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ARTICLE INFO ABSTRACT
Keywords: In this work, we propose and analyze a mathematical model describing the interaction between a
Chemotaxis biological species and a lethal chemical substance, incorporating diffusion, negative chemotaxis,

Keller-Segel equations
Periodic solutions
Generalized finite difference method

logistic growth, and toxicity effects. Motivated by the interaction between E. coli bacteria and
hydrogen peroxide, the model accounts for a substance that simultaneously induces cell death
and is self-produced by the population.

The dynamics are described by a system of nonlinear parabolic partial differential equations
with an external supply of the substance. For constant supply rates, we study the local stability
of spatially homogeneous steady states, showing that the balance between the logistic growth
rate and the supply determines the linearized behavior of the system. When the supply is asymp-
totically time-periodic, we establish threshold conditions for the existence of periodic solutions
through the analysis of an associated ODE system.

A numerical scheme based on the Generalized Finite Difference method is developed, and
its convergence to the continuous solution is established. Numerical simulations are presented
to validate the analytical results and to illustrate additional dynamical phenomena, including
pattern formation.

1. Introduction

Chemotaxis is a biological phenomenon by which certain cells and organisms are able to direct their movement in response
to chemical stimuli. Through specialized receptors, cells can detect spatial gradients in the concentration of chemical substances,
resulting in motion toward higher concentrations, a behavior known as positive chemotaxis, or away from them, referred to as
negative chemotaxis.

In this paper, we propose and analyze a system of two nonlinear parabolic partial differential equations modeling the dynamics
of a bacterial population in competitive interaction with a lethal chemical substance —for instance an antibiotic— that can be self-
produced by the bacteria.

It is assumed that bacterial motion is driven by random diffusion and negative chemotaxis in response to the chemical concentra-
tion. The population dynamics of the species are described by a logistic growth term, while the substance undergoes a degradation
process in the form of an exponential decay. In addition, terms representing cell death and the production of the substance by the
bacteria are incorporated, as well as an external supply of the substance, by means of a known source function f.

Such interactions occur in nature, for instance in the case of E. coli bacteria and hydrogen peroxide (H,0,). It has been shown that
E. coli cells naturally produce between 10 and 15 uM of H,0, per second [1,2]. Moreover, H,O, acts as a chemorepellent (negative
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\begin {equation}\label {1.1} \begin {cases} \displaystyle \frac {\partial u}{\partial t} = D_u \Delta u + \chi \nabla \cdot ( u \nabla v) + ru\left (1-\frac {u}{K} \right ) - \delta u v , & \quad x \in \Omega , ~ t > 0, \\[1.5ex] \displaystyle \frac {\partial v}{\partial t} = D_v \Delta v + a u - bv + f(x,t), & \quad x \in \Omega , ~ t > 0, \\[1.5ex] \displaystyle \frac {\partial u}{\partial \nu } = \frac {\partial v}{\partial \nu } = 0, & \quad x \in \partial \Omega , ~ t>0, \\ \displaystyle u(x,0) = u_0(x), \quad v(x,0) = v_0(x), & \quad x \in \Omega , \end {cases}\end {equation}


$\Omega \subset \mathbb {R}^n$


$u$
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$D_u > 0$
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$b > 0$


$f(x,t) \geq 0$


$x\in \Omega , ~t>0$


$a=0$


$u_0(x)$
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\begin {equation}\label {i1} \begin {cases} \displaystyle \frac {\partial u}{\partial t} = D_1 \Delta u - \nabla \cdot (\chi u \nabla v) + f(u), & \quad x \in \Omega , ~ t > 0,\\[1.5ex] \displaystyle \tau \frac {\partial v}{\partial t} = D_2 \Delta v + a u - b v , & \quad x \in \Omega , ~ t > 0, \end {cases}\end {equation}


$\chi , ~a, ~b$
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\begin {equation}\label {i2} \begin {cases} \displaystyle \frac {\partial u}{\partial t} = D_1 \Delta u - \chi _1 \nabla \cdot ( u \nabla w) + \mu _1 u (1 - u - a_1 v), & \quad x \in \Omega , ~ t > 0,\\[1.5ex] \displaystyle \frac {\partial v}{\partial t} = D_2 \Delta v - \chi _2 \nabla \cdot ( u \nabla w) + \mu _2 v (1 - a_2 u - v), & \quad x \in \Omega , ~ t > 0, \\[1.5ex] \displaystyle \tau \frac {\partial w}{\partial t} = D_3 \Delta w - \gamma w + \alpha u + \beta v, & \quad x \in \Omega , ~ t > 0, \end {cases}\end {equation}
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$\tau = 1$


$n \leq 2$
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$0 < {a_1}, a_2 < 1)$
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\begin {equation*}\displaystyle \tilde {u} = \frac {u}{K}, ~\tilde {v} = \frac {\delta K}{b} v, ~ \tilde {x} = \sqrt {\frac {b}{D_v}} x, ~ \tilde {t} = bt,\end {equation*}


\begin {equation*}\displaystyle D = \frac {D_u}{D_v}, ~ \tilde {\chi } = \frac {b \chi }{\delta K D_v}, ~\tilde {r} = \frac {r}{b}, ~ \tilde {a} = \frac {a \delta K^2}{b^2}, ~ \tilde {f} = \frac { \delta K}{b^2} f,\end {equation*}


\begin {equation}\label {1.2} \begin {cases} \displaystyle \frac {\partial u}{\partial t} = D \Delta u + \chi \nabla \cdot ( u \nabla v) + ru(1-u) - uv , & \quad x \in \Omega , ~ t > 0, \\[1.5ex] \displaystyle \frac {\partial v}{\partial t} = \Delta v + a u - v + f(x,t), & \quad x \in \Omega , ~ t > 0, \\[1.5ex] \displaystyle \frac {\partial u}{\partial \nu } = \frac {\partial v}{\partial \nu } = 0, & \quad x \in \partial \Omega , ~ t>0, \\ \displaystyle u(x,0) = u_0(x), \quad v(x,0) = v_0(x), & \quad x \in \Omega . \end {cases}\end {equation}


$f$


$f$


$f$


\begin {equation*}(0,f), \quad (u_*, v_*) := \left (\frac {r-f}{r+a}, \frac {r(f+a)}{r+a} \right ).\end {equation*}


$(u_*, v_*)$


$r > f$


$r < f$


$(0,f)$


$f$


$f$


$\hat {f}: [0, +\infty ) \to \mathbb {R}$


$t$


\begin {equation*}\displaystyle \lim _{t \to + \infty } \sup _{x \in \Omega } |f(x,t) - \hat {f}(t)| = 0.\end {equation*}


$(u,v)$


\begin {equation}\label {1.3} \begin {cases} \displaystyle \frac {d \tilde {u}}{dt} = r\tilde {u}(1-\tilde {u}) - \tilde {u}\tilde {v}, & \quad t>0, \\[1.5ex] \displaystyle \frac {d \tilde {v}}{dt} = a \tilde {u}- \tilde {v} + \hat {f}(t), & \quad t>0, \end {cases}\end {equation}


\begin {equation}\label {1.4} \tilde {u}(0) = \frac {1}{|\Omega |}\int _\Omega u(x,0) ~dx, \quad \tilde {v}(0) = \frac {1}{|\Omega |}\int _\Omega v(x,0) ~dx.\end {equation}


$(\tilde {u}, \tilde {v})$


$\hat {f}$


$a = 0$


$r$


$a>0$


$r$


$(u,v)$


$(\tilde {u},\tilde {v})$


\begin {equation*}\begin {cases} \displaystyle 0 = ru\left (1-u - {\frac {v}{r}}\right ), \\[1.5ex] 0 = a u - v + f(x,t). \end {cases}\end {equation*}


$f(x,t) \equiv f$


\begin {equation}\label {2.1} (0,f), \quad (u_*, v_*) := \left (\frac {r-f}{r+a}, \frac {r(f+a)}{r+a} \right ).\end {equation}


$u$


$v$


$(u_*, v_*)$


$r > f$


$(\bar {u}, \bar {v})$


\begin {equation}\label {2.2} u = \bar {u} + \varepsilon \phi , \quad v = \bar {v} + \varepsilon \eta \end {equation}


$0 < \varepsilon \ll 1$


$\varepsilon ^2$


\begin {equation}\label {2.3} \begin {cases} \displaystyle \frac {\partial \phi }{\partial t} = D \Delta \phi + \chi \bar {u} \Delta \eta {+} [(1-2\bar {u})r - \bar {v}] \phi - \bar {u} \eta , & \quad x \in \Omega , ~ t > 0, \\[1.5ex] \displaystyle \frac {\partial \eta }{\partial t} = \Delta \eta + a \phi - \eta , & \quad x \in \Omega , ~ t > 0, \end {cases}\end {equation}


$\vect {A}_n := - \lambda _n \vect {D} + \vect {J}$


$n \in \{0, 1, 2, \dots \}$


\begin {equation*}\vect {D} = \begin {pmatrix} D & \chi \bar {u} \\ 0 & 1 \end {pmatrix}, \quad \vect {J} = \begin {pmatrix} (1-2\bar {u})r - \bar {v} & -\bar {u} \\ a & -1 \end {pmatrix},\end {equation*}


$\{\lambda _n\}_{n \in \mathbb {N} \cup \{0\}}$


\begin {equation}\label {eigs} 0 = \lambda _0 < \lambda _1 \leq \lambda _2 \leq \dots , \quad \text {with} \lim _{n \to \infty } \lambda _n = + \infty \end {equation}


$- \Delta $


$\Omega $


$(\bar {u}, \bar {v})$


$\vect {A}_n$


$n \in \mathbb {N} \cup \{0\} =: \mathbb {N}_0$


$n$


$\vect {A}_n$


$(\bar {u}, \bar {v})$


$(\bar {u}, \bar {v}) = (0,f)$


\begin {equation*}\vect {A}_n = \begin {pmatrix} -\lambda _n D + r -f & 0 \\ a & -\lambda _n-1 \end {pmatrix},\end {equation*}


$\mu _{n_1} := -\lambda _n D + r -f$


$\mu _{n_2} := -\lambda _n-1$


$\mu _{n_2} < 0$


$n \in \mathbb {N}_0$


$\mu _{n_1}$
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$\mu _{0_1} < 0$


$r < f$


$n \geq 1$


$\lambda _n$


$\mu _{n_1} < \mu _{0_1}$


$(0,f)$


$r < f$


$r > f$


$(\bar {u}, \bar {v}) = (u_*, v_*) = \displaystyle \left (\frac {r-f}{r+a}, \frac {r(f+a)}{r+a} \right )$


$\vect {A}_n$


\begin {equation*}\vect {A}_n = \begin {pmatrix} \displaystyle -\lambda _n D + \frac {r(f-r)}{r+a} & \displaystyle \frac {f-r}{r+a} (\lambda _n \chi + 1)\\ a & -\lambda _n-1 \end {pmatrix}\end {equation*}


$\mu _{n_1}, ~\mu _{n_2}$


$\vect {A}_n$


$n \in \mathbb {N}_0$


$\vect {A}_n$


$2 \times 2$


\begin {align*}{\rm tr}(\vect {A}_n) & = \mu _{n_1} + \mu _{n_2} = -\lambda _n D + \frac {r(f-r)}{r+a} - \lambda _n - 1, \\ \det (\vect {A}_n) & = \mu _{n_1} \mu _{n_2} = - (\lambda _n +1)\left (-\lambda _n D + \frac {r(f-r)}{r+a}\right ) - a \cdot \frac {f-r}{r+a} \cdot (\lambda _n \chi +1).\end {align*}


$r>f$


$\mu _{n_1} + \mu _{n_2} < 0$


$\mu _{n_1} \mu _{n_2} >0$


$n \in \mathbb {N}_0$


$(u_*, v_*)$


$r < f$


$(0,f)$


$r > f$


$(0,f)$


$(u_*,v_*)$


$(0,f)$


$(u_*,v_*)$


$r < f$


$(0,f)$


$-uv$
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$r > f$


$(0,f)$


$(u_*, v_*)$
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$-uv$


$D$


$\chi $


$a$
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$r$


$f$


\begin {equation*}\displaystyle \lim _{t \to + \infty } \sup _{x \in \Omega } |f(x,t) - \hat {f}(t)| = 0,\end {equation*}


$\hat {f}$


$T>0$


$(u,v)$


$(\tilde {u}, \tilde {v})$


$u(x,0)$


$v(x,0)$


$(\tilde {u}, \tilde {v})$


$\hat {f}$


$(u,v)$


$a = 0$


\begin {equation}\label {3.1} \begin {cases} \displaystyle \frac {d \tilde {u}}{dt} = r\tilde {u}(1-\tilde {u}) - \tilde {u}\tilde {v}, & \quad t>0, \\[1.5ex] \displaystyle \frac {d \tilde {v}}{dt} = - \tilde {v} + \hat {f}(t), & \quad t>0, \end {cases}\end {equation}


$\tilde {v}$


\begin {equation}\label {3.2} \tilde {v}(t) = e^{-t} \left [ \tilde {v}_0 + \int _0^t \hat {f}(s) e^s ~ds \right ] .\end {equation}


$\hat {f}$


$T-$


$\tilde {v}$


$T-$


$\tilde {v}(T) = \tilde {v}_0$


$v_0$


\begin {equation}\label {3.3} \tilde {v}_0 = \frac {1}{e^T - 1} \int _0^T \hat {f}(s) e^s ~ds.\end {equation}


$\tilde {u}$


$\tilde {v}$


$\tilde {w} = \tilde {u}^{-1}$


$\tilde {w}$


\begin {equation}\label {3.5} \tilde {w}(t) = e^{ \displaystyle -\int _0^t (r-\tilde {v}(s)) ~ds} \left [ \frac {1}{\tilde {u}_0} + \int _0^t \left ( r ~e^{\displaystyle \int _0^s (r- \tilde {v}(\tau ))~ d \tau } \right ) ~ds\right ].\end {equation}


$\tilde {v}$


$\tilde {v}_0$


$\tilde {u}$


$\tilde {u}(T) = \tilde {u}_0$


$\tilde {w}(T) = \tilde {w}_0 := 1/\tilde {u}_0$


\begin {equation}\label {3.6} \tilde {u}_0 = \frac {e^{\displaystyle \int _0^T (r-\tilde {v}(s)) ~ds} - 1}{ \displaystyle \int _0^T \left ( r ~e^{\displaystyle \int _0^s (r- \tilde {v}(\tau ))~ d \tau } \right ) ~ds} .\end {equation}


$(\tilde {u}, \tilde {v})$


$T-$


$(\tilde {u}_0,\tilde {v}_0)$


$(\tilde {u}_0, \tilde {v}_0)$


$u(x,0)$


$v(x,0)$


$\tilde {u}_0$


\begin {equation*}e^{\displaystyle \int _0^T (r-\tilde {v}(s)) ~ds} - 1 > 0,\end {equation*}


\begin {equation*}r > \frac {1}{T} \int _0^T \tilde {v}(s) ~ds.\end {equation*}


\begin {equation}\label {3.8} r_{\min } = \frac {1}{T} \int _0^T \tilde {v}(s) ~ds.\end {equation}


$r > r_{\min }$


$(\tilde {u}_0, \tilde {v}_0)$


$(\tilde {u},\tilde {v})$
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$\tilde {u} \to 0$


$t \to \infty $


$r$


$\hat {f}$


$\tilde {v}$


$r$


$\tilde {v}$


$\tilde {v}_0$


\begin {equation}\label {3.9} r_{\min } = \frac {1}{T} \int _0^T \hat {f}(s) ~ds.\end {equation}


$\hat {f}$


$r_{\min }$


$r$


$\hat {f}$


$[0,T]$


$r>f$


$(u_*, v_*)$


$a>0$


$\Omega $


$\mathbb {R}^m$


$M=\{\bm {x}_1,\bm {x}_2,\ldots \bm {x}_N\}$


$m = 2$


$M$


$\bm {x}_0$


$\bm {x}_0$


$V=\{\bm {x}_1,\bm {x}_2,\dots ,\bm {x}_s\}\subset M \setminus \{\bm {x}_0\}$


$s$


$E_s-$


$s$


$f(\bm {x},t)$


$\bm {x}_0 := (x_0, y_0)$


$F^n_i$


$f(\bm {x}_i,n\Delta t)$


$n$


\begin {equation}\label {4.1} F_i \approx F_0+(\bm {x}_i-\bm {x}_0)\nabla F_0+\frac {1}{2}(\bm {x}_i-\bm {x}_0)^{T}H_{F_0}(\bm {x}_i-\bm {x}_0).\end {equation}


\begin {equation*}\bm {d} :=\displaystyle {\Biggl (\dfrac {\partial F_0}{\partial x},\frac {\partial F_0}{\partial y},\frac {\partial ^2 F_0}{\partial x^2},\frac {\partial ^2 F_0}{\partial y^2},\frac {\partial ^2 F_0}{\partial x\partial y}\Biggr )}^T, \quad \bm {c}_i=\displaystyle \left (h_i,k_i,\frac {h_i^2}{2},\frac {k_i^2}{2},h_ik_i \right )^T,\end {equation*}


$\bm {d}$


$\bm {c}_i$


$\bm {x}_i := (x_i,y_i)\in V$


$h_i :=x_i-x_0$


$k_i :=y_i-y_0$


$F_i$


$i \in \{1, \dots , s\}$


$\bm {x}_0$


\begin {equation*}B(\bm {d})=\sum _{i=1}^{s}w_i^2(F_0-F_i+\bm {c}_i^{T}\bm {d})^2 +\mathcal {O}(h_i^2,k_i^2).\end {equation*}


$w_i=w(h_i,k_i)$


$\bm {x}_0$


$\textnormal {dist}^{-4}$


$\textnormal {dist}^{-6}$


$e^{-\textnormal {dist}^2}$


$f$


$B$


$\bm {d}$


\begin {equation*}\sum _{i=1}^{s}w_i^2\bm {c}_i\bm {c}_i^{T}\bm {d}=-\sum _{i=1}^{s}w_i^2(F_0-F_i)\bm {c}_i.\end {equation*}


$\bm {A}:=\displaystyle \sum _{i=1}^sw^2_i\bm {c}_i\bm {c}_i^{T} \in \mathcal {M}_{5 \times 5}(\mathbb {R})$


\begin {equation}\label {eq10} \bm {A}= \begin {pmatrix} h_1 & h_2 & \cdots & h_s \\ k_1 & k_2 & \cdots & k_s \\ \displaystyle \frac {h_1^2}{2} & \displaystyle \frac {h_2^2}{2} & \cdots & \displaystyle \frac {h_s^2}{2}\\ \displaystyle \frac {k_1^2}{2} & \displaystyle \frac {k_2^2}{2} & \cdots & \displaystyle \frac {k_s^2}{2}\\ h_1k_1 & h_2k_2 & \cdots & h_sk_s \\ \end {pmatrix} \cdot \begin {pmatrix} w_1^2 & & & \\ & w_2^2 & & \\ & & \ddots & \\ & & & w_s^2 \\ \end {pmatrix} \cdot \begin {pmatrix} h_1 & k_1 & \displaystyle \frac {h_1^2}{2} & \displaystyle \frac {k_1^2}{2} & h_1k_1 \\ h_2 & k_2 & \displaystyle \frac {h_2^2}{2} & \displaystyle \frac {k_2^2}{2} & h_2k_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ h_s & k_s & \displaystyle \frac {h_s^2}{2} & \displaystyle \frac {k_s^2}{2} & h_sk_s \\ \end {pmatrix}\end {equation}


$\bm {A}$


\begin {equation*}\bm {d}=-F_0\sum _{i=1}^{s}w_i^2\bm {A}^{-1}\bm {c}_i+\sum _{i=1}^{s}F_iw_i^2\bm {A}^{-1}\bm {c}_i+{\mathcal {O}(h^2,k^2)},\end {equation*}


\begin {equation*}h := \max _{i \in \{1, \dots s\}} h_i, \quad k := \max _{i \in \{1, \dots s\}} k_i.\end {equation*}


\begin {equation*}\boldsymbol m_i=w_i^2\bm {A}^{-1}\bm {c}_i, \quad \boldsymbol m_0=\sum _{i=1}^{s} \boldsymbol m_i,\end {equation*}


$\boldsymbol m_0 =:(m_{01},m_{02},m_{03},m_{04},m_{05})^{T}$


$\boldsymbol m_i$


$f$


\begin {equation}\label {discretizacion} \left \lbrace \begin {array}{@{}l} \dfrac {\partial F(\textbf {x}_0,n\Delta t)}{\partial x}=-m_{01}F^n_0+\sum _{i=1}^sm_{i1}F^n_i+ {\mathcal {O}(h^2,k^2)},\\ \dfrac {\partial F(\textbf {x}_0,n\Delta t)}{\partial y}=-m_{02}F^n_0+\sum _{i=1}^sm_{i2}F^n_i+{\mathcal {O}(h^2,k^2)},\\ \dfrac {\partial ^2 F(\textbf {x}_0,n\Delta t)}{\partial x^2}+\dfrac {\partial ^2 F(\textbf {x}_0,n\Delta t)}{\partial y^2}=-(m_{03}+m_{04})F^n_0+\sum _{i=1}^s(m_{i3}+m_{i4})F^n_i\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \;\; =:-m_{00}F_0+\sum _{i=1}^sm_{i0}F_i+{\mathcal {O}(h^2,k^2)}. \end {array}\right .\end {equation}


\begin {equation}\label {timeApprox1} \frac {\partial F(\textbf {x}_0,n\Delta t)}{\partial t}=\frac {F^{n+1}_0-F^{n}_0}{\Delta t}+\mathcal {O}(\Delta t),\end {equation}


\begin {equation}\label {esquema2d1} \left \lbrace \begin {array}{@{}l} u_0^{n+1}=~u_0^n+\Delta t\Bigl [D\Bigl (-m_{00}u_0^n+\sum ^{s}_{i=1}m_{0i}u^n_i\Bigr )-\chi u^n_0\Bigl (-m_{00}v_0^n+\sum ^{s}_{i=1}m_{0i}v^n_i\Bigr )\Bigr ] \\ \quad \quad \quad +\chi \Delta t\Bigl (-m_{01}u_0^n+\sum ^{s}_{i=1}m_{i1}u_i^n\Bigr )\Bigl (-m_{01}v_0^n+\sum ^{s}_{i=1}m_{i1}v_i^n\Bigr ) \\ \quad \quad \quad +\chi \Delta t\Bigl (-m_{02}u_0^n+\sum ^{s}_{i=1}m_{i2}u_i^n\Bigr )\Bigl (-m_{02}v_0^n+\sum ^{s}_{i=1}m_{i2}v_i^n\Bigr ) \\ \quad \quad \quad +\Delta t \cdot r u^n_0\big (1-u^n_0\big )-\Delta t \cdot u^n_0v^n_0 \vphantom {\Bigl (}, \\ v_0^{n+1}=~v^n_0\Bigl [1-\Delta t\cdot (1+m_{00})\Bigr ]+\Delta t\cdot a u_0^n+\Delta t\sum _{i=1}^{s}m_{0i}v^n_i+f^n_0, \end {array}\right .\end {equation}


$t=0$


$u(x,0)$


$v(x,0)$


$\Delta t$


\begin {equation}\label {esquema2d3} \begin {aligned} A_1:&=\Bigl |\chi V_0^n \big (m_{01}^2 + m_{02}^2 \big ) - \chi \Bigl (m_{01}\sum _{i=1}^sm_{i1}V_i^n+m_{02}\sum _{i=1}^s m_{i2}V_i^n\Bigr )\\ & -(\chi -\mu )(u_0^n+U_0^n)+\chi V_0^n-\mu \big (1+f(x_0,y_0,n\Delta t)\big )\Bigr |\\ &+ \chi v_0^n \Bigl ( | m_{01}|\sum _{i=1}^s|m_{i1}|+ | m_{02}|\sum _{i=1}^s|m_{i2}| \Bigr )\\ &+\chi \Bigl ( \Bigl |\sum _{i=1}^sm_{i1}V_i^n\Bigr |\sum _{i=1}^s|m_{i1}|+ \Bigl |\sum _{i=1}^sm_{i2}V_i^n\Bigr |\sum _{i=1}^s|m_{i2}| \Bigr ) , \end {aligned}\end {equation}


\begin {equation}\label {esquema2d4} \begin {split} B_1:&=\Bigl |-\chi u_0^n (m_{01}^2+m_{02}^2 + 1 )+\chi \Bigl ( m_{01}\sum _{i=1}^sm_{i1}u_i^n + m_{02}\sum _{i=1}^sm_{i2}u_i^n \Bigr )\Bigr | \\ &+\chi U_0^n \Bigl ( | m_{01}|\sum _{i=1}^s|m_{i1}| +| m_{02}|\sum _{i=1}^s|m_{i2}| \Bigr ) \\& +\chi \Bigl ( \Bigl |\sum _{i=1}^sm_{i1}U_i^n \Bigr |\sum _{i=1}^s|m_{i1}| + \Bigl |\sum _{i=1}^sm_{i2}U_i^n\Bigr |\sum _{i=1}^s |m_{i2}| \Bigr ), \end {split}\end {equation}


$L^\infty (\Omega )$


$U,V\in \mathcal {C}^4({\Omega \times (0,\infty )})$


\begin {equation}\label {cond} \Delta t<\min \displaystyle \Bigg \{\dfrac {2}{Dm_{00}+D\sum _{i=1}^s|m_{i0}|+A_1+B_1},\dfrac {2}{1+m_{00}+\sum _{i=1}^s|m_{i0}|+a}\Bigg \},\end {equation}


$A_1$


$B_1$


$u_j^n$


$u$


$j$


$n \Delta t$


$v^n_j$


$U^n_j$


$V^n_j$


\begin {equation*}\tilde {u}_j^n := u_j^n-U_j^n, \quad \tilde {v}_j^n:=v_j^n-V_j^n\end {equation*}


$u$


\begin {equation}\begin {split}\label {esquema2d7} \tilde {u}_0^{n+1}=~&\tilde {u}_0^{n}+D\Delta t\Bigl (-m_{00}\tilde {u}_0^{n}+\sum _{i=1}^{s}m_{i0}\tilde {u}_i^{n}\Bigr )\\ &+\chi \Delta t\Big [\Bigl (-m_{01}u_0^{n}+\sum _{i=1}^{s}m_{i1}u_i^{n}\Bigr )\Bigl (-m_{01}v_0^{n}+\sum _{i=1}^{s}m_{i1}v_i^{n}\Bigr )\\ & \qquad -\Bigl (-m_{01}U_0^{n}+\sum _{i=1}^{s}m_{i1}U_i^{n}\Bigr )\Bigl (-m_{01}V_0^{n}+\sum _{i=1}^{s}m_{i1}V_i^{n}\Bigr )\Big ]\\ &+\chi \Delta t\Bigl [\Bigl (-m_{02}u_0^{n}+\sum _{i=1}^{s}m_{i2}u_i^{n}\Bigr )\Bigl (-m_{02}v_0^{n}+\sum _{i=1}^{s}m_{i2}v_i^{n}\Bigr )\\ & \qquad -\Bigl (-m_{02}U_0^{n}+\sum _{i=1}^{s}m_{i2}U_i^{n}\Bigr )\Bigl (-m_{02}V_0^{n}+\sum _{i=1}^{s}m_{i2}V_i^{n}\Bigr )\Bigr ] \\& -\chi \Delta t \Bigl [ m_{00}(\tilde {u}^n_0v^n_0+U^n_0\tilde {v}^n_0) - \Bigl (\tilde {u}^n_0\sum _{i=1}^sm_{i0}v^n_i+U^n_0\sum _{i=1}^sm_{i0}\tilde {v}^n_i\Bigr ) \Bigr ]\\& -\Delta t \Bigl [ r\tilde {u}^n_0[1-(u^n_0+U^n_0)]-\tilde {u}^n_0 v^n_0-U^n_0\tilde {v}^n_0 \Bigr ]+{\mathcal {O}(\Delta t,h^2,k^2).} \end {split}\end {equation}


\begin {equation}\begin {split}\label {esquema2d12} \tilde {u}_0^{n+1}=& ~\tilde {u}_0^{n}\Bigl [1-\Delta t \Bigl (Dm_{00}+\chi m_{01}^2V_0^n+\chi m_{02}^2V_0^n \Bigr )\\& \qquad -\Delta t\chi \Bigl (m_{01}\sum _{i=1}^sm_{i1}v_i^n+m_{02}\sum _{i=1}^{{s}} m_{i2}v_i^n + \sum _{i=1}^sm_{i0}v^n_i \Bigr )\\ &\qquad -\Delta t \Big (\chi m_{00} v_0^n- r[1-(u^n_0+U^n_0)]- v^n_0 \Bigr )\Bigr ] \\& +\Delta t\Bigl [D\sum _{i=1}^sm_{i0}\tilde {u}_i^n -\chi m_{01}V_0^n\sum _{i=1}^sm_{i1}\tilde {u}_i^n -\chi m_{02}V_0^n\sum _{i=1}^sm_{i2}\tilde {u}_i^n\\ & \qquad +\Bigl (\chi \sum _{i=1}^sm_{i1}v_i^n\Bigr )\sum _{i=1}^sm_{i1}\tilde {u}_i^n +\Bigl (\chi \sum _{i=1}^sm_{i2}v_i^n\Bigr )\sum _{i=1}^sm_{i2}\tilde {u}_i^n\Bigr ] \\& +\Delta t ~\tilde {v}_0^n\Bigl [ \chi \Bigl (m_{01}^2+ m_{02}^2)U_0^n- m_{01}\sum _{i=1}^sm_{i1}u_i^n \Bigl )\\ & \qquad -\chi m_{02}\sum _{i=1}^sm_{i2}u_i^n-\chi m_{00} U_0^n-U^n_0\Bigr ]\\ &+\Delta t\Bigl [-\chi m_{01}U_0^n\sum _{i=1}^sm_{i1}\tilde {v}_i^n-\chi m_{02}U_0^n\sum _{i=1}^sm_{i2}\tilde {v}_i^n\\ &\qquad +\chi \Bigl (\sum _{i=1}^sm_{i1}U_i^n\Bigr )\sum _{i=1}^sm_{i1}\tilde {v}_i^n +\chi \Bigl (\sum _{i=1}^sm_{i2}U_i^n\Bigr )\sum _{i=1}^sm_{i2}\tilde {v}_i^n\Bigr ]\\ &+{\mathcal {O}(\Delta t,h^2,k^2).} \end {split}\end {equation}


$\tilde {u}^n:=\max _{i\in \{0,\ldots ,s\}}|\tilde {u}_i^n|$


$\tilde {v}^n:=\max _{i\in \{0,\ldots ,s\}}|\tilde {v}_i^n|$


\begin {equation}\label {esquema2d13} \begin {split} \tilde {u}^{n+1}&\leq \tilde {u}^{n}\Biggl [\hspace {0.05 cm}\Biggl |1-\Delta t\Bigl [Dm_{00}-\chi m_{01}^2V_0^n-\chi m_{02}^2V_0^n +\chi m_{00} v_0^n+v^n_0 \\& \qquad +r[1-(u^n_0+U^n_0)]+\chi \Bigl (m_{01}\sum _{i=1}^sm_{i1}v_i^n+m_{02}\sum _{i=1}^{{s}} m_{i2}v_i^n - \sum _{i=1}^sm_{i0}v^n_i \Bigr ) \Bigr ]\Biggr |\\ & \qquad +\Delta t \hspace {0.05 cm} D\sum _{i=1}^s|m_{i0}| +\chi \Bigl |m_{01}V_0^n\sum _{i=1}^sm_{i1} \Bigr | +\chi \Bigl |m_{02}V_0^n\sum _{i=1}^sm_{i2}\Bigr |\\ &\qquad +\Bigl |\chi \sum _{i=1}^sm_{i1}v_i^n\Bigr |\sum _{i=1}^s|m_{i1}| +\Bigl |\chi \sum _{i=1}^sm_{i2}v_i^n\Bigr |\sum _{i=1}^s|m_{i2}|\Biggr ] \\&~+\tilde {v}^{{n}} \Delta t \Biggl [\hspace {0.05 cm} \Biggl |\chi \Bigl ( (m_{01}^2+ m_{02}^2) U_0^n- m_{01}\sum _{i=1}^sm_{i1}u_i^n - m_{02}\sum _{i=1}^sm_{i2}u_i^n- m_{00} U_0^n \Bigr )-U^n_0\Biggr |\\ & \qquad +\chi \Bigl ( \hspace {0.05 cm}\Bigl |m_{01}U_0^n\sum _{i=1}^sm_{i1}\Bigr | + \Bigl |m_{02}U_0^n\sum _{i=1}^sm_{i2} \Bigr |+\Bigl |\sum _{i=1}^sm_{i1}U_i^n\Bigr |\sum _{i=1}^s|m_{i1}| \Bigr )\\ & \qquad + \chi \Bigl |\sum _{i=1}^sm_{i2}U_i^n\Bigr |\sum _{i=1}^s|m_{i2}|\Biggr ]+{\mathcal {O}(\Delta t,h^2,k^2).} \end {split}\end {equation}


\begin {equation}\label {esquema2d14} \tilde {v}^{n+1}_0=\tilde {v}^n_0\Bigl [1-\Delta t \hspace {0.05 cm}(1+m_{00})\Bigl ]+\Delta t \cdot a\tilde {u}_0^n+\Delta t\sum _{i=1}^{s}m_{0i} {\tilde {v}_i^n}+{\mathcal {O}(\Delta t,h^2,k^2)},\end {equation}


$\tilde {u}^n$


$\tilde {v}^n$


\begin {equation}\label {esquema2d15} \tilde {v}^{n+1}\leq \Delta t \cdot \hspace {0.05 cm}a\tilde {u}^n+\Bigl [\Big |1-\Delta t(1+m_{00})\Big |+\Delta t\sum _{i=1}^{s}|m_{0i}|\Bigr ]\tilde {v}^n+{\mathcal {O}(\Delta t,h^2,k^2).}\end {equation}


\begin {equation}\label {esquema2d16} \left ( \begin {array}{c} \tilde {u}^{n+1} \\ \tilde {v}^{n+1}\\ \end {array} \right )\leq \left ( \begin {array}{cc} M_{11} & M_{12}\\ M_{21} & M_{22}\\ \end {array} \right )\left ( \begin {array}{c} \tilde {u}^n \\ \tilde {v}^n\\ \end {array} \right ) +{\mathcal {O}(\Delta t,h^2,k^2)},\end {equation}


$M_{21}$


$M_{22}$


$M_{11}, M_{12}$


\begin {equation}\label {A1B1} M_{11}=\Bigl |1-\Delta t \cdot D \hspace {0.05 cm}m_{00}\Bigr |+\Delta t \cdot D\sum _{i=1}^s|m_{i0}|+A_1 \cdot \Delta t,\quad M_{12}=\Delta t \cdot B_1,\end {equation}


$A_1$


$B_1$


\begin {equation}M:=\left ( \begin {array}{cc} \displaystyle \Bigl |1-\Delta t \cdot D \hspace {0.05 cm}m_{00}\Bigr |+\Delta t \cdot D\sum _{i=1}^s|m_{i0}|+A_1 \cdot \Delta t & \Delta t \cdot B_1\\ \displaystyle \Delta t \cdot a & \displaystyle \Bigl |1-\Delta t(1+m_{00})\Bigr |+\Delta t\sum _{i=1}^s|m_{i0}|\\ \end {array} \right ). \label {Xeqn33-33}\end {equation}


$M$


$n \to \infty $


$\|\cdot \|_1$


$M$


$\|M\|_1 < 1$


\begin {equation*}\|M\|_1=\Bigl |1-\Delta t\cdot Dm_{00}\Bigr |+\Delta t \cdot D\sum _{i=1}^s|m_{i0}|+A_1 \cdot \Delta t + \Delta t \cdot B_1,\end {equation*}


$\|M\|_1<1$


\begin {equation*}\Bigl |1-\Delta t \cdot Dm_{00} \Bigr | <1-\Delta t \cdot D\sum _{i=1}^s|m_{i0}|-A_1 \cdot \Delta t -\Delta t \cdot B_1,\end {equation*}


\begin {equation*}\Delta t<\dfrac {2}{Dm_{00}+D\sum _{i=1}^s|m_{i0}|+A_1+B_1}.\end {equation*}


\begin {equation*}\|M\|_1=\Delta t \cdot a+\Bigl |1-\Delta t(1+m_{00})\Bigr |+\Delta t\sum _{i=1}^s|m_{i0}|,\end {equation*}


$\|M\|_1 < 1$


\begin {equation*}\Bigl |1-\Delta t (1+m_{00})\Bigr |<1-\Delta t \cdot a-\Delta t\sum _{i=1}^s|m_{i0}|,\end {equation*}


\begin {equation*}\Delta t<\dfrac {2}{1+m_{00}+\sum _{i=1}^s|m_{i0}|+ a}.\end {equation*}


$f$


$r > f$


$r < f$


$r$


\begin {equation}\label {6.1} D = 0.5, \quad \chi = 2, \quad r = 1, \quad a = 1,\end {equation}


$f(x,t)$


$\Omega := (0,1)$


$40$


$\text {dist}^{-4}$


$\Delta t = 2.5 \cdot 10^{-4}$


$\Omega $


$f(x,t) \equiv f$


$r$


$f$


$r<f$


$r<f$


$(0,f)$


\begin {equation*}f(x,t) \equiv 1.5 > 1 = r,\end {equation*}


$u(x,0)$


$v(x,0)$


$(0,f)$


$f$


$r$


$-uv$


$(0,f)$


\begin {equation}\label {6.2} u(x,0) = 0.1 \cdot (1+\cos (3 \pi x)), \quad v(x,0) = 1.5 + 0.01 \cdot \sin (8\pi x),\end {equation}


$(0,f) = (0,1.5)$


$t = 10$


$f = 1.5 > r$


$0 \leq t \leq 2$


$u$


$v$


$u(x,0)$


$v(x,0)$


$u$


$v$


$t = 0.5$


$u$


$v$


$-v$


$v = f = 1.5$


$r > f$


$r > f$


$(0,f)$


$(u_*,v_*)$


\begin {equation*}f(x,t) \equiv 0.5 < 1 = r.\end {equation*}


$(0,f)$


$(u_*, v_*)$


$(0,f)$


$(0,f)$


$f$


$(0,f)$


$(u_*, v_*)$


$f = 0.5 < r$


$r$


$f$


$u_* = 0.25$


$v$


$v_* = 0.75$


$(u_*,v_*)$


$t = 5$


$(u_*,v_*)$


$||u(.,t)-u_*||_{L^\infty (\Omega )}$


$||v(.,t)-v_*||_{L^\infty (\Omega )}$


$(u_*, v_*) = (0.25, 0.75)$


$L^\infty (\Omega )$


$5$


$||u(.,t)-u_*||_{L^\infty (\Omega )}$


$||v(.,t)-v_*||_{L^\infty (\Omega )}$


$0$


$(u_*, v_*)$


\begin {equation}\label {6.3} u(x,0) = u_* + 0.1\cdot \sin (\pi x), \quad v(x,0) = v_* + 0.3 \cdot \sin (\pi x),\end {equation}


$f(x,t) \equiv 0.5 < 1 = r$


$x = 1/2$


$(u_*, v_*)$


$f = 0.5 < r$


$u$


$v$


$u_*$


$v_*$


$(u_*, v_*)$


$t = 0.01$


$u$


$x = 1/2$


$t = 0.1$


$u_* = 0.25$


$v$


$t = 0.1$


$v_* = 0.75$


$||u(.,t)-u_*||_{L^\infty (\Omega )}$


$||v(.,t)-v_*||_{L^\infty (\Omega )}$


$(u_*, v_*) = (0.25, 0.75)$


$L^\infty (\Omega )$


$u_*$


$v_*$


$u$


$t = 2$


$v$


$t=4$


$t$


$u$


$v$


$u_*$


$v_*$


$f$


$a=0$


$a=0$


$r_{\min }$


$T-$


$\hat {f}(t)$


$f$


$r$


$(\tilde {u}, \tilde {v})$


$\tilde {u} \to 0$


$t \to \infty $


$\hat {f}$


$r$


$T-$


$u(x,0)$


$v(x,0)$


$(u,v)$


$a=0$


$r_{\min }$


\begin {equation}\label {6.4} f(x,t) = 0.5 \cdot \big [1+\cos (\pi t)\big ],\end {equation}


$T = 2$


$a$


$a=0$


$f$


$r_{\min }$


$f$


$\hat {f} = f$


\begin {equation*}r_{\min } = \frac {1}{T} \int _0^T \hat {f}(s) ~ds = \frac {1}{2} \int _0^2 0.5 \cdot \big [1+\cos (\pi s)\big ] ~ds = 0.5.\end {equation*}


$r = 1 > 0.5 = r_{\min }$


$u(x,0)$


$v(x,0)$


$(\tilde {u}_0, \tilde {v}_0)$


\begin {equation}\label {6.5} \tilde {v}_0 = \frac {1}{e^T - 1} \int _0^T \hat {f}(s) e^s ~ds = \frac {1}{2} \left (1 + \frac {1}{\pi ^2 + 1} \right ),\end {equation}


\begin {equation}\label {6.6} \tilde {v}(t) = \frac {1}{2} \left (1 + \frac {1}{\pi ^2 + 1} \big (\pi \sin (\pi t) + \cos (\pi t) \big ) \right ).\end {equation}


$\tilde {u}_0$


\begin {equation}\label {n6.7} \tilde {u}_0 = \frac {e^{\displaystyle \int _0^T (r-\tilde {v}(s)) ~ds} - 1}{ \displaystyle \int _0^T \left ( r ~e^{\displaystyle \int _0^s (r- \tilde {v}(\tau ))~ d \tau } \right ) ~ds} \approx 0.5214\end {equation}


$(\tilde {u},\tilde {v})$


\begin {equation}\label {6.8} u(x,0) = 0.3 + 0.1 \cdot \sin (\pi x), \quad v(x,0)= 0.3 \cdot \sin (\pi x).\end {equation}


$u$


$v$


$a=0$


$f(x,t)$


$r>r_{\min }$


$(u,v)$


$(\tilde {u}, \tilde {v})$


$x=1/2$


$(u,v)$


$(\tilde {u}, \tilde {v})$


$x = 1/2$


$u$


$v$


$x = 1/2$


$u(1/2,t)$


$v(1/2,t)$


$u$


$v$


$r$
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$-uv$


$\tilde {u}$


$t = 8$


$v$


$\tilde {v}$


$t = 4$


$(u_*, v_*)$


$\hat {f}$


$\hat {f}$


$a=0$


\begin {equation}\label {6.9} f(x,t) = 1.5 \cdot \big [1+\cos (\pi t)\big ].\end {equation}


$f$


$f$


$\hat {f} = f$


\begin {equation*}r_{\min } = \frac {1}{2} \int _0^2 1.5 \cdot \big [1 + \cos (\pi s)\big ] ~ds = 1.5.\end {equation*}


$r_{\min } = 1.5$


$r = 1 < r_{\min }$


$f$


$a=0$


$f(x,t)$


$r<r_{\min }$


$u$


$-uv$


$f$


$v$


$\tilde {v}$


$r$


$(u,v)$


$(\tilde {u}, \tilde {v})$


$x = 1/2$


$u$


$v$


$x = 1/2$


$u$


$v$
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$a > 0$


$(u,v)$


$(\tilde {u}, \tilde {v})$


$\Omega $


$(\tilde {u}, \tilde {v})$
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$f$


$a=0$


$f(x,t)$


$x = 1/2$


$x = 1/2$


$(u_*, v_*)$


$\hat {f}$


$u$


$v$


$a=0$
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$u_*$
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$a=0$
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$u_*$
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$x=1/2$
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$0.5$


$a=0$


$0.75$


$f$


$a>0$


$\Omega = (-\pi , \pi )$


\begin {equation}\label {6.10} D = 0.1, \quad \chi = 9, \quad r = 1, \quad a=1, \quad f(x,t) \equiv 0.\end {equation}


$\chi $


$(u^*, v^*) = (0.5, 0.5)$


\begin {equation}\label {6.11} u(x,0) = u^* = 0.5, \quad v(x,0) = v^* +0.01 \cdot \sin (8x) = 0.5 +0.01 \cdot \sin (8x).\end {equation}


$t = 15$


$u$


$u$


$u$


$t = 2$


$u^*$


$0.4$


$0.6$


$t = 4$


$x = -2$


$x =-0.5$


$x = 1$


$x = \pi $


$t = 5$


$t = 7.5$
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$1$


$x = -\pi $
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$t = 15$


$\Omega =(-\frac {3\pi }{2},\frac {3\pi }{2})$
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$5$


$l^{\infty }$


$f$


$(0,f)$
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$(u_*, v_*)$


$r$


$r>f$


$(0,f)$
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$r < f$
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$f$


$a=0$


$\tilde {v}$
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$T$


$r>r_{\min }$
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$r<r_{\min }$
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chemotaxis agent) [3] and, when its concentration can no longer be regulated by the cells’ scavenging enzymes, can induce bacterial
death [4] (see [5] for an analysis of the effects and killing rates of E. coli under different levels of exposure to H,0,).

Similar scenarios arise in bacterial species that naturally produce antibiotics, which can at times generate toxic effects against
the cells themselves. For example, Bacillus subtilis, which produces bacilysin, may be susceptible to its effect under certain mutations,
resulting in self-inhibition or cell death. A detailed description of how different antibiotic-producing organisms avoid such autotoxicity
can be found in [6].

To describe these interactions, we model the process by the following initial-boundary value problem

a—uZDMAM+XV-(MVU)+FM(1—%)—5141}, x€eQ, t>0,

ot

%:DUAv+au—bU+f(x,t), x€eQ, t>0, o
du Jv

qu _ 90 _y, €0Q, t>0,

dv  ov x

u(x,0) = up(x), v(x,0) = vy(x), x €Q,

in a smooth and bounded domain Q c R”, where

¢ u and v denote the bacterial population density and the chemical concentration, respectively.

e D,>0,D,>0and y > 0 are the diffusion coefficients of the bacteria and the substance, and the negative chemotaxis sensitivity,
respectively.

e r>0, K>0and é§ > 0 are the growth rate of the logistic model, its carrying capacity, and the death rate of the bacteria caused
by the substance, respectively.

e a>0,b>0and f(x,7) >0 for all x € Q, 7> 0 are the self-production rate of the substance by the bacteria (in the case a = 0, the

substance is not secreted by the bacteria, for instance when it represents and exogenous antibiotic), the degradation rate of the

substance, and the known external supply of substance, respectively.

uy(x) and vy(x) are the nonnegative initial values.

Historically, systems modeling chemotaxis were first introduced in the works of Keller and Segel [7,8] in the early 1970s, consid-
ering equations of the form

3—1;=D1Au—V~(;(qu)+f(u), xeQ, t>0,
ov (2)
TEZDZAU+au—bU, x€eQ, t>0,

for positive parameters y, a, b, a known function f representing the intrinsic dynamics of the species, and = € {0, 1}, accounting for
the possible difference in the timescales of u and v. System (2) was first introduced to model the aggregation process of a slime mold,
although many variations have been studied over the years, corresponding to different biological scenarios (see the surveys [9-11]).

Competitive dynamics in the form of Lotka-Volterra terms have also been studied within different variations of chemotaxis models.
The following system composed of two competitive species responding to one stimulus that induces positive chemotaxis has been
extensively studied.

Z—I::DlAu—)(lV-(qu)+/41u(l—u—alu), x€Q, >0,

%:DZAU—)(ZV-(qu)+MQU(l—azu—u), xeQ, t>0, 3)
Jw

TE:D3Aw—yw+au+ﬂv, x€eQ, t>0,

where in this case, u and v denote the population densities of the two species, while w is the concentration of the chemical substance.
The parabolic case (corresponding to = = 1) was analyzed by Bai and Winkler in [12], where the global existence of solutions for
n < 2 was proven under certain restrictions for x4, and p,. The large time convergence of solutions to its spatially homogeneous steady
states was also studied. These results were improved later in [13], with lighter restrictions on y, and p,. The higher dimensional case
was analyzed in [14]

Respectively, the elliptic case (for = = 0) has been studied in [15] for the weakly competitive case (0 < a;,a, < 1) with similar
restrictions for u;, u, and y,, y, leading to the convergence to its spatially homogeneous steady states. In [16] a competitive exclusion
result is obtained.

In this paper, we consider a single species, with the competitive term appearing only in the first equation of (1), representing the
cell death induced by the chemical.

After introducing the rescaled variables

. _u . _ oOK _ b -
i=—,0=—v, X= —x, I = bt,
K b D,

and the dimensionless parameters

D, _ by r asK?
P=o =5k T ¥ 2
o } b
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the system can be rewritten as follows. For simplicity, the tildes have been dropped.

g—l::DAu+;(V~(uVU)+ru(1—u)—uv, xeQ, t>0,

@—Av+au—v+f(xt) xeQ, t>0

ot T ’ ’ (€))
Jdu _ Jdv

=====0, €0Q, t>0,

dv  ov x

u(x,0) = uy(x), v(x,0)=vy(x), x € Q.

Throughout this paper, we study the local stability of the spatially homogeneous steady states of system (4) when f is a constant
supply, as well as the periodicity of solutions for choices of f with a persisting time-periodic behavior.
For a constant f, system (4) admits two spatially homogeneous steady states, given by

r—f r(f+a)>

r+a’ r+a

©.01, (@,.v,):= <

The nontrivial state (u,, v,) is only biologically relevant if r > f, that is, when the bacterial growth rate is greater than the external
supply of the substance. Conversely, if r < f, the only nonnegative equilibrium is given by (0, /). The linearized dynamics and local
stability of these solutions are studied in Section 2.

The analysis of system (4) under a supply f with persisting periodic behavior is carried out in Section 3. Specifically, we assume
that f is asymptotically periodic, in the sense that there exists a time periodic function f : [0, +00) — R depending only on ¢, such
that

lim sup |f(x,7) — f(t)| = 0.
1=+ xeQ

Under this assumption, it has recently been proven in [17] that, with additional hypotheses, the solution (u, v) of system (4) converges
in time to those of the associated ODE system

dii

==l —a) —as, >0,
g{ (5)
d—::aﬁ—ﬁ+f(t), 1> 0,
with initial values
1 1
u(0) = — / u(x,0)dx, 000)=— / v(x,0) dx. 6)
1l Jo 1Ql Jo

However, it remains unclear under which conditions do (@, ) inherit the periodicity of /. Here, we provide a partial answer, proving
that in the case a = 0 there exists a unique positive periodic solution if a threshold value for r is satisfied. Moreover, when a > 0,
numerical experiments performed also allow us to obtain such periodic solutions under particular choices of r. In these cases, a
numerical resolution of system (4) shows that, as expected, the periodic behavior of the solutions to the ODE system (5) is inherited
by the PDE system, with solutions (u, v) converging uniformly in time to (i, 9).

For such numerical study, we employ the Generalized Finite Difference (GFD) method, a meshless approach that has been suc-
cessfully applied to a wide range of nonlinear problems. Precisely within the context of chemotaxis systems, the authors in [18-22]
study various extensions of the Keller-Segel model, including parabolic-parabolic, parabolic-elliptic and parabolic-ODE problems.

In our case, after a preliminary introduction of the method in Section 4, we derive conditions for the convergence of an explicit
scheme in Section 5, which allows us to compute numerical solutions to system (4). Various simulation results are included in Section 6
to illustrate the cases studied analytically throughout the previous sections, including the local stability of the steady states and the
eventual periodicity of solutions, as well as a brief subsection regarding pattern formation in the system. Lastly, the conclusions are
collected in Section 7.

2. Linearized dynamics and local stability

To begin the analysis of system (4), we study the local stability of its spatially homogeneous steady states. While global existence
and boundedness of solutions to system (4), are analyzed in [17], the present work focuses on the dynamics near homogeneous
equilibria. With the aim of numerically exploring the properties of the system, this local stability analysis serves as a basis for the
expected behavior of solutions.

To this end, the spatially homogeneous steady states of system (4) are obtained by solving

0:ru(l—u—§>,

O=au—v+ f(x,1).

Such solutions can only exist for a constant source term f(x,?) = f, yielding the two equilibria

r—f r(f+a)>. @

r+a’ r+a

©.0), @ev,) = <
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From a biological perspective, we require that both « and v are nonnegative, and thus (u,,v,) is only meaningful if r > f, that is,
when the logistic growth rate of the population is greater than the external supply of the substance.

To assess the local stability of the steady states (7), we make use of the principle of linearized stability for quasilinear parabolic
problems, [23]. As the analysis is standard (see for instance [24] for a similar derivation with full details) we only outline the main
steps. Letting (i, ) denote any of the previous spatially homogeneous steady states, we consider perturbed solutions of the form

u=id+ep, v=0+en (€)]

for 0 < £ < 1. Substituting into system (4) and neglecting the terms of order £2, the following linearized system is obtained

0
d_qtb = DA¢ + yalAn+[(1 — 2a)r — 0] — an, xeQ, t>0,

)
%:An+a¢—n, xeQ, t>0,

together with Neumann homogeneous boundary conditions and their respective initial values. The local stability analysis of the
linearized system (9) reduces to studying the eigenvalues of A, :=—-1,D + J for alln € {0,1,2, ... }, where

(D yu (A =2r—-0D —u
o=(o ) = 0)

and {4, },enu(o; i the sequence of eigenvalues
0=4y<A <A <.., withlim A, =+oc (10)
n—oo

of the operator —A over Q with Neumann homogeneous boundary conditions.

We recall that a given spatially homogeneous steady state (i, ) is locally asymptotically stable if and only if all the eigenvalues of
A, have negative real part for all n € NuU {0} =: N,. On the contrary, if there exists n such that A, has at least one eigenvalue with
positive real part, then (i, 0) is unstable. The computations for the first state, (&, 0) = (0, f), yield

(A D+r-f 0
An_< B _}“n_l>’

whose eigenvalues are trivially given by u, :=-4,D+r— fand yu,, :=-4,— L. Itis then clear from (10) that ,, <0 forall n € N,.
With respect to u, , as 4, =0, it follows that uy <0 if and only if r < f. For n > 1, as the sequence 4, is increasing, u, < u,. We
therefore conclude that (0, f) is locally asymptotically stable if and only if » < f, while for r > f, the point is unstable.

Similarly, for (@, 5) = (u,,v,) = <ﬂ r/+a >, A, is given by
r+a r+a
Wf=r) f-r
—-A,D+ —= i 1
A, = D+ r+a r+a( n + 1)
a A, =1

Denoting again by u,,, u,, the two eigenvalues of A, for every n € N, as 4, is a 2 x 2 matrix, we have

r(f—r)
tr(4,) = Huy + My, = —A,D + "y

" =1 f-r
det(A,) = py My, = —(4, + 1)(—/1,,D+ T a ) -a- T Ay + 1)
Given that, for biological relevance, we are only interested in the case r > f, clearly u, + u,, <0 and pu, u,, >0 for all n € N,
resulting in the local asymptotic stability of the state (u,,v,).

As a consequence, we conclude that

e If r < f, the only nonnegative spatially homogeneous steady state is (0, /), which is locally asymptotically stable.
e If r > f, both spatially homogeneous steady states, (0, /) and (u,, v,), are biologically meaningful. In this case, (0, f) is unstable,
whereas (u,, v,,) is locally asymptotically stable.

From a biological point of view, if r < f —this is, if the constant external supply of the substance exceeds the logistic growth rate of
the bacteria— then (0, f) is the only existing spatially homogeneous steady state, and is locally asymptotically stable. Consequently,
sufficiently small perturbations around this equilibrium decay over time, as the intrinsic bacterial growth is not large enough to
compensate the death term —uv, due to the high concentration of v that originate from the large supply rate f.

On the contrary, if r > f, the state (0, /) is unstable, as the external supply is smaller than the logistic growth rate, fostering
the bacterial proliferation. The other spatially homogeneous steady state, (u,,v,) of coexistence of the bacteria and the species, is
locally asymptotically stable. In this case, despite the growth being greater than the supply, both v and v are large enough for —uv to
significantly counteract it.

We remark that the local stability is independent of the remaining parameters, D, y and 4, and thus the linearized dynamics of
the system are governed solely by the balance between the constant supply rate f and the logistic growth rate r.

4
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3. Periodic solutions

Next, we analyze the existence of periodic solutions to system (4) under a source f with asymptotic periodic behavior, that is,
satisfying

lim sup |f(x,1) = f()] =0,
1=+ xeQ

for a certain time-periodic function f of period T > 0. This assumption is standard and has been employed in other similar works
such as [25,26].

As stated in the introduction, it has been proven in [17] that under suitable hypotheses, the solution (u, v) of system (4) converges
in time to (i, 0), the solution of the associated ODE system (5) with initial values given by the spatial averages of u(x,0) and v(x,0),
as stated in (6). Consequently, periodic behavior in the full PDE model can be characterized by periodicity in the ODE dynamics. The
aim of this section is to therefore identify conditions under which (&, 5) inherit the periodicity of £, which then lead to periodicity of
(u, ).

We first consider the case a = 0, corresponding to a situation in which the substance is not produced by the bacteria. In this case,
the associated ODE system reduces to

?:ma—a)—aﬁ, >0,

0t an
==+ f0), >0,

’r b+ f(1)

where the second equation is now linear and uncoupled, allowing for an explicit characterization of its periodic solutions. Solving
for #, one obtains

'
b(t)=e™" [EO + / f(s)e* ds]. (12)
0

Given that f is T—periodic, a necessary and sufficient condition for & to be T—periodic as well is that #(T) = &,. Thus, to yield this
condition, it follows from (12) that v, must satisfy

<

1 T
0= T /o f(s)e® ds. 13)

A similar analysis can be done for &, noting that, for a known o, it becomes a Bernoulli equation, which can again be explicitly solved.
By considering & = !, a linear equation in  is retrieved, whose solution is given by

—/ (r—10(s)) ds 1 t /S(r —0(r)) dr
w)=e JO ﬁ_+/ relo ds|. 14
0 0

Thus, assuming & is periodic, provided , satisfies (13), the periodicity of i is ensured if and only if &(T) = &, or equivalently @w(T) =
W, := 1/i,. This leads to

T
/(r—ﬁ(s))ds
iy = — 2 L (15)

T /S(r— o(r)) dt
/ relo ds

0

Hence, the solution (i, #) of (11) is T—periodic if and only if the initial values (i, §,) satisfy (13) and (15).

It is important to emphasize that (i, §,) are not arbitrary, as they are uniquely determined by (6) as the spatial averages of
the initial bacterial and chemical distributions u(x, 0) and v(x, 0). As a result, the periodicity conditions (13) and (15) translate into
constraints on the admissible initial data of the full PDE system (4).

An important bound can be derived from (15). For biological relevance, only positive solutions are considered. In particular, the
positivity of i, requires

T
/ (r—10(s)) ds
eJo -1>0,

or equivalently

1 /T
r> —/ 0(s) ds.
T Jo

This yields the threshold

/T
Finin = T/o 0(s) ds. (16)
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If r > r, and (@, 0,) are taken according to (15) and (13), then the unique solution (i, 7) of system (11) is positive and T—periodic.
Moreover, this solution is such that for any other positive choice of initial values, the associated solution converges in time to it. On
the contrary, if r < r.;;,, no solution with such properties exists, and for any pair of initial values, & - 0 as t > .

Notice that in fact the threshold (16) acts as bound for r with respect to the choice of 7, given that ¢ is independent from r.
Directly substituting the expression for & given in (12) into (16) and integrating by parts using the value of &, from (13), yields

[
Fmin = ? /0 f(S) ds. (17)

Thus, for a given f, only a species with a logistic growth rate above r,,;, can sustain a periodically oscillatory regime. This result
highlights a threshold phenomenon analogous to that observed in the local stability analysis for constant sources. In this case, the
existence of periodic solutions of the associated ODE system is governed by condition (17), involving solely the logistic growth rate
r and the average value of # over [0,T]. This is similar to the result obtained for a constant source satisfying r > f, for which the
coexistence equilibrium (u,, v,) was locally asymptotically stable.

Biologically, these dynamics —either periodicity or local stability— arise only when the logistic growth rate of the species is
sufficiently large compared to the external supply, either in terms of its average over one period or directly its value in the case of
a constant supply. Conversely, when the supply exceeds the logistic growth rate, the bacterial population is driven to extinction in
both settings.

For the case a > 0, corresponding to a substance self-produced by the bacteria, the existence and properties of periodic solutions
to the associated ODE system have so far been investigated only at the numerical level; see Section 6.2. A complete analytical
characterization of this regime still remains open due to the nonlinear coupling of the equations.

4. Preliminaries for the numerical method

In order to numerically solve system (4), we employ the Generalized Finite Difference (GFD) method. This meshless approach,
developed as an extension of the classical Finite Difference method, allows for a set of nodes that may be irregularly distributed
over the domain —thus avoiding any geometrical restrictions— on which an approximation of the solution is computed. A numerical
scheme is constructed by obtaining finite difference approximation formulae for the partial derivatives. Below, we outline the basics
of the method before presenting in Section 5 the numerical scheme obtained.

To do so, let Q be the considered domain in R” and M = {x,,«,,... xy} a discretization of such domain, where we seek to
approximate the solution of a given equation. For ease of notation and without loss of generality, we consider dimension m = 2 and
we fix an interior node of M which we denote by «x,. In a neighborhood of x,, we select a subset V' = {x,@,,...,x;} C M \ {x,}, of
s nodes, which constitute what is known as an E,—star. There exist different geometrical criteria, such as distance-based, quadrant
or octant criteria (see [27]) to select the s nodes preventing ill-behaved stars.

In order to obtain the finite difference approximations for the derivatives of an arbitrary function f(x,t) at oy 1= (xg, yo), wWe
consider its truncated second-order Taylor expansion. Denoting as usual by F;" the sought approximation of f(x;, nAf) (although we
omit the time dependence » for the moment) we obtain

1
Fy m Fo+ (@; —2)VFy + 3 (@; = @) Hp, (@; — x). (18)

We next define the vectors

T T
0F, 0F, &*F, 0°F, 0°F, h? k2
d=|— — — — — ], ¢= hi’ki’j’f!hiki >

where d contains the partial derivatives of that we seek to approximate, and ¢; is defined for each node x; := (x;,y;,) € V, where
h; i=x; —xpand k; 1= y; — y,.
Based on the approximation (18), we define the following weighted sum of the quadratic errors made when approximating each
F,, fori € {1, ..., s}, by the above Taylor expansion centered on x,.
N
B(d) = ) wX(Fy - F, + ¢] d)’ + O(h2, k7).

i=1
The weights w; = w(h;, k;) are positive symmetric functions that decrease in magnitude as the distance to the center « increases, as

defined in Lancaster and Salkauskas [28]. Some commonly used weights are inverse powers (dist™ or dist™®) or exponential weights,

e’dist2 (more details can be found in [29]). To obtain the best second-order least-squares approximation of the partial derivatives of
f, B is minimized with respect to d, yielding the following linear system of equations

s s
Z wl.zc,-cde == z wl.z(FO - F)c,.
i=1 i

i=1
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N
The coefficient matrix is A := Z w?cic,.T € Msy5(R), which can be expressed as
i=1

hy hy hy EE
k, ky k, b ke 5 ik
2 n2 | [ i?? k22
1 2 s w? h k 2 2 ok
A=l5  3 2 2 R T N (19)
3 3 . : .
ky ks k? 2 : : :
— - - w 2 2
2 2 2 O P
hky  hoky - bk § s 2 2 s

Properties of A are well-known, and can be consulted in [29]. In particular, it is positive definite and, therefore,

s N
d=-F) Y wlA™ ¢;+ ) FuwlA™ c; + Oh, k),

i=1 i=1

where we denote by

h:= max h;, k:= max k.
ie{l,...s} ie{l,...s}

In addition, for simplicity, we write
s
— 2 A—l —
m; = w; c, my= ) m,
i=1

and denote my, =: (mgy,;, my,, Mmy3, Mys» mys)! (and similarly for m;). This allows us to express the partial derivatives of the function f as
a linear combination of its values over the points of the star, yielding
OF (Xg, nAf) .
— ="y FJ+ X my F' + O(h%, k%),
0F (Xg, nAf) .
— —moy F + Xi_ mp F)' + O(h?, k?),
02 F(xg, nAt) 0% F(xy, nAr)
o + 2y = —(mgg +mo) Fy + X7_ (myz +myy)F'

=t —moFy + X, mioF; + O(h2, k2).

(20)

For the time derivative, in order to obtain an explicit scheme, its approximation is computed through a classical first-order forward
difference formula

1 n

0F(xg,nA)  Fyt' = F)
= + O(A1), 21

or A7 (A1) (21)

at evenly spaced time points. Thus, for a given second-order parabolic equation, substituting the finite difference approximations
(20) and (21), yields an explicit GFD scheme. For system (4), we present the scheme in the next section, proving its convergence to
the continuous solution.

5. Numerical scheme and convergence

Having developed the fundamentals of the GFD method in the previous section, we now turn to system (4) and obtain an explicit
scheme for its numerical approximation.

Substituting the second-order finite difference formulae (20) for the spatial derivative and the first-order forward difference (21)
into system (4) provides the following explicit GFD scheme

7 = g+ D+ L mt) = (o + B )|
s s
+;(At<—m01u(’; +2 m“u,'-’) (—mmvg + 2 mil”?)

+)(At(—m02u8 +X mizu:’) (—mozv(") +X m,ﬂ)j’) (22)
+AL - ruf (1 —ult) — At - ulon,
v8+1 = ug[l —Ar-(1+ moo)] + A - aus + At Y my ot + £

initiated at ¢ = 0 with the initial values u(x,0) and v(x, 0). The explicit nature of scheme (22) requires, as usual, the determination of
an upper bound for the time step Ar that guarantees its convergence. To do so, we first define the following quantities for each inner
node
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s s
2 2
= )){I/O"(m01 +m,) - )((mm Z ma V' + mg ZmizVi")
i=1 i=1

= (= Wty + U + 1V = (14 £ (5, 70, n80)|

; . (23)

+XU3(|’”01|Z|mi1|+|m02|2|mi2|)

(‘Zmll ‘zlmll|+‘2m12V ‘zlmﬂl)
B : —| au (m01 +m02+ 1)+}((m01 Zm,lu +m022m,2u >|
i=1 i=1

N s

+){U5’(|m01|2|m,~1|+|m02|Zlmi2|> (24)
i=1 i=1

N N s s
+;{()Zmi1Ui"| Z lmip | + ‘ZmizU‘.") Z |mi2|),
i=1 i=1 i=1 i=1
which are finite constants as a consequence of the uniform L*(Q) bounds of the solution of system (4).

Theorem 1. Let U,V € C*(Q x (0, )) be the exact solution of (1). Then, the GFD explicit scheme (22) is convergent if for every inner node

At < min - 2 , 25 , (25)
Dmyy+ DY Imgl + Ay + By 1+mgy+ X, Imyl +a
for the values of A; and B, given in (23) and (24).

Proof of Theorem 1
Let «” denote the numerical approximation of u at node j and time nAt (similarly for v;.'), and let U /’.’ and Vj” be the exact solutions
evaluated at the same node and time. We define the discrete errors by

Beginning by the u equation, subtracting the numerical scheme (22) from the exact solution yields the following expression
ﬁg“ ot DAI( mooily + Z myo i

N
+ )(At[(—mmu" + Zm,lu ) my vy + Zm,ﬂ)?)

i=1

/)
(-
- (-t + ) (g + S )|
(-
;)

i=1

N
+ )(At[( Mg + Z mpu ) My U + 2 mi20?> (26)

( mon +Zm,2V )]
i=1
s

s
— yAt [moo(u"u" + Uy o) (ug myv} + Uy z mioﬁf)]
i=1 i=1

= Adlragl1 - g + U= gy = U] + O 12,4,

8
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By expanding the products and regrouping terms, we obtain

~n+l o 2 2
= ug[l - At(DmOO + ymg V' + )(mOZVO">

N N N

- At)((mm 2 m; !+ mey Zmizuf + Zmiouf)
i=1 i=1 i=1

- At(;(mooug — 1= @+ U] - ug)]

N s s
+ A’[D Z myit; — ymo V' Z myii; = ymop V! Z myyit}

i=1 i=1 i=1
N s N s
n n n .
+ ()( Zmilu[ ) Z m; i + ()( Zmizu; ) z miZM;‘]
i=1 i=1 i=1 i=1

s 27)
+ At 178 [;((m(zn + mgz)Ug — my,; Z m,,u:‘)
i=1

N
= XMy Z mpu} — xmUg — U{;]

i=1

5 s
+ At [—;(mmU(')’ 2 my 0 — ymp Uy Z my 0}
i i=1

i=1

s s s s
+ }((Z m;y U;’) Z my 0 + Z(Z mizU,-") Z mmﬁ?]
i=1 i=1 i=1 i=1

+ O(AL, W2, k).

Next, we define @' := max;g(o, . @, and 7" 1= max,g(o 5 |07], rewriting (27) as

ﬁ"+1 < i |:

2 2
1— At [Dmoo = xmy, Vo' = xmg, Vi + ymggvg + vy
s s s
+rll = (uy + U]+ )((mm Z m v} + mgy Z mp v} — Z m,-ouf)”
i=1 i=1 i=1
N s s
+AID Y |myo| + Z|m01VO" > mil| + I|m02Vo" zmi2|
i=1 i=1 i=1
N N N s
+)sziluﬂZlmil|+‘l’zmi20?)Zlmi2|:| (28)
i=1 i=1 i=1 i=1

+ D"At[

N N
2 2 n n n n n
;{((mm +m)Uy — my, Z mu; — myy Z mpu; — mOOUO) -Uy
i=1 i=1

s
X mal)
i=1

s s s
+ }(( |m01U6' Z mil‘ + ‘mOZU(;' Z m,-2| + ‘Z m; U/
i=1 i=1 i=1

s s
+ 1‘2 m,-zU‘."l > |m,-2|:| + OAL R, K.
i=1 i=1
Proceeding similarly for the second equation of system (4) we obtain
s
ot = o [1 —Ar(l + mOO)]+At - aify + At Y mo, 0 + O(AL b2, k), (29)
i=1
and therefore, by definition of #" and #", taking maximums yields
N
o < Ar- ad + Hl — A1+ )| + At Y |m0,-|]17" +O(AL R K2). (30)
i=1
Inequalities (28) and (30) can be rewritten as
at! My My " 2 2
< O(At, h~, k 1
(ﬁ"+1>_<M21 My, g ) TOBLRLED, G
where M,, and M,, are the coefficients in (30) and M,,, M, are given by

N
M, = ‘1 -At-Dmoo( +At-D Y |mgl + A, -Ar, My, =Ar- By, (32)
i=1
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for the values of A, and B, considered in (23) and (24). Thus, the square matrix in (31) is

s
1= At Dimgg| + A1+ DY gl + Ay - At At- B,
M := i=l s ) (33)
At-a 1—At(1+m00))+AzZ|m,.O|
i=1

To complete the proof, having obtained expression (31), we impose a condition on the norm of the matrix M to prove that the errors
converge to zero as n — oo. Specifically, we employ the || - ||, norm, defined as the maximum absolute row sum of M, and require
that |[M], < 1.

If, on the one hand, we have

N
M), = |l—At~DmOO‘+At~DZ|miO|+A1 At +At- B,
i=1
then, | M]|; < 1 is equivalent to
N
|1—Az~DmOO)<1—Az~DZ|mi0|—A1-Az—Az.BI,
i=1

which holds since we imposed condition (25), which includes

2
< .
Dmyy+ DY, Imy| + A + B

At
Otherwise, if the contrary is true, this is
N
M, =At-a+ )1 - Al + moo)‘ + ALY g,
i=1
then ||[M||; < 1 is equivalent to,

s
1 - A1 +m00)| <1-Ar-a=ArY |myl.

i=1
which again holds under the assumption (25) in Theorem 1, as in particular

2

At < S .
L+ mgy + Xy Imypl +a

6. Numerical study

Making use of the GFD scheme (22) developed in Section 5, we next turn to compute numerical approximations of the solution
of system (4). In order to assess the different cases studied throughout the article, we consider various choices of f. First a constant
supply is considered, including both the case r > f and r < f. Then, the asymptotic periodicity of solutions is studied for time-periodic
supplies, including average values above and below r. In addition, we also include a section concerning pattern formation, as well as
a final numerical estimate of the order of convergence of the method.

For clarity of presentation, although the GFD method has been formulated in two spatial dimensions, all numerical simulations
are performed on a one-dimensional domain. This allows for simpler visualization of the results without loss of generality, since the
method and its implementation can be easily extended to higher dimensions.

Throughout the simulations, we consider the following parameter set, unless otherwise stated

D=05, y=2, r=1, a=1, 34)

under different choices of the external supply f(x,1).

We take the one-dimensional domain Q := (0, 1) and a set of 40 nodes unevenly distributed over the interval. The weights we
considered as dist™, and the time step as Ar =2.5- 1074, which is small enough to grant the convergence of the scheme for the
chosen discretization of Q.

6.1. Constant external supplies

We begin by investigating the dynamics of system (4) under constant supply rates, with f(x,7) = f. As determined in Section 2,
the balance between r and f determines the linearized dynamics of the system.

10
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Numerical solution u Numerical solution v

u(z,t)

10 1.5

0 t

Fig. 1. Numerical solution to system (4) with parameters (34), f = 1.5 > r, and initial values (35).

Time evolution of v and v, 0 <t < 2

0.2 T T T T T T T T
——t = ()
——t = (.01
0155 t=01
= — = 0.5
£ 01f —_—t=1
s \ . s | =
z /. N~
005F N~—_—/ N\
0 1 1 \/I 1 1 I 1 I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
z
1 1 1 1 !
1.54 =
/{1.52*
I —_
L = \\\\_///, > - \\<;_//
1.48 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 2. Different time profiles of the solution represented in Fig. 1. The u component of the solution is represented in the top panel, with the v
component in the bottom panel.

6.1.1. Thecaser < f

Our analysis starts by considering a sufficiently large external supply of the substance, satisfying r < f. In this case, the only
biologically meaningful spatially homogeneous steady state is (0, /), which is locally asymptotically stable. For this purpose, we
choose for instance

faH=15>1=r

and initialize the system with u(x, 0) and v(x,0) taken as small perturbations of (0, f).

Since the selected supply rate f is greater than the logistic growth rate r, we expect the concentration of the substance to attain
sufficiently high levels, so that the cell death term —uv dominates bacterial proliferation, ultimately driving the solution back toward
O, ).

We consider the following initial values
u(x,0) = 0.1 - (1 +cos(3xx)), v(x,0)=1.5+0.01-sin(8xx), (35)

close to (0, /) = (0, 1.5). We solve the equations using the GFD scheme (22) until # = 10. Fig. 1 depicts the spatial and temporal
evolution of the numerical solutions for this case. The one-dimensional spatial setting allows for a three-dimensional representation
of the solution, with time advancing to the right. For a better representation of the initial dynamics of the system, different time
profiles for 0 <t < 2 are also represented in Fig. 2.

As can be seen in both images, the oscillatory shape of the initial values u(x, 0) and v(x, 0) is rapidly lost due to diffusion, with both
u and v rapidly flattening before r = 0.5. In the case of the bacterial population u, as expected, the overall high concentrations of the
substance effectively prevent its growth, and the solution converges uniformly to zero. With respect to v, the large supply induces a
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Fig. 3. Numerical solution to system (4) with parameters (34), f = 0.5 < r, and initial values (35).
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Fig. 4. Convergence of the solution represented in Fig. 3 to the steady state (u,,v,) = (0.25,0.75) in L*(€2) norm.

steep initial increase —visible in the bottom panel of Fig. 2— which is soon compensated as the degradation term —v becomes larger,
decaying uniformly in time to the steady state, v = f = 1.5.

6.1.2. Thecaser > f

Next, we explore the case r > f, which admits two different nonnegative spatially homogeneous steady states, the previous one
(0, f), as well as the coexistence state (u,,v,) given in (7). To illustrate this case, we consider the same parameter set (34), this time
taking

fx,)=05<1=r.

In this regime, the logistic growth rate dominates the supply of the substance, which makes (0, /) unstable, and (u,,v,) locally
asymptotically stable. To study both equilibria, we compute two numerical solutions of the system, using initial values close to these
steady states.

First, for studying the dynamics close to (0, /), we consider the same initial values from the previous case, given by (35), and
analyze the differences that arise. As in this case the equilibrium (0, /) becomes unstable, we expect that the change in the supply rate
f results in a solution that moves away from (0, /) and possibly converges to (u,, v,), which is in turn locally asymptotically stable.

Computing again the solution using the GFD scheme (22) and the same node distribution yields the outcome depicted in Fig. 3.

The results in Fig. 3 agree with the expected behavior. Since the logistic growth rate r is significantly larger than the external supply
f, the bacterial population rapidly proliferates, approaching the coexistence level u, = 0.25. For the substance concentration v, the
combined effect of the constant external supply and bacterial self-production overcome the degradation term, leading to an increase
toward the equilibrium value v, = 0.75. As in the previous case, the spatial oscillations from the initial values are quickly suppressed
by diffusion for both components. This initial smoothing is followed by a growth phase, during which the solution approaches (u,, v,)
until approximately ¢ = 5, after which the solution keeps gradually converging to the equilibrium.

To analyze this convergence to (u,,v,), the time evolution of ||u(.,) — u,|| L~(q) and ||v(.,1) = v, || ~(q) is Tepresented in Fig. 4.

12
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Fig. 5. Numerical solution to system (4) with parameters (34), f = 0.5 < r, and initial values (36).
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Fig. 6. Different time profiles of the solution represented in Fig. 5. The u component of the solution is represented in the top panel, with the v
component in the bottom panel.

As can be seen on both panels, the previously described growth phase occurs during the first 5 time instants, as reflected by the
decrease in the norms. From then on, both |[u(., 1) — u, || gy and |[v(,,?) = v, || L= () remain close to 0, indicating the convergence to
the steady state.

Next, we consider two initial values close to the coexistence equilibrium (u,,v,) in order to assess its local asymptotic stability.
To explore the resulting dynamics, we take for instance

u(x,0) =u, +0.1-sin(zx), v(x,0)=v, +0.3-sin(zx), (36)

again with parameters (34) and f(x,7) = 0.5 < 1 =r. Since both initial data attain their maximum at the center of the domain, at
x = 1/2, negative chemotaxis will drive bacteria away from this region, leading them toward the sides. From then on, we again
expect diffusion to flatten the shape of the solutions, while returning asymptotically to (u,, v,).

The results for this scenario are shown in Fig. 5. As in the first case, to better illustrate these dynamics at short time scales, several
time profiles of the solution are represented in Fig. 6.

As shown in Fig. 5, since both initial values lie above u, and v,, the corresponding solutions experience a time decay toward the
coexistence equilibrium (u,, v,), to which they uniformly converge.

On short time scales, the dynamics are strongly influenced by chemotaxis. At t = 0.01, represented in red in Fig. 6, the initial shape
of u has already been significantly altered, with an increase of the bacterial density near the boundaries and a considerable reduction
at x = 1/2, which, however, still hosts the maximum bacterial density. By t = 0.1, depicted in yellow, this chemotaxis-driven migration
is completed, with the center of the domain having the lowest bacterial concentration. From then on, the density is homogenized
throughout the domain due to diffusion, being progressively reduced while converging to u, = 0.25.

Regarding the substance concentration v, by ¢ = 0.1, diffusion has already flattened the shape of the solution, which similarly
approaches v, = 0.75 as time passes.

For the study of the convergence, the time evolution of |[u(.,?) — u,|| =) and |[v(.,1) — v, || =g, are represented in Fig. 7.
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Fig. 7. Convergence of the solution represented in Fig. 5 to the steady state (u,,v,) = (0.25,0.75) in L*®() norm.

It is worth noting that both solutions actually achieve their corresponding steady state value, u, and v, independently at a finite
time. For u, this occurs shortly before ¢ = 2, while for v it is close to r = 4. However, as the equilibrium values are not reached
simultaneously, the solution keeps evolving, until for larger values of 7, both u and v asymptotically converge to u, and v,

6.2. Periodicity

Having studied the dynamics of system (4) for constant values of f, we now turn to time-periodic supplies, with the aim of
describing the resulting asymptotically periodic regime.

6.2.1. The case a =0

We first consider the case a = 0, for which the threshold r;, was characterized in (17). We recall that for a given T—periodic
function f(r) —to which f converges in time— if its average value over one period exceeds the logistic growth rate r, then the
solution (&, 0) of system (5) satisfies # — 0 as 1 - oo. If, on the other hand the average of £ is less than r, there exists a unique positive
T—periodic solution to system (5) characterized by the initial values (13) and (15), to which any other solution with positive initial
values converges.

Since for any pair of initial values u(x,0) and v(x, 0), the solution (u, v) to the original PDE system (4) is known to converge in time
to the solution of the associated ODE system (5) with initial values (6), the asymptotic periodic behavior of solutions to system (4)
in the case a = 0 is fully characterized by the threshold r,.

To begin the numerical study, we first consider the time-periodic supply

fGx,)=0.5-[1 +cos(z1)], (37)

of period T = 2, and the parameter set (34), except for a, which we keep fixed at a = 0.
To determine wether f induces a periodic response in the system or not, we compute the threshold r,;, from (17). For this choice
of £, as it is directly spatially homogeneous, we have f = f, and thus

A 1 /?
Fiin = ?/0 f(s)ds= 5/0 0.5 - [1 +cos(zs)] ds = 0.5.

As the logistic growth rate of the species satisfies r = 1 > 0.5 = r;;,, the solution to system (4) will asymptotically reach a periodic
regime for any positive pair of initial values u(x,0) and v(x,0). To characterize this periodic regime, we determine the initial values
(#1y, 0y) for the ODE system, as given in (13) and (15). First

1 T, 1 1
UO:eT—l/o f(s)e’ ds=§<l+ﬂ_2—+1>, (38)
and with it
| .
o(t) = 2 <1 + 211 (7r sin(zt) + cos(m‘))). 39
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Fig. 8. Numerical solution to system (4) with parameters (34) except for a =0, f(x,1) in (37) (satisfying r > r;,) and initial values (41).
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Fig. 9. Convergence of the solution (u, v) from Fig. 8 to (&, 0) at x = 1/2.

This allows us to compute i, as

T
/ (r—0(s)) ds
. e/0 -1

7 S
T / (r—0(r)) dr
/ relo ds

0

~ 0.5214 (40)

To study how the numerical solution to the PDE system converges to the unique positive periodic solution (i, &) of the ODE system
(5) generated by (38) and (40), we select a pair of initial values. For instance, similar to those of the previous example, we consider

u(x,0) = 0.3 +0.1-sin(zx), v(x,0)=0.3-sin(zx). (41)

The evolution of u and v is depicted in Fig. 8, where the asymptotic periodicity can already be observed.

To better analyze the transition toward the periodic regime and the convergence of (u, v) to (&, 0), we fix x = 1/2 and plot in Fig. 9
the time evolution of u and v at said coordinate.

Given the shape of the initial bacterial and substance distributions —with both having a maximum precisely at x = 1/2— as in
previous case, the bacterial population migrate away from the center of the domain, as reflected by the sudden decrease of u(1/2,1)
in the first instants. Diffusion causes v(1/2,t) to also decrease initially, albeit less intensely. From there on, the logistic dynamics of
the bacteria and the external supply of the substance boost the growth of both u and v. With r being sufficiently large, the bacteria
soon grow until reaching a first maximum near ¢ = 2. The death term —uv prevents a greater increase of the population, which begins
to oscillate, indicating the periodic response to the source. This translates into an eventual convergence to i, with both curves being
nearly identical soon after 1 = 8. The convergence of v to ¥ is faster, having very similar values already at t = 4.
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Fig. 10. Numerical solution to system (4) with parameters (34) except for a = 0, f(x,7) in (42) (satisfying r < r,;,) and initial values (41).

min

Evolution of u, v at z = 1/2
0.4 ;

0.3 4

0.2 7

u(1/2,t)

t

Fig. 11. Convergence of the solution (u, v) from Fig. 10 to (&, 0) at x = 1/2.

In addition to the solution trajectories, the figure includes gray dashed horizontal lines corresponding to (u,, v,), the steady state
(7), computed by taking the average of f as the constant supply rate. This shows that, in this periodic regime, the dynamics of the
system are governed by oscillations around the equilibrium associated to a constant supply of the average value of f.

Secondly, we consider the same biological setting, in terms of the parameter set (34) with a = 0 and the initial values (41), but
with a new supply term, given by

fx.t)=15-[1 + cos(nt)]. (42)

This choice of f entails the same periodic structure as the previous one considered in (37), but with a larger amplitude factor. Again,
since f contains no spatial heterogeneities, we have f = f, with a corresponding threshold value of

2
Pt = %/0 1.5 [1 + cos(zs)] ds = 1.5.

Hence, only a species with a logistic growth rate above r;, = 1.5 can sustain a periodic regime of the type described above. For this
case, however, as r = 1 < r,;,, the largeness of f is expected to drive the population to zero due to the high concentration of the
substance.

The corresponding numerical solution is shown in Fig. 10. As expected, instead of converging to a time-periodic solution, the
bacterial density u suffers an oscillating decay. In this regime, the logistic growth of the species is insufficient to compensate for the
high concentrations that the substance reaches, which induce a strong death term —uv.

In contrast, the periodicity of f is inherited only by the substance concentration v, which asymptotically reaches a periodic regime,
as can be deduced from the explicit expression for & given in (12), which is independent of r. This can be further visualized in Fig. 11,
where the time evolution of u and v is depicted at the fixed coordinate x = 1/2, showing on the one hand the decay for u and on the
other hand the asymptotic periodicity for v.
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Fig. 12. Numerical solution to system (4) with parameters (34), f(x,?) in (37) and initial values (41).

Evolution of u, v at © = 1/2

0.4 T T T T T T T T T =

u(1/2,1)

0.2 1 L 1 | | 1 I 1 1
0

Fig. 13. Convergence to periodic solutions at x = 1/2.

6.2.2. The case a > 0

To complete the study of the periodic dynamics, we consider one example with a > 0, where the substance is self-produced by
the bacteria. While time convergence of (u,v) to (&, 9) still holds uniformly in Q, explicit threshold conditions characterizing the
periodicity of (@, §) are still lacking.

We take the full parameter set (34) (again with a = 1), the initial values (41) and the supply f considered in (37), which resulted
in asymptotically periodic behavior for the case a = 0.

The numerical solutions are represented in Fig. 12, again with the time evolution at x = 1/2 in Fig. 13, including the reference
values (u,,v,) computed again by taking again the average of /' over one period as a constant supply.

As can be seen in both figures, both « and v again appear to converge toward an asymptotically periodic regime, although with
stark contrast to the results obtained for this same scenario with a = 0, depicted in Fig. 8. In the present case, the positive value
of a results in a decrease of the associated value of u,, from the previous 0.5 for a = 0 to the current 0.25. Consequently, since the
initial value u(x, 0) now lies significantly above u,, after a short time span in which chemotaxis governs the dynamics of the system,
u experiences a decrease until approaching u,, around which the periodic oscillations are centered.

For the substance concentration v, the self-production term leads to overall higher results, nearly reaching 1 at x = 1/2, shortly
after = 2, at the time when the bacterial density is also at its maximum. The associated value of v, is now higher as well, from 0.5
for a = 0 to 0.75 in this case.

Thus, the periodicity induced by the supply f is preserved for this case with a > 0. However, the self-production of the substance
alters the periodic regime by increasing the average substance concentration, which in turn results in a decrease in the level around
which the bacterial density oscillates.
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Fig. 14. Numerical solution to system (4) with parameter values (43) and initial values (44).
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Fig. 15. Evolution of the u component of the solution from Fig. 14.

6.3. Arising patterns

Lastly, we devote this section to show some spatial patterns that can be generated by system (4) under certain parameter con-
figurations, when local stability is not preserved. The topic of pattern formation in chemotaxis systems has been widely studied, for
instance in [30], where a large range of one-dimensional patterns are described.

To obtain meaningful results, we consider a longer domain, in this case Q = (-, z) and first take the following parameters

D=01, y=9, r=1, a=1, f(x.H=0. (43)

Notice that in this case the process in mainly chemotaxis-driven, due to the largeness of y. As initial values, we consider a small
perturbation around (v*, v*) = (0.5,0.5), given by

u(x,0) =u* =05, ov(x,0)=0*+0.01-sin(8x) = 0.5+ 0.01 - sin(8x). (44)

The numerical solution up to ¢ = 15 is represented in Fig. 14. Focusing on the bacterial density u, we observe the formation of localized
clusters of bacteria with high population densities, while other regions of the domain remain nearly empty.

To better illustrate the emergence, interaction, and merging of these clusters, Fig. 15 represents several time profiles of the solution
u, together with a vertical view of the left panel in Fig. 14.

We observe that until 7 = 2, the solution remains close to the homogeneous equilibrium «*, with different small aggregations whose
amplitudes are bounded between 0.4 and 0.6. From this time onward, certain peaks start to emerge, as can be seen at the left panel
at r = 4. The highest bacterial concentrations are located near x = -2, x = —0.5, x = 1 and the boundary x = =.

The two central peaks eventually merge into a single aggregate, shortly before = 5, which can be better visualized in the right
diagram. The remaining two interior clusters merge again before r = 7.5. At this stage, the bacterial density at the center of the
resulting cluster is nearly 4, significantly exceeding the carrying capacity of the logistic model, which is normalized to 1. As a result,
the population density subsequently decreases.

Finally, a third peak emerges near the left boundary x = —z after + = 12, as shown in the right panel, which can also be seen in
the final profile at ¢+ = 15, where all population densities have already fallen below 2.
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Fig. 16. Numerical solution to system (4) with parameter values (43) and initial values (44).

Table 1
Maximum error in /* for three different meshes
and numerical order of convergence.

Number of nodes [* norm of the error  O.C.

10 0.00114 -
19 5.4183 .10~ 2.103
37 2.0811-107* 2.603

Similar patters also arise when considering a larger domain, for instance by considering Q = (—37”, 37”), with the same parameters

as in (43), except for y = 6. The results are represented once again in Fig. 16, only for the u component of the solution, with different
time profiles on the left panel and a vertical view on the right one.

Though at the initial stages, up to approximately 7 = 5, the solution does not present great spatial heterogeneity, four distinct
bacterial clusters eventually emerge, shortly before r = 7. First, one near the left boundary; two at the center of the domain, which
subsequently merge into a single aggregate at around ¢ = 11.5, and a fourth one on the right half of the domain. Due to the lower
value of y compared to the previous case, these aggregations do not attain the same high population densities. In particular, the
bacterial density remains below 2.5 throughout the simulation —reached when both central clusters merge— whereas previously the
maximum value was slightly below 5.

6.4. Numerical order of convergence

As a final remark, in this last subsection we numerically estimate the order of convergence (O.C.) of the proposed scheme. We
compare an artificial solution over three different meshes with 10, 19 and 37 nodes, yielding the results in Table 1, where we see
that the estimated order of convergence is close to its actual value, 2.

7. Conclusions

Throughout this paper, a mathematical model describing the interaction between a biological species and a chemical substance,
was presented and analyzed. The model, governed by system (4), incorporates cell motility, negative chemotaxis, and logistic growth
for the bacterial population, together with lethality induced by the substance and an external supply term.

The local stability of the spatially homogeneous steady states was studied in Section 2 for constant supply rates f. Two different
equilibria, (0, /) and (u,,v,), given in (7), were obtained. The coexistence equilibrium (u,, v,) is biologically meaningful only when
the logistic growth rate r satisfies r > f. In this regime, as the growth rate of the species exceeds the external supply, the state (0, /)
is unstable, whereas (u,, v,) is locally asymptotically stable. Conversely, if r < f, the external supply dominates the bacterial growth,
and (0, /) becomes locally asymptotically stable, with any bacterial proliferation being suppressed by the high concentration of the
chemical substance.

In Section 3, the case of an asymptotically time-periodic source function f was studied, through a reduction to the associated
ODE system (5). In the absence of self-production of the substance by the bacteria (that it, the case a = 0), an explicit expression
for the second component & could be obtained, which allowed us to characterize the initial conditions leading to periodic solutions.
Moreover, a threshold value r;,, defined in (17), was obtained, in terms of the average of the periodic supply over one period.
This threshold guarantees the existence of a unique positive T-periodic solution to the ODE system whenever r > r.,;., constructed
by means of the initial data (13) and (15). Under these conditions, solutions of the full PDE system converge asymptotically in time
to this periodic regime. If, on the contrary, r < r,;, no such solution exists, leading the bacterial density u to a time decay toward
extinction.
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The remainder of the paper was devoted to numerical investigations. In Section 4, a brief introduction to the Generalized Finite
Difference (GFD) method is provided, which we employ to approximate the solution of the model. The explicit numerical scheme
(22) was presented in Section 5, together with a stability condition on the time step ensuring convergence, established in Theorem 1.

Numerical simulations presented in Section 6 confirm the analytical results on linear stability and periodic behavior obtained in
the previous section. In particular, the stability properties of the equilibria for the cases r < f and r > f were illustrated in Figs. 1-2,
and Figs. 3-7, respectively. The convergence toward time-periodic solutions was also demonstrated numerically, first for a = 0 both
in the regime r > r;,, where solutions converge to a positive periodic orbit (Fig. 9), and in the case r < r,;,, where the bacterial
population exhibits an oscillatory decay (Fig. 11), as well as for a > 0, where asymptotic periodicity was also obtained (Fig. 13).
Finally, qualitative observations on pattern formation in the full PDE system and numerical convergence properties of the scheme
were reported in Figs. 14-16 and Table 1, respectively.
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