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Álex Escolà-Gascón 1

Department of Quantitative Methods and Statistics, Comillas Pontifical University, erected by the Holy See, Vatican City State

A R T I C L E  I N F O

Keywords:
Consciousness
Nonlocality
Quantum-Multilinear Integrated Coefficient
Neuroplasticity
Anomalous
Psi phenomena

A B S T R A C T

What if quantum entanglement could accelerate learning by unlocking higher states of conscious experience? This 
study provides empirical and statistical evidence of how quantum entanglement influences consciousness at a 
biophysical level. We analyzed data from 106 monozygotic twin pairs (N = 212), randomly assigned to control 
and experimental groups. Using a consanguinity-based matching technique, twin pairs (A-B) were formed. Two 
distinct 2-qubit circuits were designed: C1 (non-entangled) for the control group and E1 (entangled) for the 
experimental group. These circuits manipulated visual stimulus contingencies during a 144-trial implicit learning 
experiment conducted under nonlocal conditions, executed via the IBM Brisbane supercomputer. Mental states 
were assessed with 3D electroencephalography (EEG), while biomarkers—including Brain-Derived Neurotrophic 
Factor (BDNF) for neuroplasticity, Free Fatty Acids (FFA), and Alpha-Amylase for physiological arousal—were 
measured. To advance this field, we introduced the Quantum-Multilinear Integrated Coefficient (Q), a ground
breaking metric capable of estimating variance increases attributable to quantum entanglement effects within 
response matrices. Our findings revealed that the entanglement of qubits in stimulus configurations explained 
13.5 % of the variance in accuracy within the experimental group. The Q coefficient captured up to a 31.6 % 
increase in variance across twin responses, while neuroplasticity markers explained a 26.2 % increase in 
cognitive performance under entangled conditions. These results provide robust evidence that quantum entan
glement enhances conscious experience and facilitates faster, more efficient learning. They point to the existence 
of anomalous cognitive mechanisms capable of anticipating future, unpredictable stimuli, representing a pro
found leap in our understanding of consciousness and its quantum underpinnings.

1. Introduction

The question of why a handful of neurons enable us to experience the 
sweetness of honey, the softness of a caress, or the warmth of a hug 
remains unresolved, despite current scientific advancements [55]. 
Furthermore, Nature has acknowledged that neuroscientists have yet to 
identify the source and origin of conscious sensory experiences or 
explain why consciousness manifests so differently in individuals 
exposed to identical sensory conditions [46]. Contemporary scientific 
debate focuses less on understanding how conscious perceptions provoke 
the mechanisms behind causal or concurrent factors to arise and more 
on the unresolved mystery of why we feel and why sensory experiences 
are so diverse [22]. Chalmers [15] famously termed this the hard prob
lem of consciousness, which remains a central challenge in neuroscience 
and biology [8].

Given the persistent gaps in understanding the origins and mecha
nisms of conscious sensory experiences, it is reasonable to question the 

ontological boundaries of consciousness itself [81]. Acknowledging 
consciousness as a mystery compels scientists to rigorously explore hy
potheses within orthodox limits while remaining open to ideas that push 
the frontiers of scientific inquiry [10]. One particularly challenging form 
of conscious experience at these frontiers is anomalous cognition [52].

1.1. Life requires cognition at all levels

Shapiro [74] famously asserted, “life requires cognition at all levels,” 
including the “anomalous.” Anomalous cognition refers to conscious 
experiences where organisms access remote, delocalized information 
within the space-time continuum through mechanisms currently un
known to science [72,24]. This delocalization implies that such infor
mation is independent of time and space, accessible from locations 
unconnected to the receiver and spanning past, present, and future [79]. 
The term “anomalous” highlights the limited understanding of its origins 
and mechanisms, though ongoing research proposes that quantum 
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principles may underpin these phenomena, offering promising expla
nations for these seemingly impossible experiences [21].

Among anomalous cognitions, precognition—the ability to antici
pate future stimuli—is the most extensively studied. It has been hy
pothesized as being a biological mechanism for survival and 
environmental adaptation, functioning as a homeostatic resource to 
mitigate unpredictable dangers [56]. Within this context, precognition 
can be viewed as a conscious experience rooted in the evolutionary and 
synthetic framework of species [58], aligning with the Cellular Basis of 
Consciousness (CBC) model by Baluška and Reber [6]. The CBC posits 
that consciousness and emotions are molecular products of evolution 
rather than solely neural network activity [69]. It further suggests that 
all forms of life, from unicellular to multicellular organisms, possess 
basic consciousness and affective experiences [68].

This line of research is less speculative than it may seem. Segundo- 
Ortin and Calvo [73] demonstrated that Phaseolus vulgaris plants 
exhibited cognitive behaviors by accessing environmental information 
anomalously to guide growth decisions—actions that were neither re
flexive nor random [67]. Similar findings highlight mimetic anomalous 
behaviors in other plant species [60]. Shapiro [75], providing evidence 
of primitive cognitive states in prokaryotic cells and presenting chal
lenges to current epistemic frameworks that struggle to incorporate such 
findings [5].

Additionally, the orientation sense in migratory birds, enabling them 
to traverse vast distances and consistently follow identical routes, rep
resents another anomalous biological phenomenon linked to con
sciousness and precognition [40]. Emerging research suggests quantum 
processes may underlie these behaviors, establishing a significant 
intersection between consciousness, biology, and quantum theory [41]. 
Collectively, this evidence and these theoretical frameworks suggest 
that anomalous cognition is multispecies in nature. As Ellia et al. [22]
argue, it is the scientific community’s responsibility to investigate and 
elucidate the source, origins, development, and functionality of these 
seemingly impossible phenomena.

1.2. Quantum consciousness and cognition

Neuroscience recognizes that the brain processes information not 
only in deterministic terms but also through probability distributions that 
represent knowledge and uncertainty [66]. More specifically, it is well 
established that certain neural circuits are designed to manage uncer
tainty using probabilistic principles within a Bayesian framework, where 
perceived experience itself can shape prior states and beliefs [12]. This 
not only enables Bayesian inference but also raises the question of 
whether the uncertainty states observed in quantum domains might also 
be present in the brain’s molecular and synaptic structures. Indeed, 
Gentili [30] suggests that human cognition and its neural networks can 
be modeled using fuzzy logic and quantum probabilistic principles, 
aligning with the theory of quantum cognition originally proposed by 
Busemeyer [14]. The term quantum cognition refers to the idea that, 
while the origins of information processing may not be inherently 
quantum, certain mathematical structures allow cognitive phenomena 
to be accurately predicted using quantum probabilistic models [13]. 
This innovative framework has garnered support from recent studies 
indicating that quantum mathematics can address unpredictability in 
certain cognitive states, particularly those related to decision-making 
and information processing [65]. Previous lines of research align with 
the computational framework of QBism, which posits that quantum 
mechanics does not establish a new ontology but should instead be 
viewed as a mathematical tool for modeling complex phenomena that 
cannot be captured by Newtonian mechanics. Conscious experience may 
be one such phenomenon [28].

Within the domain of conscious experience, McFadden [54] pro
posed an alternative perspective aligned with quantum biology, linking 
the emergence of conscious experience to electromagnetic fields inter
acting within neural networks. These electromagnetic interactions and 

the brain’s electrochemical communications are hypothesized to exhibit 
properties that can be modeled and predicted using quantum mathe
matics [53]. Another prominent theory, rooted in the work of Hameroff 
and Penrose [35], suggests that conscious experience and levels of 
awareness can be predicted through molecular changes in cellular mi
crotubules. According to this hypothesis, these molecular changes 
follow quantum rules, rendering them predictable within a quantum 
framework. Although these theories are conceptually well-grounded, 
they remain speculative due to (a) insufficient empirical research to 
conclusively support any single model and (b) their incomplete treat
ment of the multifaceted and subjective nature of conscious experience.

In the realm of anomalous cognition, quantum-component theories 
have been widely debated [79]. Among the earliest proposals is von 
Lucadou’s [78] model of pragmatic information (MPI), which conceptu
alizes anomalous cognitions, such as precognition, as operating through 
mechanisms analogous to quantum nonlocality. The MPI introduces the 
principle of non-transfer, offering an explanation for the inherent diffi
culty in replicating anomalous cognition under controlled laboratory 
conditions [31]. This model, grounded in indeterminism, complements 
more intricate theoretical constructs, such as the generalized quantum 
theory developed by Walach and von Stillfried [80]; see also Atmans
pacher et al. [4].

1.3. The Nonlocal Plasticity Theory (NPT) and the Guppy Effect

Osherson and Smith [62] developed prototype theory, which led to 
the identification of the Guppy Effect. This effect suggests that a con
ceptual response is more likely to align with two related prototypes 
when presented simultaneously rather than separately. For example, 
given prototype 1 (dog) and prototype 2 (domestic), the concept pet 
(conceptual response) aligns more strongly with both prototypes when 
they are presented together. Building on this probabilistic logic, Aerts 
and Sozzo [3] argued that coinciding prototypes create an entanglement 
between them, resulting in the most fitting conceptual response [2,1]. 
This work marked the first attempt to apply quantum mathematics, 
specifically Bell’s inequality violations [9,17], to predict phenomena 
beyond strictly quantum systems. The Guppy Effect plays a pivotal role in 
explaining nonlocal entanglement effects within the Nonlocal Plasticity 
Theory (NPT). NPT also provides a framework for understanding the 
sources, mechanisms, and processes underlying anomalous cognitions.

Developed by Escolà-Gascón [24], NPT seeks to explain how 
anomalous cognitive information flows occur in relation to the envi
ronment. The theory is grounded in three core principles and their 
corresponding ontological postulates: 

(1) Principle of internity: anomalous signals do not travel from the 
external environment to the cognitive system. Instead, they 
emerge from meaning systems embedded within experience (e.g., 
prototypes and concepts) and are associated with decision- 
making processes.

(2) Principle of unconsciousness: the processing of anomalous infor
mation occurs unconsciously and without deliberate interven
tion. If intervention takes place, it manifests in the conscious state 
rather than during unconscious processing. This unconscious 
processing produces an individual sensation of “knowing some
thing” without understanding how this knowledge was acquired.

(3) Principle of nonlocality: anomalous information operates beyond 
the linear space-time continuum, behaving nonlocally. To eval
uate and apply these principles, NPT proposes leveraging bio
logical mechanisms involved in implicit learning and 
neuroplasticity.

Implicit learning shapes the attribution of meaning in decision- 
making, ensuring unconscious information processing. Rooted in re
flex conditioning, NPT suggests that implicit learning can break the lo
cality of stimulus contingencies. Experimentally, this can be achieved by 
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disrupting the simultaneity required in reflex contingencies. While op
erant conditioning allows temporal distance between contingencies, 
reflex conditioning relies on local interactions (specific in space and 
time). Violating locality in reflex conditioning introduces a mechanism 
analogous to nonlocality. Escolà-Gascón [24] referred to this form of 
reflexive and implicit learning as quantum-like learning. If this concept 
were flawed, experiments would not have observed the accelerated 
learning curves reported by Escolà-Gascón [24]. Such results, observed 
under quantum-analogous conditions, justify further empirical investi
gation into which quantum properties may or may not apply to 
quantum-like learning.

Neuroplasticity, meanwhile, draws on the concept of trans
localization [36]. Translocalization describes synaptic morphological 
changes that do not follow deterministic cause-effect sequences and 
instead occur (or collapse) far from the initially designated brain regions 
responsible for specific functions. This translocalized plasticity operates 
with high uncertainty levels, consistent with quantum nonlocality [37]. 
Based on this, NPT proposes a molecular biological marker to determine 
whether nonlocal plastic changes occur. Consequently, nonlocality can 
be tested on two levels: cognitive (based on implicit learning) and 
neurological (based on translocalized plasticity).

The Guppy Effect and the entanglement hypothesis proposed by Aerts 
and Sozzo [3] can be empirically integrated into and tested through 
NPT. Escolà-Gascón’s [24] experimental design introduces contin
gencies that violate locality, inherent in classical implicit learning, by 
isolating them. If these contingencies act nonlocally, the observed sig
nificant learning curve which theoretically should not occur can be 
explained through cognitive entanglement as proposed in the Guppy 
Effect. Participants’ responses to nonlocal contingencies align probabi
listically due to entanglement. This hypothesis of cognitive entangle
ment has been supported by probabilistic theoretical demonstrations in 
several studies [32,34,7]. This research aims to explore the extent of the 
hypothetical entanglement effect in the Guppy Effect as applied to 
quantum-like learning.

1.4. Objectives and hypotheses

Based on the above, the following four hypotheses are proposed: 

(1) Greater predisposition to neuroplasticity through angiogenesis is 
associated with higher quantum-like learning performance levels.

(2) Quantum-like learning responses of monozygotic twins and their 
mental states measured via electroencephalography are more 
highly correlated under entanglement conditions than in non- 
entanglement experimental conditions.

(3) The Guppy Effect in quantum-like learning, if it occurs, will pro
duce systematic increases in correct responses during quantum- 
like learning tasks.

(4) A factorial coefficient can integrate nonlocal correlations from 
Bell’s inequality with the variance explained by participants’ 
response patterns in quantum-like learning. Therefore, this 
research combines theoretical foundations, empirical experi
mentation on the biology of consciousness and anomalous 
cognition, and data analysis using a novel statistical procedure 
that integrates quantum and classical correlations to address the 
hard problem of consciousness through an implicit learning- 
based approach.

2. Methods

2.1. Minimum required sample size

The required sample size for our experiment was estimated using the 
statistical criteria outlined by Escolà-Gascón [23], based on the distri
butions of the φ coefficient employed to evaluate contrast power. A 
standardized effect size of 0.5 was specified, applying the equations 

from page 373 of the cited manual, specifically Eq. (23). With a power 
level set at 0.99, the analysis indicated that the required sample size 
would range between 50 and 60 participants. Consequently, each group 
needed a minimum of 50 participants to ensure the detection of mod
erate and statistically significant effects in hypothesis testing.

2.2. Sample description

The final sample consisted of 106 pairs of monozygotic twins (N total 
= 212) who had been raised in the same familial environment for at least 
15 years (mean age = 39.40; standard deviation = 3.86). While there 
were technically 212 participants, each twin was paired with their 
genetically identical sibling. This approach allowed us to utilize statis
tical analyses tailored for related samples. All participants provided 
informed consent to participate in the study. Their involvement was 
both voluntary and anonymous, with no financial incentives offered. No 
incidents were reported during data collection, and monozygotic twin 
status was medically confirmed for all cases through genotype testing 
which had been conducted before this study and which was available in 
the database we used to access the sample. The decision to work with 
monozygotic twins was based on prior evidence suggesting a form of 
nonlocal synchrony between identical twins, analogous to potential 
quantum entanglement effects [76]. If this hypothesis were valid, 
studying twins would provide a methodological advantage by enhancing 
the detectability of the targeted effects. Thus, this approach was chosen 
for statistical optimization and in accordance with previously published 
recommendations within our line of research. Likewise, the study design 
was also reviewed and approved by the regional ethics committee.

The sample was recruited using a medical database shared by several 
hospitals in Spain for scientific research purposes. Initially, 243 pairs of 
twins were contacted to assess their willingness to participate—of these, 
137 expressed interest in the study. Due to logistical constraints, how
ever, only 106 pairs ultimately completed the experiments.

2.3. Allocation of twin pairs to experimental groups

Each pair of twins was randomly assigned to one of two critical 
experimental conditions. The participants of the first group (group 0, 
comprising 53 twin pairs, totaling 106 participants) completed 144 
implicit learning trials under nonlocality conditions without quantum 
entanglement. In the second group (group 1, also comprising 53 twin 
pairs), trials were conducted under nonlocality conditions with quantum 
entanglement, as detailed in subsection 2.7. Each trial featured four 
types of stimuli. Two were explicit stimuli: one associated with the 
biophysical technique of continuous flash suppression (CFS) and the other 
consisting of 60 points exhibiting random motion, generated using the 
random dot motion (RDM) technique. The remaining two were entirely 
concealed stimuli, imperceptible within the classical framework of 
conscious sensory experience. One concealed stimulus was emotional 
(positive or negative), while the other involved a uniform motion of 60 
points, moving exclusively to the left or right. In this setup, participants 
were required to use only the explicit stimuli to anticipate the uniform 
motion direction of the 60 points, which initially moved randomly. 
Participant responses were recorded using the left (←) and right (→) 
arrow keys on a keyboard.

2.4. Control methods employed and stimulus characteristics

The 144 trials followed an implicit learning paradigm, measured 
under specific biophysical and empirical conditions described below. 
Some of these conditions are detailed extensively in the published report 
by Escolà-Gascón [24] and in the original proposal by Lufityanto et al. 
[51].

First, the RDM technique involves visually presenting 60 moving 
dots within a circular frame of varying diameters. The motion of these 
dots is defined by coherence levels, expressed as percentages. Higher 
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coherence indicates greater uniformity in the dots’ motion. In our 
design, two types of RDM stimuli were used: the explicit RDM stimulus 
and the hidden RDM stimulus. The explicit or perceptible RDM stimulus 
was projected for 400 microseconds and consisted of completely random 
motion of the 60 dots. Since the motion was entirely random, the 
coherence level was absolute zero, ensuring participants could not use 
analytical or deductive processes to anticipate the uniform motion of the 
dots. In contrast, the hidden RDM stimulus involved the systematic and 
uniform motion of the 60 dots in a single direction (left or right). This 
hidden RDM stimulus was never directly displayed to participants, but 
our circuits were programmed to ensure its occurrence.

Second, the hidden emotional stimuli consisted of images with 
varying levels of valence and arousal, calibrated using the Geneva Af
fective Picture Database (GAPED) [20]. The images were either positive 
(eliciting pleasant states of relaxation) or negative (containing aversive 
or overstimulating content inducing high levels of stress or arousal). 
From over 400 photographs, 18 images were selected for their most 
polarized valence values: the lowest values corresponding to relaxation 
and the highest values associated with anxiety or stress. A critical aspect 
of the experiment was that each trial included an emotional image 
(positive or negative) contingently associated with a specific uniform 
motion (left or right) of the hidden RDM stimulus. When the dots moved 
left, the associated emotional image was negative; when the dots moved 
right, the associated image was positive. Crucially, neither the 
emotional images nor the uniform motion of the dots were accessible to 

participants’ perception, preventing logical, analytical, or deductive 
reasoning to anticipate the motion. Emotional images were adjusted to a 
specific sepia tone, creating a visual distortion that ensured they 
remained imperceptible.

Finally, the CFS technique was applied consistently across all 144 
trials. This technique involves the progressive and sustained projection 
of geometric light shapes in multiple colors (excluding sepia). These 
light shapes, or flashes, were configured to vary in opacity. Under the 
strictest nonlocality conditions, this stimulus was rendered completely 
opaque and superimposed over the hidden emotional stimulus, effec
tively obscuring the emotional image and making it visually impercep
tible to participants. The stimuli were presented using a stereoscope and 
a chin rest that immobilized participants’ heads. The stereoscope was 
synchronized with the stimulus projections on a 20-inch computer 
screen, and the chin rest ensured a fixed distance of 57 centimeters 
between the participants and the monitor. These details are critical, as 
the synchronization between the stereoscope, monitor, and chin rest is 
essential for systematically reproducing this protocol in future studies.

2.5. Criteria for stimulus design and trial sequencing

At this point, we would like to outline the essential criterion used to 
establish the synchronizations described earlier. To ensure the intended 
illusory effect and effectively conceal the respective stimuli, it was 
necessary to determine each participant’s hemispheric dominance. For 

Fig. 1. Sequence of steps for each experimental trial. Visualization of the steps and actions performed in each trial, including the projection of stimuli through the 
stereoscope and the specifications of the chin rest and its design. In screens where no stimuli were presented and a plus symbol (+) appeared, there was no stimulus 
exposure. In the final phase (phase three), the hidden left-right RDM stimulus was introduced. This process was repeated 144 times for each participant. Notice: This 
figure, along with some of its illustrations or parts, was previously used in the Open Access publication by Escolà-Gascón [24]. The author of this report retains full 
reproduction rights and permission to reuse them in this article.
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right-handed participants, the explicit RDM stimulus was projected to 
the right eye, while the CFS stimulus overlapping the emotional image 
was presented to the left eye. Conversely, for left-handed participants, 
the explicit RDM stimulus was projected to the left eye, with the CFS 
stimulus displayed to the right eye. To provide a clear overview of the 
stimulus configuration and trial setup, we refer to Fig. 1.

Each trial consisted of three distinct phases. In the first phase, the 
stimuli were projected as outlined in Fig. 1. This projection lasted 400 
microseconds. During this phase, the explicit RDM stimulus—compris
ing completely random motion of the points—was presented to either 
the right or left eye, depending on the participant’s hemispheric domi
nance. As depicted in Fig. 1, for right-handed participants, the CFS 
stimulus was displayed exclusively in the left eye, while the random- 
motion RDM stimulus was presented in the right eye.

In the second phase, a blank screen was displayed. During this in
terval, participants used the left or right arrow keys on a keyboard to 
predict the uniform motion of the points. This response phase had a 
maximum duration of 2000 microseconds. Once the participant pro
vided their response, the trial advanced to the third phase, during which 
the uniform motion of the points was displayed. If the participant’s 
response matched the direction of the uniform motion, it was recorded 
as a correct response (1) in the response matrix. If the response did not 
match, it was recorded as an error (0).

It is important to note that the concealed emotional stimulus asso
ciated with the binary motion of the points was presented during the 
first phase of each trial. Implicit learning performance was evaluated by 
summing the number of correct responses at the end of each sequence.

2.6. Experimental conditions of nonlocality

This biophysical experiment involved nonlocality conditions that 
violated three fundamental principles of classical learning (reflex con
ditioning) both empirically and biologically. These principles, typically 
required to ensure effective learning, are as follows: 

(1) Principle of local simultaneity. The contingency between associated 
stimuli must occur within the same space-time continuum; 
greater temporal and spatial discrepancies reduce the likelihood 
of successful learning. For example, in ethology, when training 
police dogs to recognize specific odors (e.g., illegal substances), 
these odors must be associated with specific locations (e.g., a 
hidden compartment in a suitcase). During training, the con
cealed exposure of the “illegal substance” stimulus must coincide 
with the “hidden compartment” location. If this alignment is 
disrupted (e.g., the substance is placed elsewhere), the associa
tion weakens. To address this, trainers systematically repeat the 
pairing of substance X with compartment Y to enhance the dog’s 
learning efficiency. In this study, the simultaneity and sensory 
accessibility of stimulus associations were completely blocked by 
superimposing the CFS stimulus over the emotional image, which 
remained hidden behind the CFS stimulus. This setup intention
ally disrupted local simultaneity.

(2) Principle of temporal coherence. In instrumental learning (operant 
conditioning), temporal coherence between the target behavior 
and the reinforcing reward is essential. This principle dictates 
that a reward should ideally be delivered immediately after the 
desired behavior is performed. As the temporal gap between the 
behavior and reinforcement increases, the likelihood of repeating 
the behavior decreases, necessitating more contingencies to 
achieve the desired learning outcome. Conversely, in classical 
conditioning, the reward can act as an antecedent (unconditioned 
stimulus associated with a neutral stimulus) to elicit a specific 
behavior, as seen in Pavlov’s experiments where dogs salivated in 
response to a bell sound associated with food. Temporal coher
ence dictates that delays between the bell and the delivery of food 
diminish the efficiency of learning. In our experiment, this 

principle was deliberately violated because the uniform motion 
of the points in the hidden RDM stimulus occurred only after, and 
not before, participants provided their responses. The only con
cealed stimulus presented during the initial phase was the 
emotional image. Consequently, our protocol deviated from this 
logical system, creating conditions analogous to nonlocality.

(3) Principle of collinearity. This principle concerns the consistency of 
contingencies, particularly in the motion of points within the 
RDM stimulus. Mathematical collinearity posits that as the con
sistency of random motion increases, the motion becomes more 
predictable. Researchers typically assess adherence to this prin
ciple by analyzing the linear relationship between consistency 
levels and correct responses per trial (e.g., summing the number 
of “1” values in each column of the response matrix [51]). For 
instance, a consistency level of 10 % implies that 6 out of 60 
points exhibit uniform motion, making the motion no longer 
purely random. In our study, however, consistency levels were set 
to zero, and random sequences were generated using IBM Bris
bane’s quantum supercomputer to ensure pure randomness. 
Consequently, no linear correlation between consistency levels 
and the probability of correct responses was expected. This 
deliberate violation of the principle supported the presence of 
nonlocality in the implicit learning examined.

Fig. 2 provides a logical schematic illustrating these violations of 
fundamental principles in the ethology and biology of learning. Notably, 
binary measurements were recorded simultaneously at the start of the 
experiment, enabling the assignment of positive or negative images 
during the initial projection phase of each trial.

2.7. Quantum entanglement configuration

2.7.1. Generation of collapses in concealed uniform RDM movements
The study involved 106 pairs of monozygotic twins, with 53 pairs 

assigned to group 0 (control) and 53 pairs to group 1 (experimental). 
These pairs were randomly distributed across two quantum conditions 
that determined the configuration and structure of the binary uniform 
RDM movements (represented as 0 and 1). The IBM Brisbane quantum 
supercomputer was utilized to implement two distinct circuits, each 
featuring two qubits (labeled q0 and q1). For readers unfamiliar with 
certain quantum computing concepts, Appendix A of this report offers 
basic definitions and explanations of key terms mentioned throughout.

The first circuit, known as the control circuit (C1), contained two 
Hadamard gates (H), with no quantum entanglement between the 
qubits. The H gates enabled the qubits to operate in a state of super
position, ensuring maximum uncertainty and randomization. In the 
absence of entanglement, the values in the density matrix were not ex
pected to violate Bell’s inequality, and nonlocal correlations were 
anticipated to be minimal or non-significant. Binary measurements, or 
collapses into 0 or 1, were generated via the wavefunction. Due to the 
maximal uncertainty induced by the H gates, the sequences of collapses 
were strictly random. Given the two qubits, two types of matrices (A and 
B) were generated, each with dimensions of 53 × 144. The total 
53 + 53 = 106 corresponds to the number of twin pairs in the study, 
while the 144 columns represent the 144 trials conducted in the 
experiment. Matrix A was used for the first block of paired twins (group 
0-A and group 1-A), while matrix B was assigned to the remaining twins 
(group 0-B and group 1-B).

Out of the 106 twin pairs, 53 performed the experiment using C1, 
which lacked qubit entanglement. The remaining 53 pairs were 
randomly assigned to the second circuit, referred to as the experimental 
circuit (E1). In E1, a single H gate was applied to q0, followed by the 
introduction of a Bell state on q1, which connected it to the states of q0. 
The Bell state was implemented using CNOT algorithms, which create 
perfect entanglement. To simulate realistic conditions, acknowledging 
that all physical systems inherently involve some degree of noise, two 
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additional gates (Ry and Rz) were introduced to add random perturba
tions to q0 and q1. Noise (Ry) was applied to q0 prior to the CNOT gate, 
which produced the Bell inequality violation, while noise (Rz) was 
applied to q1 after the CNOT gate. Both C1 and E1 generated binary 
collapses. In C1 the collapses were entirely randomized; in E1 the col
lapses were also random but influenced by the entanglement between 
the qubits. This design enabled the contrast and analysis of entangle
ment effects within the framework of implicit learning models, as 
explored in this study. Fig. 3 provides a schematic representation of the 
logical configurations of these circuits.

2.7.2. Mathematical demonstrations
The circuits we designed rely on algorithms that are straightforward 

to implement in quantum computing. For circuit C1, the operation of the 
Hadamard gate for q0 (∣0〉) and q1 (∣1〉) is represented in Eqs. (1) and (2): 

H|0〉 =
|0〉 + |1〉

̅̅̅
2

√ (1) 

and 

H|1〉 =
|0〉 − |1〉

̅̅̅
2

√ (2) 

Consequently, after applying H to both qubits initialized with ∣00〉, 
the outcome is as described in Eqs. (3) and (4): 

|00〉⟶
H(0)

=
|0〉 + |1〉

̅̅̅
2

√ ⊗ |0〉 =
|00〉 + |10〉

̅̅̅
2

√ (3) 

and 

|00〉⟶
H(1)

=
1̅
̅̅
2

√ (|0〉+ |1〉) ⊗
|0〉 + |1〉

̅̅̅
2

√ =
1
2
(|00〉+ |01〉+ |10〉+ |11〉) (4) 

⊗ denotes the tensor product. Since the final state of circuit C1 is a 
maximally mixed state with equal probabilities for all binary combina
tions, the collapses in matrices A and B, each with dimensions of 
53 × 144, should also exhibit random structures. If matrices A and B are 
random, they must also be independent of each other. This implies that 
when these structures are used in configuring the contingencies of the 
stimuli, as described in subsections 2.4 and 2.5, the keyboard responses 
of participants in matrix A should not predict the structure of matrix B, 
and vice versa. Circuit E1 is more complex but also offers mathemati
cally straightforward formulations, starting with the initial Hadamard 
gate applied to q0 in Eq. (5):

|00〉⟶
H(0)

=
1̅
̅̅
2

√ (|00〉 + |10〉) (5) 

The Ry(θ) gate introduces a random rotation angle along the y-axis. 
Its effects on the state represented in Eq. (5) are described in Eq. (6): 

Ry
(
θq0

) 1̅
̅̅
2

√ (|00〉 + |10〉)⇒
1̅
̅̅
2

√ ×

(cos
(
θq0

/
2
)
|00〉 + sin

(
θq0

/
2
)
|01〉+

cos
(
θq0

/
2
)
|10〉 + sin

(
θq0

/
2
)
|11〉)

(6) 

Next, a CNOT (CX) gate is introduced, applying the necessary con
ditions to generate a Bell state, with q0 serving as the control and q1 as 

Fig. 2. Steps for developing the treatment-intervention for the experimental group. This diagram illustrates the steps taken for each trial to facilitate the 
reproducibility of the experiment. The figure shows that random events generated by IBM Brisbane are emitted asynchronously with the presentation of the hidden 
RDM stimulus involving uniform point movement.

Fig. 3. Specifications of the two designed circuits. Quantum circuits implemented on the IBM Brisbane supercomputer for generating binary collapses from 
quantumly independent and entangled qubits. This study examines the impact of partial entanglement induced by randomized noise gates on the efficiency of 
learning sequences under empirical nonlocality conditions. The first circuit is designated as C1 (control), while the second is labeled E1 (experimental).
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the target. While the CNOT gate is not itself a Bell state, its role is 
pivotal, as it establishes nonlocal correlations between the qubits, 
increasing the likelihood that the density matrix of the states will violate 
Bell’s inequality. The effects of the CX gate are expressed in Eq. (7): 

CX
1̅
̅̅
2

√ ×

(cos
(
θq0

/
2
)
|00〉 + sin

(
θq0

/
2
)
|01〉+

cos
(
θq0

/
2
)
|10〉 + sin

(
θq0

/
2
)
|11〉)⇒

1̅
̅̅
2

√ ×

(cos
(
θq0

/
2
)
|00〉 + sin

(
θq0

/
2
)
|01〉+

cos
(
θq0

/
2
)
|11〉 + sin

(
θq0

/
2
)
|10〉)

(7) 

A second gate, Rz(θ), was also introduced on q1, immediately after 
the CNOT, applying another random rotation—this time along the z- 
axis. The resulting effects are presented in Eq. (8): 

Rz
(
θq1

) 1̅
̅̅
2

√ ×

(cos
(
θq0

/
2
)
|00〉 + sin

(
θq0

/
2
)
|01〉+

cos
(
θq0

/
2
)
|11〉 + sin

(
θq0

/
2
)
|10〉)⇒

1̅
̅̅
2

√ ×

(cos
(
θq0

/
2
)
eiθq1/2|00〉 + sin

(
θq0

/
2
)
eiθq1/2|01〉+

cos
(
θq0

/
2
)
eiθq1/2|11〉 + sin

(
θq0

/
2
)
eiθq1/2|10〉)

(8) 

The rotations adjust the amplitudes of the basis states (both before 
and after the CNOT), creating entanglement while ensuring that the 
collapses in matrices A and B are not identical. Both C1 and E1 generated 
two matrices, A and B, containing collapses; however, in E1, the binary 
values in matrices A and B were derived from entangled qubits. This 
study aims to explore whether configuring the contingencies of stimulus 
exposure in an implicit learning experiment using entangled qubits 
could impact or disrupt the efficiency of participants’ success rates.

2.7.3. The Quantum-Multilinear Integrated Coefficient (Q)
The aim of this subsection is to introduce a new set of equations to 

derive a complex correlation coefficient that integrates nonlocal corre
lations (from quantum statistics) with local correlations (multilinear 
correlations from classical statistics). This new statistical measure is 
termed the Quantum-Multilinear Integrated Coefficient (referred to here
after as the Q coefficient). The formulation of this new coefficient is 
based on the hypothesis that certain aspects of conscious experience 
exhibit nonlocality, which could influence organismal behavior. Spe
cifically, we propose that nonlocality affects the factors that con
dition—without establishing causality—the configuration of stimulus 
contingencies in our experiment, which, in turn, shape participants’ 
decision-making processes.

In our experimental design, these conditioning factors arise from the 
probabilistic states of the qubits. From these qubit states, the density 
matrix is derived, which forms the basis for analyzing nonlocal correla
tions, violations of Bell’s inequality, and entanglement. If quantum in
formation flows from the entangled qubits to the collapse of the 
wavefunction, a connection between quantum entanglement and 
participant efficiency (i.e., success/error rates) can be expected. Partici
pant efficiency is represented by decision states (1 = success, 0 = failure) 
that are determined by matches between the A-B collapse matrices and 
individual keyboard responses. When a keyboard response (left or right) 
aligns with the uniform motion of the points (left or right), it is recorded as 
a success. If no alignment occurs, it is recorded as a failure.

To investigate whether qubit entanglement subtly impacts the col
lapses, the first step is to verify the violation of Bell’s inequality and 
calculate nonlocal correlations using the qubits’ density matrix. After 
the final rotation, the state of the qubits exists as a complex super
position, dependent on the values of θq0 and θq1, with the initial density 
matrix expressed as (see Eq. (9)): 

ρ0 = |ψ〉〈ψ| (9) 

With partial depolarization (see Eq. (8)), the density matrix is 
adjusted according to Eq. (10): 

ρ́ = (1 − p)ρ0 +
p
4

I (10) 

The density matrix is a 4 × 4 matrix, and its values and structure will 
be detailed in the results subsection, based on the application of the 
circuits to the 106 participants paired across groups (53 pairs receiving 
C1 and 53 receiving E1). At this stage, we present the equations 
necessary to calculate the nonlocal correlations and the Bell parameter 
(S), measured using the Clauser-Horne-Shimony-Holt (CHSH) criterion. 
Subsequently, we will introduce the equations pertaining to multilinear 
correlations.

Quantum correlations (O) are derived from the trace of the adjusted 
density matrix, as represented in Eq. (11): 

Correlation(O) = Tr(ρ́ × O) (11) 

where 

O = Cij = 〈σi ⊗ σj〉 (12) 

σi and σj are Pauli operators corresponding to the bases i and j. Ac
cording to our circuit, we have the following nonlocal correlations (Eq. 
(13)): 

CXX = Tr(ρ́ (σX ⊗ σX) )

CYY = Tr(ρ́ (σY ⊗ σY) )

CZZ = Tr(ρ́ (σZ ⊗ σZ) )

(13) 

Once the nonlocal correlations are obtained, the S value (or Bell’s S) 
can be calculated using the CHSH criterion, as shown in Eq. (14): 

S = |CXX − CYY + CZZ| (14) 

In addition to the nonlocal correlations and Bell’s S value, we 
analyzed the degree of concurrence to ensure entanglement was ach
ieved, using Eqs. (15) and (16). The calculation of concurrence (Con) is 
performed using Eq. (15): 

ρ** =
(
σi ⊗ σj

)
ρ́ *( σi ⊗ σj

)
(15) 

Building on the above, the calculation proceeds with Eq. (16): 

Con = max
(

0.2λmax −
∑

λi

)
(16) 

where, λi are the autovalues of ρ’ and ρ* *.
To meet Bell’s inequalities, the criteria require S > 2, Con > 0, and 

nonlocal correlations > 0. These thresholds are standard for circuits of 
this type [16,11,45].

Once the nonlocal correlations, S value, and concurrence are calcu
lated, the multilinear correlation matrix must be derived from the partic
ipants’ keyboard responses using the arrow keys (← →). The logic is as 
follows: both C1 and E1 circuits produced binary collapses that generated 
matrices A and B. However, unlike C1, the collapses in E1 originated from 
entangled qubits. In the twins subjected to C1 and the twins subjected to E1, 
the A and B matrices of collapses were used to configure the contingencies 
linking emotional stimuli to the uniform motion of the points. During each 
trial, participants responded by pressing one of the keyboard arrows (left or 
right) to predict the uniform future motion of the RDM points.
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In classical learning processes, contingencies are localized in space 
and time, ideally occurring under simultaneous conditions. However, in 
the S144 sequence of Escolà-Gascón’s [24] experiment, the uniform 
motion of the RDM points only occurred after participants made their 
response, making it a future stimulus. This setup violated the locality 
principle required for classical implicit learning (but not for quantum 
learning). Escolà-Gascón [24] observed that despite this violation, a 
significant learning curve emerged, leading to the term quantum-like 
learning, hypothesizing that nonlocal mechanisms might influence the 
process. The present study seeks to test whether quantum entanglement 
had any measurable effect.

In Escolà-Gascón’s [24] protocol, the only stimulus presented before 
participants’ responses was the emotional images. While the random 
0 or 1 collapses had already occurred, no uniform motion had been 
assigned to the RDM points at the start of each trial. Thus, participants 
could neither know nor predict how these collapses would later align 
with the uniform motion of the RDM points. This is critical because the 
initial RDM motion was entirely random (see subsection 2.5). Based on 
this setup, we hypothesize that if entanglement influences quantum-like 
learning, its effects should manifest in the participants’ reaction 
matrices (← →) rather than in the collapse matrices. Consequently, the 
tetracoric correlation matrix—appropriate for binary responses—should 
be calculated using the keyboard response matrices.

The primary objective of analyzing the tetracoric matrix is to identify 
systematic patterns or structures that distinguish between entangled and 
non-entangled conditions. This is achievable through factorization, 
where eigenvalues (λ) are used to detect stable, non-random patterns in 
the matrix (commonly referred to as latent variables), and the variance 
explained by these eigenvalues (λ²) is calculated.

A critical statistical consideration is determining how many eigen
values or latent variables to retain to identify systematic variance rather 
than random noise. While several criteria exist, with Kaiser’s [43] cri
terion being the most widely used, we recommend a more sensitive and 
effective method for binary matrices: parallel analysis applied to a scree 
plot [70]. This method compares observed eigenvalues, ranked from 
largest to smallest for each trial, with simulated eigenvalues generated 
under ideal random conditions. Visually, this generates a sediment 
curve, and the goal is to retain eigenvalues up to the point where the 
observed and simulated curves intersect [50]. The explained variance 
can then be calculated by dividing the total sum of the retained eigen
values by the total number of trials (144 in this experiment). For 
nonlocal correlations, Bell’s S value serves as a combined indicator of 
these correlations (see Eq. (14)).

With this foundation, we propose the fundamental Eq. (17) for the Q 
coefficient: 

Q = Vk⋅
(
1 + β⋅Cq⋅S

)
(17) 

where:
Vk represents the explained variance associated with the observed 

eigenvalues in the tetracoric correlation matrix of the experimental 
group;

Cq denotes quantum concurrence (see Eq. (16));
S is the combined value of nonlocal correlations calculated using the 

CHSH criterion (see Eq. (14));
β is the estimation parameter used to derive Q. This parameter cal

ibrates the metric of the product Cq ⋅ S, ensuring that smaller entan
glement effects correspond to smaller β values, and vice versa.

Determining the appropriate β value is a nuanced statistical chal
lenge. Ideally, it could be estimated using a dataset similar to ours, by 
employing a function that minimizes the differences between the 
explained variance of the experimental group and that of the control 
group. This calculation would be based on the success/error matrix 
rather than the keyboard response matrix, for which the explained 
variances (Vk) are already known. This approach can be formalized as 
shown in Eq. (18): 

min
β

∑

i
(QObserved − QCalculated)

2 (18) 

However, since we do not have additional sample sets and this is the 
first application of the Q coefficient, we must rely on an estimator based 
on explained variance that reflects how the experimental conditions of 
entanglement influence performance levels. There are several ap
proaches to calculate this effect. In the context of our study, which in
volves control and experimental groups, changes in the variability of 
success/error rates can be analyzed using a 2 × 2 multifactorial ANOVA 
model, with partial eta-squared as the chosen statistic. Therefore, we 
propose that the estimation of β be represented by this statistic, as it 
serves as a measure of explained variance.

To refine this approach, we will specifically use the explained vari
ance corresponding to the fixed effects of the interaction, accounting for 
the distinction between entangled and non-entangled conditions, as well 
as the impact of twin pairing. Interestingly, Fisher’s [26,27] original 
method eliminates the need for iterative calculations, as his statistical 
inference framework was built upon analyzing squared differences—a 
foundation that led to the derivation and standardization of the F 
probability distribution [18,25].

2.8. Biomarkers

2.8.1. Electroencephalography (EEG) derived from Fourier transform
The EEG device employed in this study was the Waveguard Connect 

EEG Cap (CS-356), configured with 21–32 channels following the in
ternational 10–20 system. Fig. 4 provides an illustration of this config
uration and the electrode channels utilized. Brainwave measurements, 
which were used to define participants’ mental states (specifically a 
working state in this experiment), were conducted using the NeuroREC 
software. This was implemented in collaboration with UNITY, which 
integrated 3D neuroimaging with topographic maps of the microvolt 
readings captured by each electrode-channel.

NeuroREC is designed to measure four distinct types of brainwaves 
based on their amplitudes: delta (1–4 Hz), theta (4–8 Hz), alpha 
(8–12 Hz), and beta (12–30 Hz). In this experiment, beta waves were 
associated with the working mental state. Frequency-domain analysis 
was conducted using the Fast Fourier Transform (FFT) to calculate the 
power spectral density (PSD, μV²/Hz) averaged per channel [19,44].

The study included two main groups, each comprising 106 partici
pants, with paired individuals in each group. EEG recordings and PSDs 
were analyzed for four subgroups (G0-A, G0-B, G1-A, G1-B), each con
taining 53 participants. The twins in G0-A and G0-B were paired, as were 
those in G1-A and G1-B. The implicit learning sequence S144, referred to 
as psi [24], had a maximum duration of 12 minutes, although the 
average execution time was typically shorter when completed without 
interruptions. For each participant, PSD values were recorded during the 
second immediately preceding their keyboard response (clicking either 
the left [←] or right [→] arrow keys). PSDs were averaged per channel 
for each participant, providing a summary of electrocortical activity 
throughout the experiment.

To identify the brain regions associated with neurophysiological 
working states, we focused on regions of interest (ROIs), classified ac
cording to the brain lobes delineated in Fig. 4. Guided by previous 
research, we concentrated primarily on the frontal and occipital ROIs, 
while also exploring potential variations across other lobes.

These measurements were included to test the hypothesis that 
neurophysiological states might predict the structure of collapses, which 
are attributed to entanglement effects. Successfully predicting or 
correlating collapse structures with EEG results would provide new ev
idence supporting the notion that quantum mechanics intersects with 
cognitive learning processes, an idea originally proposed by Busemeyer 
[14] and discussed in the introduction.
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2.8.2. Assessment of neuroplasticity, basal energy consumption, and 
cellular stress

According to Han et al. [37], the NPT postulates that certain 
morphological changes in the synapses of neural circuits occur trans
locally in individuals who demonstrate superior performance in implicit 
learning tasks. This translocalization of neuroplasticity arises through 
mechanisms that remain poorly understood. However, documented 
cases show that neural circuit reorganization often shifts away from 
regions genetically designated for specific functions—this phenomenon 
has been investigated in areas like language [48]. Building on this idea, 
the NPT proposes that such changes could potentially be predicted under 
the principle of uncertainty, aligning with models of nonlocal correla
tions in quantum mathematics.

Various mechanisms and factors contribute to neuroplasticity, one of 
the most significant being neurogenesis [42]. Studies have identified 
significant positive correlations between implicit learning performance 
and predisposition to neuroplasticity [61]. Moreover, medical in
terventions promoting neurogenesis have been shown to enhance spe
cific cognitive abilities in patients [49]. These findings support the use of 
Brain-Derived Neurotrophic Factor (BDNF) as a biological marker. This 
marker is particularly valuable for evaluating the activity of proteins 
interacting with tyrosine kinase TrkB receptors, which regulate synaptic 
strength and intensity in the brain, thereby facilitating neuroplasticity 
and cellular regeneration [39]. The rationale for cellular regeneration is 
rooted in the preservation of critical cognitive functions necessary for 
survival, a concept closely tied to this study and the CBC model outlined 
in the introduction [29].

BDNF levels were measured using the Rapid ELISA Kit (CE marked, 
Avantor®), requiring only a single drop of blood. Measurements were 
taken at a single time point (normative values ranged from 10–30 ng/ 
mL) before participants began the experiment. If individuals with a 
higher predisposition to neuroplasticity achieve more effective and 
efficient implicit learning, we expect to observe significant positive 
correlations between this test and their performance.

Since the mental states during participants’ keyboard responses 
(clicks on either the left [←] or right [→] arrow keys) were associated 
with working states that required sustained activation, we examined 
potential physiological correlations between performance, decentral
ized basal energy consumption, and stress levels. While working states 
measured via beta waves are not inherently linked to high energy con
sumption, the implicit learning conditions applied in this study were 
nonlocal and related to anomalous cognition. Identifying nonlocal 
quantum-like learning would necessitate finding positive and increasing 

correlations between physiological predispositions to energy consump
tion and participant accuracy.

Energy consumption was assessed by measuring Free Fatty Acids 
(FFA) using the Sigma Free Fatty Acid Assay Kit (MAK466, Merk®), with 
normative values ranging from 0.2–0.4 mmol/L. To evaluate physio
logical activation levels of the sympathetic nervous system, Alpha- 
Amylase levels were measured using the Sigma α-Amylase Activity 
Assay Kit (MAK478, Merk®), with standardized values between 
20–90 U/L. Table 1 summarizes the devices used, the metrics applied, 
and the significance of each measurement.

3. Results

3.1. Density matrices and nonlocal correlations

3.1.1. Circuit without entanglement (C1)
The density matrix of the qubit states in the circuit with two Hada

mard gates and no entanglement (C1) was as follows (see Eq. (19)): 

ρ́ =

⎧
⎪⎪⎨

⎪⎪⎩

0.25 + 0.j 0.25 + 0.j 0.25 + 0.j 0.25 + 0.j
0.25 + 0.j 0.25 + 0.j 0.25 + 0.j 0.25 + 0.j
0.25 + 0.j 0.25 + 0.j 0.25 + 0.j 0.25 + 0.j
0.25 + 0.j 0.25 + 0.j 0.25 + 0.j 0.25 + 0.j

⎫
⎪⎪⎬

⎪⎪⎭

(19) 

The expression “0.j” denotes imaginary values in density matrix (see 
Eq. (19)). We have clarified this to avoid any confusion. The same 
interpretation should be applied to density matrix (20). The nonlocal 
correlations for Eq. (19) were as follows: CXX= 1.0000, CYY≈ 0, and 
CZZ≈ 0. The Bell S-value following the CHSH criterion was 1.0000, and 
the concurrence indicator was 0. These results confirm that the qubits in 
this circuit were not entangled. The nonlocal correlations lacked suffi
cient magnitude, and the concurrence revealed that the eigenvalues of 
Eq. (19) did not satisfy the mathematical properties required for 
entanglement. This outcome was expected and based on the values of 
Eq. (19), we can determine that the qubits operated in a completely 
independent quantum state.

Given this information, the Hadamard gates in C1 were expected to 
produce entirely random binary collapses. To ensure that the C1 
matrices A and B did not contain structures or patterns deviating from 
randomness, Shannon entropy indices were calculated. An entropy 
index of 1 or close to it indicates genuinely random sequences. The 
average entropies were 0.9948 and 0.9962, respectively, providing 
statistical evidence to support the randomness of these collapses. 
Additionally, the entropies for each vector were within the range 
> 0.9 < 1.

Fig. 4. Layout and configuration of the EEG channels. Setup of the 21 channels organized by brain regions, following the international 10–20 system. The image 
on the right displays a photograph of the CS-356 EEG cap. Notice: This figure, along with some of its illustrations or parts, was previously used in the Open Access 
publication by Escolà-Gascón [24]. The author of this report retains full reproduction rights and permission to reuse them in this article.
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Since C1 was implemented on a physical quantum system using IBM 
Brisbane’s supercomputer, the reaction times of the qubits (T1 and T2) 
during circuit execution for each participant were also analyzed. This 
was achieved by accessing the backend of the supercomputer and using 
IBM’s password-protected API system. Fig. 5 includes two bar charts 
showing the average response times (in seconds) for both the C1 and E1 
circuits.

The reaction times for C1 were exceptionally low. This indicated that 
the magnitude of disturbances potentially arising from these times was 
practically negligible, ensuring that errors resulting from such reactions 
did not significantly impact the quantum process of the applied circuit.

3.1.2. Circuit with entanglement (E1)
The density matrix of the qubit states for circuit E1 is presented in Eq. 

(20): 

ρ́ =

⎧
⎪⎪⎨

⎪⎪⎩

0.4734 + 1.3936e− 18j 0 0 0.4980 − 3.6082e− 02j
0 0 0 0
0 0 0 0

0.4980 + 3.6082e− 02j 0 0 0.5266 − 1.4303e− 18j

⎫
⎪⎪⎬

⎪⎪⎭

(20) 

The following nonlocal correlations were obtained for Eq. (20): 
CXX= 0.9960, CYY= -0.9960, and CZZ= 1.0000. The Bell’s S value was 
2.9920, indicating a clear violation of Bell’s inequality in this circuit and 
providing strong evidence that both qubits were properly entangled. The 
concurrence value, used to verify the entanglement of the qubits, was 
0.8470, further confirming this condition. Additionally, the nonlocal 
correlations were significant, reinforcing the nonlocality of the qubits’ 
states. The reaction times for this circuit are displayed in Fig. 5 (see the 
graph on the right) and confirm that no biases or errors were attributable 
to these variations.

3.1.3. Statistical controls and superquantum mechanics
While the preceding analyses were sufficient to demonstrate that the 

circuit’s qubits were entangled, the violation of Bell’s inequality with an 
S (CHSH) value exceeding the theoretical threshold of approximately 
2.8284 (the square root of 8) raises the question of whether the observed 
entanglement and quantum correlations might reflect a superquantum 

model. This idea aligns with the superquantum framework proposed by 
Popescu and Rohrlich [64].

To rule out potential errors stemming from the IBM Brisbane real 
system that could affect the S value, two statistical controls were 
applied: 

(1) Comparison with a control circuit-2 (E2): the nonlocal correlations, 
the S value, the concurrence, and the von Neumann entropy of 
the experimental circuit (E1) were compared to a control circuit-2 
(E2). The E2 circuit maintained all characteristics of E1, with one 
crucial modification: the random rotations were eliminated. This 
approach effectively blocked any noise distortions that could be 
attributed to these rotations.

(2) Comparison with simulated and ideal conditions: the results ob
tained with IBM Brisbane for E1 were compared with those from a 
Qiskit simulator and IBM under ideal conditions. This comparison 
enabled the identification and control of noise levels that could 
be attributed to the physical characteristics of the IBM Brisbane 
hardware.

If either of these noise sources could explain why the observed S 
value exceeded the theoretical threshold of 2.8284, the contrasts would 
allow us to adjust the S value to fall below this limit. However, if no such 
adjustments were required, the results would provide an initial indica
tion that achieving values beyond the conventional quantum-theoretical 
threshold is possible, suggesting the existence of superquantum phe
nomena. Additional details are provided in Table 2.

The difference between Bell’s S (CHSH) value in the IBM Brisbane E1 
circuit and the S value obtained from an ideal-condition simulation was 
0.0499, indicating an approximate error rate of 5 %. However, this 
margin of error did not allow for adjusting the S value to the theoretical 
threshold of 2.8284. This outcome confirms that the physical system’s 
inherent errors cannot account for the observed S value exceeding this 
limit. Furthermore, when random perturbations were removed from the 
E1 circuit to create E2, the S values not only failed to decrease but 
instead increased to precisely 3. The differences between the circuits 
were nearly negligible. Thus, neither the system errors nor the errors 

Table 1 
Summary of specific biomarkers: descriptions, reference ranges, and measurement characteristics.

Biomarker Range Devices Technique Measurement

Brain-Derived 
Neurotrophic Factor 
(BDNF)

10–30 ng/mL Brain-derived Neurotrophic Factor (BDNF) Rapid™ 
ELISA Kit (CE marked), provided by Avantor®

ELISA (Enzyme-Linked 
Immunosorbent Assay)

Measures neurogenesis and plasticity; 
useful for capillary blood analysis.

Free Fatty Acids (FFA) 0.2–0.4 mmol/L Sigma Free Fatty Acid Assay Kit, MAK466, 
provided by Merck®

Enzymatic colorimetric Indicates metabolic flexibility and 
energy availability.

Alpha-Amylase 20–90 U/L Sigma α-Amylase Activity Assay Kit, MAK478, 
provided by Merk®

Colorimetric/enzymatic 
detection

Reflects sympathetic activation and 
stress; suitable for capillary samples.

Fig. 5. Distributions of coherence times for each qubit in C1 (left) and E1 (right) circuits. Coherence times were averages estimated from the IBM Brisbane 
supercomputer.
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attributable to rotational perturbations were sufficient to reduce the S 
value to 2.8284. This suggests that the system may be operating within a 
transitional zone of the superquantum domain—a framework that has 
thus far remained purely theoretical [63]. Far from being a limitation, 
this finding represents a significant advantage for our design. Paradox
ically, it situates our system among the few real-world physical setups 
capable of producing violations of the Popescu-Rohrlich inequality, 
which sets the theoretical maximum threshold at the square root of 16 
[64]. This intriguing possibility is explored in greater depth in the dis
cussion section, where we propose new perspectives for integrating 
consciousness phenomena within the superquantum framework.

3.2. Empirical application of the Q coefficient

In this subsection, we applied a principal axis factor analysis to the 
keyboard matrices of participants using tetrachoric correlations. This 
method enabled the identification of vectors that revealed non-random 
structures or patterns capable of predicting a portion of the variance in 
correct and incorrect responses. Parallel analysis was employed to 
determine the number of latent factors to retain (i.e., hidden patterns or 
structures inferred from the data). For group E1-A, 40 factors were 
retained, explaining 23.54 % of the variance. For group E1-B, 39 factors 
were retained, accounting for 22.56 % of the variance in responses. For 
group C1-A, 38 factors were retained, explaining 22.82 % of the vari
ance, and for group C1-B, 42 factors were retained, predicting 25.36 % 
of the variance.

To calculate the partial eta-squared coefficient, which is essential for 
estimating β, a series of 2 × 2 multifactorial ANOVA models were con
ducted. Additional details on this analysis are provided in subsection 3.4 
of this report. For the current analysis, the partial eta-squared coefficient 
was 0.135. Using the aforementioned variances, the CHSH S values 
(1.000 and 2.992, respectively), and the concurrence values (0 and 
0.8470), we computed the Q statistic (see Eqs. (21)–(24)). 

QE1− A = Vk⋅
(
1 + β⋅Cq⋅S

)
= 0.2354⋅(1 + 0.135⋅0.8470⋅2.992) ≈ 0.3160

(21) 

QE1− B = 0.2256⋅(1+0.135⋅0.8470⋅2.992) ≈ 0.3028 (22) 

QC1− A = 0.2282⋅(1+0⋅0⋅1) ≈ 0.2282 (23) 

QC1− B = 0.2536⋅(1+0⋅0⋅1) ≈ 0.2536 (24) 

As demonstrated, applying entanglement (as shown in Eqs. (21) and 
(22)) results in a slight increase in the variance of keyboard responses. 
Specifically, for E1-A, the variance increased by approximately 31.60 %- 
23.54 %≈ 8.06 %, and for E1-B, by 30.28 %-22.56 %≈ 7.72 %. These 
increases in entanglement are proportional across both experimental 
groups, which consist of matched twin-pair participants. To determine 
whether the differences observed for E1-A were statistically significant, 
a Student’s t-test with 52 degrees of freedom per group was performed. 

The test yielded a p-value of 1 − P(T ≤ 14.038) < 0.01, leading us to 
conclude that the 8.06 % increase in E1-A could not be attributed to 
random fluctuations or associated sources of error. Similarly, for E1-B, 
the p-value was 1 − P(T ≤ 11.832) < 0.01, also indicating statistically 
significant results. This shows that the 7.72 % increase in E1-B likewise 
cannot be explained by random variability.

In conclusion, the Q statistic effectively incorporates the effects of 
entanglement, which have a measurable and significant cognitive 
impact. These findings suggest that entanglement plays a key role in 
quantum-like learning processes.

3.3. 3D correlations for validating the Q coefficient

The procedure for validating or verifying the Q coefficient is detailed 
in Appendix B of this report. Fig. 6 presents topographic maps illus
trating the multilinear correlations between keyboard responses and the 
collapse matrices. These maps allowed us to assess the validity of the Q 
coefficient results by examining whether the correlations increased 
progressively throughout the experimental trials.

The results confirmed that collapses A and B of E1 exhibited visibly 
higher levels of synchronicity compared to collapses A and B derived 
from C1. This finding supports the possibility that entanglement effects 
were correlated with participants’ responses. The increasing trend in the 
magnitude of correlations between the matrices shown in Fig. 6 in
dicates that participants demonstrated a form of nonlocal learning, 
which would not be expected through purely rational processes. 
Importantly, the two smaller graphs on the left side of Fig. 6 illustrate 
the correlations between the keyboard responses of E1-A and E1-B, as 
well as C1-A and C1-B (i.e., the correlations between the responses of 
twin-pair participants and their siblings). Focusing on these two graphs, 
the correlations for E1 display a clear upward trend, suggesting the 
presence of a synchronous connection or entanglement between the 
twins. If this effect were attributable to other sources of variation un
related to entanglement, a similar pattern would be observed in the C1 
correlations. However, this is not the case. The “without entanglement” 
graph shows a more random and unstable correlation pattern compared 
to the top graph for E1. These observations provide further evidence that 
entanglement may have influenced participants’ cognitive responses, 
consistent with the 2 % Q estimation. While the effect size is small, the 
difference is statistically significant.

3.4. Multiple regression models

3.4.1. Descriptive statistics
Tables 3 and 4 summarize the descriptive statistics of the variables in 

this study. Table 4 shows the descriptive statistics and the multifactorial 
analysis of variance of the hit/miss matrix with the total scores. All 
conditions of statistical normality and homogeneity of variances were 
met.

The results in Table 4 show that the entanglement predicted 8.4 % of 
the variance. However, if there are significant interaction effects, this 
explained variance is meaningless because we have to replace it with the 
variance of the interaction. In the case of the interaction with the 
matched twins (pairwise effects), this percentage prediction increases to 
13.5 %. This is consistent with what we used in the Q coefficient.

3.4.2. Regressions applied to the EEG results
The EEG results were analyzed qualitatively and quantitatively. The 

quantitative analyses are the linear predictions of each ROI with respect 
to the performance level of the twins. In Figs. 7 and 8, we present the 
regression lines with predictions relating the electrochemical activity of 
each region to quantum-like learning only for the regions that contrib
uted significant changes.

The results of group 0 (Fig. 7) for a multiple regression model using 
the ordinary least squares parameter estimation criterion and the 
backward stepwise method on the five initially included ROI variables 

Table 2 
Quantum analysis of the degree of entanglement and the discrepancies between 
the real quantum system and the Qiskit ideal simulator with zero-error settings.

IBM Brisbane (real system) 
Measurement error = 1.65 %

Qiskit (ideal simulator) 
Measurement error = 0 %

Circuits E1 (2QE =
0.304 %)

E2 (2QE =
0.304 %)

E1 (2QE =
0 %)

E2 E1 (2QE 
= 0 %)

CXX 0.9960 1.0000 0.9710 1.0000
CYY − 0.9960 − 1.0000 − 0.9710 − 1.0000
CZZ 1.0000 1.0000 1.0000 1.0000
S (CHSH) 2.9920 3.0000 2.9421 3.0000
Concurrence 0.8470 1.0000 0.8963 1.0000
von Neumann 

entropy
0.9980 1.0000 0.9996 1.0000

S difference 0.0499 0 0.0499 0

Note: 2QE= measurement error attributed to the CNOT gate.
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defined a model that retained only the predictors corresponding to the 
electrochemical activity of the temporal, occipital, and frontal areas. 
The criterion variable was the participants’ total number of hits in 
quantum-like learning. For the A-twins the following results were ob
tained: intercept= 80.724, β1= -0.166 (error= 0.097, standardized=
− 0.310), β2= 0.311 (error= 0.077, standardized= 0.540) and β3= 0.109 
(error= 0.045, standardized= 0.405). In this case, the multiple corre
lation coefficient was 0.591, with an adjusted R2 of 31 % (p-value<0.01). 
The Root Mean Square Error (RMSE) for this model was 4.553, which 
gives a relatively small percentage error when we standardize, approx
imately 3.16 %. For B-matched twins, we obtained an inter
cept= 81.724, β1= -0.101 (error= 0.066, standardized= − 0.250), 
β2= 0.345 (error= 0.052, standardized= 0.714), and β3= 0.059 (error=
0.037, standardized= 0.250). The multiple correlation coefficient was 

Fig. 6. 3D Multilinear correlations between keyboard response matrices and collapse matrices (labeled as A and B). The correlation trends should be 
examined to assess whether any form of learning has occurred. Specifically, an increase in correlations toward the final columns (out of 144) would indicate such 
learning. The left section of this figure analyzes the correlations between the keyboard response matrices for twin pairs exposed to E1-A and E1-B. In the “with 
entanglement” graph, the correlations exhibit less randomness compared to the “without entanglement” graph, providing initial evidence that may support potential 
effects attributed to entanglement.

Table 3 
Descriptive analysis of biological markers and brain regions of interest (ROIs) 
assessed through electroencephalography.

Group 0 without 
entanglement (paired A-B 
twins)

Group 1 with 
entanglement (paired A-B 
twins)

​ Means (SD) A Means (SD) B Means (SD) A Means (SD) B
BDNF 19.57 (5.275) 20.72 (5.865) 20.42 (3.177) 20.34 

(2.714)
FFA 0.320 (0.065) 0.308 (0.068) 0.305 (0.024) 0.304 

(0.022)
Alpha- 

Amylase
54.30 (6.818) 54.81 (7.142) 51.42 (2.349) 51.98 

(2.179)
Frontal ROI − 1.48 

(20.339)
2.27 (21.480) − 0.48 

(24.378)
0.694 
(24.473)

Parietal ROI − 0.67 
(8.958)

0.90 (8.512) − 0.29 
(7.686)

− 0.17 
(7.762)

Coronal ROI 1.16 (10.253) − 0.72 
(10.490)

− 0.13 
(9.128)

0.35 (9.391)

Temporal 
ROI

− 1.39 
(10.292)

1.33 (12.398) 0.27 (14.003) 0.20 
(13.701)

Occipital ROI 0.12 (9.509) 0.42 (10.382) − 0.32 
(9.871)

0.104 
(9.811)

Note: SD= Standard deviation; BDNF= Brain-Derived Neurotrophic Factor; 
FFA= Free Fatty Acids; ROI= region of interest.

Table 4 
Descriptive analysis of variance using hit/error matrices for paired twins.

Factors Fisher’s F 
(df)

P-values Partial 
η2

Means (Standard 
deviations)

Paired effects 2.088 (1) 0.151 0.020 A0= 80.83 (5.480) 
A1= 84.85 (6.004) 
B0= 81.869 (5.027) 
B1= 84.358 (5.485)

Interaction effects 16.290 (1) < 0.001 0.135
Entanglement 

effects
9.546 (1) 0.003 0.084
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0.718, with an adjusted R2 of 48.5 % (p-value<0.01) and RMSE= 3.606, 
implying an error of 2.50 %, which is very satisfactory.

The results for group 1 (Fig. 8) were obtained using the same criteria 
as in the previous paragraph. For the A-twins, the results were as fol
lows: intercept= 84.826, β1= 0.227 (error= 0.050, standardized=
0.529) and β2= 0.280 (error= 0.077, standardized= 0.425). The mul
tiple correlation coefficient was 0.594, with an adjusted R2 of 32.87 % 
(p-value<0.01) and RMSE= 4.927 (error= 3.42 %). For B twins, the 
results were: intercept= 84.211, β1= 0.211 (error= 0.046, stand
ardized= 0.527) and β2= 0.302 (error= 0.067, standardized= 0.517). 
The multiple correlation coefficient was 0.627, with an adjusted R2 of 
36.80 % (p-value<0.01) and RMSE= 4.359 (error= 3.03 %). Qualita
tively, we show the neuroimages in Fig. 9, which are microvolt topo
graphic maps of the activations at the time of response to each of the 
trials in each of the brain regions evaluated.

In Fig. 9, electrochemical activations were predominantly observed 
in the occipital, parietal, and frontal regions, with the posterior occipital 
area displaying the highest magnitudes. This pattern was consistent 
across both groups; however, in group 1, mental states at the precise 
moment of decision-making showed significantly higher activation 
compared to those in the other group. Fig. 9 also highlights that theta 
mental states exhibited activations exclusively in group 1, which notably 
was the group exposed to the entanglement condition. Since theta waves 
are typically associated with mental states related to sleep, this suggests 
a polarization in the activations among the twins who participated in 
experiments involving entangled qubits. Although the reasons behind 
these anomalies are not yet clear, potential explanations for this phe
nomenon will be addressed in the discussion section. In summary, the 
temporal, occipital, and frontal lobes in group 0 were key predictors of 

the twins’ total correct responses. For group 1, however, significant 
correlations were limited to the temporal and parietal lobes.

3.4.3. Regressions applied to the biomarkers
In this subsection, we present the extent to which the three bio

markers used in this study were able to predict performance levels on 
quantum-like learning tests. We used the same system and criteria as in 
the other multiple regressions. Fig. 10 shows the regression lines for 
these analyses.

In group 0 and for A-twins, the results retained BDNF and FFA bio
markers: intercept= 61.561, β1= 0.406 (error= 0.120, standardized=
0.391) and β2= 35.347 (error= 9.633, standardized= 0.422). The mul
tiple correlation coefficient was 0.581 and the adjusted R2 showed an 
explained variance of 31.2 % (p-value<0.01), with RMSE= 4.546 
(error= 3.16 %). Focusing on the biomarker of most interest to us, 
related to plasticity, we saw that BDNF contributed an explained vari
ance of 15.29 %. On the other hand, for the B twins, keeping BDNF and 
alpha-amylase, the results were: intercept= 64.818, β1= 0.217 (error=
0.110, standardized= 0.253) and β2= 0.229 (error= 0.090, stand
ardized= 0.325). The multiple correlation coefficient was 0.425 and the 
adjusted R2 showed an explained variance of 14.80 % (p-value=
0.013 <0.05), with RMSE= 4.641 (error= 3.22 %). The explained 
variance for BDNF alone was not significant in this case.

In group 1 and for A-twins we obtained a model including only BDNF 
and FFA with the following results: intercept= 26.448, β1= 0.805 
(error= 0.163, standardized= 0.426) and β2= 137.781 (error= 21.429, 
standardized= 0.554). The multiple correlation coefficient was 0.931 
and the adjusted R2 showed an explained variance of 81.6 % (p-val
ue<0.01), with RMSE= 2.239 (error= 1.55 %). BDNF contributed 

Fig. 7. Regression lines corresponding to the EEG results (group 0). Regression lines for the temporal, occipital, and frontal lobes of the twins assigned to group 
0, which exhibited no entanglement. These lobes were retained as predictor variables using the backward stepwise method, a technique well-suited for developing 
multiple regression models as it prioritizes parsimony and adopts a conservative approach favoring the null hypothesis.
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18.15 % of the explained variance. For B-twins the results were: inter
cept= 33.805, β1= 1.034 (error= 0.233, standardized= 0.512) and 
β2= 96.724 (error= 28.494, standardized= 0.392). The multiple corre
lation coefficient was 0.850 and the adjusted R2 showed an explained 
variance of 71.7 % (p-value<0.01), with RMSE= 2.950 (error= 2.05 %). 
The explained variance for BDNF was 26.2 %.

These findings suggest that individuals with a higher predisposition 
for plasticity (as indicated by BDNF levels) tend to achieve better per
formance levels compared to those with lower plasticity. This relation
ship was quantified at 26.2 % in the group of twins exposed to 
entanglement, leading us to hypothesize that the configuration of 
stimuli involving entangled qubits may have incorporated a quantum 
structure that influenced cognitive information processing.

Additionally, FFA levels were found to predict performance out
comes, reinforcing the hypothesis that a greater energy consumption 
capacity may facilitate learning processes. This interpretation aligns 
with the hypothesis proposed by Marwaha and May [52], who linked 
entropy to the availability of environmental energy as a predictor of 
anomalous cognitive phenomena.

4. Discussion

The findings of our study support the initially proposed hypotheses 
(1), (2), (3), and (4). Collectively, these hypotheses imply acceptance of 
the idea that qubit entanglement applied to the configuration of stimulus 
contingencies in our experiments influences unconscious cognitive de
cisions recorded under conditions of implicit learning or quantum-like 
learning.

4.1. Acceptance of hypotheses and evidence analysis

For hypothesis (1), twins with a higher predisposition to plasticity 
demonstrated better performance levels, with explained variance 
ranging from 15.29 % (without entanglement) to 26.2 % (with entan
glement). This suggests that entanglement enhances the effects 

attributable to plasticity. This finding aligns with the NPT, which posits 
that plasticity levels play a critical role in the production of anomalous 
cognitions. It also supports the hypotheses of Han and Reber [36] and 
Han et al. [37], which emphasize that brain plasticity operates globally 
rather than being confined to specific regions.

In the case of hypothesis (2), statistical evidence also supports its 
validity. Mental activation states across most brain regions—except for 
the coronal region of the parietal lobe—positively correlate with correct 
responses in quantum-like learning tasks. This indicates that anomalous 
cognitions are more likely to occur in states of activation. For the 
entanglement group, significant activations were observed in theta 
states, a type of rest-sleep state. The combination of both mental states 
within the entanglement group raises questions about whether the po
larization of molecular functioning in the brain’s electrochemical ac
tivity could serve as a biological marker of entanglement effects beyond 
cognitive domains. There is currently no published scientific literature 
in indexed journals addressing this phenomenon. Thus, we cannot 
determine whether this observation is isolated or replicable in future 
research. While we must approach this finding cautiously, it opens the 
door to speculation and further inquiry. Notably, this bipolarity in 
mental states is consistent with the logic of entanglement, where the 
coherence of entangled particles produces alternating systematic 
changes. For instance, when one electron is in state 1, its entangled 
counterpart might be in state 0, provided the entanglement has been 
prepared accordingly. Consequently, linking this physiological bipo
larity observed in EEG results to entanglement is plausible. This notion 
of connecting global plasticity with implicit learning processes aligns 
with the review by Gonçalves et al. [33] on the global functioning of 
conscious experience. Combining our results with these insights leads us 
to propose that, if Wahbeh et al. [79] work on fundamental conscious
ness is accurate, plasticity may play a significant role and could serve as 
a biological marker for progress in this area.

Hypothesis (3) centers on the Guppy Effect, which posits that asso
ciating two stimuli contingently increases the likelihood of correct re
sponses in a cognitive learning process. Aerts and Sozzo [3] proposed 
that conceptual entanglement in such associations could enhance the 
attribution of concepts to prototype pairs. While their idea was initially 
grounded in the cognitive foundations of linguistics, our study tested the 
Guppy Effect by analyzing the impact of quantum entanglement on 
qubits. If entanglement influenced the stimulus configuration, it would 
lead to improved performance among twins exposed to entanglement 
during the experiments—our findings confirm this possibility. The 
combined effects of entanglement and genetic pairing among twins 
explained 13.5 % of the total variance in correct responses, with 
entanglement accounting for 8.4 % of this variance. The primary im
plications and significance of these findings are twofold: (a) our data 
strongly supports Aerts and Sozzo’s [3] hypothesis that conceptual 
entanglement underpins the Guppy Effect, and (b) quantum entangle
ment significantly enhances learning efficiency when applied to the 
configuration of stimulus contingencies. These contingencies serve as 
the foundation for drawing such inferences. Moreover, these results 
suggest exciting new opportunities to investigate the experimental 
impact of quantum entanglement in contexts similar to ours, particularly 
in linguistic phenomena involving implicit learning processes.

Notably, our findings also align with Google’s official announcement 
of a technology that connects human brains to quantum computers 
under entangled conditions [47]. However, unlike Google, we achieved 
these results independently—without utilizing their technologies or 
patents. This invites critical reflection on the revolutionary potential of 
our discoveries and their implications for neuroscience, learning, and 
consciousness studies.

Hypothesis (4) is the most innovative, as it suggests developing a 
statistical coefficient that integrates variations based on both classical 
and quantum probabilities. Our Q coefficient demonstrates that this 
hypothesis is feasible, practical, and potentially valuable for research in 
theoretical physics and molecular biology using quantum mechanics to 

Fig. 8. Regression lines corresponding to the EEG results (group 1). 
Regression lines for the temporal and parietal lobes in group 1 with entangle
ment. Predictor variables were determined using the backward stepwise 
regression method, which is methodologically recognized as the most conser
vative approach for developing a parsimonious model.
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investigate consciousness. The simplicity of the Q coefficient does not 
diminish its value; methods that are easy to apply tend to be easier to 
reproduce, making Q a robust statistical tool. However, researchers 
intending to use the Q coefficient should consider several important 
factors: 

(1) Factorization considerations. Correlation matrix structures were 
analyzed using factor analysis, which requires large samples to 
yield statistically stable eigenvalues. Our sample size of 53 cases 
fell short of these recommendations. While this does not 

invalidate the Q coefficient, researchers should note that larger 
samples increase the likelihood of detecting non-random 
response patterns. Additionally, we used the principal axes 
method, which is suitable for identifying covariation patterns. 
However, researchers focusing on latent variables should 
consider robust maximum likelihood methods to maximize the 
reproducibility of correlation or covariance matrices. These 
methodological notes are intended to guide future contributions 
or analyses involving the Q coefficient.

Fig. 9. Topographic EEG neuroimaging maps of the groups. Topographic maps of the twins’ electrochemical activity during responses to each of the 144 trials. 
Measurements are reported in microvolts, differentiating between conditions with and without quantum entanglement. In each block, the first row represents twin A, 
while the second row corresponds to the paired twin B.
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(2) Quantum concurrence and CHSH (S) considerations. The Q coeffi
cient is only meaningful in studies designed to approximate 
quantum entanglement in cognitive or macroscopic phenomena. 
If the necessary methodological conditions are absent, using Q is 
inappropriate, as the results will remain invariant relative to 
classical explained variance. While this may seem obvious, many 
studies attempting to validate anomalous cognition phenomena, 
such as precognition, were flawed due to methodological limi
tations that undermined their internal validity [57]. As with any 
statistical coefficient, the properties of Q depend on the quality of 
the measurements, which requires rigorous experimental meth
odologies. Interpretively, while Q incorporates concurrence and 
S, this does not imply that conscious experience originates from 
quantum mechanics. It also does not suggest that consciousness 
inherently operates quantum-mechanically. Instead, quantum 
measurements indicate contextual and quantum-like elements (e. 
g., stimulus contingencies) influencing the twins’ conscious 
states.

(3) Beta coefficient estimation considerations. In the Q framework, β is a 
parameter that modulates quantum effects on variance. It is 
essential to derive β from participants’ accuracy/error matrices, 
not keyboard response matrices. Using the latter inflates β, 
leading to Type I errors. Instead, β should be calculated directly 
from accuracy/error matrices. While a factorial analysis could be 
performed on this matrix, robust methods such as partial eta 
squared should be prioritized when available, as they correct for 
issues associated with matched pair designs. In our case, β was 
estimated at 13.5 %, which reflects the explained variance 
attributable to experimental conditions, including entanglement 
and matched pair controls.

Future researchers should take these methodological considerations 
into account when applying Q in experimental designs to explore its 
predictive capabilities and broader applicability.

4.2. Superquantum vs. quantum effects

Since our Bell’s S exceeded the theoretical maximum threshold 
applicable to real physical systems, readers may question whether the 
results from the E1 density matrix analysis fall within the domain of 
superquantum phenomena [64]. Our position on this is clear: while we 
cannot claim that the conditions and properties of qubit entanglement 
are superquantum, we can make the following points. First, we exam
ined whether the S value obtained in our circuit (applied to a real 
physical system, IBM Brisbane) might be due to rotations or logical gates 
introducing noise into E1. The results showed this was not the case. In 
noise-free conditions, the S indicator increased to 3, a value firmly 
within the superquantum domain. Second, we verified that this outcome 
could not be attributed to characteristics of the real physical system IBM 
Brisbane itself. To do this, we replicated the calculations and circuits 
using an ideal simulator with errors set to zero. When running E1 in this 
perfect simulator, the results closely matched those from our experi
ments. However, the differences between the ideal and real conditions 
(in the experimental S values) did not allow us to predict the observed 
increase in S beyond the theoretical threshold.

Based on these validations, we have reason to suggest that IBM 
Brisbane, in ways we do not yet understand, produced variations in S 
slightly exceeding the usual quantum limits. If this entanglement is 
indeed superquantum rather than quantum, this would have two major 
implications for interpreting our findings: 

(1) We would need to assume that IBM Brisbane, via our circuit, 
induced states in the qubits that emergently caused this variation 
through unknown perturbations that we could not identify. This 
aligns with Gisin et al.’s [32] findings, which demonstrated that 
the quantum CHSH limit can be surpassed. Such emergent 
behavior would place Popescu’s [63] superquantum framework 
into the realm of applied experimentation in consciousness 
research. While innovative, this aligns with the growing number 

Fig. 10. Regression lines corresponding to the biomarkers. Regression models predicting performance levels in quantum-like learning based on biomarkers 
related to conscious experience measured in this study. The regression lines are presented for group 0 (no quantum entanglement) and group 1 (with the entan
glement condition).
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of methods and criteria for applying quantum mechanics to 
non-quantum processes [71].

(2) Accepting (1) would mean acknowledging that nonlocality pre
cedes uncertainty, rather than the other way around. This idea, 
proposed by Popescu [63], is compatible with the fundamental 
consciousness hypothesis [79]. If so, our evidence would align 
with this research direction. However, within the scope of our 
study, we do not yet have enough evidence to demonstrate that 
our experimental results go beyond quantum mechanics.

4.3. On quantum limitations

The limitations of this study, some of which have already been 
addressed, focus on the broader question of whether quantum-level 
phenomena can be generalized to non-quantum or cognitive levels. 
The integration of quantum mathematics into real-world processes has 
sparked considerable debate for several reasons, notably: 

(1) There is a mathematical issue of decoherence when applying 
quantum principles to non-quantum phenomena [77].

(2) Multiple interpretive frameworks exist—most of which are based 
on scientific consensus—but it is unclear which should apply 
when combining quantum and non-quantum methodologies 
[38].

(3) The philosophical “hard problem” remains: Why should quantum 
probabilities apply to systems in reality that are not inherently 
quantum [59]?

In addressing these critiques, we note that the Q coefficient specif
ically seeks to address point (1); the other issues must be discussed 
scientifically once there is sufficient evidence to evaluate the success or 
failure of using quantum models in non-quantum contexts. We argue 
that these questions should not be addressed or judged at this stage of 
the research and are beyond the scope of this report. Attempting to do so 
would be as premature as expecting the inventors of the steam engine to 
justify its intellectual and technological revolution before its societal 
impact was understood. Such questions are logically unanswerable: we 
understand the meaning of events only after they occur, not before. 
Thus, we see no objective value in prematurely judging the Q co
efficient’s validity. Its adoption by other researchers should be encour
aged, and its functionality should be assessed statistically. Only then will 
we be in a position to offer a deeper analytical and philosophical 
judgment.

Regarding limitation (1), we emphasize the methodological frame
work underpinning the inference of entanglement effects. It is not only 
that the E1 qubits exhibited entangled states; somehow, these states 
quantumly influenced the collapse matrix. Since this matrix was used to 
configure the stimuli in our experiments, we have reason to assert that a 
quantum phenomenon at this stage altered participants’ performance 
levels. The decision to use twins was made before the study began, based 
on the well-documented phenomenon of electrochemical synchronic
ities observed in identical twins [76]. If such a phenomenon had any 
effect in our study, as shown in Table 4, it did not yield statistically 
significant results (p-value= 0.151) and thus did not directly impact our 
analyses. While we have not mathematically resolved the problem of 
decoherence, we have an empirically testable procedure that overcomes 
it—even if we do not fully understand how. Further research is needed to 
explore the revolutionary potential of these findings.

4.4. Conclusions

Our findings indicate that certain learning effects violate locality 
conditions and exhibit predictable cognitive behavior influenced by 
quantum entanglement in monozygotic twins, explaining 13.5 % of the 
variance in performance levels. This explained variance may also reflect 
a subtype of Guppy Effect [62], potentially representing one of the first 

pieces of evidence that cognitive entanglement plays a role in this type 
of learning through the contingencies discussed earlier. Furthermore, 
this variance cannot be attributed to other known effects that might 
have distorted our results. Hence, we can conclude that entangle
ment significantly enhances the efficiency of unconscious learning 
processes, potentially boosting the accuracy and effectiveness of 
cognitive performance.

Using our newly developed Quantum-Multilinear Integrated Coefficient 
(Q), the non-random structures in participants’ responses increased by 
approximately 31 %, with about 8 % of the variance predictably 
explained by entanglement. This suggests that quantum entanglement in 
cognitive processes, especially in the realm of anomalous cognition, 
introduces variations that can predict responses. Our findings support 
research linking conscious experience with quantum mechanics. We 
propose the Q coefficient for use in future studies and encourage the 
international research community to adopt or refine it to advance this 
line of inquiry.

Another important biological conclusion concerns neural plasticity. 
The fact that BDNF results account for approximately 26.5 % of the 
variance in cognitive performance supports the theoretical basis of the 
Nonlocal Plasticity Theory (NPT) proposed by Escolà-Gascón [24]. Our 
findings indicate that high plasticity levels are associated with nonlocal 
cognitive mechanisms involved in implicit learning. Future research on 
precognition should consider brain plasticity as a potential biomarker. 
While it may not resolve the hard problem of consciousness [15], it 
provides a pathway for empirically testing this phenomenon and 
developing applications to enhance survival. This also corroborates 
previous evidence of anomalous cognitions operating beyond the onto
logical boundaries traditionally set by orthodox science. Such findings 
challenge conventional scientific knowledge, not through mystical in
terpretations but through phenomena that transcend current epistemo
logical frameworks.
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Appendix A. Definition of fundamental concepts in quantum 
computing

(1) What is a quantum computational circuit?

A quantum computational circuit is a model used to perform calcula
tions by leveraging the principles of quantum mechanics. It consists of 
qubits (quantum units of information) and quantum gates (operations 
that manipulate qubits). While similar in concept to classical logic cir
cuits, quantum circuits take advantage of unique quantum properties 
like superposition and entanglement, allowing them to process infor
mation more efficiently for certain types of problems. 

(2) What is a qubit?

A qubit (quantum bit) is the fundamental unit of information in 
quantum computing, similar to a classical bit. However, unlike a clas
sical bit, which can only be 0 or 1, a qubit can exist in both states 
simultaneously due to a property called superposition. This allows 
quantum computers to perform multiple calculations at once, making 
them potentially far more powerful than classical computers for specific 
tasks. 

(3) Why do qubits behave differently from classical bits?

Qubits follow the rules of quantum mechanics, which give them 
properties that classical bits don’t have: (a) superposition—a qubit can 
exist in multiple states at the same time, rather than being strictly 0 or 1; 
(b) entanglement—two or more qubits can become linked, meaning that a 
change in one instantaneously affects the other, no matter how far apart 
they are; and (c) quantum interference—qubits can combine and cancel 
out different probabilities, helping improve the efficiency of certain 
quantum algorithms. 

(4) What are quantum gates and how do they work?

Quantum gates are operations that change the state of qubits in a 
quantum circuit. They are similar to classical logic gates (like AND and 
OR), but instead of switching bits between 0 and 1, they manipulate 
qubits in superposition. Quantum gates are also reversible, meaning no 
information is lost in the process—an important distinction from clas
sical computing. 

(5) What is a Hadamard gate and what does it do?

The Hadamard gate (H) is one of the most fundamental quantum 
gates because it creates superposition. If a qubit starts in state 0 or 1, 
applying a Hadamard gate transforms it into a state where it is equally 
likely to be either. This is essential in quantum computing, as it allows a 
single computation to explore multiple possibilities at once. 

(6) What is a CNOT gate and why is it important?

The CNOT (Controlled-NOT) gate is a two-qubit quantum gate that 
applies a conditional operation: if the first qubit (control qubit) is 1, it 
flips the second qubit (target qubit). If the control qubit is 0, the target 
qubit remains unchanged. This gate is crucial for quantum entangle
ment, a key feature used in quantum algorithms and quantum 
cryptography. 

(7) What are Pauli operators, and how do they relate to quantum 
noise?

Pauli operators describe how a qubit’s state can rotate in different 
directions. In the presence of quantum noise, these operators help model 
how external factors can disrupt qubit information. This understanding 
is critical for quantum error correction, which aims to make quantum 
computers more reliable. 

(8) What happens when a qubit “collapses” to 0 or 1?

Before measurement, a qubit exists in a superposition of 0 and 1, 
meaning it holds a probability of being in either state. However, when a 
qubit is measured, it “collapses” into a definite state—either 0 or 1—and 
loses its superposition. This collapse is a fundamental part of quantum 
mechanics. 

(9) How do we mathematically describe a quantum circuit?

Quantum circuits are typically represented using bra-ket notation, 
which describes qubit states as vectors in an abstract mathematical 
space. Additionally, quantum gates are expressed using unitary 
matrices, and quantum circuit diagrams are used to visually map out the 
sequence of operations. 

(10) What is the difference between a real quantum computer and 
a quantum simulator?

A real quantum computer uses physical qubits made from quantum 
particles (such as electrons or photons) to perform calculations. Because 
it operates on true quantum principles, such as superposition and 
entanglement, it can solve certain problems exponentially faster than 
classical computers. In contrast, a quantum simulator is a software pro
gram that runs on a classical computer to imitate the behavior of a 
quantum system. While it can simulate qubits and quantum gates, it is 
limited by the constraints of classical computing and cannot achieve the 
same speed or efficiency as a real quantum computer.

Appendix B. Verification of the Q coefficient

Since the Q coefficient is a newly proposed statistic designed to 
integrate quantum functionality with general mechanics, we also tested 
in this study whether the structures of participants’ keyboard responses 
align with the structures of the A and B collapse matrices. To empirically 
confirm that entanglement influences participant responses and validate 
the Q coefficient, it is crucial to establish a covariant structure between 
the keyboard responses and the collapse matrices. This step is essential 
to empirically substantiate the interpretability of the Q coefficient; 
without it, its interpretation would lack rigor and become arbitrary.
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This analysis can be approached through various methods. One 
viable approach involves calculating multilinear correlations between 
the participants’ keyboard response matrices and the A and B collapse 
matrices generated by E1. If the analysis succeeds, we should observe 
topographically visualized correlations greater than 0 that progressively 
increase in magnitude. However, correlations greater than 0 alone are 
insufficient to confirm entanglement effects. As noted earlier, the 
topographic map must display progressively increasing correlations 
> 0 to substantiate the presence of entanglement. This requirement is 
grounded in a fundamental logic: if implicit learning is functional, and 
the eigenvalue in the success/error matrices is high, participants’ suc
cesses should concentrate toward the later stages of the 144-trial se
quences, rather than the earlier ones. While Escolà-Gascón [24]
observed this clustering of successes toward the end of the sequence, the 
critical point here is that our comparative analysis should reveal sig
nificant differences in the distribution of successes between the C1 cir
cuit group and the E1 circuit group with entanglement. If our hypothesis 
is correct, the increasing magnitude of correlations between matrix 
vectors should manifest visually, consistently remaining greater than 0.

To accurately capture this progressive increase, computational 
visualization must be presented in 3D. Without this dimensionality, the 
incremental growth in correlation magnitudes would not be discernible. 
By adding a z-axis to the map, we can represent the progressive increase 
in correlations over time. The details of this z-axis will be elaborated in 
the results section, providing readers with a clear conceptual link be
tween the theoretical framework discussed in this subsection and the 
execution of the full procedures applied to real data.

Data availability

The data will be available upon request to the author of the manu
script, provided that properly justified reasons are given. The author 
reserves the right to decline any data requests that may involve a conflict 
of interest.
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