagement
Foundation assessment, > 80%, basic Change
1 1s 6-9 months stakeholder - 150 K-300 K management,
Building . s capability .
alignment, initial pilot programs
- development
training
Limited scope
implementation, 25% reduction in Parallel legacy
Pilot Deployment 9-12 months feedback incident 300 K-600 K systems, gradual
collection, response time transition
refinement
Organization-
Scaled wide 50% Phased rollout,
. 12-18 months deployment, improvement in 600 K-1.2M continuous
Implementation . . . o
integration threat detection monitoring
optimization
Ecosystem Sléigr}:sigim or aif;)jtsi_cmal Partnership
ysie 18-24 months . ! & . 400 K-800 K agreements, data
Integration industry learning sharine protocols
collaboration effectiveness &P
Adaptive Sustained .
Continuous refinement competitive Innovation
. Ongoing ey 200 K—400 K/year investment, skill
Evolution capability advantage
. development
enhancement metrics

The investment ranges presented reflect comprehensive transformation costs rather
than discrete technology acquisitions. Unlike traditional cybersecurity implementations
that focus primarily on technical infrastructure, cognitive adaptivity requires substantial
investment in human capability development, organizational culture change, and collabo-
rative platform development. The front-loaded investment pattern, with higher costs in
early phases, reflects the foundational nature of capability building required for effective
cognitive adaptivity. The success metrics evolve significantly across implementation phases,
moving from conventional engagement and efficiency measures toward more sophisti-
cated assessments of adaptive capability and collaborative effectiveness. The shift toward
competitive advantage metrics in later phases reflects the strategic nature of cognitive
adaptivity as a differentiating organizational capability rather than merely a compliance or
risk management function. The investment ranges reported (€) are indicative and intended
to provide general guidance rather than precise cost estimates.

Risk mitigation strategies emphasize the importance of gradual transition approaches
that maintain operational continuity while building new capabilities. The parallel operation
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of legacy systems during pilot phases, while increasing short-term costs, provides essential
fallback capabilities and reduces implementation risk for organizations operating in critical
infrastructure contexts. The ongoing investment requirements for continuous evolution
phase highlight that cognitive adaptivity represents a permanent organizational capability
development rather than a discrete project implementation. This perpetual investment
model may challenge traditional capital allocation approaches but aligns with the dynamic
threat landscape and continuous learning requirements of Industry 6.0 environments.

6.3. Practical Implementation Considerations

The transition from traditional resilience-based cybersecurity approaches to cognitive
adaptivity frameworks requires careful consideration of organizational readiness, resource
allocation, and change management strategies. Organizations attempting to implement cog-
nitive adaptivity without adequate preparation often experience implementation challenges
that undermine the effectiveness of the approach. Recent research on cybersecurity readi-
ness points to organizational readiness (including leadership support, strategic resource
allocation, and organizational culture) as critical antecedents for successful adaptation [51].

Successful cognitive adaptivity implementation typically requires investment in hu-
man capability development that extends beyond traditional cybersecurity training. Person-
nel need to develop skills in collaborative problem-solving, behavioral pattern recognition,
and human-Al interaction management that are not addressed in conventional security
awareness programs. Empirical studies in other safety-critical domains, such as railway
operations, demonstrate how integrating human factors with cybersecurity and safety
analysis can provide actionable insights into capability development and organizational
chang [52]. Evidence from interdisciplinary reviews underscores gaps in training programs
that fail to cultivate these capacities [21].

The organizational culture changes associated with cognitive adaptivity implementa-
tion can be particularly challenging for organizations with traditional hierarchical structures
and risk-averse operational cultures. The emphasis on learning from security incidents, ex-
perimental approaches to security strategy, and collaborative decision-making may conflict
with established organizational norms and procedures. Empirical evidence from a study of
public sector culture confirms that values, norms, and empowerment correlate with how
employees internalize cybersecurity policies [53].

The technological infrastructure requirements for cognitive adaptivity implementa-
tion can be substantial, particularly for smaller organizations in hard-to-abate industries.
However, the development of industry collaboratives and shared cybersecurity platforms
can help distribute these costs and provide access to sophisticated capabilities that would
be prohibitively expensive for individual organizations. This is consistent with findings
in [32], which identify architectures and infrastructure as critical bottlenecks in scaling
adaptive security strategies.

6.4. Limitations and Boundary Conditions

Despite its conceptual robustness, the Cognitive Adaptivity Framework operates
under several boundary conditions. Its effectiveness presupposes an organizational en-
vironment that values continuous learning, transparent communication, and human-—AlI
collaboration. In cultures with rigid hierarchies or limited digital literacy, adaptive feedback
loops may slow down or generate bias. The framework also depends on the reliability of Al
training datasets; incomplete or skewed behavioral data can lead to miscalibrated learning
cycles. Moreover, sectors characterized by highly standardized operations (such as pharma-
ceuticals or nuclear energy) may require hybrid models that integrate cognitive adaptivity
with strict procedural control systems. The cognitive adaptivity framework, while promis-
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ing, faces several limitations and boundary conditions that must be acknowledged in
theoretical development and practical implementation. The framework’s emphasis on
learning and adaptation may not be appropriate for all organizational contexts or threat
environments, particularly those requiring highly standardized and predictable security
responses. Research in cybersecurity readiness shows that some organizations (especially
those with low maturity or in highly regulated industries) lack the flexibility or culture
needed for dynamic adaptation [51].

The reliance on human-AlI collaboration as a foundational element of cognitive adap-
tivity creates vulnerabilities in situations where Al systems are compromised or human
judgment is severely impaired. Organizations implementing cognitive adaptivity must
maintain fallback capabilities and recognition mechanisms that can identify when collab-
orative approaches are no longer effective. Studies on human-Al interaction warn that
cognitive overload, trust miscalibration, and automation bias can degrade performance
and increase risk if oversight and feedback loops are not built in [54].

The industry-specific nature of the ceramic case study limits the generalizability of spe-
cific findings to other hard-to-abate sectors, though the underlying principles of cognitive
adaptivity appear applicable across similar industrial contexts. Additional research in other
sectors would strengthen understanding of the framework’s broader applicability. The
emergent nature of Industry 6.0 means that many of the threats and opportunities associ-
ated with cognitive ecosystems remain theoretical or experimental. The cognitive adaptivity
framework is based on projections of future technological and threat developments that
may prove inaccurate or incomplete as these systems mature.

7. Conclusions and Future Research
7.1. Theoretical Contributions

This paper introduces cognitive adaptivity as a novel framework for addressing hu-
man factors in cybersecurity during the Industry 5.0-6.0 transition. Unlike resilience, which
emphasizes recovery to baseline, cognitive adaptivity highlights learning, anticipation, and
co-evolution between humans and Al as essential elements of security strategy. By inte-
grating behavioral dynamics with technological evolution, the framework extends existing
literature on resilience, antifragility, and adaptive security, positioning cybersecurity as a
socio-technical capability that emerges from continuous human-AlI collaboration.

7.2. Practical Implications

The ceramic value chain, used as a paradigmatic hard-to-abate sector, illustrates
how cognitive adaptivity can be implemented in practice. The findings show that orga-
nizations need to embed human-AlI trust calibration, behavioral evolution, sustainability
integration, and systemic antifragility into their cybersecurity strategies. Beyond defen-
sive benefits, cognitive adaptivity can also serve as a source of competitive advantage
by fostering collaborative capabilities and aligning cybersecurity with sustainability im-
peratives. These insights are transferable to other resource-intensive industries, such as
steel, cement, and chemicals, that face similar dual pressures of digital transformation and
environmental responsibility.

7.3. Limitations and Future Research

The singular focus on the ceramic sector limits the generalizability of the findings,
although this industry shares significant characteristics with other hard-to-abate sectors.
The framework also arises from the emergent context of Industry 6.0, relying on projections
and pilot data rather than extensive longitudinal analysis. Future research should move in
three primary directions: (i) cross-sector validation in additional hard-to-abate industries;
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(ii) longitudinal studies that monitor organizations throughout full cycles of cognitive
adaptivity implementation; and (iii) the development of quantitative metrics to evaluate
learning effectiveness, behavioral adaptation, and collaborative capability. These steps
are essential to solidify cognitive adaptivity as both a theoretical construct and a practical
strategy for Industry 6.0. It will also be important to introduce cross-industry quantitative
metrics to enable benchmarking and to reinforce the framework’s empirical validity. Subse-
quent studies should prioritize multi-sector and longitudinal applications, specifically in
sectors such as steel, chemicals, and energy, to quantify adaptive maturity using measurable
indicators of learning efficiency, human—AlI coordination, and sustainability integration.
Longitudinal analyses will help trace organizational adaptation and learning trajectories,
providing evidence of the model’s stability and scalability. Finally, developing quantitative
metrics—such as cross-industry adaptivity indices—will further enhance the framework’s
theoretical generalization and policy relevance within the Industry 6.0 paradigm.
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