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We develop a reduction theory for G-invariant Lagrangian field theories defined on the 
higher-order jet bundle of a principal G-bundle, thus obtaining the higher-order Euler--
Poincaré field equations. To that end, we transfer the Hamilton’s principle to the reduced 
configuration bundle, which is identified with the bundle of flat connections (up to a 
certain order) of the principal G-bundle. As a result, the reconstruction condition is always 
satisfied and, hence, every solution of the reduced field equations locally comes from a 
solution of the original (unreduced) equations. Furthermore, the reduced equations are 
shown to be equivalent to the conservation of the Noether current. Lastly, we illustrate 
the theory by investigating multivariate higher-order splines on Lie groups.

© 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI 
training, and similar technologies.

1. Introduction

In the realm of geometric mechanics, reduction by symmetries involves dropping the dynamical equations of a system 
with symmetry to a lower-dimensional space, which is the family of group orbits of the symmetry action. The modern 
approach of this procedure was first introduced in [1,32,36,41], and for Lagrangian theories in [12,13,31]. For the latter, the 
key idea is to transfer the variational principle, typically the Hamilton’s principle, to the reduced configuration space. This 
yields the reduced equations when applied to the reduced Lagrangian.

The reduction results in mechanics for first-order systems, i.e., those whose Lagrangians depend only on the generalized 
positions and their velocities, have been successfully extended to field theories [8,19], including covariant field theories [7, 
9,11,16], where the configuration manifold is replaced by a fiber bundle whose base space models the spacetime. The key 
case for reduction in both Mechanics and field theories is Euler–Poincaré reduction, where the variational variables take 
values in a Lie group G or are local sections of a G-principal bundle, and G is at the same time the group of symmetries.

Lagrangian reduction in Mechanics (and, in particular, Euler–Poincaré) has been extended to higher-order systems (see 
for example [20--22]). However, there is not a counterpart in field theory yet, despite the fact that there are interesting 
systems and situations that fit in this context.

This work addresses higher-order Euler–Poincaré reduction, i.e., reduction for higher-order Lagrangian field theories 
whose configuration bundle is a principal G-bundle and the group of symmetries is G . We thus extend the results in 
[7] to higher-order Lagrangian field theories. The analysis of multivariate splines on Lie groups is given at the end of the 
article to illustrate the main results of it.
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Reduction theory has also been analyzed in the discrete setting for both mechanics [2,3,33,34,38] and field theory [42]. 
A discretization of the reduction theory introduced here would be desirable in order to build variational integrators for the 
reduced equations. We leave this as a future work.

The paper is organized as follows. Firstly, some essential facts about higher-order jet bundles are recalled in Section 2, 
including the total partial derivatives and the jet prolongation of vector fields, and the formulation of higher-order La
grangian field theories is recalled in 3. Next, in Section 4 the geometry of the reduced configuration space ( J k P )/G for a 
k-th order Lagrangian theory on a principal bundle is investigated. The understanding of this reduced phase bundle is es
sential for a correct analysis of the reduced variational principle. For first order theories, this reduced bundle is the bundle 
of connections C(P ), the sections of which are principal connections on P . However, even though one might suspect that 
( J k P )/G ≃ J k−1C(P ), k ≥ 2, it turns out that this reduced phase bundle is the space of (k − 1)-th order pointwise principal 
connections with vanishing curvature up to k−2 order. This fact is already shown for particular cases in [26] and is analyzed 
in depth in [17]. We follow the strategy of the latter. The main result of the paper is established in Section 5, where we 
compute the reduced equations, i.e., the higher-order Euler–Poincaré field equations. For k ≥ 2 the reconstruction process 
providing solutions of the original problem from solution of the reduced equations is given in detail (at least locally). In 
this case, the situation k = 1 and k ≥ 2 show a different conceptual behavior, since the first order case requires an auxiliary 
compatibility condition, whereas that condition is implicit in the set of admissible solution for higher-order Lagrangians. 
Furthermore, the reduced equations are reinterpreted as a Noether conservation law in Section 6. At last, Section 7 is de
voted to illustrate the previous theory by computing the reduced equations for multivariate k-splines (brane splines) on Lie 
groups.

In the following, every manifold or map is assumed to be smooth, meaning C∞ , unless otherwise stated. In addition, 
every fiber bundle πY ,X : Y → X is assumed to be locally trivial and is denoted by πY ,X . Given x ∈ X , Yx = π−1

Y ,X ({x}) denotes 
the fiber over x. We assume that dim X = n and dim Yx = m. The space of (smooth) global sections of πY ,X is denoted by 
Γ(πY ,X ). In particular, vector fields on a manifold X are denoted by 𝔛(X) = Γ(πT X,X ), where T X is the tangent bundle of 
X . Likewise, k-forms on X are denoted by Ωk(X) = Γ(πT ∗ X,X ), where T ∗ X is the cotangent bundle of X . The space of local 
sections is denoted by Γloc(πY ,X ), and the same notation stands for local vector fields and forms. In the same vein, given 
an open set 𝒰 ⊂ X , the family of sections of πY ,X defined on 𝒰 is denoted by Γ

(︁𝒰 ,πY ,X
)︁
, and analogous for the other 

spaces. The tangent map of a map f ∈ C∞(X, X ′) between the manifolds X and X ′ is denoted by (df )x : Tx X → T f (x) X ′
for each x ∈ X . In the same vein, the pull-back of α ∈ Ωk(X ′) is denoted by f ∗α ∈ Ωk(X) and its exterior derivative is 
denoted by dα ∈ Ωk+1(X ′). When working in local coordinates, indices will be denoted by lowercase letters (μ, α, etc.), and 
multi-indices by capital letters ( J = ( J1, . . . , Jn) ∈Nn , etc.). Given two multi-indices J = ( J1, . . . , Jn), I = (I1, . . . , In) ∈Nn , 
we write

J ! = J1! . . . Jn!, 
(︃

J

I

)︃
=

(︃
J1

I1

)︃
. . .

(︃
Jn

In

)︃
.

Besides, we will assume the Einstein summation convention for repeated (multi-)indices.

2. Higher-order jet bundles

We summarize the main results about higher-order jet bundles that we will need in the following (see, for example, [40, 
Chapter 6]). Let πY ,X : Y → X be a fiber bundle and k ∈Z+ . The k-th order jet bundle of πY ,X is denoted by

π Jk Y ,X : J kY −→ X,

and its elements by jk
xs. The k-th jet lift of a section s ∈ Γ(πY ,X ) is denoted by jks ∈ Γ

(︂
π Jk Y ,X

)︂
. Recall that the maps 

πk,l : J kY → J lY , jk
xs ↦→ jl

xs, 0 ≤ l < k, are fiber bundles, where we denote J 0Y = Y . In addition, πk,k−1 is an a�ine bundle 
modelled on

π∗
Jk−1Y ,X

(︂⋁︁k T ∗ X
)︂

⊗ π∗
k−1,0(V Y ),

where V Y = ker(πY ,X )∗ is the vertical bundle of πY ,X .
Let (xμ, yα) be bundle coordinates for πY ,X . The induced coordinates on J kY are (xμ, yα; yα

J ), 1 ≤ | J | ≤ k, where | J | =
J1 + · · · + Jn is the length of J . If, locally, s(xμ) = (︁

xμ, sα(xμ)
)︁

for some (local) functions sα ∈ C∞(X), 1 ≤ α ≤ m, then 
jks(xμ) =

(︂
xμ, sα(xμ); sαJ (xμ)

)︂
with

sαJ (xμ) = ∂ | J |

∂x J

⃓⃓⃓
⃓
x=(xμ)

sα(x) =
(︃

∂

∂x1

)︃ J1

. . .

(︃
∂

∂xn

)︃ Jn
⃓⃓⃓
⃓⃓
x=(xμ)

sα(x),

for each 1 ≤ | J | ≤ k.

2 
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Definition 2.1. Let πY ,X and πY ′,X ′ be fiber bundles, k ∈ Z+ , and F : Y → Y ′ be a bundle morphism covering a diffeomor
phism f : X → X ′ . The k-th order jet lift of F is the map jk F : J kY → J kY ′ defined as jk

xs ↦→ jk
f (x)

(︁
F ◦ s ◦ f −1

)︁
.

If πY ′′,X ′′ : Y ′′ → X ′′ is another fiber bundle and G : Y ′ → Y ′′ is bundle morphism covering a diffeomorphism g : X ′ → X ′′ , 
then jk(G ◦ F ) = jkG ◦ jk F . In other words, the following diagram is commutative.

J kY JkY ′ J kY ′′

Y Y ′ Y ′′

X X ′ X ′′

jk F

πk,0 π ′
k,0

F

πY ,X πY ′,X ′
f

jkG

G

g

π ′′
k,0

πY ′′,X ′′

jk(F ◦ G)

(1)

Proposition 2.1. The following is a canonical decomposition of vector bundles over J kY ,

π∗
k+1,k

(︂
T ( J kY )

)︂
= π∗

k+1,k

(︂
V ( J kY )

)︂
⊕ H(πk+1,k),

where V ( J kY ) = ker(π Jk Y ,X )∗ is the vertical bundle of π Jk Y ,X and

H(πk+1,k) jk+1
x s = d( jks)x(Tx X), jk+1

x s ∈ J k+1Y .

Given jk+1
x s ∈ J k+1Y and Ux ∈ Tx X , the vector U k

jk+1
x s

= d( jks)x(Ux) ∈ H(πk+1,k) is called k-th holonomic lift of Ux by jk+1
x s. 

In coordinates, if we write jk+1
x s =

(︂
xμ, yα; yα

J

)︂
and Ux = Uμ∂μ , then

Uk
jk+1
x s

= Uμ

⎛
⎝∂μ + yα

1μ
∂α +

k ∑︂
| J |=1

yα
J+1μ

∂
J
α

⎞
⎠ ,

where 1μ is the multi-index given by (1μ)ν = δμν , and ∂μ , ∂α , ∂ J
α are the partial derivatives of the coordinates xμ , yα , 

yα
J , respectively, 1 ≤ μ,ν ≤ n, 1 ≤ α ≤ m, 1 ≤ | J | ≤ k. In particular, the k-th holonomic lifts of the partial vector fields, ∂μ , 

1 ≤ μ ≤ n, are called coordinate total derivatives and are given by

d 
dxμ

= (∂μ)k
jk+1
x s

= ∂μ + yα
1μ

∂α + yα
J+1μ

∂
J
α.

Example 2.1 (Total time derivative). Let Q be a smooth manifold and consider the trivial bundle πR×Q ,R with (local) coor
dinates (t,qα). Given q(t) = (︁

t,qα(t)
)︁
, the total time derivative is given by

d 
dt

= ∂

∂t
+ ∂qα

∂t 
∂α +

k ∑︂
j=1 

∂ j+1qα

∂t j+1
∂

j
α.

Note that given a (local) function f ∈ C∞( J kY ) and a multi-index J = ( J 1, . . . , Jn), then

d| J | f

dx J
∈ C∞( J k+| J |Y ).

Furthermore, for a section s ∈ Γ(πY ,X ) we have

d| J | f

dx J
◦ jk+| J |s = ∂ | J | (︁

f ◦ jks
)︁

∂x J
. (2)

Next, we define the prolongation of vector fields.

Definition 2.2. Let l ∈ Z+ . A generalized vector field on J lY is a section U ∈ Γ
(︂
π∗

l,0T Y → J lY
)︂

. Furthermore, it is said to be 

vertical if U ( jl
xs) ∈ V s(x)Y for each jl

xs ∈ J lY .

3 
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Note that (standard) vector fields on Y would be regarded as generalized vector fields for l = 0. Locally, generalized 
vector fields are given by

U = Uμ∂μ + Uα∂α, Uμ, Uα : J lY → R,  1 ≤ μ ≤ n,  1 ≤ α ≤ m.

This way, vertical generalized vector fields are those ones such that Uμ = 0 for 1 ≤ μ ≤ n.

Given a generalized vector field, U ∈ Γ
(︂
π∗

l,0T Y → J lY
)︂

, and k ∈ Z+ , it may be defined the k-th order prolongation of 

U , which is a section U (k) ∈ Γ
(︂
π∗

k+l,k

(︁
T

(︁
J kY

)︁)︁ → J k+lY
)︂

(cf. [40, Definition 6.4.16]). In particular, k-the prolongations of 

(standard) vector fields on Y are (standard) vector fields on J kY .

Proposition 2.2. Let k ∈Z+ , (xμ, yα; yα
J ) be bundle coordinates for J kY and V = V α∂α ∈ 𝔛(Y ) be a vertical vector field on Y , where 

V α : Y →R, 1 ≤ α ≤ m. Then k-th order prolongation of V is given by

V (k) = V α∂α + d| J |V α

dx J
∂

J
α ∈𝔛

(︂
J kY

)︂
.

Proposition 2.3. Let k ∈ Z+ and U ∈ 𝔛(Y ) be a πY ,X -projectable vector field on Y . Then the flow of its k-th order prolongation, 
U (k) ∈ 𝔛

(︁
J kY

)︁
, is 

{︁
jkϕt | t ∈ (−ϵ, ϵ)

}︁
, where {ϕt | t ∈ (−ϵ, ϵ)} is the flow of U .

To conclude this brief overview, we present the Leibniz rule for higher-order, multivariable calculus, which can be 
straightforwardly proven by induction in the number of factors (see [24, Proposition 6] for two factors).

Lemma 2.1 (Higher-order Leibniz rule). Let m ∈Z+ and f1, . . . , fm ∈ C∞(Rn). Then

∂ |I|

∂xI

m ∏︂
α=1

fα =
∑︂

I(1)+···+I(m)=I

I! 
I(1)! . . . I(m)!

m ∏︂
α=1

∂ |I(α)| fα

∂xI(α)
, |I| ≥ 0.

3. Calculus of variations for higher-order Lagrangian densities

We now recall higher-order calculus of variations (for a comprehensive exposition see, for example, [18,35,4]). Let X be 
a compact, πY ,X : Y → X be a fiber bundle, and k ∈Z+ . A k-th order Lagrangian density on πY ,X is a bundle morphism

𝔏 : J kY −→ ⋀︁n T ∗ X

covering the identity on X . If X is oriented by a volume form v ∈ Ωn(X), we will write 𝔏= Lv for a function L ∈ C∞ (︁
J kY

)︁
known as Lagrangian. The action functional defined by 𝔏 is

S : Γ(πY ,X ) → R, s ↦→
∫︂
X

𝔏
(︂

jks
)︂

.

A variation of s ∈ Γ
(︁
πY ,X

)︁
is a 1-parameter family of sections{︁

st ∈ Γ
(︁
πY ,X

)︁ | t ∈ (−ϵ, ϵ), s0 = s
}︁
.

The corresponding infinitesimal variation is

δs = d 
dt

⃓⃓⃓
⃓
t=0

st ∈ Γ
(︁
πs∗T Y ,X

)︁
.

Henceforth, only πY ,X -vertical variations are considered, that is, those ones satisfying δs(x) ∈ V s(x)Y for each x ∈ X . The 
variation of the action functional induced by {st} is defined as

δS[s] = d S[st ]
dt 

⃓⃓⃓
⃓
t=0

,

and it only depends on the infinitesimal variation. That is to say, if {st} and {s′
t} are two variations of s such that δs = δs′ , 

then d S[st]/dt
⃓⃓
t=0 = d S[s′

t]/dt
⃓⃓
t=0.

Definition 3.1. A section s ∈ Γ
(︁
πY ,X

)︁
is critical or stationary for S if the variation of the corresponding action functional 

vanishes for every vertical variation of s, i.e.,

δS[s] = 0, δs ∈ Γ
(︁
πs∗V Y ,X

)︁
.

4 
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Unlike the first order case, the covariant Cartan form,

Θ𝔏 ∈ Ωn
(︂

J 2k−1Y
)︂

,

is not uniquely defined for higher-order Lagrangians if dim X = n > 1. The main reason is that, although there is a canonical 
embedding J kY ↪→ J 1

(︁
J k−1Y

)︁
, there are many different choices for the corresponding projection. Nevertheless, it is always 

possible to construct a globally defined projection by means of tubular neighborhoods, thus yielding a globally defined 
covariant Cartan form on J kY (cf. [40, Theorem 6.5.13]). In any case, there is a unique choice for the Euler–Lagrange form 
associated to 𝔏,

ℰℒ(𝔏) ∈ Ωn
(︂

J 2kY ,π∗
2k,0

(︁
V ∗Y

)︁)︂
,

where πV ∗Y ,Y is the dual of the vertical bundle πV Y ,Y . There exist adapted coordinates (xμ, yα; yα
J ) for J 2kY such that the 

covariant Cartan form is locally given by1

Θ𝔏 =
k−1 ∑︂
|I|=0

k−|I|−1∑︂
| J |=0 

(−1)| J | d| J |

dx J

(︄
∂L 

∂ yα
I+ J+1μ

)︄ (︁
dyα

I − yα
I+1ν

dxν
)︁ ∧ (︁

ι∂μ v
)︁ + Lv, (3)

where ι : 𝔛(X) × Ωk+1(X) → Ωk(X) denotes the left interior product. Similarly, the Euler–Lagrange form is given by

ℰℒ(𝔏) =
k ∑︂

| J |=0

(−1)| J | d| J |

dx J

(︄
∂L 
∂ yα

J

)︄
v ⊗ dyα. (4)

Proposition 3.1. Let δs ∈ Γ(πs∗ V Y ,X ) be a variation of a section s ∈ Γ(πY ,X ). Then the variation of the action functional is given by

δS[s] =
∫︂
X

⟨︂(︂
j2ks

)︂∗
ℰℒ(𝔏), δs

⟩︂
,

where ⟨·, ·⟩ denotes the dual pairing within the vector bundle V Y → Y .

Proof. Since the variation is vertical, we have st = ϕt ◦ s, t ∈ (−ϵ, ϵ), where {ϕt : Y → Y | t ∈ (−ϵ, ϵ)} is the flow of a vertical, 
πY ,X -projectable vector field V ∈ 𝔛(Y ). Subsequently,

d 
dt

⃓⃓⃓
⃓
t=0

𝔏
(︂

jkst

)︂
= d 

dt

⃓⃓⃓
⃓
t=0

(︂
jks

)︂∗ (︂
𝔏( jkϕt)

)︂

=
(︂

jks
)︂∗ (︃

d 
dt

⃓⃓⃓
⃓
t=0

𝔏
(︂

jkϕt

)︂)︃

=
(︂

jks
)︂∗ (︁

£V (k)𝔏
)︁
, (5)

where £ denotes the Lie derivative and we have used the commutativity of (1) and Proposition 2.3. Since X is boundaryless, 
the Stokes theorem leads to∫︂

X

(︂
jks

)︂∗
d

(︁
ιV (k)𝔏

)︁ =
∫︂
X

d
(︂(︂

jks
)︂∗ (︁

ιV (k)𝔏
)︁)︂

=
∫︂
∂ X 

(︂
jks

)︂∗ (︁
ιV (k)𝔏

)︁ = 0. (6)

Similarly, we pick bundle coordinates (xμ, yα; yα
J ) for J kY , which allows us to write V = V α∂α for certain (local) functions 

V α : X →R, 1 ≤ α ≤ m. Thus, Proposition 2.2 yields

ιV (k) d𝔏 =
(︄

∂L 
∂ yα

V α + ∂L 
∂ yα

J

d| J |V α

dx J

)︄
v. (7)

Lastly, the higher-order integration by parts formula for boundaryless manifolds (see, for example, [6, Lemma 4.5]), together 
with (2), gives

1 Since the higher-order covariant Cartan form is not uniquely determined, its local expression depends on the choice of bundle coordinates (cf. [40, 
§5.5], [23, §3B] for first order, and [15, §5], [40, §6.5] for higher orders).

5 
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∫︂
X

(︂
jks

)︂∗
(︄

∂L 
∂ yα

J

d| J |V α

dx J
v

)︄
=

∫︂
X

∂

∂ yα
J

(︂
L ◦ jks

)︂ ∂ | J |V α

∂x J
v (8)

= (−1)| J |
∫︂
X

∂ | J |

∂x J

(︄
∂

∂ yα
J

(︂
L ◦ jks

)︂)︄
V α v

= (−1)| J |
∫︂
X

(︂
j2ks

)︂∗
(︄

d| J |

dx J

(︄
∂L 
∂ yα

J

)︄
V α v

)︄
.

On the other hand, it is clear that δs = (d/dt)|t=0 (ϕt ◦ s) = V ◦ s = V α∂α ∈ Γ
(︁
πs∗ V Y ,X

)︁
. Hence, from the local expression of 

the Euler–Lagrange form (4), we get

⟨︂(︂
j2ks

)︂∗
ℰℒ(𝔏), δs

⟩︂
=

(︂
j2ks

)︂∗
⎛
⎝ k ∑︂

| J |=0

(−1)| J | d| J |

dx J

(︄
∂L 
∂ yα

J

)︄⎞
⎠ V α v. (9)

By using Cartan’s formula, i.e., £ = d ◦ ι + ι ◦ d, and by gathering the previous expressions, we finish

δS[s] = d 
dt

⃓⃓⃓
⃓
t=0

∫︂
X

𝔏
(︂

jkst

)︂
(5)= 

∫︂
X

(︂
jks

)︂∗ (︁
£V (k)𝔏

)︁

=
∫︂
X

(︂
jks

)︂∗ (︁
ιV (k) d𝔏

)︁ +
∫︂
X

(︂
jks

)︂∗
d

(︁
ιV (k)𝔏

)︁

(6),(7)= 
∫︂
X

(︂
jks

)︂∗
(︄

∂L 
∂ yα

V α + ∂L 
∂ yα

J

d| J |V α

dx J

)︄
v

(8)= 
∫︂
X

(︂
j2ks

)︂∗
(︄

∂L 
∂ yα

+ (−1)| J | d| J |

dx J

(︄
∂L 
∂ yα

J

)︄)︄
V α v

(9)= 
∫︂
X

⟨︂(︂
j2ks

)︂∗
ℰℒ(𝔏), δs

⟩︂
. □

The following result is a straightforward consequence of the previous Proposition and it gives the higher-order version 
of the well-known Euler–Lagrange equations.

Theorem 3.1. Let 𝔏= Lv : J kY → ⋀︁n T ∗ X be a k-th order Lagrangian density, and consider the corresponding Euler–Lagrange form, 
ℰℒ(𝔏). Then the following statements for a section s ∈ Γ

(︁
πY ,X

)︁
are equivalent:

(i) The variational principle δS[s] = 0 holds for arbitrary variations δs ∈ Γ(πs∗ V Y ,X ).
(ii) s satisfies the k-th order Euler–Lagrange field equations, i.e.,

( j2ks)∗ℰℒ(𝔏) = 0.

From (2) and (4), we obtain the local expression of the higher-order Euler–Lagrange equations:

k ∑︂
| J |=0

(−1)| J | ∂ | J |

∂x J

(︄
∂L 
∂ yα

J

(︂
jks

)︂)︄
= 0, 1 ≤ α ≤ m.

Remark 3.1. The calculus of variations described above is straightforwardly extended to a non-compact base manifold X by 
considering compactly supported variations. In other words, given a section s ∈ Γ(πY ,X ), the only variations δs allowed are 
those satisfying

jk−1
x δs = 0, x ∈ ∂𝒰,

for some open subset 𝒰 ⊂ X with compact closure, 𝒰 . Locally, this condition ensures that δs as well as its partial derivatives 
up to order k − 1 vanish on the boundary, ∂𝒰 . As a result, no boundary terms appear when integrating by parts and, thus, 
Proposition 3.1 is still valid.

6 



M. Castrillón López and Á. Rodríguez Abella Journal of Geometry and Physics 219 (2026) 105693 

4. Geometry of the reduced configuration space

Let G be a Lie group, 𝔤 = Te G be its Lie algebra, e ∈ G being the identity element, and 𝔤∗ be the dual of the Lie 
algebra. The corresponding exponential map is denoted by exp : 𝔤 → G , and the adjoint representation of G is denoted by 
Adg : 𝔤→ 𝔤 for each g ∈ G . In the same vein, the adjoint and coadjoint representations of 𝔤 are denoted by adξ : 𝔤→ 𝔤 and 
ad∗

ξ : 𝔤∗ → 𝔤∗ , respectively, for each ξ ∈ 𝔤.
Let πP ,X : P → X be a principal G-bundle. The corresponding right action is denoted by

R : P × G → P , (y, g) ↦→ R y(g) = R g(y) = y · g.

Recall that the infinitesimal generator of ξ ∈ 𝔤 is the vertical vector field ξ∗ ∈𝔛(P ) given by

ξ∗
y = d 

dt

⃓⃓⃓
⃓
t=0

y · exp(tξ) = (︁
dR y

)︁
e (ξ), y ∈ P .

For each k ∈Z+ , the k-th jet extension of the action,

R(k) : J k P × G → J k P , 
(︂

jk
xs, g

)︂
↦→ jk

x(s · g),

is again free and proper, thus yielding a principal G-bundle, J k P → J k P/G .
We denote by C(P ) = J 1 P/G → X the bundle of connections of πP ,X , which is an a�ine bundle modelled on T ∗ X ⊗

ad(P ) → X , being ad(P ) = (P × 𝔤)/G the adjoint bundle of πP ,X . Recall that there is a bijective correspondence between 
(local) sections of πC(P ),X and (local) principal connections on πP ,X , which we denote by

Ω1(P ,𝔤) ∋ A
1:1 ←→ σA ∈ Γ(πC(P ),X ).

The following result ensures that holonomic sections of the jet bundle yield flat principal connections.

Lemma 4.1. Let s ∈ Γloc(πP ,X ) and define σA = [︁
j1s

]︁
G ∈ Γloc(πC(P ),X ). Then the local connection A ∈ Ω1

loc(P ,𝔤) is flat.

Proof. The local section s induces a trivialization of πP ,X on its domain 𝒰 ⊂ X ,

φ : 𝒰 × G
∼ → P |𝒰 , (x, g) ↦→ φ(x, g) = s(x) · g.

Recall that any connection is uniquely determined by its horizontal lift at each point. Given y = s(x) · g ∈ P |𝒰 , we denote by 
Hor A

y : Tx X → T y P the horizontal lifting of A at y. Since σA = [︁
j1s

]︁
G , we have

Hor A
y (Ux) = d(R g ◦ s)x(Ux) ∈ T y P , Ux ∈ Tx X . (10)

On the other hand, consider the canonical flat connection A0 ∈ Ω1(X × G,𝔤) on the trivial bundle πX×G,X . For each (x, g) ∈
X × G it is defined as

Hor A0
(x,g)(Ux) = (Ux,0g) ∈ T(x,g)(X × G), Ux ∈ Tx X .

It turns out that φ∗ A = A0|𝒰×G , so A is a flat connection. Indeed, let (x, g) ∈ 𝒰 × G and Ux ∈ Tx X . Since φ covers the 
identity on 𝒰 , we have

Horφ∗ A
(x,g)(Ux) = (︁

dφ−1)︁
s(x)·g

(︂
Hor A

φ(x,g)(Ux)
)︂

= (︁
dφ−1)︁

s(x)·g
(︁
d(R g ◦ s)x(Ux)

)︁
= d

(︁
φ−1 ◦ R g ◦ s

)︁
x (Ux) = (dιg)x(Ux) = (Ux,0g) = Hor A0

(x,g)(Ux),

where X ∋ x ↦→ ιg(x) = (x, g) ∈ X × G . □
The main goal of this section is to study the geometry of the quotient 

(︁
J k P

)︁/︁
G , which was first investigated in [17]. 

For the convenience of the reader, we present a detailed proof of the main result (see Corollary 4.1 below). To begin with, 
we introduce the following bundle morphisms.

Proposition 4.1. For each k ≥ 2, the bundle morphism Θk : J k P → J k−1C(P ) defined as jk
xs ↦→ jk−1

x [ j1s]G is well-defined and it 
descends to a map on the quotient, Ξk : (︁

J k P
)︁/︁

G → J k−1C(P ).

7 
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Proof. To begin with, note that Θk is the composition of the natural immersion J k P ↪→ J k−1
(︁

J 1 P
)︁

with the (k − 1)-th jet 
lift of the canonical projection π1 : J 1 P → C(P ). Thus, it is well-defined.

For the second part, let g ∈ G . Then

Θk

(︂
( jk

xs) · g
)︂

= Θk

(︂
jk
x(s · g)

)︂
= jk−1

x [ j1(s · g)]G

= jk−1
x [( j1s) · g]G = jk−1

x [ j1s]G = Θk

(︂
jk
xs

)︂
. □

The previous result may be summarized in the following commutative diagram.

J k P Jk−1C(P )

(︁
J k P

)︁/︁
G

Θk

πk
Ξk

jk
xs jk−1

x [ j1s]G

[︁
jk
xs

]︁
G

(11)

Consider the curvature map, i.e.,

F̃ : J 1C(P ) → ⋀︁2 T ∗ X ⊗ ad(P ), j1
xσA ↦→ F̃ A(x),

where F̃ A ∈ Ω2(X,ad(P )) is curvature of the (local) principal connection A ∈ Ω1(P ,𝔤) regarded as a 2-from on M with 
values in the adjoint bundle. By lifting it to the (k − 2)-jet and by composing it with the natural immersion of J k−1C(P ) ↪→
J k−2

(︁
J 1C(P )

)︁
we obtain

jk−2 F̃ : J k−1C(P ) → J k−2
(︂⋀︁2 T ∗ X ⊗ ad(P )

)︂
, jk−1

x σA ↦→ jk−2
x F̃ A .

Let 0̂ : X → ⋀︁2 T ∗ X ⊗ ad(P ) be the zero section, and consider its (k − 2)-jet lift, jk−20̂ : X → J k−2
(︂⋀︁2 T ∗ X ⊗ ad(P )

)︂
. We 

define the kernel of jk−2 F̃ as

ker jk−2 F̃ =
{︂

jk−1
x σA ∈ J k−1C(P ) | jk−2

x F̃ A = jk−2
x 0̂

}︂
.

Proposition 4.2. For each k ≥ 2, we have

(i) Ξk is an injective bundle morphism over X.
(ii) imΞk ⊂ ker jk−2 F̃ .

Proof. To check (i), let 
[︁

jk
xs

]︁
G ,

[︁
jk
xs′]︁

G ∈ (︁
J k P

)︁/︁
G be two different elements. In other words, jk

xs ≠ ( jk
xs′) · g = jk

x(s′ · g) for 
each g ∈ G . Subsequently, [ j1

x s]G ≠ [ j1
x s′]G and, thus, Ξk

(︁[︁
jk
xs

]︁
G

)︁ ≠ Ξk
(︁[︁

jk
xs′]︁

G

)︁
. On the other hand, (ii) is a straightforward 

consequence of Lemma 4.1. □
Let us introduce a trivializing chart of πP ,X , i.e., we pick an open subset 𝒰 ⊂ X with 𝒰 ≃ Rn via the local coordinates 

x = (xμ) and such that P |𝒰 ≃ 𝒰 × G . To keep the notation simple, we write 𝒰 = X . Likewise, let {Bα ∈ 𝔤 | 1 ≤ α ≤ m} be 
a basis of 𝔤 and consider normal coordinates (yα) in a neighborhood of the identity element e ∈ G , i.e., g = exp(yα Bα). 
This way, we have normal bundle coordinates (xμ, yα) for πP ,X . Note that for each g = exp(yα Bα),h = exp(zα Bα) ∈ G close 
enough to the identity, we have gh = exp

(︁
f α

C D yC zD Bα

)︁
, where C = (C1, . . . , Cm) is a multi-index, yC = (y1)C1 . . . (ym)Cm and 

f α
C D , 1 ≤ α ≤ m, |C |, |D| ≥ 0, are the constants of the Baker–Campbell--Hausdorff formula (cf. [43, §2.15] and [17, Theorem 

4.1]). By using this, it can be checked that

P × 𝔤≃ V P , ((xμ, yα), ξα Bα) ↦→ aα
β ξβ∂α, (12)

where

aα
β (y1, . . . , ym) = f α

C1β
yC .

Note that for y = (x, e) we have aα
β (0, . . . ,0) = δα

β , 1 ≤ α ≤ m. Hence, the inverse of the matrix (aα
β (yα)) is well defined in 

a neighborhood of y = (x, e), and we denote it by (bα
β (y1, . . . , ym)). In such case, the inverse of the previous isomorphism 

is given by

V P ≃ P × 𝔤, (y, Uα∂α) ↦→ (y,bα
β Uβ Bα). (13)

We pick the following bundle coordinates:

8 
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• (xμ, Aα
μ) for C(P ),

• (xμ, F α
μν) for 

⋀︁2 T ∗ X ⊗ ad(P ),

• (xμ, yα; yα
J ) for J k P ,

• (xμ, Aα
μ; Aα

μ, J ) for J k−1C(P ), and

• (xμ, F α
μν ; F α

μν, J ) for J k−2
(︂⋀︁2 T ∗ X ⊗ ad(P )

)︂
.

In order to keep the notation simple, we will write yα
J0

= yα , Aα
μ, J0

= Aα
μ and F α

μν, J0
= F α

μν for J0 = (0, . . . ,0).

Remark 4.1. Given two multi-indices I , J , the inequality I ≤ J means that Iμ ≤ Jμ for 1 ≤ μ ≤ n. Likewise, we denote I < J
when I ≤ J and I ≠ J , that is, Iμ ≤ Jμ for 1 ≤ μ ≤ n and there exists μ0 ∈ {1, . . . ,n} such that Iμ0 < Jμ0 .

Let us compute the coordinated expression of Θk .

Proposition 4.3. For each k ≥ 2 and each (xμ, yα; yα
J ) ∈ J k P with |yα| small enough, 1 ≤ α ≤ m, we have Θk(xμ, yα; yα

J ) =
(xμ, Aα

μ; Aα
μ, J ), where2

Aα
μ = bα

β (yα)yβ
1μ

, Aα
μ, J = ∂ | J |

∂x J

(︂
bα

β (yα)yβ
1μ

)︂⃓⃓⃓
⃓
x
,

for each 1 ≤ μ ≤ n, 1 ≤ α ≤ m, and 1 ≤ | J | ≤ k − 1.

Proof. We denote j1
x s = (xμ, yα; yα

J ). Recall from (10) that the horizontal lift given by [ j1s]G ∈ C(P ) reads Hor A
s(x) = dxμ ⊗

∂μ + yα
1μ

dxμ ⊗ ∂α . From this and (13), we get

As(x) = bα
β (yα)

(︂
−yβ

1μ
dxμ + dyα

)︂
⊗ Bα ∈ T ∗

s(x) P ⊗ 𝔤.

Then [ j1s]G = (xμ, Aα
μ = bα

β (yα)yβ
1μ

). By taking partial derivatives, we conclude. □
Now some technical lemmas are presented.

Lemma 4.2. Let k ≥ 2 and jk−1
x σA = (xμ, Aα

μ; Aα
μ, J ) ∈ J k−1C(P ). Then jk−2

x F̃ A =
(︂

xμ, F α
μν; F α

μν, J

)︂
∈ J k−2

(︂⋀︁2 T ∗ X ⊗ ad(P )
)︂

is 
given by

F α
μν, J = 1

2

⎛
⎝Aα

ν, J+1μ
− Aα

μ, J+1ν
+

∑︂
I≤ J 

(︃
J

I

)︃
cα
βγ Aβ

μ,I Aγ
ν, J−I

⎞
⎠ , (14)

for each 1 ≤ μ,ν ≤ n, 0 ≤ | J | ≤ k − 2 and 1 ≤ α ≤ m, where we denote by cα
βγ = 2 f α

1β 1γ
, 1 ≤ α,β,γ ≤ m, the structure constants 

of 𝔤.

Proof. We show it by induction in 0 ≤ | J | ≤ k − 2. The case | J | = 0 is straightforward, since the curvature of j1
xσA =

(xμ, Aα
μ; Aα

μ,1ν
) is given by (cf. [39, Chapter 1, §4])

F α
μν = 1

2

(︂
Aα

ν,1μ
− Aα

μ,1ν
+ cα

βγ Aβ
μ Aγ

ν

)︂
.

Now assume that (14) holds for 1 ≤ | J |(< k − 2). To conclude, we need to show that it holds for J ′ = J + 1σ for each 
1 ≤ σ ≤ n. Note that(︃

J ′

I

)︃
=

(︃
J + 1σ

I

)︃
=

(︃
J

I

)︃
+

(︃
J

I − 1σ

)︃
, 1σ ≤ I ≤ J .

Furthermore, note that

2 By abusing the notation, for each multi-index J we denote

∂ J bα
β

∂x J
(y)

⃓⃓⃓
⃓⃓
x

= ∂bα
β

∂ yγ
(y)

⃓⃓⃓
⃓⃓

yα=0

yγ
J , 1 ≤ α,β ≤ m.

9 
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∑︂
I≤ J ,
Iσ =0

(︃
J ′

I

)︃
=

∑︂
I≤ J ,
Iσ =0

(︃
J

I

)︃
, 

∑︂
I≤ J ′,

Iσ = Jσ +1

(︃
J ′

I

)︃
=

∑︂
I≤ J ′,

Iσ = Jσ +1

(︃
J

I − 1σ

)︃
.

Hence,∑︂
I≤ J ′

(︃
J ′

I

)︃
=

∑︂
I≤ J ,
Iσ =0

(︃
J

I

)︃
+

∑︂
1σ ≤I≤ J

(︃(︃
J

I

)︃
+

(︃
J

I − 1σ

)︃)︃
+

∑︂
I≤ J ′,

Iσ = Jσ +1

(︃
J

I − 1σ

)︃

=
∑︂
I≤ J 

(︃
J

I

)︃
+

∑︂
1σ ≤I≤ J ′

(︃
J

I − 1σ

)︃
.

By using this and by taking the partial derivative of (14) with respect to xσ , we finish

F α
μν, J ′ = 1

2

⎛
⎝Aα

ν, J ′+1μ
− Aα

μ, J ′+1ν
+

∑︂
I≤ J 

(︃
J

I

)︃
cα
βγ

(︂
Aβ

μ,I+1σ
Aγ

ν, J−I + Aβ
μ,I Aγ

ν, J−I+1σ

)︂⎞
⎠

= 1

2

⎛
⎝Aα

ν, J ′+1μ
− Aα

μ, J ′+1ν
+

∑︂
1σ ≤I≤ J ′

(︃
J

I − 1σ

)︃
cα
βγ Aβ

μ,I Aγ
ν, J ′−I +

∑︂
I≤ J 

(︃
J

I

)︃
cα
βγ Aβ

μ,I Aγ
ν, J ′−I

⎞
⎠

= 1

2

⎛
⎝Aα

ν, J ′+1μ
− Aα

μ, J ′+1ν
+

∑︂
I≤ J ′

(︃
J ′

I

)︃
cα
βγ Aβ

μ,I Aγ
ν, J ′−I

⎞
⎠ . □

Lemma 4.3. Let k ≥ 2 and g = exp(yα Bα) ∈ G with |yα| small enough, 1 ≤ α ≤ m. Then

cλ
βγ bβ

α(y)bγ
ϵ (y) = ∂bλ

α

∂ yϵ
(y) − ∂bλ

ϵ

∂ yα
(y), 1 ≤ α,ϵ,λ ≤ m.

Proof. For each 1 ≤ β,γ ≤ m and y = (xμ, yα) ∈ P , the infinitesimal generator is given in coordinates by (Bβ)∗y = aα
β (y)∂α

and, from the equality [Bβ, Bγ ] = cα
βγ Bα , they satisfy

cα
βγ aδ

α(t)∂δ =
[︂
aα
β (y)∂α,aδ

γ (y)∂δ

]︂
=

(︄
aα
β (y)

∂aδ
γ

∂ yα
(y) − aα

γ

∂aδ
β(yα)

∂ yα
(y)

)︄
∂δ. (15)

Since 
(︂

aα
β (y)

)︂ (︂
bα

β (y)
)︂

= I, the identity matrix, we have aδ
γ (y)bβ

δ (y) = δ
β
γ and, thus,

∂aδ
γ

∂ yα
(y)bβ

δ (y) + aδ
γ (y)

∂bβ
δ (yα)

∂ yα
(y) = 0, 1 ≤ α,β,γ ≤ m.

As a result,

∂aδ
γ

∂ yα
(y) = −aδ

β(y)aϵ
γ (y)

∂bβ
ϵ

∂ yα
(y), 1 ≤ α,γ , δ ≤ m.

By substituting this into (15) and rearranging indices, we get

cκ
βγ aδ

κ (y) = aα
β (y)aδ

λ(y)aϵ
γ (y)

(︃
− ∂bλ

ϵ

∂ yα
(y) + ∂bλ

α

∂ yϵ
(y)

)︃
, 1 ≤ β,γ , δ ≤ m.

Lastly, we multiply each side by bβ ′
α (y)bλ′

δ (y)bγ ′
ϵ (y) and we sum over α, δ and ϵ:

cλ
βγ bβ

α(y)bγ
ϵ (y) = ∂bλ

α

∂ yϵ
(y) − ∂bλ

ϵ

∂ yα
(y), 1 ≤ α,ϵ,λ ≤ m. □

We are ready to show the main result about the map Ξk .

Theorem 4.1. For each k ≥ 2, we have that:

(i) imΞk = ker jk−2 F̃ ⊂ J k−1C(P ) and,
(ii) Ξk is a proper map.

10 
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Proof. To begin with, we show (i). Thanks to Proposition 4.2(ii), we only need to prove that ker jk−2 F̃ ⊂ imΞk . Similarly, 
the commutativity of (11) yields imΞk = imΘk .

The fact that the maps are local enables us to work locally. More specifically, we employ the bundle coordinates in
troduced above. Let jk−1

x σA = (xμ, Aα
μ; Aα

μ, J ) ∈ ker jk−2 F̃ . We need to find jk
xs = (xμ, yα; yα

J ) ∈ J k P , such that Θk( jk
xs) =

jk−1
x σA . For that matter, we set yα = 0, 1 ≤ α ≤ m. Besides, we define yα

J , 1 ≤ | J | ≤ k, by recurrence. Namely, fix 
0 ≤ r ≤ k − 1, and assume that yα

J has been defined for 1 ≤ α ≤ m, 0 ≤ | J | ≤ r − 1 in such a way that they satisfy

∂ | J |

∂x J

(︂
bα

β (y)yβ
1μ

)︂⃓⃓⃓
⃓
x
= Aα

μ, J , (16)

for each 0 ≤ | J | ≤ r − 2, 1 ≤ μ ≤ n and 1 ≤ α ≤ m. Now pick J ∈Nn with | J | = r and consider 1 ≤ μ ≤ n such that Jμ > 0. 
Then we set

yα
J (μ) = Aα

μ, J−1μ
−

∑︂
I< J−1μ

(︃
J − 1μ

I

)︃
∂ | J−1μ−I|bα

β (y)

∂x J−1μ−I

⃓⃓⃓
⃓⃓
x

yβ
I+1μ

, 1 ≤ α ≤ m.

Observe that it makes sense, since the elements yα
J considered in the RHS are only up to order r − 1. In addition, for each 

1 ≤ α ≤ m we have

∂ | J−1μ|

∂x J−1μ

(︂
bα

β (y)yβ
1μ

)︂⃓⃓⃓
⃓
x

= yα
J (μ) +

∑︂
I< J−1μ

(︃
J − 1μ

I

)︃
∂ | J−1μ−I|bα

β (y)

∂x J−1μ−I

⃓⃓⃓
⃓⃓
x

yβ
I+1μ

= Aα
μ, J−1μ

,

since bα
β (yα = 0) = δα

β . Hence, yα
J (μ) keeps satisfying (16).

Let us check that the definition do not depend on the μ chosen, so we can write yα
J = yα

J (μ). Let 1 ≤ ν ≤ n be another 
index such that Jν > 0. This enables us to write J = J ′ + 1μ + 1ν for some multi-index J ′ with | J ′| = r − 2. Hence, 
J − 1μ = J ′ + 1ν and J − 1ν = J ′ + 1μ . Therefore,

∑︂
I< J ′+1ν

(︃
J ′ + 1ν

I

)︃
∂ | J ′+1ν−I|bα

β

∂x J ′+1ν−I
(y)

⃓⃓⃓
⃓⃓
x

yβ
I+1μ

−
∑︂

I< J ′+1μ

(︃
J ′ + 1μ

I

)︃
∂ | J ′+1μ−I|bα

β

∂x J ′+1μ−I
(y)

⃓⃓⃓
⃓⃓
x

yβ
I+1ν

= ∂ | J ′+1ν |

∂x J ′+1ν

(︂
bα

β (y)yβ
1μ

)︂⃓⃓⃓
⃓⃓
x

− ∂ | J ′+1μ|

∂x J ′+1μ

(︂
bα

β (y)yβ
1ν

)︂⃓⃓⃓
⃓⃓
x

= ∂ | J ′|

∂(y)x J ′

(︄
∂bα

β

∂ yγ

⃓⃓⃓
⃓⃓
x

(y) yγ
1ν

yβ
1μ

+ bα
β (y)yβ

1μ+1ν
− ∂bα

β

∂ yγ

⃓⃓⃓
⃓⃓
x

(y) yγ
1μ

yβ
1ν

− bα
β (y)yβ

1μ+1ν

)︄

= ∂ | J ′|

∂x J ′

(︄(︄
∂bα

γ

∂ yβ
(y) − ∂bα

β

∂ yγ
(y)

)︄
yγ

1μ
yβ

1ν

)︄⃓⃓⃓
⃓⃓
x

. (17)

Similarly, by inserting the condition jk−1
x σA ∈ ker jk−2 F̃ , i.e., jk−2

x F̃ A = jk−2
x 0̂, in Lemma 4.2, and by using (16), we obtain

Aα
μ, J ′+1ν

− Aα
ν, J ′+1μ

=
∑︂
I≤ J ′

(︃
J ′

I

)︃
cα
λϵ Aλ

μ,I Aϵ
ν, J ′−I

=
∑︂
I≤ J ′

(︃
J ′

I

)︃
cα
λϵ

∂ |I|

∂xI

(︂
bλ
γ (y)yγ

1μ

)︂⃓⃓⃓
⃓
x

∂ | J ′−I|

∂x J ′−I

(︂
bϵ

β(y)yβ
1ν

)︂⃓⃓⃓
⃓⃓
x

= ∂ | J ′|

∂x J ′
(︂

cα
λϵbλ

γ (y)bϵ
β(y)yγ

1μ
yβ

1ν

)︂⃓⃓⃓
⃓⃓
x

(18)

for each 1 ≤ α ≤ m, and 1 ≤ μ,ν ≤ n. By gathering (17) and (18), and by making use of Lemma 4.3, we conclude

yα
J (μ) − yα

J (ν) = Aα
μ, J ′+1ν

− Aα
ν, J ′+1μ

− ∂ | J ′|

∂x J ′

(︄(︄
∂bα

γ

∂ yβ
(y) − ∂bα

β

∂ yγ
(y)

)︄
yγ

1μ
yβ

1ν

)︄⃓⃓⃓
⃓⃓
x

= ∂ | J ′|

∂x J ′
(︂

cα
λϵbλ

γ (y)bϵ
β(y)yγ

1μ
yβ

1ν

)︂⃓⃓⃓
⃓⃓
x

− ∂ | J ′|

∂x J ′
(︂

cα
λϵbλ

γ (y)bϵ
β(y)yγ

1μ
yβ

1ν

)︂⃓⃓⃓
⃓⃓
x

11 
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= 0.

Once we have defined jk
xs = (xμ, yα; yα

J ) ∈ J k P , the last step is to check that Θk( jk
xs) = jk−1

x σA , which is straightforward 
from (16) and Proposition 4.3.

Lastly, we show that Ξk is proper. Let 
(︁[ jk

xn
sn]G

)︁∞
n=1 be a sequence in 

(︁
J k P

)︁/︁
G such that 

(︁
jk−1
xn

σAn = Ξk
(︁[ jk

xn
sn]G

)︁)︁∞
n=1

converges to some jk−1
x σA ∈ J k−1C(P ). Since jk−2

xn
F̃ An = jk−2

xn
0̂ for each n ∈ N , by continuity we conclude that jk−2

x F̃ A =
jk−2
x 0̂, that is, jk−1

x σA ∈ ker jk−2 F̃ = imΞk . Thus, there exists jk
xs ∈ J k P such that Ξk([ jk

xs]G) = jk−1
x σA . In coordinates, we 

write jk
xn

sn = (xμ
n , yα

n ; (yn)αJ ), jk−1
xn

σAn = (xμ
n , (An)αμ; (An)αμ, J ), jk

xs = (xμ, yα; yα
J ) and jk−1

x σA = (xμ, Aα
μ; Aα

μ, J ). Without loss 
of generality, we may assume that yα

n = 0 and yα = 0, 1 ≤ α ≤ m. This way, by recalling Proposition 4.3, we have

lim
n 

∂ | J |

∂x J

(︂
bα

β (yn)(yn)
β
1μ

)︂⃓⃓⃓
⃓
xn

= lim
n (An)

α
μ, J = Aα

μ, J = ∂ | J |

∂x J

(︂
bα

β (y)yβ
1μ

)︂⃓⃓⃓
⃓
x

for each 0 ≤ | J | ≤ k − 1, 1 ≤ α ≤ m and 1 ≤ μ ≤ n. Subsequently, by recurrence as above, it can be checked that limn(yn)αJ =
yα

J for each 0 ≤ | J | ≤ k and 1 ≤ α ≤ m and, thus, 
(︁

jk
xn

sn
)︁∞

n=1
converges to jk

xs. □
By gathering the previous results, we obtain the geometry of the reduced configuration bundle.

Corollary 4.1. For each k ≥ 2, there is an isomorphism of fiber bundles covering the identity idX ,(︂
J k P

)︂
/G ≃ ker jk−2 F̃ =

{︂
jk−1
x σA ∈ J k−1C(P ) | jk−2

x F̃ A = jk−2
x 0̂

}︂
.

Proof. Let us show that Ξk is an immersion, i.e., that dΞk is everywhere injective. Since the property is local we can work 
in a trivialization of πP ,X , that is, we assume that P = X × G . Given two sections s = (idX , f ), s′ = (idX , f ′) ∈ Γ(πP ,X ), 
we define τ : P → P as τ (x, g) = (︁

x, f ′(x) f (x)−1 g
)︁

for each x ∈ X , which is a principal bundle automorphism such that 
τ ◦ s = s′ . Besides, the jet extension j1τ : J 1 P → J 1 P is G-equivariant, i.e., j1τ ( j1

x s) · g = j1τ
(︁
( j1

x s) · g
)︁

for each g ∈ G and 
each j1

x s ∈ J 1 P . Hence, it induces an automorphism of the bundle of connections, τ̂ = [ j1τ ]G : C(P ) → C(P ). By taking the 
jet lift of these maps, we arrive at the following commutative diagram

J k P Jk−1C(P )

J k P Jk−1C(P )

Θk

jkτ jk−1τ̂

Θk

Therefore, Θk has constant rank, since τ and τ̂ are isomorphisms and this construction can be done for every pair of 
sections s, s′ ∈ Γ(πP ,X ). By using this and the fact that πk is a submersion, and by recalling (11), we conclude that Ξk has 
constant rank too. Since Ξk is injective (recall Proposition 4.2(i)), the Global Rank Theorem (see, for example, [29, Theorem 
4.14]) ensures that Ξk is an immersion.

In short, Ξk is an injective immersion and proper (by (ii) of Theorem 4.1), whence it is an embedding (cf. [29, Proposition 
4.22]). Hence, imΞk = ker jk−2 F̃ is a submanifold of J k−1C(P ) and, again by the Global Rank Theorem, Ξk : (︁

J k P
)︁/︁

G →
ker jk−2 F̃ is a diffeomorphism. □
Notation. Henceforth, we will denote

Ck−1
0 (P ) = imΞk = ker jk−2 F̃ .

5. Higher-order Euler–Poincaré reduction

At this point, we are ready to develop the Euler–Poincaré reduction for higher-order field theories. Given a principal 
G-bundle, πP ,X : P → X , over a boundaryless manifold X and k ≥ 2, we consider a k-th order Lagrangian density, 𝔏 = Lv :
J k P → ⋀︁n T ∗ X , that is G-invariant, i.e.,

L
(︂

R(k)
g

(︂
jk
xs

)︂)︂
= L

(︂
jk
xs

)︂
, jk

xs ∈ J k P ,  g ∈ G.

As a result, we have a dropped or reduced Lagrangian,

𝔩 = lv :
(︂

J k P
)︂/︂

G → ⋀︁n T ∗ X, 
[︁

jk
xs

]︁
G ↦→ 𝔩

(︁[︁
jk
xs

]︁
G

)︁ = 𝔏
(︁

jk
xs

)︁
.

12 
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By means of Corollary 4.1, we may regard the reduced Lagrangian as defined on Ck−1
0 (P ) = ker jk−2 F̃ ⊂ J k−1C(P ). For an 

open subset 𝒰 ⊂ X with compact closure and s ∈ Γ
(︁𝒰 ,πP ,X

)︁
, the corresponding reduced section is defined as

σA = [︁
j1s

]︁
G ∈ Γ

(︁𝒰,πC(P ),X
)︁
.

A variation δs of the original section induces a variation δσA of the reduced section. By construction, the original and the 
reduced variations satisfy 𝔏

(︁
jkst

)︁ = 𝔩
(︁

jk−1 (σ A)t
)︁

for all t ∈ (−ϵ, ϵ) and, thus,

d 
dt

⃓⃓⃓
⃓
t=0

∫︂
𝒰

𝔏
(︂

jkst

)︂
= d 

dt

⃓⃓⃓
⃓
t=0

∫︂
𝒰

𝔩
(︂

jk−1 (σA)t

)︂
. (19)

If we choose a fixed principal connection A0 ∈ Ω1(P ,𝔤) on πP ,X , we can identify the bundle of connections with the 
modelling vector bundle,

C(P ) ∋ σA(x)
1:1 ←→ σ A(x) = σA(x) − σA0(x) ∈ T ∗ X ⊗ ad(P ). (20)

By taking the (k − 1)-jet lift of this map, we can also identify the reduced configuration space with some subbundle of 
J k−1 (T ∗ X ⊗ ad(P )), that is,

J k−1C(P ) ⊃ Ck−1
0 (P )

∼ ←→ Ck−1
0 (P ) ⊂ J k−1 (︁

T ∗ X ⊗ ad(P )
)︁
,

so that the reduced Lagrangian could be regarded as

𝔩 : Ck−1
0 (P ) → ⋀︁n T ∗ X .

The whole situation is summarized in the following commutative diagram:

J k P

(︁
J k P

)︁/︁
G Ck−1

0 (P ) Ck−1
0 (P )

J 1 P

P
(︁

J 1 P
)︁
/G C(P ) T ∗ X ⊗ ad(P )

𝒰 (⊂ X)

s

jks

πk

π1

Ξk ∼

σA

σ A

∼ ∼

Definition 5.1. Let ∇ A0 : Γ
(︁
πad(P ),X

)︁ → Γ
(︁
πT ∗ X⊗ad(P ),X

)︁
be the linear connection on the adjoint bundle, πad(P ),X , induced 

by A0. The divergence of ∇ A0 is minus the adjoint of ∇ A0 , i.e., the map divA0 : Γ
(︁
πT X⊗ad(P )∗,X

)︁ → Γ
(︁
πad(P )∗,X

)︁
implicitly 

defined by∫︂
X

⟨︂
η,∇ A0ξ

⟩︂
v = −

∫︂
X

⟨︂
divA0η, ξ

⟩︂
v,

for each ξ ∈ Γ
(︁
πad(P ),X

)︁
and η ∈ Γ

(︁
πT X⊗ad(P )∗,X

)︁
.

Given σ A ∈ Γ
(︁
πT ∗ X⊗ad(P ),X

)︁
, we define the map

ad∗
σ A

: Γ (︁
πT X⊗ad(P )∗,X

)︁ → Γ
(︁
πad(P )∗,X

)︁
as the coadjoint representation of ad(P )∗ and the dual pairing of T X and T ∗ X . In the following, since πT ∗ X⊗ad(P ),X is a 
vector bundle, we identify its vertical bundle with itself, V (T ∗ X ⊗ ad(P )) ≃ T ∗ X ⊗ ad(P ), and analogous for its dual.

13 
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Theorem 5.1 (Higher-order Euler–Poincaré field equations). Let k ≥ 2, πP ,X : P → X be a principal G-bundle and 𝔏 : J k P → ⋀︁n T ∗ X
be a k-th order, G-invariant Lagrangian density. Let 𝔩 : Ck−1

0 (P ) → ⋀︁n T ∗ X be the reduced Lagrangian density, where Ck−1
0 (P ) ≃(︁

J k P
)︁/︁

G is the reduced space, and consider an extension 𝔩̂ : J k−1 (C(P )) → ⋀︁n T ∗ X of the reduced Lagrangian 𝔩 to the whole jet. 
Let A0 ∈ Ω1(P ,𝔤) be a principal connection on πP ,X , which enables us to identify C(P ) ≃ T ∗ X ⊗ ad(P ), and let ∇ A0 be the linear 
connection on πad(P ),X induced by A0 .

Given a (local) section s ∈ Γ(𝒰 ,πP ,X ), where 𝒰 ⊂ X is an open subset with compact closure, and the corresponding reduced section 
σA ∈ Γ

(︁𝒰 ,πC(P ),X
)︁
, the following statements are equivalent:

(i) The variational principle δ
∫︂
𝒰

𝔏
(︂

jks
)︂

= 0 holds for arbitrary variations of s such that jk−1
x δs = 0 for each x ∈ ∂𝒰 .

(ii) The section s satisfies the Euler–Lagrange field equations, i.e.,(︂
j2ks

)︂∗
ℰℒ(𝔏) = 0.

(iii) The variational principle δ
∫︂
𝒰

𝔩
(︂

jk−1σA

)︂
= 0 holds for variations of the form

δσA = ∇ A0ξ − [σ A, ξ ] ∈ Γ
(︁𝒰,πT ∗ X⊗ad(P ),X

)︁
,

where ξ ∈ Γ(𝒰 ,πad(P ),X ) is an arbitrary section such that jk−2
x ξ = 0 for each x ∈ ∂𝒰 .

(iv) The reduced section σ A satisfies the k-th order Euler–Poincaré field equations:(︂
divA0 − ad∗

σ A

)︂ (︂(︂
j2k−2σA

)︂∗
ℰℒ

(︂
𝔩̂
)︂)︂

= 0, (21)

where ℰℒ
(︂
𝔩̂
)︂

∈ Ωn
(︁

J 2k−2(C(P )), T X ⊗ ad(P )∗
)︁

is the Euler–Lagrange form of ̂𝔩.

Proof. The equivalence between (i) and (ii) is established in Theorem 3.1. In addition, the induced variations of the reduced 
section were computed in [7, Theorem 1]. Hence, the equivalence between (i) and (iii) is straightforward from this fact and 
equation (19). To conclude, let us show the equivalence between (iii) and (iv). Firstly, note that given a variation of the 
original section, together with the induced variation of the reduced section, we have jk−1

x (σA)t ∈ Ck−1
0 (P ) for all t ∈ (−ϵ, ϵ)

and x ∈ 𝒰 . Hence, δ
(︁

jk−1σA
)︁
(x) = (δσA)(k−1) (x) ∈ T jk−1

x σA

(︂
Ck−1

0 (P )
)︂

. By applying the explicit expression of the reduced 
variations and Proposition 3.1, we obtain

δ

∫︂
𝒰

𝔩̂
(︂

jk−1σA

)︂
=

∫︂
𝒰

⟨︂(︂
j2k−2σA

)︂∗
ℰℒ

(︂
𝔩̂
)︂

, δσA

⟩︂

=
∫︂
𝒰

⟨︂(︂
j2k−2σA

)︂∗
ℰℒ

(︂
𝔩̂
)︂

,∇ A0ξ − [σ A, ξ ]
⟩︂

= −
∫︂
𝒰

⟨︂
divA0

(︂(︂
j2k−2σA

)︂∗
ℰℒ

(︂
𝔩̂
)︂)︂

− ad∗
σ A

(︂(︂
j2k−2σA

)︂∗
ℰℒ

(︂
𝔩̂
)︂)︂

, ξ
⟩︂

= 0.

Since this holds for every ξ ∈ Γ
(︁𝒰 ,πad(P ),X

)︁
vanishing at the boundary, we conclude. □

Remark 5.1. Since (the (k − 1)-th jet lift of) the reduced section lies in Ck−1
0 (P ) and the infinitesimal reduced variations 

are tangent to this space, the solutions of the reduced equations do not depend on the choice of the extended Lagrangian 
𝔩̂ : J k−1C(P ) → ⋀︁n T ∗ X . That is, if we have two such extensions 𝔩̂1, 𝔩̂2 with 𝔩̂1|Ck−1

0 (P )
= 𝔩̂2|Ck−1

0 (P )
, then a reduced section is 

critical with respect for 𝔩̂1 if and only if it is critical for 𝔩̂2. In other words, Ck−1
0 (P ) ⊂ J k−1C(P ) may be regarded as a kind 

of holonomic constraint.

Remark 5.2. If we choose the connection A0 = A itself, that is, the connection defined by the reduced section σA = [ j1s]G , 
the reduced equation (21) has the simpler form

divA
(︂(︂

j2k−2σA

)︂∗
ℰℒ

(︂
𝔩̂
)︂)︂

= 0.

14 
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Let us find the local expression of the reduced equations. As in Section 4, let {Bα | 1 ≤ α ≤ m} be a basis of 𝔤, (xμ, yα)

be normal bundle coordinates for πY ,X and (xμ, Aα
μ) be bundle coordinates for πC(P ),X . Similarly, consider the adapted 

coordinates (xμ, yα; yα
J ) and (xμ, Aα

μ; Aα
μ, J ) for J kY and J k−1C(P ), respectively. For the sake of simplicity, we fix the flat 

connection on πY ,X under these coordinates, i.e., A0 = dyα ⊗ Bα . This way, (xμ, Aα
μ) may also be regarded as bundle 

coordinates on πT ∗ X⊗ad(P ),X , and we denote by (xμ, vμ
α ) the bundle coordinates on the dual bundle, πT X⊗ad(P )∗,X .

Lemma 5.1. With the above bundle coordinates, let η = η
μ
α ∂μ ⊗ Bα ∈ Γ

(︁
πT X⊗ad(P )∗,X

)︁
and σ A = σα

μ dxμ ⊗ Bα ∈ Γ
(︁
πT ∗ X⊗ad(P ),X

)︁
. 

Then we have

divA0(η) = ∂μη
μ
α Bα, ad∗

σ A
(η) = −cα

βγ η
μ
α σ

β
μ Bγ .

Proof. Let ξ = ξα Bα ∈ Γ
(︁
πad(P ),X

)︁
and note that ∇ A0ξ = ∂μξαdxμ ⊗ Bα . By definition of divergence and the integration by 

parts formula [6, Lemma 4.5], we finish∫︂
X

⟨︂
divA0(η), ξ

⟩︂
v = −

∫︂
X

⟨︂
η,∇ A0ξ

⟩︂
v

= −
∫︂
X

⟨︁
η

μ
α ∂μ ⊗ Bα, ∂μξαdxμ ⊗ Bα

⟩︁
v

= −
∫︂
X

(︁
η

μ
α ∂μξα

)︁
v =

∫︂
X

(︁
∂μη

μ
α ξα

)︁
v.

For the second part, we have⟨︂
ad∗

σ A
(η), ξ

⟩︂
= − ⟨︁

η,adσ A (ξ)
⟩︁ = −

⟨︂
η

μ
α ∂μ ⊗ Bα,

[︂
σα

μ dxμ ⊗ Bα, ξα Bα

]︂⟩︂
= −

⟨︂
η

μ
α ∂μ ⊗ Bα, cα

βγ σ
β
μ ξγ dxμ ⊗ Bα

⟩︂
= −cα

βγ η
μ
α σ

β
μ ξγ . □

Corollary 5.1 (Local equations). With the above coordinates, we write

σ A = σα
μdxμ ⊗ Bα ∈ Γ

(︁𝒰,πT ∗ X⊗ad(P ),X
)︁

for the reduced section. Then the local expression of the k-th order Euler–Poincaré field equations is given by

k−1 ∑︂
| J |=0

(−1)| J |
(︄

∂ | J+1μ|

∂x J+1μ

(︄
∂ l̂

∂ Aα
μ, J

(︂
jk−1σ A

)︂)︄
− cγ

βασ
β
μ

∂ | J |

∂x J

(︄
∂ l̂

∂ Aγ
μ, J

(︂
jk−1σ A

)︂)︄)︄
= 0,

for each 1 ≤ α ≤ m.

Proof. From (4) and (2), it is clear that

(︂
j2k−2σ A

)︂∗
ℰℒ

(︂
𝔩̂
)︂

=
k−1 ∑︂
| J |=0

(−1)| J | ∂ | J |

∂x J

(︄
∂ l̂

∂ Aα
μ, J

(︂
jk−1σ A

)︂)︄
v ⊗ dAα

μ.

Recall that we are identifying V ∗ (T ∗ X ⊗ ad(P )) ≃ T X ⊗ ad(P )∗ , i.e., dAα
μ ≃ ∂μ ⊗ Bα . The result is now a straightforward 

consequence of (iv) of Theorem 5.1 and Lemma 5.1. □
At last, note that a solution of the reduced equations lying in the reduced space corresponds to a flat principal connection 

and, thus, the reconstruction condition is automatically satisfied.

Theorem 5.2 (Reconstruction). In the conditions of Theorem 5.1, let σA ∈ Γ
(︁𝒰 ,πC(P ),X

)︁
be a solution of the k-th order Euler–Poincaré 

field equations (21) such that jk−1σA ∈ Γ
(︂
𝒰 ,πCk−1

0 (P ),X

)︂
and A ∈ Ω1(P |𝒰 ,𝔤) has trivial holonomy on a domain. Then there exists a 

section s ∈ Γ
(︁𝒰 ,πP ,X

)︁
that is critical for the original variational problem defined by 𝔏 and such that σA = [︁

j1s
]︁

G . Furthermore, any 
critical section on 𝒰 of 𝔏 is of the form s · g for certain g ∈ G.
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Proof. From the condition jk−1σA ∈ Γ
(︂
𝒰 ,πCk−1

0 (P ),X

)︂
we know that A ∈ Ω1(P |𝒰 ,𝔤) is a flat connection. Therefore, there 

exists a foliation of P |𝒰 given by the integral leaves of A. The trivial holonomy ensures that each integral leaf intersects 
once and only once each fiber of P |𝒰 . Subsequently, given an integral leaf of A, it defines a section s ∈ Γ(𝒰 ,πP ,X ) projecting 
onto σA . This section is critical thanks to Theorem 5.1. Moreover, the remaining integral leaves of A are obtained from s as 
follows,

ℱg = s(𝒰) · g ⊂ P |𝒰 , g ∈ G.

Hence, given another critical section, s̃ ∈ Γ(𝒰 ,πP ,X ), projecting onto σA , we conclude that s̃ = s · g for some g ∈ G , since 
s̃(𝒰) must belong to the previous family. □

If X is a simply connected manifold, then every flat connection has trivial holonomy and we have the following equiva
lence

(︂
j2ks

)︂∗
ℰℒ(𝔏) = 0 ⇐⇒ 

{︄ (︂
divA0 − ad∗

σ A

)︂ (︂(︂
j2k−2σ A

)︂∗
ℰℒ

(︂
𝔩̂
)︂)︂

= 0,

F̃ A = 0.

In an arbitrary manifold the equivalence above is valid locally only.

Remark 5.3. That fact that the reconstruction process requires the flatness of a connection is a characteristic trait in Field 
Theories that does not show up in Mechanics, i.e., when dim X = 1 (see for example [7,16] for comments on this situation). 
However, there is a significant difference from first order to higher-order reduction. Indeed, the flatness condition is a 
compatibility equation that must be incorporated by hand for k = 1 theories, whereas this condition comes directly from the 
geometry of the reduced phase space for k > 1. In other words, for higher-order Euler–Poincaré reduction the reconstruction 
is not inserted ad hoc, but it is intrinsic in the nature of the reduced sections.

6. Noether theorem

The well-known Noether theorem establishes that infinitesimal symmetries of a Lagrangian density lead to conserved 
quantities for the dynamics of the system. As in the previous section, let 𝔏 = Lv : J k P → ⋀︁n T ∗ X be a G-invariant k-th 
order Lagrangian on a principal G-bundle, πP ,X : P → X . The aim of this section is to prove that the conservation laws of 𝔏
arising from its G-invariance are equivalent to the higher-order Euler–Poincaré field equations.

We start by recalling the definition of an infinitesimal symmetry and the Noether theorem for higher-order Lagrangian 
densities. (cf. [35, §10]).

Definition 6.1. An infinitesimal symmetry of 𝔏 is a projectable vector field U ∈ 𝔛(P ) such that £U (k)𝔏 = 0, where £ denotes 
the Lie derivative and U (k) ∈ 𝔛( J k P ) is the k-th order prolongation of U .

For a vertical vector field V ∈ 𝔛(P ), being an infinitesimal symmetry is equivalent to £V (2k−1)Θ𝔏 = 0, for any covariant 
Cartan form, Θ𝔏 ∈ Ωn( J 2k−1 P ), of 𝔏.

Theorem 6.1 (Noether theorem). Let s ∈ Γ(πP ,X ) and U ∈ 𝔛(U ) be a critical section and an infinitesimal symmetry of 𝔏, respectively. 
Then

d
(︂(︂

j2k−1s
)︂∗

ιU (2k−1)Θ𝔏

)︂
= 0,

for any covariant Cartan form, Θ𝔏, of 𝔏.

Henceforth, we focus on the covariant Cartan form given locally by (3). As our Lagrangian is G-invariant, each infinites
imal generator ξ∗ ∈ 𝔛(Y ) of an element ξ ∈ 𝔤 is an infinitesimal symmetry of 𝔏. We define the Noether current as the 
𝔤∗-valued form 𝒥 ∈ Ωn−1

(︁
J 2k−1 P ,𝔤∗)︁

given by⟨︂
𝒥

(︂
j2k−1
x s

)︂
, ξ

⟩︂
= ι(ξ∗)(2k−1)Θ𝔏

(︂
j2k−1
x s

)︂
, j2k−1

x s ∈ J 2k−1 P ,  ξ ∈ 𝔤,

where ⟨·, ·⟩ denotes the dual pairing, as usual. Observe that the Noether theorem ensures that

d
(︂(︂

j2k−1s
)︂∗

𝒥
)︂

= 0 (22)

for every critical section s ∈ Γ(πY ,X ). We are ready to show the main theorem of this section.
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Theorem 6.2. Let πP ,X : P → X be a principal G-bundle, 𝔏= Lv : J k P → ⋀︁n T ∗ X be a G-invariant Lagrangian, 𝔩= lv : Ck−1
0 (P ) →⋀︁n T ∗ X be the reduced Lagrangian, and 𝒥 ∈ Ωn−1

(︁
J 2k−1 P ,𝔤∗)︁

be the Noether current given by the Cartan form Θ𝔏 ∈ Ωn( J 2k−1 P )

locally defined by (3). Consider a section, s ∈ Γ(πY ,X ) and the corresponding reduced section, σA ∈ Γ
(︁
πC(P ),X

)︁
. Then the Noether 

equation (22) holds if and only if the k-th order Euler–Poincaré field equations hold for the principal connection A ∈ Ω1(P ,𝔤), i.e.,

divA
(︂(︂

j2k−2σA

)︂∗
ℰℒ

(︂
l̂
)︂)︂

= 0,

where ̂l : J k−1(C(P )) → ⋀︁n T ∗ X is an extension of the reduced Lagrangian.

Proof. Let (xμ, yα; yα
J ) be adapted coordinates for J 2k P . Some conditions will be imposed on these coordinates along the 

proof. Firstly, suppose that (yα) are normal coordinates on some neighborhood of the identity element. Hence, given a basis 
{Bα | 1 ≤ α ≤ m} of 𝔤, we may use equation (12) and Proposition 2.2 (recall that ξ∗ ∈ 𝔛(P ) is a vertical vector field) to 
obtain

(ξ∗)(2k−1)
y = ξβaα

β (y)∂α + ξβ
d| J |aα

β (y)

dx J
∂

J
α, y = (xμ, yα) ∈ P .

If the coordinates are chosen so that the volume form is given by v = dnx = dx1 ∧ · · · ∧ dxn , the left interior product of the 
covariant Cartan form (3) by (ξ∗)(2k−1) reads

ι(ξ∗)(2k−1)Θ𝔏 =
k−1 ∑︂
|I|=0

k−|I|−1∑︂
| J |=0 

(−1)| J |ξβ d| J |

dx J

(︄
∂L 

∂ yα
I+ J+1μ

)︄
d|I|aα

β (y)

dxI
dn−1xμ,

where dn−1xμ = ι∂μdnx. In coordinates, the critical section is written as s(xμ) = (xμ, sα(xμ)), for some local functions sα ∈
C∞(X), 1 ≤ α ≤ m. From the previous expression and (2), we get

(︂
j2k−1s

)︂∗
𝒥 =

k−1 ∑︂
|I|=0

k−|I|−1∑︂
| J |=0 

(−1)| J |ξβ ∂ | J |

∂x J

(︄
∂L 

∂ yα
I+ J+1μ

(︂
jks

)︂)︄
∂ |I|aα

β (sα)

∂xI
dn−1xμ. (23)

On the other hand, let (xμ, Aα
μ; Aα

μ, J ) be adapted coordinates for J 2k−1C(P ). Observe that locally C(P ) ≃ T ∗ X ⊗ ad(P ), 
so we will use these coordinates for both spaces indifferently. For the reduced section, we write σA(xμ) = σ A(xμ) =
(xμ,σα

μ (xμ)) for some local functions σα
μ ∈ C∞(X), 1 ≤ μ ≤ n, 1 ≤ α ≤ m. Since σA = [︁

j1s
]︁

G , Proposition 4.3 yields

σα
μ = bα

β (sα)∂μsβ, 1 ≤ μ ≤ n,  1 ≤ α ≤ m.

From this and Lemma 2.1, we get

∂

∂ yα
I+ J+1μ

(︃
∂ |I+ J+K |

∂xI+ J+K

(︂
bβ
γ (sα)∂μsγ

)︂)︃

= ∂

∂ yα
I+ J+1μ

⎛
⎝ ∑︂

I(1)+I(2)=I+ J+K

(I + J + K )!
I(1)!I(2)! 

∂ |I(1)|bβ
γ (sα)

∂xI(1)

∂ |I(2)|∂μsγ

∂xI(2)

⎞
⎠

= (I + J + K )!
K !(I + J )! 

∂ |K |bβ
α(sα)

∂xK
, (24)

for each 1 ≤ μ ≤ n, 1 ≤ α,β ≤ m, 0 ≤ |I| ≤ k − 1, 0 ≤ | J | ≤ k − |I| − 1 and 0 ≤ |K | ≤ k − |I| − | J | − 1. Moreover, by definition 
the extension of the reduced Lagrangian satisfies

l̂(xμ,σα
μ(xμ); ∂ J σ

α
μ(xμ)) = l̂

(︂
jk−1
x σ A

)︂
= L

(︂
jk
xs

)︂
= L(xμ, sα(xμ); ∂ J sα(xμ)),

where ∂ J = ∂/∂x J . By using this relation and equation (24), we obtain

∂L 
∂ yα

I+ J+1μ

(︂
jks

)︂
=

k−|I|−| J |−1∑︂
|K |=0 

(I + J + K )!
K !(I + J )! 

∂ l̂

∂ Aβ
μ,I+ J+K

(︂
jk−1σA

)︂ ∂ |K |bβ
α(sα)

∂xK
,

for each 1 ≤ μ ≤ n, 0 ≤ |I| ≤ k − 1 and 0 ≤ | J | ≤ k − |I| − 1. For brevity, we have denoted Aα
μ, J0

= Aα
μ for J0 = (0, . . . ,0). By 

introducing this in (23) and by using Lemma 2.1, we obtain
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(︂
j2k−1s

)︂∗
𝒥 =

k−1 ∑︂
|I|=0

k−|I|−1∑︂
| J |=0 

k−|I|−| J |−1∑︂
|K |=0 

(−1)| J | (I + J + K )!
K !(I + J )! ξβ (25)

∂ | J |

∂x J

(︄
∂ l̂

∂ Aβ
μ,I+ J+K

(︂
jk−1σ A

)︂ ∂ |K |bβ
α(sα)

∂xK

)︄
∂ |I|aα

β (sα)

∂xI
dn−1xμ

=
k−1 ∑︂
|I|=0

k−|I|−1∑︂
| J |=0 

k−|I|−| J |−1∑︂
|K |=0 

J∑︂
|L|=0

(−1)| J | (I + J + K )! J ! 
K !(I + J )!L!( J − L)! ξ

β

∂ |L|

∂xL

(︄
∂ l̂

∂ Aβ
μ,I+ J+K

(︂
jk−1σA

)︂)︄
∂ | J+K−L|bβ

α(sα)

∂x J+K−L

∂ |I|aα
β (sα)

∂xI
dn−1xμ.

In addition, we have bβ
α(sα)aα

β (sα) = m. Hence, from Lemma 2.1 we get

∂ |M|

∂xM

(︂
bβ
α(sα)aα

β (sα)
)︂

=
∑︂

M(1)+M(2)=M

M! 
M(1)!M(2)!

∂ |M(1)|bβ
α(sα)

∂xM(1)

∂ |M(2)|aγ
β (sα)

∂xM(2)
= 0,

for |M| > 0. By introducing this in (25), we arrive at

(︂
j2k−1s

)︂∗
𝒥 = m

k−1 ∑︂
| J |=0

(−1)| J |ξα ∂ | J |

∂x J

(︄
∂ l̂

∂ Aα
μ, J

(︂
jk−1σ A

)︂)︄
dn−1xμ.

Thence, the Noether conservation law, d
(︂(︁

j2k−1s
)︁∗ 𝒥

)︂
= 0, locally reads

k−1 ∑︂
| J |=0

(−1)| J | ∂ | J+1μ|

∂x J+1μ

(︄
∂ l̂

∂ Aα
μ, J

(︂
jk−1σA

)︂)︄
= 0, 1 ≤ α ≤ m, (26)

where we have used that ξ = ξα Bα ∈ 𝔤 is arbitrary.
Lastly, fix x0 = (xμ

0 ) ∈ X and assume that our adapted coordinates are chosen so that A is flat at y = s(x0), i.e., As(x0) =
(dyα)s(x0) ⊗ Bα . It is now clear that (26) are exactly the local equations computed in Corollary 5.1 for σ A = 0̂, i.e., σα

μ = 0
for 1 ≤ μ ≤ n and 1 ≤ α ≤ m. □
7. Multivariate k-splines on Lie groups

Variational splines are piecewise polynomial functions that allow for interpolating while minimizing some cost func
tional. For this reason, they have many applications in different areas such as optimal control theory, medical imaging or 
robotics (cf., for instance, [28]). Here we focus on higher-order splines, i.e., those in which the cost functional depends on 
higher-order derivatives. Namely, the reduction theory for 1-dimensional k-splines on Lie groups developed in [21, §3.2] 
(see also [30]) is extended to multivariate functions on Lie groups (cf. [14]).

Let G be a Lie group endowed with a right-invariant, (pseudo-)Riemannian metric, g. The inner product induced on 
the Lie algebra, 𝔤, is denoted by the same symbol, g : 𝔤 × 𝔤 → R, and the induced norms on T G and 𝔤 are denoted by 
∥·∥g : T G →R and ∥·∥𝔤 : 𝔤→R, respectively. Similarly, the adjoint of adξ induced by g is denoted by ad†

ξ : 𝔤→ 𝔤, i.e.,

g(adξ (η), ζ ) = g(η,ad†
ξ (ζ )), ξ,η, ζ ∈ 𝔤.

On the other hand, let X =Rn (recall Remark 3.1) with the standard (global) coordinates and volume form given by (xμ) =
(x1, . . . , xn) and dnx = dx1 ∧ · · · ∧ dxn , respectively. The configuration bundle is given by

πP ,X : P = X × G → X, (x, g) ↦→ x.

The bundle being trivial yields J k P = J k(X, G), the family of k-jets of functions ς : X → G , whose elements are denoted by 
jk
xς . Let ∇ :𝔛(G)×𝔛(G) → 𝔛(G) be the Levi–Civita connection of g. Its pull-back by a (local) function ς : X → G , which is a 

linear connection on πς∗T G,X : ς∗T G → X , is denoted by ς∗∇ and, given 1 ≤ μ ≤ n, the corresponding covariant derivative 
is denoted by

∇ 
∂xμ

= ς∗∇∂μ : Γ(πς∗T G,X ) → Γ(πς∗T G,X ).
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Definition 7.1. The Lagrangian for multivariate k-splines on G is given by

Ls

(︂
jk
xς

)︂
= 1

2
κμ

⃦⃦⃦
⃦⃦ ∇k−1

∂(xμ)k−1

⃓⃓⃓
⃓⃓
x

(∂μς)

⃦⃦⃦
⃦⃦

2

g

, jk
xς ∈ J k(X, G), (27)

for certain κμ ∈R, 0 ≤ μ ≤ n.

Given a (local) function ς : X → G , we set

σ = dRς−1 ◦ dς = (︁
dRς−1 ◦ ∂μς

)︁
dxμ ∈ Γ(πT ∗ X⊗𝔤,X ) = Ω1(X,𝔤),

where R g : G → G denotes the right multiplication by g ∈ G . This induces the following isomorphism,

J 1(X, G) ≃ G ⋉ (T ∗ X ⊗ 𝔤), j1
xς ↦→ (ς(x),σ (x)) ,

where ⋉ denotes the fibered semidirect product given by the adjoint representation (cf. [10, §4.3.1]). Hence, the isomor
phism Ξk given in (11) becomes

J k(X, G)/G ∋ jk
xς ↦→ jk−1

x σ ∈ Ck−1
0 (P ).

Observe that for the canonical principal connection on the trivial bundle πP ,X , the isomorphism (20) reduces to the identity 
and, thus, Ck−1

0 (P ) = Ck−1
0 (P ).

Proposition 7.1. The Lagrangian (27) is right invariant. Furthermore, a (natural) extended reduced Lagrangian is

l̂s

(︂
jk−1
x σ

)︂
= 1

2
κμ

⃦⃦⃦
ξk−1
μ (x)

⃦⃦⃦2

𝔤
, jk−1

x σ ∈ J k−1C(P ), (28)

where σ = σμdxμ and ξ j
μ : X → 𝔤 are defined recursively as follows,⎧⎨

⎩
ξ0
μ = σμ,

ξ
j
μ = ∂μξ

j−1
μ + 1

2

(︃
ad†

σμ

(︂
ξ

j−1
μ

)︂
+ ad†

ξ
j−1
μ

(︁
σμ

)︁ − adσμ

(︂
ξ

j−1
μ

)︂)︃
, 1 ≤ j ≤ k − 1.

Proof. Given a (local) function ς : X → G , suppose that

∇k−1

∂(xμ)k−1
(∂μς) = dRς ◦ ξk−1

μ , 1 ≤ μ ≤ n. (29)

In such case, the Lagrangian (27) may be written as

Ls

(︂
jk
xς

)︂
= 1

2
κμ

⃦⃦⃦(︁
dRς(x)

)︁
e

(︂
ξk−1
μ (x)

)︂⃦⃦⃦2

g
= 1

2
κμ

⃦⃦⃦
ξk−1
μ (x)

⃦⃦⃦2

𝔤
,

where right invariance of g has been used. It is now clear that L is right invariant, since the maps ξk−1
μ do not depend on 

the value of ς , but only on its derivatives (regarded as elements of the Lie algebra). By recalling that σ = dRς−1 ◦ dς , i.e., 
σμ = dRς−1 ◦ ∂μς , the reduced Lagrangian reads

ls

(︂
jk−1
x σ

)︂
= Ls

(︂
jk
xς

)︂
= 1

2
κμ

⃦⃦⃦
ξk−1
μ (x)

⃦⃦⃦2

𝔤
.

Although the reduced Lagrangian is computed for elements jk−1
x σ ∈ Ck−1

0 (P ), it can be extended straightforwardly to the 
whole jet, l̂s : J k−1C(P ) →R, by taking arbitrary functions σμ : X → 𝔤, 1 ≤ μ ≤ n.

Lastly, let us check (29) by induction. For k = 1 it is straightforward. Now let k > 1. The formula for the Levi–Civita 
covariant derivative of the right-invariant metric g (cf. [21, Eq. (3.13)] or [27, §46.5]), together with the definition of pull
back connection, yields

ς∗∇∂μς∗U = ς∗(∇dς(∂μ)U )

= dRς ◦
(︃

dϕU ◦ ςμ + 1

2
ad†

σμ
(ϕU ) + 1

2
ad†

ϕU
(σμ) − 1

2
adσμ(ϕU )

)︃
◦ ς

for each U ∈ 𝔛(G), where ϕU ∈ C∞(G,𝔤) is given by ϕU (g) = (dR g−1 )g(U (g)), g ∈ G . By using this and the induction 
hypothesis, we finish:
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∇k−1

∂(xμ)k−1
(∂μς) = ς∗∇∂μ

(︄
∇k−2

∂(xμ)k−2
(∂μς)

)︄
= ς∗∇∂μ

(︂
dRς ◦ ξk−2

μ

)︂

= dRς ◦
(︃

∂μξk−2
μ + 1

2
ad†

σμ

(︂
ξk−2
μ

)︂
+ 1

2
ad†

ξk−2
μ

(︁
σμ

)︁ − 1

2
adσμ

(︂
ξk−2
μ

)︂)︃
= dRς ◦ ξk−1

μ . □
Let us compute explicitly the reduced equations for k = 2. This corresponds to the minimization of the accelerations, 

which in specific applications is directly related with the fuel expenditure of trajectories (cf. [25]). In such case, for each 
σ = σμdxμ ∈ Ω1(X,𝔤), it is easy to check that ξ1

μ = ∂μσμ + ad†
σμ

(︁
σμ

)︁
, 1 ≤ μ ≤ n.

Theorem 7.1. The Euler–Poincaré field equations for (28) with k = 2, i.e.,

l̂s
(︁

j1
xσ

)︁ = 1

2
κμ

⃦⃦⃦
∂μσμ + ad†

σμ

(︁
σμ

)︁⃦⃦⃦2

𝔤
, j1

xσ ∈ J 1C(P ),

are given by

κμ
(︂
∂μ − ad†

σμ

)︂ (︂
ad†

ημ
(σμ) + adημ(σμ) + ∂μημ

)︂
= 0, (30)

where ημ = ∂μσμ + ad†
σμ

(σμ) for each 1 ≤ μ ≤ n.

Proof. Let σ = σμdxμ ∈ Ω1(X,𝔤). The musical isomorphisms defined by g are denoted by ♯ : 𝔤∗ → 𝔤 and ♭ : 𝔤 → 𝔤∗ . For 
each 1 ≤ μ,ν ≤ n, it can be easily checked that

∂ l̂s

∂(∂νσμ)

(︁
j1σ

)︁ = δμνκμη
♭
μ, ∂ν

(︄
∂ l̂s

∂(∂νσμ)

(︁
j1σ

)︁)︄
= κμ∂μη

♭
μ. (31)

As straightforward computation shows that ad†
ξ (ζ ) = ad∗

ξ (ζ
♭)♯ for each ξ, ζ ∈ 𝔤. Thus, for each 1 ≤ μ ≤ n we have

∂ l̂s

∂σμ

(︁
j1σ

)︁ = κμg
(︂
ημ,ad†(σμ) + ad†

σμ
(·)

)︂
= κμ

(︁
g

(︁
ad(ημ),σμ

)︁ + g
(︁
adσμ(ημ), ·)︁)︁

= κμ
(︁−g

(︁
adημ(·),σμ

)︁ − g
(︁
adημ(σμ), ·)︁)︁

= −κμg
(︂

ad†
ημ

(σμ) + adημ(σμ), ·
)︂

= −κμ
(︂

ad∗
ημ

(σ
♭
μ) + adημ(σμ)♭

)︂
. (32)

By gathering (31) and (32), the Euler–Lagrange form of 𝔩̂s = l̂s dnx : J 1C(P ) → ⋀︁n T ∗ X is readily seen to be

(︂
j2σ

)︂∗
ℰℒ

(︂
𝔩̂s

)︂
=

(︄
∂ l̂s

∂σμ

(︁
j1σ

)︁ − ∂ν

(︄
∂ l̂s

∂(∂νσμ)

(︁
j1σ

)︁)︄)︄
dnx ⊗ ∂μ (33)

= −κμ
(︂

ad∗
ημ

(σ
♭
μ) + adημ(σμ)♭ + ∂μη

♭
μ

)︂
dnx ⊗ ∂μ ∈ Ωn(X, T X ⊗ 𝔤∗).

On the other hand, since we have chosen A0 as the canonical connection, we obtain the standard divergence, that is,

divA0 : Γ(πT X⊗𝔤∗,X ) → C∞(X,𝔤), η
μ
α ∂μ ⊗ Bα ↦→ (∂μη

μ
α )Bα,

where {Bα ∈ 𝔤 | 1 ≤ α ≤ m} is a basis of 𝔤 and {Bα ∈ 𝔤∗ | 1 ≤ α ≤ m} is its dual basis. In the same fashion, we have

ad∗
σ : Γ (︁

πT X⊗𝔤∗,X
)︁ → C∞(X,𝔤∗), η

μ
α ∂μ ⊗ Bα ↦→ η

μ
α ad∗

σμ
(Bα).

From this and (33), we obtain the Euler–Poincaré field equations for l̂s ,

0 = κμ
(︂

divA0 −ad∗
σ

)︂ (︂
ad∗

ημ
(σ

♭
μ) + adημ(σμ)♭ + ∂μη

♭
μ

)︂
dnx ⊗ ∂μ

= κμ
(︂
∂μ − ad∗

σμ

)︂ (︂
ad∗

ημ
(σ

♭
μ) + adημ(σμ)♭ + ∂μη

♭
μ

)︂
dnx.

By applying ♯, we conclude. □
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Corollary 7.1. If the metric g is bi-invariant, then the Euler–Poincaré field equations for 2-splines (30) become

κμ
(︂
∂3
μσμ +

[︂
σμ, ∂2

μσμ

]︂)︂
= 0.

Proof. For a bi-invariant metric, we have ad†
ξ (ζ ) = −adξ (ζ ) for each ξ,η ∈ 𝔤. Therefore, ημ = ∂μσμ for each 1 ≤ μ ≤ n and 

we finish. □
Remark 7.1 (Elastica). The incorporation of elastic terms to the Lagrangian for multivariate k-splines is motivated by optimal 
control problems where the velocities (first order derivatives) have to be minimized together with their accelerations [37,5, 
25]. In such case, the Lagrangian is given by

Le

(︂
jk
xς

)︂
= Ls

(︂
jk
xς

)︂
+ 1

2
τμ

⃦⃦
∂μς

⃦⃦2
g , jk

xς ∈ J k(X, G), (34)

for certain τμ ∈R, 1 ≤ μ ≤ n, with Ls : J k(X, G) →R as in (27). The reduced Lagrangian, as well as the reduced equations, 
is computed by adding the extra term in the above results. Namely, it is clear that

l̂e
(︂

jk−1
x σ

)︂
= l̂s

(︂
jk−1
x σ

)︂
+ 1

2
τμ

⃦⃦
σμ

⃦⃦2
𝔤
, jk−1

x σ ∈ J k−1C(P ),

with l̂s : J k−1C(P ) →R as in (28). The corresponding Euler–Poincaré field equations for k = 2 are given by

κμ
(︂
∂μ − ad†

σμ

)︂ (︂
ad†

ημ
(σμ) + adημ(σμ) + ∂μημ

)︂
= τμ

(︂
∂μ − ad†

σμ

)︂
σμ.

Lastly, when the metric g is bi-invariant, the previous equations boil down to

κμ
(︂
∂3
μσμ +

[︂
σμ, ∂2

μσμ

]︂)︂
= τμ∂μσμ. (35)

Funding

MCL and ARA have been partially supported by Ministerio de Ciencia e Innovación (Spain) under grants PID2021
126124NB-I00 and PID2024-156578NB-I00. ARA has been partially supported by Ministerio de Universidades (Spain) under 
grant FPU18/06036.

Data availability

No data was used for the research described in the article.

References

[1] V.I. Arnold, On the differential geometry of Lie groups of infinite dimension and its applications to the hydrodynamics of perfect fluids, Ann. Inst. 
Fourier 16 (1) (1966) 319--361.

[2] A. Bloch, L. Colombo, F. Jiménez, The variational discretization of the constrained higher-order Lagrange–Poincaré equations, Discrete Contin. Dyn. Syst. 
39 (1) (2019) 309--344.

[3] A.I. Bobenko, Y.B. Suris, Discrete Lagrangian reduction, discrete Euler–Poincaré equations, and semidirect products, Lett. Math. Phys. 49 (1) (1999) 
79--93.
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