Journal of Geometry and Physics 219 (2026) 105693

Contents lists available at ScienceDirect

Journal of Geometry and Physics

journal homepage: www.elsevier.com/locate/geomphys

Higher-order Euler-Poincaré field equations n

Check for
updates

Marco Castrillén Lopez ?, Alvaro Rodriguez Abella”*

@ Facultad de Ciencias Matemdticas, Universidad Complutense de Madrid, Plaza de las Ciencias, 3, Madrid, 28040, Madrid, Spain
b Departamento de Matemdtica Aplicada, Universidad Pontificia de Comillas, Calle Alberto Aguilera, 23, Madrid, 28015, Madrid, Spain

ARTICLE INFO ABSTRACT
ArtiC{e history: We develop a reduction theory for G-invariant Lagrangian field theories defined on the
Received 30 January 2025 higher-order jet bundle of a principal G-bundle, thus obtaining the higher-order Euler-

Accepted 31 October 2025

‘ ; Poincaré field equations. To that end, we transfer the Hamilton’s principle to the reduced
Available online 5 November 2025

configuration bundle, which is identified with the bundle of flat connections (up to a
certain order) of the principal G-bundle. As a result, the reconstruction condition is always

l:lrsig;ary 70505, 70510, 70H50 satisfied and, hence, every solution of the reduced field equations locally comes from a

secondary 53C05, 58E15 solution of the original (unreduced) equations. Furthermore, the reduced equations are
shown to be equivalent to the conservation of the Noether current. Lastly, we illustrate

Keywords: the theory by investigating multivariate higher-order splines on Lie groups.

Euler-Poincaré equations © 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, Al

Higher-order field theory training, and similar technologies.

Lagrangian density
Multivariate splines
Noether theorem

1. Introduction

In the realm of geometric mechanics, reduction by symmetries involves dropping the dynamical equations of a system
with symmetry to a lower-dimensional space, which is the family of group orbits of the symmetry action. The modern
approach of this procedure was first introduced in [1,32,36,41], and for Lagrangian theories in [12,13,31]. For the latter, the
key idea is to transfer the variational principle, typically the Hamilton’s principle, to the reduced configuration space. This
yields the reduced equations when applied to the reduced Lagrangian.

The reduction results in mechanics for first-order systems, i.e., those whose Lagrangians depend only on the generalized
positions and their velocities, have been successfully extended to field theories [8,19], including covariant field theories [7,
9,11,16], where the configuration manifold is replaced by a fiber bundle whose base space models the spacetime. The key
case for reduction in both Mechanics and field theories is Euler-Poincaré reduction, where the variational variables take
values in a Lie group G or are local sections of a G-principal bundle, and G is at the same time the group of symmetries.

Lagrangian reduction in Mechanics (and, in particular, Euler-Poincaré) has been extended to higher-order systems (see
for example [20-22]). However, there is not a counterpart in field theory yet, despite the fact that there are interesting
systems and situations that fit in this context.

This work addresses higher-order Euler-Poincaré reduction, i.e., reduction for higher-order Lagrangian field theories
whose configuration bundle is a principal G-bundle and the group of symmetries is G. We thus extend the results in
[7] to higher-order Lagrangian field theories. The analysis of multivariate splines on Lie groups is given at the end of the
article to illustrate the main results of it.
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Reduction theory has also been analyzed in the discrete setting for both mechanics [2,3,33,34,38] and field theory [42].
A discretization of the reduction theory introduced here would be desirable in order to build variational integrators for the
reduced equations. We leave this as a future work.

The paper is organized as follows. Firstly, some essential facts about higher-order jet bundles are recalled in Section 2,
including the total partial derivatives and the jet prolongation of vector fields, and the formulation of higher-order La-
grangian field theories is recalled in 3. Next, in Section 4 the geometry of the reduced configuration space (J*P)/G for a
k-th order Lagrangian theory on a principal bundle is investigated. The understanding of this reduced phase bundle is es-
sential for a correct analysis of the reduced variational principle. For first order theories, this reduced bundle is the bundle
of connections C(P), the sections of which are principal connections on P. However, even though one might suspect that
(J¥P)/G ~ J*=1C(P), k > 2, it turns out that this reduced phase bundle is the space of (k — 1)-th order pointwise principal
connections with vanishing curvature up to k —2 order. This fact is already shown for particular cases in [26] and is analyzed
in depth in [17]. We follow the strategy of the latter. The main result of the paper is established in Section 5, where we
compute the reduced equations, i.e., the higher-order Euler-Poincaré field equations. For k > 2 the reconstruction process
providing solutions of the original problem from solution of the reduced equations is given in detail (at least locally). In
this case, the situation k =1 and k > 2 show a different conceptual behavior, since the first order case requires an auxiliary
compatibility condition, whereas that condition is implicit in the set of admissible solution for higher-order Lagrangians.
Furthermore, the reduced equations are reinterpreted as a Noether conservation law in Section 6. At last, Section 7 is de-
voted to illustrate the previous theory by computing the reduced equations for multivariate k-splines (brane splines) on Lie
groups.

In the following, every manifold or map is assumed to be smooth, meaning C°°, unless otherwise stated. In addition,
every fiber bundle 7y x : Y — X is assumed to be locally trivial and is denoted by 7y x. Given x € X, Yy = n;lx({x}) denotes
the fiber over x. We assume that dim X =n and dim Yy = m. The space of (smooth) global sections of 7y x is denoted by
I'(;ry x). In particular, vector fields on a manifold X are denoted by X(X) = I'(mrrx,x), where TX is the tangent bundle of
X. Likewise, k-forms on X are denoted by QK(X) = I'(7wr+x,x), where T*X is the cotangent bundle of X. The space of local
sections is denoted by I'joc(7Ty x), and the same notation stands for local vector fields and forms. In the same vein, given
an open set U/ C X, the family of sections of 7y x defined on I/ is denoted by F(Z/{,T[yqx), and analogous for the other
spaces. The tangent map of a map f € C°*°(X, X’) between the manifolds X and X’ is denoted by (df)x: TxX — Ty X’
for each x € X. In the same vein, the pull-back of o € Q¥(X’) is denoted by f*a € Q¥(X) and its exterior derivative is
denoted by da € Q¥t1(X’). When working in local coordinates, indices will be denoted by lowercase letters (i, o, etc.), and
multi-indices by capital letters (J = (J1,..., Jn) € N, etc.). Given two multi-indices | = (J1,..., Jn),I=1,...,I;) € N",
we write

pen ()=(1) ()

Besides, we will assume the Einstein summation convention for repeated (multi-)indices.
2. Higher-order jet bundles

We summarize the main results about higher-order jet bundles that we will need in the following (see, for example, [40,
Chapter 6]). Let 7y x : Y — X be a fiber bundle and k € Z™*. The k-th order jet bundle of 7y x is denoted by

Ty x : Tty — X,

and its elements by j’;s. The k-th jet lift of a section s € I'(;ry,x) is denoted by jkser <n]!<yqx)- Recall that the maps

mer: J¥Y — J'Y, jks > jls, 0 <1 <k, are fiber bundles, where we denote J°Y =Y. In addition, 7y _; is an affine bundle
modelled on

iy x (VETX) @ 7 o(VY),

where VY = ker(wy x)« is the vertical bundle of 7y x.
Let (x*, y*) be bundle coordinates for 7y x. The induced coordinates on JkY are (x*, y?: y‘}‘), 1<|J| <k, where |J| =
J1+---+ Jn is the length of j. If, locally, s(x*) = (x",so‘(x“)) for some (local) functions s¥ € C*°(X), 1 <« <m, then

jKs(xt) = <x“, s*(xH); s‘}‘ (x“)) with

N 9 \ /1 9 \/n
sSO=\-=5) |z
X=(x) 0x ox

1l
s (x) = -

o
ox] $7 (%),

x=(xH)

foreach 1 <|J| <k.
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Definition 2.1. Let 7y x and 7y, x be fiber bundles, k € Z*, and F : Y — Y’ be a bundle morphism covering a diffeomor-
phism f : X — X'. The k-th order jet lift of F is the map j¥F : JXY — J¥Y’ defined as jks > j’}(X) (Foso f71).

If wy» x» : Y” — X" is another fiber bundle and G : Y/ — Y” is bundle morphism covering a diffeomorphism g : X’ — X”,
then j*(G o F) = j*G o j*F. In other words, the following diagram is commutative.

J(FoG)
1 .k
JkY J F Jkyl J G Jky//
nk,ol l”/ﬁ,o lnléio
Y F Y’ Y”
Hy’xl lf[y/’x/ l]‘[yu,xu
X / X X"

(1)
Proposition 2.1. The following is a canonical decomposition of vector bundles over JXY,
Tieu (TUD) =780, (VURN) @ Htes 0,
where V (J¥Y) = Ker (7 jky x) is the vertical bundle of 7 iy x and

H( 1 1) oy =d(F)x(TeX), jiTlse Ty

Given jk+1s e J¥1y and Uy € TyX, the vector U’;k+]s =d(j*s)x(Uy) € H(mti11.x) is called k-th holonomic lift of Uy by jk*1s.

In coordinates, if we write jﬂj“s = (x“, v%; y‘}‘) and Uy = U9, then

k
k
Ubr, = U | 0+ 95,00+ D 354,00 |
[J1=1
where 1, is the multi-index given by (1,), =8y, and 9, 3y, 84 are the partial derivatives of the coordinates x*, y“,

y‘}‘, respectively, 1 < u,v <n, 1 <a <m, 1 <|J| <k. In particular, the k-th holonomic lifts of the partial vector fields, 9,
1 < <n, are called coordinate total derivatives and are given by

d
i = Ol = 0+ ¥ B+ Y41, 0ar-

Example 2.1 (Total time derivative). Let Q be a smooth manifold and consider the trivial bundle 7R o r with (local) coor-
dinates (t, q%). Given q(t) = (t,q*(t)), the total time derivative is given by

k i
d 9 aqa a]+lq(x i
— =t —3 — 3l
dt — at ' ot “+; ati+1 %

Note that given a (local) function f € C*°(J¥Y) and a multi-index J = (J?,..., J"), then

dl f
c® k-HJIY .
PV ) )

Furthermore, for a section s € I'(;ry x) we have
11 1J1 ik
d foj"H”s:a (f°15).
dxJ oxJ
Next, we define the prolongation of vector fields.

(2)

Definition 2.2. Let | € Z*. A generalized vector field on J'Y is a section U € T (nl*OTY — ]’Y). Furthermore, it is said to be
vertical if U(jks) € Vs Y for each jise J'y.
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Note that (standard) vector fields on Y would be regarded as generalized vector fields for [ = 0. Locally, generalized
vector fields are given by
U=U", +U%,, UM UY:J'Y >R, 1<pu<n 1<a<m.
This way, vertical generalized vector fields are those ones such that U¥ =0 for 1 <pu <n.
Given a generalized vector field, U € T’ (n,f‘OTY — ]’Y), and k € Z*, it may be defined the k-th order prolongation of
U, which is a section U® eT <n,j‘+, L (T (JkY)) — ]"“Y) (cf. [40, Definition 6.4.16]). In particular, k-the prolongations of

(standard) vector fields on Y are (standard) vector fields on JXY.

Proposition 2.2. Letk € Z, (x*, y*; y‘}‘) be bundle coordinates for J*Y and V = V¥9, € X(Y) be a vertical vector field on Y, where
V%:Y — R, 1 <a <m. Then k-th order prolongation of V is given by

dlive
dxJ

vl — vy, 4 3l e%(]"Y).

Proposition 2.3. Let k € Z* and U € X(Y) be a y_x-projectable vector field on Y. Then the flow of its k-th order prolongation,
U e x (JkY), is {j*p; | t € (—€, €)}, where {¢y | t € (—€, €)} is the flow of U.

To conclude this brief overview, we present the Leibniz rule for higher-order, multivariable calculus, which can be
straightforwardly proven by induction in the number of factors (see [24, Proposition 6] for two factors).

Lemma 2.1 (Higher-order Leibniz rule). Let m € Z*+ and f1, ..., f € C®°(R™). Then

m

gl o I A fy
Wl_[lfa: Z TN 1_[1 P 1] = 0.
o=

J (SIS (VS | a=

3. Calculus of variations for higher-order Lagrangian densities

We now recall higher-order calculus of variations (for a comprehensive exposition see, for example, [18,35,4]). Let X be
a compact, 7y x : Y — X be a fiber bundle, and k € ZT. A k-th order Lagrangian density on 7y x is a bundle morphism

g:Jky — A"T*X
covering the identity on X. If X is oriented by a volume form v € Q"(X), we will write £ = Lv for a function L € C*° (]"Y)

known as Lagrangian. The action functional defined by £ is

S:I'(mwy,x) = R, sn—>/£(jks).
X

A variation of se T’ (rw’x) is a 1-parameter family of sections

{sceT (my.x) |t (—€,€), so=s}.
The corresponding infinitesimal variation is
d
8s=—| scel (Tery x).
dt |—o

Henceforth, only 7y x-vertical variations are considered, that is, those ones satisfying 8s(x) € Vs Y for each x € X. The
variation of the action functional induced by {s;} is defined as

5S[s] = de[:t]

t=0
and it only depends on the infinitesimal variation. That is to say, if {s;} and {s;} are two variations of s such that §s = s/,
then dS[s;]/dt|,_, = dS[s{1/dt|,_,.

Definition 3.1. A section s € ' (ny, x) is critical or stationary for S if the variation of the corresponding action functional
vanishes for every vertical variation of s, i.e.,

8S[s1=0,  Ssel (msvy.x).
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Unlike the first order case, the covariant Cartan form,
®£ c QI’! (]2k—1y) ,

is not uniquely defined for higher-order Lagrangians if dim X =n > 1. The main reason is that, although there is a canonical
embedding J¥Y < J! (]kle), there are many different choices for the corresponding projection. Nevertheless, it is always
possible to construct a globally defined projection by means of tubular neighborhoods, thus yielding a globally defined
covariant Cartan form on JXY (cf. [40, Theorem 6.5.13]). In any case, there is a unique choice for the Euler-Lagrange form
associated to £,

EL©) Q" (JHY, 150 (V'Y)).

where my+y y is the dual of the vertical bundle 7yy y. There exist adapted coordinates (x*, y“; y‘}‘) for J2ky such that the
covariant Cartan form is locally given by'

k—1 k—|I]-1 4l oL
0= 2 3 G () o ot 00 8 )+ 5
11=0 1J1=0 XNV,
where ¢ : X(X) x 1(X) — Q¥(X) denotes the left interior product. Similarly, the Euler-Lagrange form is given by
d!
EL(©) = Z (=DMl vdy”. (4)
1J1=0

Proposition 3.1. Let §s € I'(7s<yy x) be a variation of a section s € I'(;ry _x). Then the variation of the action functional is given by

88[5]:/((jst)*Sll(S),83>,

X

where (-, -) denotes the dual pairing within the vector bundle VY — Y.

Proof. Since the variation is vertical, we have s; = ¢; 05, t € (—€, €), where {¢: : Y — Y |t € (—€, €)} is the flow of a vertical,
Ty, x-projectable vector field V € X(Y). Subsequently,

220 e
= (i*s)’ (% K (j’%m))
= (jks>* (fv(k) 2) ) )

where £ denotes the Lie derivative and we have used the commutativity of (1) and Proposition 2.3. Since X is boundaryless,
the Stokes theorem leads to

/(j"s)*d(tv(k)ﬁ):/d((jks)*(tv(k)i))) =/(j’<s)*(av(k>£)=o. 6)

Similarly, we pick bundle coordinates (x*, y“; y‘j‘) for J*Y, which allows us to write V = V3, for certain (local) functions
V% :X — R, 1 <o <m. Thus, Proposition 2.2 yields

oL oL dJlv«
pdf = —V« . 7
Ly (ay“ +— e e A (7)

Lastly, the higher-order integration by parts formula for boundaryless manifolds (see, for example, [6, Lemma 4.5]), together
with (2), gives

1 Since the higher-order covariant Cartan form is not uniquely determined, its local expression depends on the choice of bundle coordinates (cf. [40,
§5.5], [23, §3B] for first order, and [15, §5], [40, §6.5] for higher orders).
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/(.ks)* L dlf\vav / 9 (L ks) a'”v“v ®)
22y = ° .
J ay§ dxJ 3y J axJ
X
alll (9
= (- 1)”‘/ ]( (Lo_] s)) vey
2 ax 8y]
dll (oL
— (- 1)\1\/(%) <_ o vev).
g dx/ ayq
Vos=V%y eI (7svy,x). Hence, from the local expression of

On the other hand, it is clear that s = (d/dt)|;—q (¢t 0 S)

the Euler-Lagrange form (4), we get
9)

2k \* _ 1 nd oL o
s) ec(e ,85> = ( ) - vey
<<] ) ) Z ( dxJ y
[J1=0
By using Cartan’s formula, i.e., £ =d ot +tod, and by gathering the previous expressions, we finish

/3(1 5) f(] 5) (Evw )

t=0
X X

(jks)* (tywd€) + / (jk5>* d(tywL)

X
3L aL dflv“>
v

6.0 [ (4
- f(1<5) (thu_ay] dx/
X
® [ (a2 [ L i d (ALY e
2] () (e 0 () v
X

( ]2’<s) EL(D), 85>. o

8S[s] =

Il
X\ S;|Q..

The following result is a straightforward consequence of the previous Proposition and it gives the higher-order version

of the well-known Euler-Lagrange equations
Theorem 3.1. Let £ =Lv : JkY — /" T*X be a k-th order Lagrangian density, and consider the corresponding Euler-Lagrange form

EL(L). Then the following statements for a section s € T’ (JTy x) are equivalent.
0 holds for arbitrary variations 8s € T'(mwsxyy._x)

(i) The variational principle §S[s] =
(ii) s satisfies the k-th order Euler-Lagrange field equations, i.e

(L) =
From (2) and (4), we obtain the local expression of the higher-order Euler-Lagrange equations

k g (AL

S (o (fs))=0. 1=a=m
1J1=0 Y

Remark 3.1. The calculus of variations described above is straightforwardly extended to a non-compact base manifold X by

considering compactly supported variations. In other words, given a section s € I'(ry_x), the only variations §s allowed are

those satisfying

K les=0, xedu,
for some open subset ¢/ C X with compact closure, {. Locally, this condition ensures that s as well as its partial derivatives
up to order k — 1 vanish on the boundary, d{. As a result, no boundary terms appear when integrating by parts and, thus

Proposition 3.1 is still valid.
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4. Geometry of the reduced configuration space

Let G be a Lie group, g = T.G be its Lie algebra, e € G being the identity element, and g* be the dual of the Lie
algebra. The corresponding exponential map is denoted by exp : g — G, and the adjoint representation of G is denoted by
Adg : g — g for each g € G. In the same vein, the adjoint and coadjoint representations of g are denoted by ads : g — g and
ad; : g* — g*, respectively, for each £ € g.

Let wp x : P — X be a principal G-bundle. The corresponding right action is denoted by

R:PxG— P, (¥.8) > Ry(g=Rg(y)=y- 8.

Recall that the infinitesimal generator of & € g is the vertical vector field £* € X(P) given by

d
£r= i y-exp(t§) = (dRy), (5),  yeP.
t=0

For each k € Z™, the k-th jet extension of the action,
RW: jkp x G — J*P, (j’;s,g) (s 2),
is again free and proper, thus yielding a principal G-bundle, J*P — J*P/G.
We denote by C(P) = J'P/G — X the bundle of connections of 7p x, which is an affine bundle modelled on T*X ®

ad(P) — X, being ad(P) = (P x g)/G the adjoint bundle of 7p x. Recall that there is a bijective correspondence between
(local) sections of 7¢(p),x and (local) principal connections on 7p x, which we denote by

1:1
Q! (P,9)> A<= oaecl(cp)x)-

The following result ensures that holonomic sections of the jet bundle yield flat principal connections.

Lemma 4.1. Let s € T (77p x) and define o4 = [ j's] - € Tioc(7rc(p). x)- Then the local connection A € @ (P, g) is flat.

Proof. The local section s induces a trivialization of 7p_x on its domain U/ C X,

@:UXG>Ply, (%8 ¢ 8 =5(x-g.

Recall that any connection is uniquely determined by its horizontal lift at each point. Given y = s(x) - g € P|y;, we denote by
Horj : TxX — T, P the horizontal lifting of A at y. Since o4 =[j's] ., we have

Horf (Uy) =d(Rg 0 $)x(Ux) € TyP,  Ux€TyX. (10)

On the other hand, consider the canonical flat connection Ag € 2'(X x G, g) on the trivial bundle TxxG,x- For each (x, g) €
X x G it is defined as

A
Hor(x‘?g)(Ux) = (Ux,0g) € T(x,g)(X x G), Uy € TxX.

It turns out that ¢*A = Aglyxg, S0 A is a flat connection. Indeed, let (x,g) € i/ x G and Uy € TxX. Since ¢ covers the
identity on U, we have

*A — _
”‘”?’x,gﬂ"x) = (d(p 1)S(X>~g (HOTS(X’g)(Ux)) = (d(p ])s(x)-g (d(Rg © S)X(U"))
=d ((0_1 oRgo S)X (Ux) = (dtg)x(Ux) = (Ux, 0g) = HOT&?g)(Ux),

where Xsx— 1;(x) =(x,2)e X xG. O

The main goal of this section is to study the geometry of the quotient (]"P)/G, which was first investigated in [17].
For the convenience of the reader, we present a detailed proof of the main result (see Corollary 4.1 below). To begin with,
we introduce the following bundle morphisms.

Proposition 4.1. For each k > 2, the bundle morphism @y : J*P — J*=1C(P) defined as jKs — j~1[j1s]¢ is well-defined and it
descends to a map on the quotient, B : (J*P)/ G — J*=1C(P).
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Proof. To begin with, note that © is the composition of the natural immersion J¥P < J¥=1(j1P) with the (k — 1)-th jet
lift of the canonical projection 71 : J'P — C(P). Thus, it is well-defined.
For the second part, let g € G. Then

o (Us) - g) =0k (- 9) = K1 - @)l
= 5GS) - gle = KM i"s1e = O ( jzs) .o

The previous result may be summarized in the following commutative diagram.

O | -
Jkp ———— () s 0 5 1sl
m{ / ] / (11)
S
(Jp)/ G [5%s]e

Consider the curvature map, i.e.,
F:j'cP) > N*T*X®ad(P),  jloar FA®X),

where FA € Q2(X,ad(P)) is curvature of the (local) principal connection A € Q1(P, g) regarded as a 2-from on M with
values in the adjoint bundle. By lifting it to the (k — 2)-jet and by composing it with the natural immersion of J¥~1C(P) —
J&2(J1c(P)) we obtain

FRE TPy > (NPT X @ad(P)), T oa e ST,

Let 0: X — A?T*X ® ad(P) be the zero section, and consider its (k — 2)-jet lift, j*=20: X — Jk=2 </\2 T*X ®ad(P)>. We
define the kernel of j*—2F as

ker j*~2F = {j’;—laA e J*lc(py | jK2FA = jﬁj—zé} .

Proposition 4.2. For each k > 2, we have

(i) Ey is an injective bundle morphism over X.
(ii) im &y C ker j*2F.

Proof. To check (i), let [jXs].. [i%s']. € (J¥P)/ G be two different elements. In other words, jks # (jXs') - g = jX(s' - g) for

each g € G. Subsequently, [jislc # [j1s']c and, thus, B ([j¥s].) # Ek ([j%s']). On the other hand, (ii) is a straightforward
consequence of Lemma 4.1. O

Let us introduce a trivializing chart of mp x, i.e., we pick an open subset &/ C X with &/ >~ R" via the local coordinates
x = (x*) and such that P|;; ~U x G. To keep the notation simple, we write I/ = X. Likewise, let {By € g|1 <& <m} be
a basis of g and consider normal coordinates (y%) in a neighborhood of the identity element e € G, i.e., g = exp(y*By).
This way, we have normal bundle coordinates (x*, y*) for mp x. Note that for each g =exp(y“By),h =exp(z¥By) € G close
enough to the identity, we have gh = exp (f&,yz°By), where C = (C, ..., Cp) is a multi-index, y© = (y1)' ... (y™" and
& 1 <a<m, |C|,|D| >0, are the constants of the Baker-Campbell-Hausdorff formula (cf. [43, §2.15] and [17, Theorem
4.1]). By using this, it can be checked that

Pxg>~VP, (" y*),E%By) > a5y, (12)

where

ag(y',....y™ = f&,¥°.

Note that for y = (x,e) we have ag(0,...,0) =35, 1 <« <m. Hence, the inverse of the matrix (ag(y*)) is well defined in
a neighborhood of y = (x, e), and we denote it by (b%‘ (y',...,y™). In such case, the inverse of the previous isomorphism
is given by

VP~Pxg,  (y.U%%) > (y.b5U"By). (13)

We pick the following bundle coordinates:
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o (x*, A%) for C(P),

o (xH, ;w) for /\ T*X ® ad(P),

o (x,y% y%) for J¥P,

o (xI, A%; A% ) for J¥=1c(pP), and

o (XM F2, F2, ) for J2 (/\ZT*X®ad(P)>.

In order to keep the notation simple, we will write y] =yY, Au Jo= A and F¢

%, o =Fg, for Jo=(0.....0).

Remark 4.1. Given two multi-indices I, ], the inequality I < J means that I, < J, for 1 < u <n. Likewise, we denote I < |
when I < J and I # ], thatis, I, < J, for 1 < <n and there exists po € {1,...,n} such that I;j < J,.

Let us compute the coordinated expression of ©y.

Proposition 4.3. For each k > 2 and each (x*, y“ y]) e JKP with |y®| small enough, 1 < a« < m, we have O (x*, y*; y‘}‘) =
(X, A% A% ), where?

[J1

d
b%t(ya)y/fﬂ’ AZ,] axJ ( %t(ya)y/]i)
X

)

foreachl<p<nl<oa<mandl<|J|<k-1.

Proof. We denote jls = (x*, y%; y‘j‘). Recall from (10) that the horizontal lift given by [jls]¢ € C(P) reads Horﬁx) =dx"* ®
Ay + y‘{‘udx" ® 0y. From this and (13), we get

Ao =B (Y*) (—yfﬂdx" + dy"‘) ® By € Tiy P ® .
Then [j's]c = (x*, A = bg (y“)yfu). By taking partial derivatives, we conclude. 0O
Now some technical lemmas are presented.

Lemma 4.2 Let k> 2 and j% 04 = (x*, A%: A% ) € JK-1C(P). Then j&-2FA = <x“ F2, F2, ]> e Jk-2 (/\ZT*X®ad(P)) is
given by

1
}/
Fiovy =5 | A%y, = Al + 20 ( >Cﬂy Avgr ] (14)
1<)

foreach1 < u,v<n,0=<|J| <k—2and1 <« <m, where we denote by cgy = Zf{‘;ﬂy, 1 <«, B,y <m, the structure constants
of g.

Proof. We show it by induction in 0 < |J| <k — 2. The case |J| =0 is straightforward, since the curvature of j;o,q =
(x*, A% A ul ) is given by (cf. [39, Chapter 1, §4])

1
Fiv=3 (A?f 1= AL +cgyAﬁA{).

Now assume that (14) holds for 1 < |J|(< k — 2). To conclude, we need to show that it holds for J' = J + 1, for each
1 <o <n. Note that

<]If>:<1+lla>:<{>+(1_jla), 1, <1<

Furthermore, note that

2 By abusing the notation, for each multi-index | we denote

/g
axJ

vy

=0

ab4
B
= oy

(J/)

1<a,Bp<m.
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sz =02 (%)

1<y, I<J,
I,=0 Io=0 Io=Jg+1 Io=Jo+1
Hence,
A J J J J
Z(!)‘ 2 (1)+ 2 <<1>+(1—1a)>+ 2 (1—1)
I<y I<], 1o<I<] I<J',
I5=0 lo=Jo+1
_ J J
() 2 ()
<] lo<I<]

By using this and by taking the partial derivative of (14) with respect to x°, we finish

1 o 14 B
Fav.y =5 | AV, — l/-]+1v+2< )Cﬂy< pd1, AY o1 FALAL L, )

1 a o J B AV AY
=5 | AV A, T 2 (1_1 By Ay, g 1+Z By A AL i

1o<I<)’ 1<J

1 4 v
=5 | Avrs1. u1+1v+2< )Cﬁy dAvgyor |- O
<y

Lemma4.3. Let k > 2 and g = exp(y* By) € G with |y¥| small enough, 1 < o < m. Then

1<oa,e,A<m.

A pb 14 dbg,
Cgyba (Vb (y) = W(Y) -

Proof. For each 1 <8,y <m and y = (x*, y%) € P, the infinitesimal generator is given in coordinates by (B,g);‘, = a‘l’g‘ (¥)0q
and, from the equality [Bg, By ] = c%‘y Bq, they satisfy

5 oa 5( )
c§, b (6)35 = [ag‘(y)aa,asy(y)aa] = (aﬁ(y) () —ay g (y)> (15)

Since <a‘g (y)) (b%(y)) =1, the identity matrix, we have a‘)s, (y)bf(y) = 85 and, thus,

aa’ abP (v
—(y)b’3<y)+a »? (y )<y) l1<a,By<m.

As a result,
Ba‘;
W(W —a,g(y)a (y)—(y) T<a,y.d=m.

By substituting this into (15) and rearranging indices, we get

K 0 o 8 € abk abA
Cpy @ (V) = ag(N)a; (¥)ay, (¥) (——(y) + W(Y)) T<B,y,d=m.

Lastly, we multiply each side by bg/ (y)b” (y)bZ (y) and we sum over «, § and €:

» By b, ab?
Chyba(Mbe (¥) = —— ay¢ b )—W(y) 1<a,e,A<m. O

We are ready to show the main result about the map Ej.
Theorem 4.1. For each k > 2, we have that:

(i) im E¢ = ker j*2F c J¥~1C(P) and,
(ii) By is a proper map.

10
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Proof. To begin with, we show (i). Thanks to Proposition 4.2(ii), we only need to prove that ker j*2F c im Ej. Similarly,
the commutativity of (11) yields im Ey = im ©y.

The fact that the maps are local enables us to work locally. More speciﬁcally_ we employ the bundle coordinates in-
troduced above. Let j’; op = (x*, A%; AY ]) € ker j*2F. We need to find st = (x*, y* ;YT @)y ¢ JkP, such that Ok(]XS)

jﬂj‘loA. For that matter, we set y* = O, 1 < @ < m. Besides, we define y , 1 <|J| <k, by recurrence. Namely, fix
0<r<k-—1, and assume that y‘}‘ has been defined for 1 <o <m, 0 <|J| <r —1 in such a way that they satisfy

glJl .

= (50s, )‘ =A% ), (16)

foreach 0<|J|<r—2,1<p<nand1<a<m. Now pick ] € N" with |J| =r and consider 1 < u <n such that J, > 0.
Then we set

al]_lll._”b%l(y)

J =1
o A0
Yy =Ay 1, — > < I oxd—Tn—1
X

I<J—1,

B
Yist, 1<a=<m.

Observe that it makes sense, since the elements y‘}‘ considered in the RHS are only up to order r — 1. In addition, for each
1 <a <m we have

o=l
axJ i (bﬂ(y)ylu) N

[J=1p—1pa
J—1,\ 9+ bg(y)
4,
=y (W + Z < I Py
X

I<J-1,

B _aa
y1+1;/, - Aﬂ»jflu.’

since b%‘ Y¥=0) = 5%‘. Hence, y‘}‘ () keeps satisfying (16).

Let us check that the definition do not depend on the w chosen, so we can write y‘;‘ = y%(w). Let 1 < v <n be another
index such that J, > 0. This enables us to write ] = J' 4+ 1, + 1, for some multi-index ] with |J'| =r — 2. Hence,
J—1,=J+1yand J -1, = J' 4+ 1,. Therefore,

J+1, 8|]+1u—1\ba J 41, 3|]+1,L—1|ba
Z ( I )W(}’) y1+1/t Z ( I )W(}’)

I<]J'+1, I<J'+1,

yl+1v
X

UL
= g (B5ot,)| -
X

glJl abjg
Ay ayV

gl [ (9b2 abe s
:W ayﬁ( )——(Y) Y1MY1V

Similarly, by inserting the condition j~'o, € ker j*=2F, i.e., jK~2F4 = j-20, in Lemma 4.2, and by using (16), we obtain

J' A
Ay, = Ay, = 2 <, e iAy o

a‘]’+l/4‘ B
P (bg(Y)yh,)

X

abs

ayr

WYY L, + DDV 4, —

=

WYy V- %‘(y)y’fwu)

(17)

X

1<)’
B . o=,
Z CAG ox I(b (Y)Y1 ) 3X]/7I (bﬂ(Y)Y]U>
<] X X
')
= 27 (Ck (y)bj (y)y ) (18)
X

for each 1 <o <m, and 1 < u, v <n. By gathering (17) and (18), and by making use of Lemma 4.3, we conclude

o o o o 8”‘ Bba 8b
Vi =y = ALy, =AY i, — oo 3P Ly - (y) ymy]U

X
1l

)
= m(cke (»)bj (J’)Y1MY1 )

NId
- m(ckg (.V)b (.V)y1 Y1, )

X

X

11
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=0.

Once we have defined jﬁs = (x*, y<, y‘}‘) € JKP, the last step is to check that @k(j’;s) = jﬁfl
from (16) and Proposition 4.3.

Lastly, we show that Ej is proper. Let ([j’;nsn]c)zoz1 be a sequence in (J¥P)/G such that (jﬁ;loAn = B ([jlﬁnsr,]g));il
converges to some jk~lo4 € J¥71C(P). Since j&~2F4, = j&-20 for each n e N, by continuity we conclude that jX=2FA =
jk=20, that is, j*"'os € ker j*"2F = im E. Thus, there exists jXs € J*P such that Ei([j¥s]c) = j*'o4. In coordinates, we
write j§ sn = (s Vs (), Jh 10, = (8 (A% (A% ), Jks = (e, y*; ¥9) and j§~Toa = (x#, A%; A% ). Without loss
of generality, we may assume that y¥ =0 and y* =0, 1 <« <m. This way, by recalling Proposition 4.3, we have

o4, wWhich is straightforward

9l o B : a a oVl o B
lim o (bﬁ ()’n)(J/n)]M) ’xn =lim(An)y, j = Ay ;= T (bﬁ(Y)J’]“)

X

foreach0<|J|<k—1,1<oa <mand 1 < u <n. Subsequently, by recurrence as above, it can be checked that limn(yn)‘}‘ =
y‘}‘ foreach 0 <|J| <k and 1 <« <m and, thus, (jﬁnsn);x;l converges to jﬁs. O

By gathering the previous results, we obtain the geometry of the reduced configuration bundle.

Corollary 4.1. For each k > 2, there is an isomorphism of fiber bundles covering the identity idy,

(J4P) /G = ker }2F = [ fTou e S ey | 2R = j4720)

Proof. Let us show that Ej is an immersion, i.e., that dEy is everywhere injective. Since the property is local we can work
in a trivialization of mp x, that is, we assume that P = X x G. Given two sections s = (idx, f),s’ = (idx, f') € ['(7wp,x),
we define T:P — P as t(x,8) = (x, f’(x)f(x)*lg) for each x € X, which is a principal bundle automorphism such that
T os=s. Besides, the jet extension j'z: J'P — JP is G-equivariant, i.e., j'7(jls)-g=j't ((jls)-g) for each g€ G and
each jls e J1P. Hence, it induces an automorphism of the bundle of connections, ¥ =[j't]¢ : C(P) — C(P). By taking the
jet lift of these maps, we arrive at the following commutative diagram

®
Jkp ——— J1c(p)

jk‘L' l ijl £

®
Jkp ——— J*cp)

Therefore, ®; has constant rank, since T and 7 are isomorphisms and this construction can be done for every pair of
sections s,s" € I'(7p,x). By using this and the fact that my is a submersion, and by recalling (11), we conclude that Ey has
constant rank too. Since Ejy is injective (recall Proposition 4.2(i)), the Global Rank Theorem (see, for example, [29, Theorem
4.14]) ensures that &y is an immersion.

In short, & is an injective immersion and proper (by (ii) of Theorem 4.1), whence it is an embedding (cf. [29, Proposition
4.22]). Hence, im Ey = ker j*~2F is a submanifold of J*~1C(P) and, again by the Global Rank Theorem, E: (J*P)/G —

ker j*=2F is a diffeomorphism. O
Notation. Henceforth, we will denote
CE71(P) = im By = ker j*2F.
5. Higher-order Euler-Poincaré reduction
At this point, we are ready to develop the Euler-Poincaré reduction for higher-order field theories. Given a principal
G-bundle, p x : P — X, over a boundaryless manifold X and k > 2, we consider a k-th order Lagrangian density, £=Lv :
J¥P — A"T*X, that is G-invariant, i.e.,
L(R(gk) (]’;s» =L<j§s), ikse J¥P, geG.
As a result, we have a dropped or reduced Lagrangian,
(=tv: (J*P) /6> A"T*X, [s]g > 1([Js]e) = £ (1)

12
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By means of Corollary 4.1, we may regard the reduced Lagrangian as defined on ng (P) = ker j*=2F c J*=1C(P). For an
open subset ¢/ C X with compact closure and s € I' (L{, 7Tp,x), the corresponding reduced section is defined as

op= [le]G S F(U,T[C(p),x).

A variation §s of the original section induces a variation do4 of the reduced section. By construction, the original and the
reduced variations satisfy £ (j*s;) =[(j*"1(@a),) for all t € (—€, €) and, thus,

d tzou/,g(ﬂq) = % t:()z[[(jk_] (O’A)t)~ 19)

dt
If we choose a fixed principal connection Ag € Q'(P,g) on 7p x, we can identify the bundle of connections with the
modelling vector bundle,

C(P) 3 04(X) <5 T a(x) = 04(X) — 04, (X) € T*X ® ad(P). (20)

By taking the (k — 1)-jet lift of this map, we can also identify the reduced configuration space with some subbundle of
J1(T*X ® ad(P)), that is,

Jepy o NPy < ¢k Py c ST (TP X @ ad(P)),
so that the reduced Lagrangian could be regarded as
kN (P) — A" T*X.

The whole situation is summarized in the following commutative diagram:

_]kP
4

, Ttk
7
/
/
/

: (JP)/ G —> cl'(p) ——— c§(p)

ij: J]P
\\ KA
P (J'P) /G C(P) T*X ® ad(P)
N / 7 7
\\Sl // //
A\ UA//// ////
UCx ___ 5. "

Definition 5.1. Let V4 : " (maqp), x) = T (77+x@ad(p),x) be the linear connection on the adjoint bundle, aq(p) x. induced
by Ag. The divergence of VA° is minus the adjoint of VAo, i.e., the map div?® : F(]TTX@ad(p)*.X) — F(nad(P)*,X) implicitly
defined by

/<n,VA°$>v=—/<divA°n,$>v,

X X
for each & € T (aa(p),x) and 1 € ' (Trxgad(py*, x)-
Givenoa el (ﬂT*X@ad(P),X), we define the map

ad% T (Trxgadpy . x) = T (Tad(py* x)

as the coadjoint representation of ad(P)* and the dual pairing of TX and T*X. In the following, since 7r+xgad(p),x iS a
vector bundle, we identify its vertical bundle with itself, V (T*X ® ad(P)) ~ T*X ® ad(P), and analogous for its dual.

13
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Theorem 5.1 (Higher-order Euler-Poincaré field equations). Let k > 2, wp x : P — X be a principal G-bundle and £: J*P — A" T*X
be a k-th order, G-invariant Lagrangian density. Let [ Cg_1 (P) — /\" T*X be the reduced Lagrangian density, where Cg_1(P) ~
(]"P)/ G is the reduced space, and consider an extension 1: J=1 ) —» A" T*X of the reduced Lagrangian [ to the whole jet.
Let Ag € Q1(P, g) be a principal connection on 7p, x, which enables us to identify C(P) ~ T*X ® ad(P), and let VAo be the linear
connection on w,q(py, x induced by Ag.

Given a (local) section s € I'(U, wp x), whereU C X is an open subset with compact closure, and the corresponding reduced section
opel (L{, nc(p),x), the following statements are equivalent:

(i) The variational principle § / £ (j"s) = 0 holds for arbitrary variations of s such that j,’ﬁ” 8s = 0 for each x € dU.
u
(ii) The section s satisfies the Euler-Lagrange field equations, i.e.,

( 12’<s)* EL(L) =0.

(iii) The variational principle & / [ (jk_laA> = 0 holds for variations of the form
u

S04 =VM¢ —[Ga,E]€T (U, w1 xg2d(P),X) »

where & € I'(U, aq(p), x) is an arbitrary section such that jﬁ‘(*zé =0 for each x € oU.
(iv) The reduced section o 4 satisfies the k-th order Euler-Poincaré field equations:

(aivhe —adz ) ((1%204) e£(i)) =0, (21)

where EL <f> € Q" (J%-2(C(P)), TX ® ad(P)*) is the Euler-Lagrange form of 1.

Proof. The equivalence between (i) and (ii) is established in Theorem 3.1. In addition, the induced variations of the reduced
section were computed in [7, Theorem 1]. Hence, the equivalence between (i) and (iii) is straightforward from this fact and
equation (19). To conclude, let us show the equivalence between (iii) and (iv). Firstly, note that given a variation of the
original section, together with the induced variation of the reduced section, we have jﬁﬁ“ (oa) € Cg’l (P) for all t € (—€, €)
and x € U. Hence, § (j"‘1aA) x) = (bo)* VD (x) € Tj’,f’la,q (C’é”([’)). By applying the explicit expression of the reduced
variations and Proposition 3.1, we obtain

sff(j"lcm) :M/«jz“m)*sc (i),aaA>
- L[ ((#202) e (i) V& — [.£1)

_ _M/ <c1ivAo ((jZk*ZUA)* ec ([)) —adt, ((jZk’ZGA)* ec ([)) , s>

Since this holds for every £ e T’ (L[, T[ad(p)yx) vanishing at the boundary, we conclude. O

Remark 5.1. Since (the (k — 1)-th jet lift of) the reduced section lies in Cg_l(P) and the infinitesimal reduced variations
are tangent to this space, the solutions of the reduced equations do not depend on the choice of the extended Lagrangian

1 J=1cp) —» A" T*X. That is, if we have two such extensions fl,fz with f1|Ck_1(P) =leck_1(l,), then a reduced section is

0 0
critical with respect for [y if and only if it is critical for [,. In other words, C’é_l(P) c J¥1c(P) may be regarded as a kind
of holonomic constraint.

Remark 5.2. If we choose the connection Ag = A itself, that is, the connection defined by the reduced section o4 =[j!s]c,
the reduced equation (21) has the simpler form

div? (( jz"’ZGA)* ec(i))=o.

14
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Let us find the local expression of the reduced equations. As in Section 4, let {By | 1 <« <m} be a basis of g, (x*, y%)
be normal bundle coordinates for wy x and (x*, A"‘) be bundle coordinates for 7c(py x. Similarly, consider the adapted

coordinates (x*, y%; y"‘) and (xH, A%; A% wy) for ]"Y and J*¥=1C(P), respectively. For the sake of simplicity, we fix the flat
connection on 7y, x under these coordmates ie, Ap =dy* ® B,. This way, (x*, A% 1) may also be regarded as bundle
coordinates on 7r+xgad(p),x, and we denote by (x*, vk the bundle coordinates on the dual bundle, 777 xgad(py*,X-

Lemma 5.1. With the above bundle coordinates, let n = nl 3 ® B* € T (Trxgad(py+,x) and o4 = ofdx* @By €T (nr*)@ad(p),x).
Then we have

divAo(n) = dunk B*,  adk, (n) =—c%, nk of, BY.

Proof. Let £ =&%By €T (nad(p),x) and note that VAog = 9, £%dx"* ® By. By definition of divergence and the integration by
parts formula [6, Lemma 4.5], we finish

/(div”‘°<n>,s)v=—/(n,vAf’s)v

X X

/(naap,@Ba 8/1.5 XmL@Ba)

3#5 /(%%5 )v.

X

X\X

For the second part, we have
(adz, ).§) = = (1. adg, ©) = — (1t 9 ® B*. [0 dx" © Bu, £ B |
—(n&‘ du ® BY, cf,, o,‘f £V dxt @ Ba> =—c§, nk oﬁg”. O
Corollary 5.1 (Local equations). With the above coordinates, we write

oA :o;fdx“ ® By el (Z/{’”T*X@ad(P),X)

for the reduced section. Then the local expression of the k-th order Euler-Poincaré field equations is given by

glJ+1ul al 9lJl al
I B RE E e _
Z( n (aleu 0A% (] UA) ChaOlt 3 0A7 (] JA) 0

[J1=0

foreachl <o <m.

Proof. From (4) and (2), it is clear that

() ()= B0 5 (s (00 oo

[J1=0

Recall that we are identifying V*(T*X ® ad(P)) ~ TX ® ad(P)*, i.e., dAfi ~ 9, @ B*. The result is now a straightforward
consequence of (iv) of Theorem 5.1 and Lemma 5.1. O

At last, note that a solution of the reduced equations lying in the reduced space corresponds to a flat principal connection
and, thus, the reconstruction condition is automatically satisfied.

Theorem 5.2 (Reconstruction). In the conditions of Theorem 5.1, let 04 € T (Z/{, JTC(p)’X) be a solution of the k-th order Euler-Poincaré
field equations (21) such that j* 1o, €T (Z/I, T ck-1p) x) and A € Q'(P|y, g) has trivial holonomy on a domain. Then there exists a
o )

sections €T (Z/I, ﬂpyx) that is critical for the original variational problem defined by £ and such that o4 = [jls]G. Furthermore, any
critical section on U of £ is of the form s - g for certain g € G.

15
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Proof. From the condition j*~lo4 €T (Z/I, NCE’I(P),X) we know that A € Q!(P|y, g) is a flat connection. Therefore, there
exists a foliation of P|;; given by the integral leaves of A. The trivial holonomy ensures that each integral leaf intersects
once and only once each fiber of P|;,. Subsequently, given an integral leaf of A, it defines a section s € (U, p x) projecting
onto o4. This section is critical thanks to Theorem 5.1. Moreover, the remaining integral leaves of A are obtained from s as

follows,

Fg=sU)-gC Ply, geG.
Hence, given another critical section, § € I'(U, wp x), projecting onto o4, we conclude that $=s- g for some g € G, since

S(U) must belong to the previous family. O

If X is a simply connected manifold, then every flat connection has trivial holonomy and we have the following equiva-
lence

Y (divAO —ad: ) (( jZHEA)*S,c (I)) =0,
(] s) ELW =0 = 1\ o
F* =0.

In an arbitrary manifold the equivalence above is valid locally only.

Remark 5.3. That fact that the reconstruction process requires the flatness of a connection is a characteristic trait in Field
Theories that does not show up in Mechanics, i.e., when dim X =1 (see for example [7,16] for comments on this situation).
However, there is a significant difference from first order to higher-order reduction. Indeed, the flatness condition is a
compatibility equation that must be incorporated by hand for k = 1 theories, whereas this condition comes directly from the

geometry of the reduced phase space for k > 1. In other words, for higher-order Euler-Poincaré reduction the reconstruction
is not inserted ad hoc, but it is intrinsic in the nature of the reduced sections.

6. Noether theorem

The well-known Noether theorem establishes that infinitesimal symmetries of a Lagrangian density lead to conserved
quantities for the dynamics of the system. As in the previous section, let £=Lv: J*P — /" T*X be a G-invariant k-th
order Lagrangian on a principal G-bundle, wp x : P — X. The aim of this section is to prove that the conservation laws of £
arising from its G-invariance are equivalent to the higher-order Euler-Poincaré field equations.

We start by recalling the definition of an infinitesimal symmetry and the Noether theorem for higher-order Lagrangian
densities. (cf. [35, §10]).

Definition 6.1. An infinitesimal symmetry of £ is a projectable vector field U € X(P) such that £« £ = 0, where £ denotes
the Lie derivative and U® e X(J¥P) is the k-th order prolongation of U.

For a vertical vector field V € X(P), being an infinitesimal symmetry is equivalent to £, -1©®¢ =0, for any covariant
Cartan form, ©¢ € Q"(J2~1p), of £.

Theorem 6.1 (Noether theorem). Let s € I'(7tp x) and U € X(U) be a critical section and an infinitesimal symmetry of £, respectively.
Then

d ((j2k715)* Ly@k=1) @2) =0,

for any covariant Cartan form, © ¢, of £.

Henceforth, we focus on the covariant Cartan form given locally by (3). As our Lagrangian is G-invariant, each infinites-
imal generator £* € X(Y) of an element & € g is an infinitesimal symmetry of £. We define the Noether current as the
g*-valued form J € Q"1 (J%~1P, g*) given by

<J (j,zc"*ls) , $> = l(gny2-1 Og (j,%k’ls) , j,z("’1s e J*1p g ey,
where (-, -) denotes the dual pairing, as usual. Observe that the Noether theorem ensures that

d((215) 7) =0 (22)
for every critical section s € I'(7ry x). We are ready to show the main theorem of this section.
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Theorem 6.2. Let 7wp x : P — X be a principal G-bundle, £=Lv : Jkp — A" T*X be a G-invariant Lagrangian, [ =1v : Cg’l (P) —
A" T*X be the reduced Lagrangian, and J € Q"= (J2=1P, g*) be the Noether current given by the Cartan form ©¢ € Q"(J*~1p)
locally defined by (3). Consider a section, s € I'(wy_x) and the corresponding reduced section, ca € T’ (ﬂc(p),x). Then the Noether
equation (22) holds if and only if the k-th order Euler-Poincaré field equations hold for the principal connection A € Q' (P, g), i.e.,

div® ((12204) e (1)) =0,

where 1 : J1cere) —» /\" T*X is an extension of the reduced Lagrangian.

Proof. Let (x", y%; y‘}‘) be adapted coordinates for J2¥P. Some conditions will be imposed on these coordinates along the
proof. Firstly, suppose that (y%) are normal coordinates on some neighborhood of the identity element. Hence, given a basis
{By | 1 < <mj} of g, we may use equation (12) and Proposition 2.2 (recall that &* € X(P) is a vertical vector field) to
obtain

dlag(y)
dx/

If the coordinates are chosen so that the volume form is given by v =d"x =dx! A --- A dx", the left interior product of the
covariant Cartan form (3) by (£*)@~1 reads

€T =Pa% (y)oy + &7 . y=@.y"HeP.

k=1 k—[1]—1

dlJ! oL\ d"agy
l(s*)(zkfl)@/g: Z Z (_])|]|€f5W ~ dx[ dn 1Xl/w

[1=0 |J|=0 8yl+]+1u

where d”‘lxﬂ = 13, d"x. In coordinates, the critical section is written as s(x*) = (x*, s*(x)), for some local functions s* €
C*®(X), 1 < <m. From the previous expression and (2), we get

k=1 k—[I|-1 e
JL d'la (s )
4 I /3 "
7= 3 Ve jes) ) 6D -
( ) 11=0 |J|=0 <8y,+1+1# ( )) ax! "

On the other hand, let (x*, A%; A‘l’i,]) be adapted coordinates for J2~1C(P). Observe that locally C(P) ~ T*X ® ad(P),
so we will use these coordinates for both spaces indifferently. For the reduced section, we write o4(x*) =G4 (x*) =
(xH, oﬁ‘ (x*)) for some local functions Gﬁ eC®X),1<pu<n1<wo<m.Since o4 = [jls]c, Proposition 4.3 yields

aﬁ:b%‘(s"‘)ausﬂ, l<p<n l<a<m.
From this and Lemma 2.1, we get

I+J+K
aa (8 I+]]+K‘ (bﬁ(sa)aﬂsy)>
Y1441, \OX

9 I+ ]+ K181V (s%) 911,57
O X

o
ay’+1+1u IO HI@ =4 J+K
(4 ]+ KIBG (s
TEN axk

foreachl<pu<n 1<a,B<m0<|l|<k—1,0<|J|<k—|I|—1and 0<|K|<k—|I|—|]| — 1. Moreover, by definition
the extension of the reduced Lagrangian satisfies

(24)

I, 0% (x); 9,02 (6) :i(jﬁ*lm) —1I (j’;s) = L(x™, s (x); 9)5% (x1)),

where 9; = 8/0xJ. By using this relation and equation (24), we obtain

(s k’“'i’ (R B PR 1L/ AC0)
o = | | B A) K ’
0V, =KADY gaf ox

foreach 1<u<n, 0<|I|<k—1and 0<|J| <k-—|I|—1. For brevity, we have denoted AZ,JO =A;‘1 for Jo=(0,...,0). By
introducing this in (23) and by using Lemma 2.1, we obtain
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k=1 k—=|1|—1k—=I|—|J|—1

2k—1.\" 7 _ g U+ T+K)! g
J s) J= (—HE LT, o5)
( ) II\Z=:0 Iéo \1?:20 K+ nt
alJl al 1 8|K|bg(s°‘) 8“'(1%‘(5“)
—\|— ("0 g1
ox! <8Aﬁ I+ J+K <J UA) axK ax! X

k=N=1k={T—=|JI-1 J

=k§ oy Y M (I+]+K)!)! ¢t
=0 KW(I+ DL = 1)!

[J1=0 IK[=0 |L|=0
N —LIwB || 40 (Ot

axt \ 5a# oxJ+K-L ax! e
w1+ J+K

In addition, we have bg (s“)a%‘ (s%) = m. Hence, from Lemma 2.1 we get

o (Peeagsm) = >

axM
MD+MP =M

M M sy 91MP Il (s) 0
MDOIM@1 oxM® 9xM® -

for M| > 0. By introducing this in (25), we arrive at

k—1 A
* alJl ol
2k—1 _ W lga k—1— n—1
(] s) J_m‘ﬂgo( g o (—EMZ,] (] O‘A>>d X

Thence, the Noether conservation law, d <(j2k*1s)* j) =0, locally reads

k-1 7
glJ+1ul a1
> U ( (jk—loA)>=o, l<a<m, (26)

J+1 o
=0 axI e \ 9A7 |

where we have used that &€ =£“B,, € g is arbitrary.

Lastly, fix xg = (xg) € X and assume that our adapted coordinates are chosen so that A is flat at y = s(xp), i.e., Asx,) =
(dy*)s(x) ® By It is now clear that (26) are exactly the local equations computed in Corollary 5.1 for 64 = 0, ie., a,‘j =0
fori<pu<nand1<o<m. O

7. Multivariate k-splines on Lie groups

Variational splines are piecewise polynomial functions that allow for interpolating while minimizing some cost func-
tional. For this reason, they have many applications in different areas such as optimal control theory, medical imaging or
robotics (cf., for instance, [28]). Here we focus on higher-order splines, i.e., those in which the cost functional depends on
higher-order derivatives. Namely, the reduction theory for 1-dimensional k-splines on Lie groups developed in [21, §3.2]
(see also [30]) is extended to multivariate functions on Lie groups (cf. [14]).

Let G be a Lie group endowed with a right-invariant, (pseudo-)Riemannian metric, g The inner product induced on
the Lie algebra, g, is denoted by the same symbol, g: g x g — R, and the induced norms on TG and g are denoted by
[-lg:TG— R and |-l : ¢ — R, respectively. Similarly, the adjoint of ad; induced by g is denoted by adg ig—g, ie,

g@d:(n),0) =g(n.adL(),  &n.ceq.

On the other hand, let X =R" (recall Remark 3.1) with the standard (global) coordinates and volume form given by (x*) =
(x',...,x") and d"x =dx' A --- Adx", respectively. The configuration bundle is given by

Tpx:P=XxG—= X, (X 8 x

The bundle being trivial yields J¥P = J¥(X, G), the family of k-jets of functions ¢ : X — G, whose elements are denoted by
jﬁg. Let V : X(G) x X(G) — X(G) be the Levi-Civita connection of g. Its pull-back by a (local) function ¢ : X — G, which is a
linear connection on 7«7 x : §*TG — X, is denoted by ¢*V and, given 1 < u <n, the corresponding covariant derivative
is denoted by

v
Pyl 6*Vy, :T(Ter16.x) = T(Tc*16.x)-
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Definition 7.1. The Lagrangian for multivariate k-splines on G is given by

Lo (i) = 3+

for certain k* € R, 0 < <n.

2
. fce kX, 6), (27)
g

Vk—]

3 (xH k=1

Ous)

Given a (local) function ¢ : X — G, we set
0 =dR -1 0ds = (dR-109,5)dx" € T (Tr+xgg.x) = 2' (X, ).
where Rg : G — G denotes the right multiplication by g € G. This induces the following isomorphism,
J'X.6)=Gx (T*X®g). jysr ((X).0(X).

where x denotes the fibered semidirect product given by the adjoint representation (cf. [10, §4.3.1]). Hence, the isomor-
phism Ej given in (11) becomes

J5(X,6)/G 3 jks > Ko e kT (p).
Observe that for the canonical principal connection on the trivial bundle 7p x, the isomorphism (20) reduces to the identity
and, thus, C5~'(P) =5~ (P).

Proposition 7.1. The Lagrangian (27) is right invariant. Furthermore, a (natural) extended reduced Lagrangian is
A ke 1 _ 2 ke _
(o) = ge e w] L e e e, (28)
where o = o, dx"* and gl{ : X — g are defined recursively as follows,
52 =0u,
J_ -1, 1 T j-1 ) _ j-1 ; _
E=0u8  +3|adg, (& +ac1EH (on) —ado, (&1 , 1<j<k—1.
"
Proof. Given a (local) function ¢ : X — G, suppose that
k—1
3 (xH)k—1

In such case, the Lagrangian (27) may be written as

L (1) = o | (@hewn) (55 )} = 5 |8 oo

(Oug)=dRgo&k™,  1<p=<n (29)

where right invariance of g has been used. It is now clear that L is right invariant, since the maps E,kfl do not depend on
the value of ¢, but only on its derivatives (regarded as elements of the Lie algebra). By recalling that o =dR_-1 odg, ie.,

oy =dR-1009,¢, the reduced Lagrangian reads

K . 1
(510) = ()= 3
Although the reduced Lagrangian is computed for elements jﬁ‘la € Cg_1(P), it can be extended straightforwardly to the
whole jet, Iy : J¥=1c(P) — R, by taking arbitrary functions op:X—>g lspu<n
Lastly, let us check (29) by induction. For k =1 it is straightforward. Now let k > 1. The formula for the Levi-Civita

covariant derivative of the right-invariant metric g (cf. [21, Eq. (3.13)] or [27, §46.5]), together with the definition of pull-
back connection, yields

el

§*Vi,6*U = 6" (Vaca,)U)
1 1 1
=dR§ (¢} <d¢u °oCu + Ead-(rrﬂ (¢U) + iad;U (O'M) — iadou ((ﬁu)) og

for each U € X(G), where ¢y € C*°(G, g) is given by ¢y(g) = (dRg-1)g(U(g)), g € G. By using this and the induction
hypothesis, we finish:
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k—1

9 (xu)kfl

k-2

Oug) = S'*VBM <W

@g)) = "V, (dRs 08f72)

L, 1 1 1 B
=dR, o (a,g,’; 24 EadLM (s,’; 2) + Ead;,i_z (012) — 5ada, (s}; 2))
=dRc ol O

Let us compute explicitly the reduced equations for k = 2. This corresponds to the minimization of the accelerations,
which in specific applications is directly related with the fuel expenditure of trajectories (cf. [25]). In such case, for each

o =oudxt € Q1(X, g), it is easy to check that &) = 8,0, + adT(,M (op), 1<p=<n
Theorem 7.1. The Euler-Poincaré field equations for (28) with k = 2, i.e.,
s (jlo) = %K“ Hau% +adh, (aﬂ)Hz, ilo e Jlcp),
are given by
i (8 — adf, ) (adl,, (0 + ady, (0,0) + i) =0, (30)

where 1, = 8,0, + adjm (o) foreach1 < <n.

Proof. Let 0 = o, dx" € Q!(X, g). The musical isomorphisms defined by g are denoted by #: g* — g and b : g — g*. For
each 1 < u, v <n, it can be easily checked that

A

alg
d(dvoy)

A

als

-1 v b
= §HVchp’ 9, [ s
(] 0') K™ Ny v (8(81)0'M)

(J'lo*)> = kHMa,m,,. (31)

As straightforward computation shows that adz @)= adg‘ (¢")* for each &, ¢ € g. Thus, for each 1 < 4 <n we have
3l
doy

(i) =g (ne.ad' @) +adh, )

=« (g(ad(nw). o) + & (ado, (). -))

=« (~g(ady, (), ou) — g (ady, (on). )

— (ad],;u (0) +ady, (0,0), )

— (adj;“ (0,) +ady, (au)") . (32)
By gathering (31) and (32), the Euler-Lagrange form of Ty =lsd"x: J1C(P) — A" T*X is readily seen to be

* ~ (rﬁs . 3is . n
(Pa) c(6) = (30700 (s 0'9) 0 >

"

b b
= —icl (ad}, (@) +ady, (0,)" + 0y ) d"x @ 3 € (X, TX @ g°).
On the other hand, since we have chosen Ag as the canonical connection, we obtain the standard divergence, that is,

divA : T(Trxggex) = C(X,0), Nh 9 ® B* > (8.mk)BY,

where {By € g|1<a <m} is a basis of g and {BY € g* | 1 <« <m} is its dual basis. In the same fashion, we have
ad} : T (Trxege,x) = C(X, g%, Ny du @ B > g adg, (BY).
From this and (33), we obtain the Euler-Poincaré field equations for is,
0=t (div —ady ) (ady, (0,) +ady, (0,)" + uny, ) d"x @
b b
= (9 — adg, ) (adj, @) +ady, (@) +8uny ) d"x.
By applying #, we conclude. O

20



M. Castrillén Lopez and A. Rodriguez Abella Journal of Geometry and Physics 219 (2026) 105693

Corollary 7.1. If the metric g is bi-invariant, then the Euler-Poincaré field equations for 2-splines (30) become
3 2
Kt (auaﬂ + [O’M, 8uaﬂ]> =0.

Pro;f.l Fl;)r a bi-invariant metric, we have adg (¢) = —adg (¢) for each &, n € g. Therefore, n,, = 9,0, for each 1 < <n and
we finish. O

Remark 7.1 (Elastica). The incorporation of elastic terms to the Lagrangian for multivariate k-splines is motivated by optimal
control problems where the velocities (first order derivatives) have to be minimized together with their accelerations [37,5,
25]. In such case, the Lagrangian is given by

. oy .
Le(fhs) =Ls (dbs) + 37" s ;. Js e J*x.0. (34)

for certain T# € R, 1 < p <n, with Lg: J¥(X, G) — R as in (27). The reduced Lagrangian, as well as the reduced equations,
is computed by adding the extra term in the above results. Namely, it is clear that

Al A (ke 1 2 e _
le (]iﬁ 10) =l (]iﬁ 10) + ETM ||0M||g, ko e J1ep),
with I : J¥=1c(P) — R as in (28). The corresponding Euler-Poincaré field equations for k =2 are given by

(8 — adl, ) (ad,, (@) +ady, (@) + By ) = T (9 — ad, ) oy

Lastly, when the metric g is bi-invariant, the previous equations boil down to
Kt (aiau + [aﬂ, aﬁaMD =tHo,0. (35)
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