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Abstract

This study presents an operational and robust method for detecting and dating cereal
harvest events using temporal stacks of Copernicus Sentinel-2 imagery and crop and fields
border information from ancillary records. The proposed approach is exempt from training
data, thereby enabling its application across diverse geographical contexts. The method
was used to generate 10 m resolution maps of harvest dates for all wheat and barley fields in
2021, 2022, and 2023 in Castilla y Le6n, a major cereal-producing region of Spain. This work
also investigates the use of a reference dataset derived from real time kinematic records
(RTK) in agricultural machinery as an alternative source of large-scale in situ data reference
as for Earth observation-based agricultural products. The initial comparison of annual
harvest date maps with the RTK-based reference datasets revealed that the temporal lag
in the detection of harvest events between Earth observation-derived maps and reference
harvest dates was less than 10 days for 65.7% of fields, while the temporal lag was between
10 and 30 days for 26.1% of the fields. The 3-year average root mean square error of the
lag between harvest dates in the reference dataset and maps was 16.1 days. An in-depth
visual analysis of the Sentinel-2 temporal series was carried out to understand and evaluate
the potential and limitations of the RTK-based reference dataset. The visual inspection
of a representative sample of 668 fields with large temporal lags revealed that the date
of harvest of 41.11% of these fields had been correctly identified in the Sentinel-2 based
maps and 16.43% of them had been incorrectly identified. The visual inspection could
not find evidence of harvest in 10.52% of the analyzed fields. Monte Carlo simulations
were parameterized using the findings of the visual inspection to build a series of synthetic
reference datasets. Accuracy metrics calculated from synthetic datasets revealed that the
quality of the harvest maps was higher than what the initial comparison against the RTK-
based reference dataset suggested. The date of harvest was registered within 10 days in
both the maps and the synthetic reference datasets for 90.5% of the fields, the root mean
squared error of the comparison was 9.5 days, and harvest dates were registered in the
Sentinel-2 based maps 2 days (median) after the dates registered in the reference dataset.
These results highlight the feasibility of mapping harvest dates in cereal fields with time
series of high-resolution satellite imagery and expose the potential use of alternative sources
of calibration and validation datasets for Earth observation products. More generally, these
results contribute to defining plausible targets for monitoring of agricultural practices with
Earth observation data.
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1. Introduction

The continuous acquisition of information in agricultural ecosystems is crucial to
enhance crop management, food security, and environmental sustainability. Since the 1980s,
Earth observation (EO) has become an integral source of information for agricultural moni-
toring over large extents. EO based initiatives have demonstrated their value to provide
information to assess essential agriculture characteristics including crop area [1-4], irriga-
tion and drought management [5], disease and pest control, phenology monitoring [6-8],
and ultimately yield and production assessment [9]. For a more detailed description, Weiss
et al. [10] produced a comprehensive review of remote sensing initiatives for agriculture
applications. The combination of satellite imagery and crop growth models has also been
instrumental in generating more precise forecasts of yields [11-13] and other relevant agro-
nomic variables such as crop phenology [14], carbon budget [15,16], nutrient content [17],
and water use [14]. More comprehensive reviews of the integration of remote sensing and
crop modelling are available in dedicated manuscripts [18-20].

Traditionally, agricultural monitoring of management practices has been constrained to
moderate-resolution sensors that allowed high frequency of observations. Therefore, most
research has focused on regions with large agricultural fields and where the requirement
for high spatial granularity was not a limitation [2,4,21-24]. Today, several international
initiatives operationally collect and analyze moderate resolution remote sensing data on
a regular basis to provide global and regional crop production projections. Some exam-
ples include the Group on Earth Observations Global Agricultural Monitoring Initiative
(GEOGLAM) [25], the JRC-EC Monitoring of Agricultural Resources (MARS) [26], and the
Famine Early Warning Systems Network and the Anomaly Hotspot of Agricultural Produc-
tion (ASAP) [27] or the Famine Early Warning System Network [28,29]. Over the years, the
gradual increase in high-resolution sensors (10-30 m) and the subsequent higher temporal
frequency of observations are enabling large scale EO-based agriculture monitoring in
regions with more granular and heterogeneous agricultural landscapes [30-36].

Crucial to all these applications is the near real-time monitoring of agricultural
practices. Indeed, there is a growing recognition of the role of agricultural manage-
ment practices for the provision of ecosystem services, soil protection, and biodiversity
conservation [37-40]. However, monitoring these practices using Earth Observation (EO)
presents unique challenges. While annually stable variables like crop type can potentially
be detected with images from multiple acquisition windows, events associated with man-
agement practices such as mowing and harvest operations often have short-lived spectral
impacts on land surfaces, making their detection more difficult, as images at the right
acquisition period are required.

Since 2014, the Copernicus program, the EO component of the European Union Space
Programme, has provided high-resolution optical (Sentinel-2) and radar (Sentinel-1) data
with five- to six-day revisit periods. This increased availability of EO data has stimulated
research into crop monitoring and agricultural management applications. Initial efforts
centred on crop mapping and the detection of various agricultural practices (e.g., mowing,
green cover, etc.). Examples include early-season mapping of winter crops using Sentinel-2
optical imagery [41], crop type mapping with multitemporal optical imagery [42,43], or
the combination of both Sentinel 1 and Sentinel 2 [44]; mowing and mowing intensity in
grassland using Sentinel-2 imagery [45], Sentinel-1 C-band SAR [46], and the combination
of Sentinel-1 and Sentinel-2 [47]; or cover crop detection [48]. The advancement of Earth
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Observation (EO) techniques in agricultural monitoring requires substantial quantities of
accurate and current in situ data for calibration and validation purposes. Yet, in situ data
are often scarce, limiting the scope of studies to relatively small geographical areas, and
preventing scalability and deployment of local results. Some studies have successfully
exploited existing large-scale in situ data sources for calibration and validation of EO
products. For example, the Land Use and Land Cover Survey (LUCAS) [49,50] has been
used as training data to create high-resolution pan-European crop type maps from Sentinel
1 [51] and Sentinel 2 [52] imagery. However, surveys like LUCAS do not take place on an
annual basis, which limits their use or calibration and validation of annual features. At the
national level, several programs have established frameworks to monitor crop development
in situ over the season on a regular basis, such as the Germany National Meteorological
Service [53] and Cere’Obs in France. Furthermore, several studies have explored alternative
data sources such as phenocams as a potentially valuable tool for monitoring plant growth
and health across Europe [54-56]. This study focuses on the identification of harvest
dates in cereal fields. Cereals are a predominant crop type in numerous global regions
and their cultivation significantly influences agricultural landscapes. Determining the
harvest date of cereal fields is critical for several reasons. Traditionally, it was assumed
that all sown land would be harvested at the end of the season. However, this assumption
may be weakening due to factors such as geopolitical conflicts, climate change-induced
droughts and extreme weather events [57], and market instability, which may result in
some cultivated areas not being harvested. This uncertainty may cause bottlenecks in
agricultural supply chains. Furthermore, the progression of harvest activities in cereal-
dominated regions can significantly influence landscape configuration and associated
ecosystem services. This study introduces a consistent approach to mapping cereal (wheat
and barley) harvest dates in operational settings using dense Sentinel 2 image stacks. The
method does not require training data and can be easily calibrated with existing data
sources. Due to its simplicity, this approach is suitable for scaling up, and since agricultural
operations in cereal fields exhibit high homogeneity across different latitudes, the method
can be adapted to various geographical contexts. This work has three main objectives:
(1) propose a robust, scalable, and traceable approach for detection of date of harvest in
cereal fields; (2) explore the potential and limitations of alternative reference datasets for
the validation of EO-based products on agricultural management practices; (3) improve our
understanding of capabilities and the limitations of the analysis of dense stacks of Sentinel
2 data to monitor agricultural practices.

2. Materials and Methods
2.1. Study Area and Data

The area of the study is the region of Castilla y Leon (Spain). Castilla y Leon covers
94,222 km? in the northern plateau of the Iberian Peninsula, with latitudinal and longitudi-
nal ranges of 3.1 and 4 degrees, respectively. The average altitude over the sea level of the
region is approximately 830 m, with the lowest elevation at 183 m and the highest peak at
2649 m above mean sea level (Figure 1). Castilla y Leén is a major agricultural region in
Spain, and cereals like wheat, barley, rye, oats, and sunflowers are among the most common
crops in the region. Cereals in Castilla y Leon cover on average an area of 16,750 km? every
year distributed across 1,149,829 fields. The study focused on winter wheat and winter
barley fields, which account for 992,917 fields and comprise 86% of the cereal fields in the
study area. The median field size of these two crops is 0.61 ha. The location and perimeters
of the cereal fields were obtained from the geospatial applications (GSA) for 2021, 2022
and 2023. GSAs are part of the declarations farmers must submit to qualify for agricultural
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subsidies under the European Common Agricultural Policy (CAP) and include, among
others, information about cultivated crops, field perimeters, and location.

o f‘”‘/f/ \Ls " u‘/\zi
v - i - PR o
J\/fﬁ/ﬁﬂ/w a4
g
£ :
) ®
% 3
Z‘AJ\,_,,J? ;7
"/A’\'\> ;; -
// > 5 e 1 S Papetad
v‘p;’r‘\s ; ’5 5 5 ;,,, 2 N g
// o Ve
Y -
e \v/ 7 et
g
»>
s Lo - Wheat [ Barley Other cereals

Figure 1. Map of the spatial distribution of wheat, barley and other cereals in Castilla y Leon obtained
from the GSA for year 2022. Inset map shows the location of Castilla y Leon (dark grey) in the
European Union (light grey).

For each year of study, stacks of Sentinel-2 images were created for the period from
1 June to 30 August and Copernicus Sentinel-2 L2A imagery was obtained from Google
Earth Engine Harmonized Sentinel-2 MSI collection [58]. The Google Earth Engine ‘Cloud
Score+ S2_HARMONIZED’ dataset was used to mask out clouds and cloud shadows in the
L2A Sentinel-2 images. Cloud Score+ is a quality assessment processor for medium-to-high
resolution optical satellite imagery [59]. This dataset provides a cloud score that grades the
usability of individual pixels based on a spectral distance between the observed pixel and a
theoretical clear reference observation (e.g., 0 to 1). For this study, the cloud score value was
set at 0.6. While the threshold selection may depend on the specific application, a value of
0.60 has been demonstrated a reasonable choice for most analyses [59]. Real-time kinematic
positioning (RTK) coordinates were acquired by the Technical Agrarian Institute of Castilla
y Leon (ITACyL). Real-time kinematic positioning (RTK) is a satellite navigation technique
used to enhance the precision of position data derived from satellite-based positioning
systems. For this, ITACyL relies on a network of fifty reference stations strategically located
across the territory to provide corrections to signals from the Global Positioning System
(GPS), the European GALILEO system, and the Russian GLONASS system. Based on these
data, and to protect farmers’ privacy, ITACyL provided information in the form of single
daily binary rasters with a spatial resolution of 10 m. These rasters indicated the presence
or absence of agricultural machinery and encompassed the entire territory of Castilla y
Leo6n for the months of June, July, and August in the years 2021, 2022, and 2023. RTK
records are not exhaustive, as not all the agricultural machines operating in the region
provide RTK records.
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2.2. Methods

This study developed a method to detect harvest dates in cereal fields using dense
stacks of Sentinel-2 imagery. The approach exploits changes in reflectance in the Sentinel-
2 red wavelength (664.6-664.9 nm) throughout the cereal growing season. Vegetation
indices, such as the Normalized Difference Vegetation Index (NDVI), have been widely
employed in remote sensing for monitoring vegetation dynamics. However, the analysis
of their temporal profiles encounters certain limitations when applied to crop monitoring.
Distinguishing between senescence and harvest-related events based solely on vegetation
indices can be challenging, as both processes may lead to similar changes in the vegetation
index values. The temporal fluctuations in the spectral response of cereal fields in the red
wavelength, however, provide valuable information to identify and date harvest events.
Red reflectance, typically low during the growing season, gradually increases as chlorophyll
content drops (senescence) and reaches a maximum immediately after harvesting due to
the high reflectance of cereal stubble left by the harvester (Figures 2 and 3).

A specific spectral index (harvest date index) was proposed to take advantage of this
behaviour. This index calculates the normalized difference in the red wavelength at any
given time and a pre-established reference period. The formula is as follows:

(B4 — B4ref)

HDI = 54 Baref)

@
where HDI is the harvest date index; B4 is the surface reflectance in Sentinel 2 band 4 at a
given point in time; B4ref is the surface reflectance in Sentinel 2 band 4 during the reference
period. The reference period was defined as the median value composite of cloud-free
observations during a predefined period at the peak of the vegetative season (a 30-day
temporal window between April and May was adopted in this study).

June 215t 2022 July 1st 2022 July 4th 2022

Figure 2. Graphic description of the basis for the detection of harvest events with dense stacks of
Sentinel 2 imagery. Harvested surfaces in cereal parcels have higher reflectance in the red wavelength
(Sentinel 2A: 664.6, Sentinel 2B: 664.9 nm) than cereal parcels at senescence stage or parcels at different
phenological stages (Top series of images). In the series of images in the middle the distinction is also
apparent in the sequence of true colour images (blue bands: 492.4/492.1 nm, green bands: 559.8/559.0
nm, red bands: 664.6/664.9 nm), but not in the sequence of normalized difference vegetation (NDVI)
images. The blue arrow in the image identifies an already harvested part of a cereal field. The green
arrow marks the part of the same field that has not been harvested yet.
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Figure 3. Temporal profiles of normalized difference vegetation index (NDVI) and harvest date index
for a field in 2022 cultivated with cereal in the study area. The vertical dashed black line represents
the date of harvest as registered in the RTK records for the parcel. The NDVI profile displays the
phenological cycle of the crop, with a peak value around May (DOY 120-150) and a subsequent
senescence. The harvest date index profile shows a gradual increase after crop senescence, and a
peak between mid-July and August (DOY 190-240), corresponding to the higher reflectance in the
red wavelength associated with the presence of stalks in harvested fields.

The harvest date index was calculated for all cloud-free observations after the reference
period. The date of harvest at pixel level was assigned to the acquisition date of the image
with the highest harvest date index value. To eliminate local maxima due to undetected
clouds, the maximum harvest date index value was defined as the 95th percentile of the
index values during the growing season. The harvest date was assigned to the acquisition
date of the first cloud-free observation equal to or greater than the seasonal maximum
harvest date index value for a given pixel, according to the following formulas.

HDI; > HDIjyax X Pos ()

HDI; > HDInean — HDIstp )

Let (T =1{t_1,t_2,t_3...,t_n}) be an ordered sequence of image acquisition dates {i},
forie{l,2,..., n}

doh = argmin {i: C1(t_i) A C2(t_i), fori € {1,2, ..., n}} 4)

where HDI; is the harvest date index at a given point in time; Pys is the 95th percentile of
the harvest index values registered during the season; HDI,4y is the maximum harvest
index registered during the season; HDI ;s and HDIgtp are, respectively, the multiannual
mean and standard deviation of the harvest date index during the summer months (June to
August). These parameters were calibrated from the values of the index for cereal pixels in
the crop maps of previous years [60]. Alternatively, additional tests indicated that historical
calibration parameters could also be replaced by HDI mean and standard deviation values
obtained from the population of wheat and barley fields in the year of analysis; doh is the
date of harvest at pixel level; C1 is condition in formula [2]; C2 is condition in formula [3].
Finally, the harvest date for each field was estimated as the mode of the pixel values within
the field (Figure 4).
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Figure 4. Flowchart illustrating Sentinel-2 based date of harvest monitoring approach.

3. Results

The proposed method was employed to generate 10 m spatial resolution maps with
harvest date information for each wheat and barley field in the study area for years 2021,
2022, and 2023. These maps, hereafter “DoH maps”, allowed the generation of a calendar
of harvest operations in Castilla y Leon for the three study seasons (Figure 5). The annual
curves indicate that harvest of cereal fields begins around DOY 140 and finishes around
DOY 230. The seasonal distribution of the operations follows a bimodal curve, with a
first lower peak at DOY 160 and a second main peak around DOY 200. The inter-annual
variations between the curves can be attributed to the specific climatic conditions of each
year. For instance, the curve for year 2022 results in an earlier peak, related to the drier
conditions of that season (Figure 5).

Year 2021
0.010 Year 2022
Year 2023
>
4
‘@ 0.006
£
O
(@)
0.002
140 160 180 200 220 240

Day of Year

Figure 5. Density histograms of the harvest calendar for years 2021, 2022, and 2023.

The DoH maps also exposed the spatial and temporal heterogeneity of harvest opera-
tions across the study area (Figure 6), with some locations in which harvest is concentrated
within a few days, and others where harvest operations can span several weeks. These
local patterns are also discernible at the regional level, where values aggregated on a 1 km
grid illustrate a pattern in which cereal fields are first harvested in the warmer and lower
altitude center, before gradually moving to the cooler high-altitude locations of the pe-
riphery (Figure 7). This general trend is subject to annual variations related to the specific
meteorological conditions of each season. The annual DoH maps show that the length
of the harvest campaign varies from year to year, without a clear spatial pattern, lasting
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between 5 and 15 days in more than 82% of the cultivated area (Figure 7), and more than
20 days in less than 8% of the cultivated area, often located in the less productive locations.

150 Il NI 220

Figure 6. Example date of harvest 10 m spatial resolution map at five locations. Each cereal parcel is
assigned a single date.
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Figure 7. Median date (day of year) of harvest maps (1 km grid) of study area in three consecutive
years (left column) and time span of detected harvest dates (right column). Time span was defined
as the number of days between the 95th and 5th percentiles of the dates of harvest detected for the
parcels in a grid cell.
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Figure 8 delineates the spatial distribution of Growing Degree Days (GDD) and their
interannual variability within the designated study region. The GDD spatial distribution is
primarily influenced by topographical variables, such as elevation and relief, manifesting
discernible interannual differences consequent to the variability in annual meteorological
conditions. Visual comparative analysis reveals that spatial patterns analogous to those
observed in the progression of harvest campaigns, as depicted in Figure 7, can be tenta-
tively recognized. Moreover, the temporal discrepancies in the initiation of harvest across
consecutive years demonstrate a concomitant relationship with the fluctuations presented
in the annual GDD charts. While operational and regulatory factors may contribute to
some extent, it is predominantly the annual climatic patterns that govern the chronology of
the harvesting period within the study area, as well as its interannual variations.

2021 \ 2022 2 2023
"
i s
10kn - o v e o v
700 I I 2300

Figure 8. Growing degree-day (GDD) estimated in July (DOY 210) for 2021, 2022, and 2023 in
Castilla y Leon. GDD was computed from temperature of air at 2 m above the surface (11,132 m
resolution) extracted from ERA5-Land reanalysis dataset of the European Centre for Medium Weather
Forecast [61]. Calculations were carried out in Google Earth Engine.

Comparison with Reference Dataset

RTK positions of agricultural machinery recorded in the field were used to generate
a reference dataset of cereal harvest dates. This dataset was developed under the initial
working assumption that RTK positions recorded within cereal fields during the summer
months (June, July, and August) were likely associated with harvest activities. The RTK
records were organized in daily binary rasters covering the entire study area. Each raster
contained the locations where the RTK positions had been recorded on that day. For
each year, the daily rasters were consolidated into monthly single-band images. Fields
with records in less than 30% of their area were excluded from the analysis to eliminate
fields potentially contaminated with RTK readings along neighbouring roads or machinery
movements within the field. The harvest date for each field was determined as the day
with the highest number of RTK records within its boundaries (Figure 9). The resulting
reference dataset comprised 167,589 fields (46,220 for 2021, 61,939 for 2022, and 59,430 for
2023), representing an average sampling of 5.5% for the three years.

Figures 10 and 11 illustrate the histograms depicting the temporal lags, hereafter
“deltas”, between the harvest dates in the reference dataset and those derived from the
DoH maps. On average, the harvest dates for the fields in the DoH maps were within a
10-day difference for 65.72% of the fields. For 26.1% of the fields, the deltas between the
two sources ranged from 10 to 30 days, while for 8.2% of the fields, the disagreement was
larger than 30 days. A right-skewed distribution was observed in the three-year histogram,
indicating that the DoH maps generally detected the date of harvest with a delay compared
to the reference dataset. The median delta for the three years was a 2-day delay, with
the 25th and 75th percentiles corresponding to 4-day and 1-day delays, respectively. The
average root mean square error (RMSE) of the delta for the three years was 16.10 days.
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Day of month Share of field pixels Day of year
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Figure 9. Top panel: location of cereal fields in the reference dataset for year 2021 (46,220). Bottom
panels: Sequence of steps for the generation of a reference dataset from Real Time Kinematic position-
ing data. Left panel: 10 m raster image of locations with RTK records; Centre panel: share of pixels
with RTK records per parcel; Right panel: image of cereal parcels with dates of harvest assigned as
the day with the higher number of RTK records within the field.
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Figure 10. Three-year histograms of time lags (Delta) between dates of harvest in reference dataset
and Sentinel 2 based analysis for cereal parcels.
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Figure 11. Annual histograms of time lags (Delta) between dates of harvest in reference dataset and
Sentinel 2 based analysis for cereal parcels.

A subset of fields was selected for visual inspection of the time series of Sentinel-
2 images. The analysis aimed to better understand the reasons behind large deltas and
ultimately evaluate the quality of the reference dataset. This subset included fields with
deltas between the reference dataset and DoH maps larger than 10 days. These fields were
drawn using a stratified random sampling, wherein four strata were established according
to the magnitude of the deltas: fields with delta less than —30 days; fields with delta between
—30 and 10 days; fields with delta between 10 and 30 days; and fields with delta larger
than 30 days. A total of 668 fields were inspected, representing a sampling intensity of 1%
per stratum and year of analysis. Copernicus Sentinel-2 L2A imagery from Google Earth
Engine Harmonized Sentinel-2 MSI collection [58] was employed to construct the temporal
image stacks for the scrutinized fields. However, unlike the automatic detection, cloud-
contaminated observations were not filtered out from the analysis. The visual analyst sought
evidence of the harvest event within the Sentinel-2 image stacks for the selected fields.

The results of the visual analysis showed a considerable heterogeneity across strata
(Table 1). Agreement, defined as evidence of a harvest event found in the visual analysis of
the Sentinel-2 images within five days of the date defined in the DoH maps, was observed
for an average of 41.11% of cases. For 22.9% of the fields, visual evidence of harvest events
was found beyond five days of the dates registered in the DoH maps. Visual inspection
failed to yield conclusive evidence for 30.7% of the inspected fields. These inconclusive
cases encompassed fields lacking cloud-free observations, those with irregular geometries
or were very small in size, fields with several subdivisions, and fields displaying atypical
seasonal phenological patterns. This analysis underscored that the initial assumption
underpinning the construction of the RTK-based dataset was not universally applicable
across all fields under examination. The substantial number of fields for which harvest
dates in the visual inspection and the DoH maps agreed suggested that the RTK records
used to generate the reference dataset may not always represent harvest events, and they
could, instead, correspond to different agricultural operations. It also highlighted that
the quality of the harvest maps was higher than what the initial comparison against the
RTK-based reference dataset suggested.

Table 1. Results of the visual analysis of Sentinel-2 imagery for a sample of cereal parcels with large
discrepancies in date of harvest for cereal parcels for 2021, 2022, and 2023.

Number of Days of Difference

Average (10,301 [-30,10) =30 <-30
2291 42.34 13.19 17.47 18.63 Incorrect detections
8.67 19.19 7.92 4.04 3.52 No cloud free observations
14.27 11.34 8.61 17.47 19.67  Irregular shape/small size
12.7 14.33 8.80 14.09 14.63 No evidence of cultivation

41.11 12.48 61.49 46.92 43.56 Correct detections
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Monte Carlo simulations [62] were used to create synthetic reference datasets that
incorporated the insights from the visual analysis, minimized the uncertainties associated
with the original reference dataset, and isolated the contribution of the algorithm to the
accuracy metrics. For each synthetic dataset, a subset of fields with large deltas was
replaced with a random sample of fields extracted from those with low deltas of the same
size. The size of this subset was established based on the percentage of fields with large
deltas correctly mapped in the DoH maps identified during the visual inspection. Similarly,
a subset of fields with large deltas, the size of the percentage of inconclusive fields in the
visual inspection analysis, was removed from the analysis. This process was replicated to
create 10,000 synthetic datasets, and the revised accuracy metrics were computed as the
average of the resulting replicas (Figure 12). Based on these metrics, the median delta for
the three years was a 3-day delay, and 95% of the fields were detected within 10 days of
difference between the DoH maps and the synthetic reference datasets. The average RMSE
of the delta for the three years was 9.5 days.
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Figure 12. Three-year histograms of time lags (Delta) between dates of harvest in adjusted reference
dataset and Sentinel 2 based analysis for cereal parcels.

4. Discussion

This work presents a reliable method for post-season detection of harvest dates in
cereal fields using dense Sentinel-2 satellite imagery. The approach examines variations in
reflectance within the red wavelength during the growing season and identifies changes
associated with harvesting events. This method does not require training data and can
potentially be extended to other geographical contexts with minimal recalibration, given
the uniformity of cereal harvest practices across different production regions. Advances
in the automated detection of agricultural practices at the parcel level over large areas,
as demonstrated in this study, hold value for diverse applications. This is relevant in
the specific context of harvest detection. As climate change is expected to result in more
frequent extreme events, harvest operations may exhibit yearly fluctuations and spatial
variability contingent upon specific environmental conditions. Agricultural management
will have to adapt to this evolving reality. A precise characterization of the harvest calendar
across large cereal production regions will be key to identify and mitigate critical bottlenecks
within agricultural supply chains and ultimately enhance the resilience of food systems.
Furthermore, detailed monitoring of harvest season progression could inform the design
and evaluation of targeted strategies to enhance and preserve environmental services within
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agricultural ecosystems, as pursued by initiatives under the Common Agricultural Policy or
the Nature Restoration Law within the European framework. In the context of the European
Union, where highly precise annual information on crop type and field limits exists, the
primary benefit of Earth observation-based analysis lies in in-season analysis and practice
detection. In-season assessments can provide additional information for control and
verification of practices, as well as contribute to the development of precision agriculture,
offering decision tools for adaptive planning of agricultural operations in response to
short- and medium-term weather forecasts. Moreover, in-season assessments can help in
planning harvest operations to maintain landscape structure within certain parameters that
protect ecosystem service provision. The proposed method could potentially be adapted
for in-season analyses with minor modifications. However, in-season assessments would
require robust calibration based on historical EO and crop data, as well as the incorporation
of the inherent uncertainties associated with in-season assessments. Continuous revision
and update of estimates would be necessary as more data become available along the
agricultural season.

Agricultural landscapes are highly dynamic systems, with large inter and intra annual
variations driven by crop phenological cycles and management decisions. The organization
of the harvest operations is particularly relevant at the local level, because, in regions where
cereal cultivation is predominant, it can temporally shape the complexity of the landscape
structure. These rapid transformations of the structure of agricultural landscapes may
potentially impact the capacity of the ecosystem to supply food, shelter and passage to
highly dependent fauna [63]. This connection is reflected, for instance, in the increasing
environmental requirements of the European Common Agricultural Policy. The DoH
maps effectively captured these dynamics, emphasizing the considerable variability in
the progression of harvest activities over time across the study area and the changes in
these patterns from year to year. Specifically, the maps were able to reveal a pattern that
moves from lower altitude and warmer central locations towards higher altitude and cooler
peripheral areas of the study area. This general centrifugal trend is also influenced by
annual variations in the harvest calendar, likely linked to annual weather conditions and
regulatory frameworks. At the local level, the maps reflect the progression of the harvest
campaign throughout the landscape. In some locations, the harvest campaign is completed
within a brief timeframe, while in others, cereal fields are harvested during a period that
can extend several weeks.

Over the past decade, several studies have harnessed dense stacks of high-resolution
satellite imagery to monitor agricultural practices. For instance, grassland management
including mowing, mowing frequency detection, and mowing event timing has been
explored using various sensors such as sensors SPOT [64], Sentinel-1 [65], Sentinel 2 [45]
or a combination of optical sensors [66,67], or optical and radar [46,47,68]. These studies
demonstrate that mowing events could be detected with temporal series of high-resolution
satellite data in 60 to 88% of cases. Similarly, harvest events in cereal fields have been
studied with Sentinel-1 [69-71], and Sentinel-1 and Sentinel-2 [72], with accuracies in the
range of 4 to 7 days of RMSE. However, the scarcity of reference data for training, calibration
and validation poses a challenge for the development of monitoring capabilities [67].
Consequently, most research has often been confined to relatively small study areas and
their potential use beyond the initial extents has not been evaluated. Recent research has
shown promising results exploring alternative in situ data sources, such as large expert-
based networks of phenological observations, for the validation of several phenological
stages in wheat fields [73]. The present work contributes to the expanding literature on
the potential and limitations of dense stacks of high-resolution Earth observation (EO)
imagery in the monitoring of agricultural practices. The reported accuracies align with
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those documented in the literature, and the size and geographical scope of the validation
dataset provide additional certainties about the robustness of the results. However, while
confirming the robustness of the detection methodology, the accuracy assessment also
revealed limitations in resolving certain fields due to various reasons (e.g., field size and
shape, lack of evidence of management, etc.). These limitations should also be considered
to establish realistic expectations and set feasible targets for the monitoring of agricultural
practices with time series of high-resolution EO data.

Historically, the validation of EO-based products monitoring agricultural practices has
been hindered by the scarcity of adequate in situ data. This study utilized RTK positioning
records from agricultural machinery for the evaluation of the generated maps. The RTK
records enabled the creation of a large reference dataset, ensuring robust accuracy metrics
across the study area. To the best of our knowledge, this is the first instance of using such
information for the validation of an EO-based product. However, while RTK records hold
promise as a source of validation data, their use is not without limitations. A detailed
examination of the validation results through visual interpretation of Sentinel-2 imagery
stacks revealed that the assigned harvest date for a substantial number of fields in the
reference dataset did not correspond to actual harvest events but rather other activities such
as straw collection and field preparations. Despite this, RTK records emerge as a promising
source of reference dataset for training, calibration, and validation of EO-based agricultural
monitoring activities. The RTK information used in this study provided daily information
on machinery presence in a field and lacked details on the specific activities carried out in
the fields. In addition to geographic location, RTK records contain valuable information that
could potentially be used to derive additional characteristics of the agricultural activities
conducted in the field (e.g., machinery speed). More detailed RTK information should lead
to more robust reference datasets.

5. Conclusions

This study presents a robust, scalable, and traceable methodology for the detection of
harvest dates in cereal crops employing temporal series of Sentinel-2 imagery. The approach
hinges on the recognition of established temporal signatures within the Sentinel-2 spectral
profiles, obviating the need for extensive training datasets. Furthermore, this research
investigated the use of Real-Time Kinematic positioning records as alternative validation
datasets. RTK positioning records constitute a potentially vast source of calibration and
validation data for Earth observation analyses. Although not entirely devoid of noise, these
records offer extremely valuable information that facilitates the scaling of analyses from
local to extensive geographic extents. The findings of this study contribute significantly
to the understanding of the potential and limitations inherent in the analysis of Sentinel-2
temporal series imagery, specifically in relation to the identification of harvest dates and,
more broadly, to the monitoring of agricultural management practices. Notably, while
this study demonstrates a post-season assessment, the findings of this study hint the
feasibility of in-season detection of specific agricultural practices. This capability enables
the implementation of more adaptive and responsive agricultural management strategies,
which can accommodate environmental and logistical uncertainties, thereby enhancing the
potential for climate-resilient and sustainable agricultural systems.
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