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 a b s t r a c t

In this work, we propose and analyze a mathematical model describing the interaction between a 
biological species and a lethal chemical substance, incorporating diffusion, negative chemotaxis, 
logistic growth, and toxicity effects. Motivated by the interaction between E. coli bacteria and 
hydrogen peroxide, the model accounts for a substance that simultaneously induces cell death 
and is self-produced by the population.
 The dynamics are described by a system of nonlinear parabolic partial differential equations 
with an external supply of the substance. For constant supply rates, we study the local stability 
of spatially homogeneous steady states, showing that the balance between the logistic growth 
rate and the supply determines the linearized behavior of the system. When the supply is asymp-
totically time-periodic, we establish threshold conditions for the existence of periodic solutions 
through the analysis of an associated ODE system.
 A numerical scheme based on the Generalized Finite Difference method is developed, and 
its convergence to the continuous solution is established. Numerical simulations are presented 
to validate the analytical results and to illustrate additional dynamical phenomena, including 
pattern formation.

1.  Introduction

Chemotaxis is a biological phenomenon by which certain cells and organisms are able to direct their movement in response 
to chemical stimuli. Through specialized receptors, cells can detect spatial gradients in the concentration of chemical substances, 
resulting in motion toward higher concentrations, a behavior known as positive chemotaxis, or away from them, referred to as 
negative chemotaxis.

In this paper, we propose and analyze a system of two nonlinear parabolic partial differential equations modeling the dynamics 
of a bacterial population in competitive interaction with a lethal chemical substance —for instance an antibiotic— that can be self-
produced by the bacteria.

It is assumed that bacterial motion is driven by random diffusion and negative chemotaxis in response to the chemical concentra-
tion. The population dynamics of the species are described by a logistic growth term, while the substance undergoes a degradation 
process in the form of an exponential decay. In addition, terms representing cell death and the production of the substance by the 
bacteria are incorporated, as well as an external supply of the substance, by means of a known source function 𝑓 .

Such interactions occur in nature, for instance in the case of E. coli bacteria and hydrogen peroxide (𝐻2𝑂2). It has been shown that 
E. coli cells naturally produce between 10 and 15 𝜇M of 𝐻2𝑂2 per second [1,2]. Moreover, 𝐻2𝑂2 acts as a chemorepellent (negative 
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\begin {equation}\label {1.1} \begin {cases} \displaystyle \frac {\partial u}{\partial t} = D_u \Delta u + \chi \nabla \cdot ( u \nabla v) + ru\left (1-\frac {u}{K} \right ) - \delta u v , & \quad x \in \Omega , ~ t > 0, \\[1.5ex] \displaystyle \frac {\partial v}{\partial t} = D_v \Delta v + a u - bv + f(x,t), & \quad x \in \Omega , ~ t > 0, \\[1.5ex] \displaystyle \frac {\partial u}{\partial \nu } = \frac {\partial v}{\partial \nu } = 0, & \quad x \in \partial \Omega , ~ t>0, \\ \displaystyle u(x,0) = u_0(x), \quad v(x,0) = v_0(x), & \quad x \in \Omega , \end {cases}\end {equation}


$\Omega \subset \mathbb {R}^n$


$u$


$v$


$D_u > 0$


$D_v>0$


$\chi > 0$


$r>0$


$K > 0$


$\delta > 0$


$a \geq 0$


$b > 0$


$f(x,t) \geq 0$


$x\in \Omega , ~t>0$


$a=0$


$u_0(x)$


$v_0(x)$


\begin {equation}\label {i1} \begin {cases} \displaystyle \frac {\partial u}{\partial t} = D_1 \Delta u - \nabla \cdot (\chi u \nabla v) + f(u), & \quad x \in \Omega , ~ t > 0,\\[1.5ex] \displaystyle \tau \frac {\partial v}{\partial t} = D_2 \Delta v + a u - b v , & \quad x \in \Omega , ~ t > 0, \end {cases}\end {equation}


$\chi , ~a, ~b$
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$\tau \in \{0,1\}$
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\begin {equation}\label {i2} \begin {cases} \displaystyle \frac {\partial u}{\partial t} = D_1 \Delta u - \chi _1 \nabla \cdot ( u \nabla w) + \mu _1 u (1 - u - a_1 v), & \quad x \in \Omega , ~ t > 0,\\[1.5ex] \displaystyle \frac {\partial v}{\partial t} = D_2 \Delta v - \chi _2 \nabla \cdot ( u \nabla w) + \mu _2 v (1 - a_2 u - v), & \quad x \in \Omega , ~ t > 0, \\[1.5ex] \displaystyle \tau \frac {\partial w}{\partial t} = D_3 \Delta w - \gamma w + \alpha u + \beta v, & \quad x \in \Omega , ~ t > 0, \end {cases}\end {equation}
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$v$


$w$


$\tau = 1$


$n \leq 2$


$\mu _1$
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$\tau = 0$


$0 < {a_1}, a_2 < 1)$
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$\mu _2$


$\chi _1$


$\chi _2$


\begin {equation*}\displaystyle \tilde {u} = \frac {u}{K}, ~\tilde {v} = \frac {\delta K}{b} v, ~ \tilde {x} = \sqrt {\frac {b}{D_v}} x, ~ \tilde {t} = bt,\end {equation*}


\begin {equation*}\displaystyle D = \frac {D_u}{D_v}, ~ \tilde {\chi } = \frac {b \chi }{\delta K D_v}, ~\tilde {r} = \frac {r}{b}, ~ \tilde {a} = \frac {a \delta K^2}{b^2}, ~ \tilde {f} = \frac { \delta K}{b^2} f,\end {equation*}


\begin {equation}\label {1.2} \begin {cases} \displaystyle \frac {\partial u}{\partial t} = D \Delta u + \chi \nabla \cdot ( u \nabla v) + ru(1-u) - uv , & \quad x \in \Omega , ~ t > 0, \\[1.5ex] \displaystyle \frac {\partial v}{\partial t} = \Delta v + a u - v + f(x,t), & \quad x \in \Omega , ~ t > 0, \\[1.5ex] \displaystyle \frac {\partial u}{\partial \nu } = \frac {\partial v}{\partial \nu } = 0, & \quad x \in \partial \Omega , ~ t>0, \\ \displaystyle u(x,0) = u_0(x), \quad v(x,0) = v_0(x), & \quad x \in \Omega . \end {cases}\end {equation}


$f$


$f$


$f$


\begin {equation*}(0,f), \quad (u_*, v_*) := \left (\frac {r-f}{r+a}, \frac {r(f+a)}{r+a} \right ).\end {equation*}


$(u_*, v_*)$


$r > f$


$r < f$


$(0,f)$


$f$


$f$


$\hat {f}: [0, +\infty ) \to \mathbb {R}$


$t$


\begin {equation*}\displaystyle \lim _{t \to + \infty } \sup _{x \in \Omega } |f(x,t) - \hat {f}(t)| = 0.\end {equation*}


$(u,v)$


\begin {equation}\label {1.3} \begin {cases} \displaystyle \frac {d \tilde {u}}{dt} = r\tilde {u}(1-\tilde {u}) - \tilde {u}\tilde {v}, & \quad t>0, \\[1.5ex] \displaystyle \frac {d \tilde {v}}{dt} = a \tilde {u}- \tilde {v} + \hat {f}(t), & \quad t>0, \end {cases}\end {equation}


\begin {equation}\label {1.4} \tilde {u}(0) = \frac {1}{|\Omega |}\int _\Omega u(x,0) ~dx, \quad \tilde {v}(0) = \frac {1}{|\Omega |}\int _\Omega v(x,0) ~dx.\end {equation}


$(\tilde {u}, \tilde {v})$


$\hat {f}$


$a = 0$


$r$


$a>0$


$r$


$(u,v)$


$(\tilde {u},\tilde {v})$


\begin {equation*}\begin {cases} \displaystyle 0 = ru\left (1-u - {\frac {v}{r}}\right ), \\[1.5ex] 0 = a u - v + f(x,t). \end {cases}\end {equation*}


$f(x,t) \equiv f$


\begin {equation}\label {2.1} (0,f), \quad (u_*, v_*) := \left (\frac {r-f}{r+a}, \frac {r(f+a)}{r+a} \right ).\end {equation}


$u$


$v$


$(u_*, v_*)$


$r > f$


$(\bar {u}, \bar {v})$


\begin {equation}\label {2.2} u = \bar {u} + \varepsilon \phi , \quad v = \bar {v} + \varepsilon \eta \end {equation}


$0 < \varepsilon \ll 1$


$\varepsilon ^2$


\begin {equation}\label {2.3} \begin {cases} \displaystyle \frac {\partial \phi }{\partial t} = D \Delta \phi + \chi \bar {u} \Delta \eta {+} [(1-2\bar {u})r - \bar {v}] \phi - \bar {u} \eta , & \quad x \in \Omega , ~ t > 0, \\[1.5ex] \displaystyle \frac {\partial \eta }{\partial t} = \Delta \eta + a \phi - \eta , & \quad x \in \Omega , ~ t > 0, \end {cases}\end {equation}


$\vect {A}_n := - \lambda _n \vect {D} + \vect {J}$


$n \in \{0, 1, 2, \dots \}$


\begin {equation*}\vect {D} = \begin {pmatrix} D & \chi \bar {u} \\ 0 & 1 \end {pmatrix}, \quad \vect {J} = \begin {pmatrix} (1-2\bar {u})r - \bar {v} & -\bar {u} \\ a & -1 \end {pmatrix},\end {equation*}


$\{\lambda _n\}_{n \in \mathbb {N} \cup \{0\}}$


\begin {equation}\label {eigs} 0 = \lambda _0 < \lambda _1 \leq \lambda _2 \leq \dots , \quad \text {with} \lim _{n \to \infty } \lambda _n = + \infty \end {equation}


$- \Delta $


$\Omega $


$(\bar {u}, \bar {v})$


$\vect {A}_n$


$n \in \mathbb {N} \cup \{0\} =: \mathbb {N}_0$


$n$


$\vect {A}_n$


$(\bar {u}, \bar {v})$


$(\bar {u}, \bar {v}) = (0,f)$


\begin {equation*}\vect {A}_n = \begin {pmatrix} -\lambda _n D + r -f & 0 \\ a & -\lambda _n-1 \end {pmatrix},\end {equation*}


$\mu _{n_1} := -\lambda _n D + r -f$


$\mu _{n_2} := -\lambda _n-1$


$\mu _{n_2} < 0$


$n \in \mathbb {N}_0$


$\mu _{n_1}$


$\lambda _0 = 0$


$\mu _{0_1} < 0$


$r < f$


$n \geq 1$


$\lambda _n$


$\mu _{n_1} < \mu _{0_1}$


$(0,f)$


$r < f$


$r > f$


$(\bar {u}, \bar {v}) = (u_*, v_*) = \displaystyle \left (\frac {r-f}{r+a}, \frac {r(f+a)}{r+a} \right )$


$\vect {A}_n$


\begin {equation*}\vect {A}_n = \begin {pmatrix} \displaystyle -\lambda _n D + \frac {r(f-r)}{r+a} & \displaystyle \frac {f-r}{r+a} (\lambda _n \chi + 1)\\ a & -\lambda _n-1 \end {pmatrix}\end {equation*}


$\mu _{n_1}, ~\mu _{n_2}$


$\vect {A}_n$


$n \in \mathbb {N}_0$


$\vect {A}_n$


$2 \times 2$


\begin {align*}{\rm tr}(\vect {A}_n) & = \mu _{n_1} + \mu _{n_2} = -\lambda _n D + \frac {r(f-r)}{r+a} - \lambda _n - 1, \\ \det (\vect {A}_n) & = \mu _{n_1} \mu _{n_2} = - (\lambda _n +1)\left (-\lambda _n D + \frac {r(f-r)}{r+a}\right ) - a \cdot \frac {f-r}{r+a} \cdot (\lambda _n \chi +1).\end {align*}


$r>f$


$\mu _{n_1} + \mu _{n_2} < 0$


$\mu _{n_1} \mu _{n_2} >0$


$n \in \mathbb {N}_0$


$(u_*, v_*)$


$r < f$


$(0,f)$


$r > f$


$(0,f)$


$(u_*,v_*)$


$(0,f)$


$(u_*,v_*)$


$r < f$


$(0,f)$


$-uv$


$v$


$f$


$r > f$


$(0,f)$


$(u_*, v_*)$


$u$


$v$


$-uv$


$D$


$\chi $


$a$


$f$


$r$


$f$


\begin {equation*}\displaystyle \lim _{t \to + \infty } \sup _{x \in \Omega } |f(x,t) - \hat {f}(t)| = 0,\end {equation*}


$\hat {f}$


$T>0$


$(u,v)$


$(\tilde {u}, \tilde {v})$


$u(x,0)$


$v(x,0)$


$(\tilde {u}, \tilde {v})$


$\hat {f}$


$(u,v)$


$a = 0$


\begin {equation}\label {3.1} \begin {cases} \displaystyle \frac {d \tilde {u}}{dt} = r\tilde {u}(1-\tilde {u}) - \tilde {u}\tilde {v}, & \quad t>0, \\[1.5ex] \displaystyle \frac {d \tilde {v}}{dt} = - \tilde {v} + \hat {f}(t), & \quad t>0, \end {cases}\end {equation}


$\tilde {v}$


\begin {equation}\label {3.2} \tilde {v}(t) = e^{-t} \left [ \tilde {v}_0 + \int _0^t \hat {f}(s) e^s ~ds \right ] .\end {equation}


$\hat {f}$


$T-$


$\tilde {v}$


$T-$


$\tilde {v}(T) = \tilde {v}_0$


$v_0$


\begin {equation}\label {3.3} \tilde {v}_0 = \frac {1}{e^T - 1} \int _0^T \hat {f}(s) e^s ~ds.\end {equation}


$\tilde {u}$


$\tilde {v}$


$\tilde {w} = \tilde {u}^{-1}$


$\tilde {w}$


\begin {equation}\label {3.5} \tilde {w}(t) = e^{ \displaystyle -\int _0^t (r-\tilde {v}(s)) ~ds} \left [ \frac {1}{\tilde {u}_0} + \int _0^t \left ( r ~e^{\displaystyle \int _0^s (r- \tilde {v}(\tau ))~ d \tau } \right ) ~ds\right ].\end {equation}


$\tilde {v}$


$\tilde {v}_0$


$\tilde {u}$


$\tilde {u}(T) = \tilde {u}_0$


$\tilde {w}(T) = \tilde {w}_0 := 1/\tilde {u}_0$


\begin {equation}\label {3.6} \tilde {u}_0 = \frac {e^{\displaystyle \int _0^T (r-\tilde {v}(s)) ~ds} - 1}{ \displaystyle \int _0^T \left ( r ~e^{\displaystyle \int _0^s (r- \tilde {v}(\tau ))~ d \tau } \right ) ~ds} .\end {equation}


$(\tilde {u}, \tilde {v})$


$T-$


$(\tilde {u}_0,\tilde {v}_0)$


$(\tilde {u}_0, \tilde {v}_0)$


$u(x,0)$


$v(x,0)$


$\tilde {u}_0$


\begin {equation*}e^{\displaystyle \int _0^T (r-\tilde {v}(s)) ~ds} - 1 > 0,\end {equation*}


\begin {equation*}r > \frac {1}{T} \int _0^T \tilde {v}(s) ~ds.\end {equation*}


\begin {equation}\label {3.8} r_{\min } = \frac {1}{T} \int _0^T \tilde {v}(s) ~ds.\end {equation}


$r > r_{\min }$


$(\tilde {u}_0, \tilde {v}_0)$


$(\tilde {u},\tilde {v})$


$T-$


$r \leq r_{\min }$


$\tilde {u} \to 0$


$t \to \infty $


$r$


$\hat {f}$


$\tilde {v}$


$r$


$\tilde {v}$


$\tilde {v}_0$


\begin {equation}\label {3.9} r_{\min } = \frac {1}{T} \int _0^T \hat {f}(s) ~ds.\end {equation}


$\hat {f}$


$r_{\min }$


$r$


$\hat {f}$


$[0,T]$


$r>f$


$(u_*, v_*)$


$a>0$


$\Omega $


$\mathbb {R}^m$


$M=\{\bm {x}_1,\bm {x}_2,\ldots \bm {x}_N\}$


$m = 2$


$M$


$\bm {x}_0$


$\bm {x}_0$


$V=\{\bm {x}_1,\bm {x}_2,\dots ,\bm {x}_s\}\subset M \setminus \{\bm {x}_0\}$


$s$


$E_s-$


$s$


$f(\bm {x},t)$


$\bm {x}_0 := (x_0, y_0)$


$F^n_i$


$f(\bm {x}_i,n\Delta t)$


$n$


\begin {equation}\label {4.1} F_i \approx F_0+(\bm {x}_i-\bm {x}_0)\nabla F_0+\frac {1}{2}(\bm {x}_i-\bm {x}_0)^{T}H_{F_0}(\bm {x}_i-\bm {x}_0).\end {equation}


\begin {equation*}\bm {d} :=\displaystyle {\Biggl (\dfrac {\partial F_0}{\partial x},\frac {\partial F_0}{\partial y},\frac {\partial ^2 F_0}{\partial x^2},\frac {\partial ^2 F_0}{\partial y^2},\frac {\partial ^2 F_0}{\partial x\partial y}\Biggr )}^T, \quad \bm {c}_i=\displaystyle \left (h_i,k_i,\frac {h_i^2}{2},\frac {k_i^2}{2},h_ik_i \right )^T,\end {equation*}


$\bm {d}$


$\bm {c}_i$


$\bm {x}_i := (x_i,y_i)\in V$


$h_i :=x_i-x_0$


$k_i :=y_i-y_0$


$F_i$


$i \in \{1, \dots , s\}$


$\bm {x}_0$


\begin {equation*}B(\bm {d})=\sum _{i=1}^{s}w_i^2(F_0-F_i+\bm {c}_i^{T}\bm {d})^2 +\mathcal {O}(h_i^2,k_i^2).\end {equation*}


$w_i=w(h_i,k_i)$


$\bm {x}_0$


$\textnormal {dist}^{-4}$


$\textnormal {dist}^{-6}$


$e^{-\textnormal {dist}^2}$


$f$


$B$


$\bm {d}$


\begin {equation*}\sum _{i=1}^{s}w_i^2\bm {c}_i\bm {c}_i^{T}\bm {d}=-\sum _{i=1}^{s}w_i^2(F_0-F_i)\bm {c}_i.\end {equation*}


$\bm {A}:=\displaystyle \sum _{i=1}^sw^2_i\bm {c}_i\bm {c}_i^{T} \in \mathcal {M}_{5 \times 5}(\mathbb {R})$


\begin {equation}\label {eq10} \bm {A}= \begin {pmatrix} h_1 & h_2 & \cdots & h_s \\ k_1 & k_2 & \cdots & k_s \\ \displaystyle \frac {h_1^2}{2} & \displaystyle \frac {h_2^2}{2} & \cdots & \displaystyle \frac {h_s^2}{2}\\ \displaystyle \frac {k_1^2}{2} & \displaystyle \frac {k_2^2}{2} & \cdots & \displaystyle \frac {k_s^2}{2}\\ h_1k_1 & h_2k_2 & \cdots & h_sk_s \\ \end {pmatrix} \cdot \begin {pmatrix} w_1^2 & & & \\ & w_2^2 & & \\ & & \ddots & \\ & & & w_s^2 \\ \end {pmatrix} \cdot \begin {pmatrix} h_1 & k_1 & \displaystyle \frac {h_1^2}{2} & \displaystyle \frac {k_1^2}{2} & h_1k_1 \\ h_2 & k_2 & \displaystyle \frac {h_2^2}{2} & \displaystyle \frac {k_2^2}{2} & h_2k_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ h_s & k_s & \displaystyle \frac {h_s^2}{2} & \displaystyle \frac {k_s^2}{2} & h_sk_s \\ \end {pmatrix}\end {equation}


$\bm {A}$


\begin {equation*}\bm {d}=-F_0\sum _{i=1}^{s}w_i^2\bm {A}^{-1}\bm {c}_i+\sum _{i=1}^{s}F_iw_i^2\bm {A}^{-1}\bm {c}_i+{\mathcal {O}(h^2,k^2)},\end {equation*}


\begin {equation*}h := \max _{i \in \{1, \dots s\}} h_i, \quad k := \max _{i \in \{1, \dots s\}} k_i.\end {equation*}


\begin {equation*}\boldsymbol m_i=w_i^2\bm {A}^{-1}\bm {c}_i, \quad \boldsymbol m_0=\sum _{i=1}^{s} \boldsymbol m_i,\end {equation*}


$\boldsymbol m_0 =:(m_{01},m_{02},m_{03},m_{04},m_{05})^{T}$


$\boldsymbol m_i$


$f$


\begin {equation}\label {discretizacion} \left \lbrace \begin {array}{@{}l} \dfrac {\partial F(\textbf {x}_0,n\Delta t)}{\partial x}=-m_{01}F^n_0+\sum _{i=1}^sm_{i1}F^n_i+ {\mathcal {O}(h^2,k^2)},\\ \dfrac {\partial F(\textbf {x}_0,n\Delta t)}{\partial y}=-m_{02}F^n_0+\sum _{i=1}^sm_{i2}F^n_i+{\mathcal {O}(h^2,k^2)},\\ \dfrac {\partial ^2 F(\textbf {x}_0,n\Delta t)}{\partial x^2}+\dfrac {\partial ^2 F(\textbf {x}_0,n\Delta t)}{\partial y^2}=-(m_{03}+m_{04})F^n_0+\sum _{i=1}^s(m_{i3}+m_{i4})F^n_i\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \;\; =:-m_{00}F_0+\sum _{i=1}^sm_{i0}F_i+{\mathcal {O}(h^2,k^2)}. \end {array}\right .\end {equation}


\begin {equation}\label {timeApprox1} \frac {\partial F(\textbf {x}_0,n\Delta t)}{\partial t}=\frac {F^{n+1}_0-F^{n}_0}{\Delta t}+\mathcal {O}(\Delta t),\end {equation}


\begin {equation}\label {esquema2d1} \left \lbrace \begin {array}{@{}l} u_0^{n+1}=~u_0^n+\Delta t\Bigl [D\Bigl (-m_{00}u_0^n+\sum ^{s}_{i=1}m_{0i}u^n_i\Bigr )-\chi u^n_0\Bigl (-m_{00}v_0^n+\sum ^{s}_{i=1}m_{0i}v^n_i\Bigr )\Bigr ] \\ \quad \quad \quad +\chi \Delta t\Bigl (-m_{01}u_0^n+\sum ^{s}_{i=1}m_{i1}u_i^n\Bigr )\Bigl (-m_{01}v_0^n+\sum ^{s}_{i=1}m_{i1}v_i^n\Bigr ) \\ \quad \quad \quad +\chi \Delta t\Bigl (-m_{02}u_0^n+\sum ^{s}_{i=1}m_{i2}u_i^n\Bigr )\Bigl (-m_{02}v_0^n+\sum ^{s}_{i=1}m_{i2}v_i^n\Bigr ) \\ \quad \quad \quad +\Delta t \cdot r u^n_0\big (1-u^n_0\big )-\Delta t \cdot u^n_0v^n_0 \vphantom {\Bigl (}, \\ v_0^{n+1}=~v^n_0\Bigl [1-\Delta t\cdot (1+m_{00})\Bigr ]+\Delta t\cdot a u_0^n+\Delta t\sum _{i=1}^{s}m_{0i}v^n_i+f^n_0, \end {array}\right .\end {equation}


$t=0$


$u(x,0)$


$v(x,0)$


$\Delta t$


\begin {equation}\label {esquema2d3} \begin {aligned} A_1:&=\Bigl |\chi V_0^n \big (m_{01}^2 + m_{02}^2 \big ) - \chi \Bigl (m_{01}\sum _{i=1}^sm_{i1}V_i^n+m_{02}\sum _{i=1}^s m_{i2}V_i^n\Bigr )\\ & -(\chi -\mu )(u_0^n+U_0^n)+\chi V_0^n-\mu \big (1+f(x_0,y_0,n\Delta t)\big )\Bigr |\\ &+ \chi v_0^n \Bigl ( | m_{01}|\sum _{i=1}^s|m_{i1}|+ | m_{02}|\sum _{i=1}^s|m_{i2}| \Bigr )\\ &+\chi \Bigl ( \Bigl |\sum _{i=1}^sm_{i1}V_i^n\Bigr |\sum _{i=1}^s|m_{i1}|+ \Bigl |\sum _{i=1}^sm_{i2}V_i^n\Bigr |\sum _{i=1}^s|m_{i2}| \Bigr ) , \end {aligned}\end {equation}


\begin {equation}\label {esquema2d4} \begin {split} B_1:&=\Bigl |-\chi u_0^n (m_{01}^2+m_{02}^2 + 1 )+\chi \Bigl ( m_{01}\sum _{i=1}^sm_{i1}u_i^n + m_{02}\sum _{i=1}^sm_{i2}u_i^n \Bigr )\Bigr | \\ &+\chi U_0^n \Bigl ( | m_{01}|\sum _{i=1}^s|m_{i1}| +| m_{02}|\sum _{i=1}^s|m_{i2}| \Bigr ) \\& +\chi \Bigl ( \Bigl |\sum _{i=1}^sm_{i1}U_i^n \Bigr |\sum _{i=1}^s|m_{i1}| + \Bigl |\sum _{i=1}^sm_{i2}U_i^n\Bigr |\sum _{i=1}^s |m_{i2}| \Bigr ), \end {split}\end {equation}


$L^\infty (\Omega )$


$U,V\in \mathcal {C}^4({\Omega \times (0,\infty )})$


\begin {equation}\label {cond} \Delta t<\min \displaystyle \Bigg \{\dfrac {2}{Dm_{00}+D\sum _{i=1}^s|m_{i0}|+A_1+B_1},\dfrac {2}{1+m_{00}+\sum _{i=1}^s|m_{i0}|+a}\Bigg \},\end {equation}


$A_1$


$B_1$


$u_j^n$


$u$


$j$


$n \Delta t$


$v^n_j$


$U^n_j$


$V^n_j$


\begin {equation*}\tilde {u}_j^n := u_j^n-U_j^n, \quad \tilde {v}_j^n:=v_j^n-V_j^n\end {equation*}


$u$


\begin {equation}\begin {split}\label {esquema2d7} \tilde {u}_0^{n+1}=~&\tilde {u}_0^{n}+D\Delta t\Bigl (-m_{00}\tilde {u}_0^{n}+\sum _{i=1}^{s}m_{i0}\tilde {u}_i^{n}\Bigr )\\ &+\chi \Delta t\Big [\Bigl (-m_{01}u_0^{n}+\sum _{i=1}^{s}m_{i1}u_i^{n}\Bigr )\Bigl (-m_{01}v_0^{n}+\sum _{i=1}^{s}m_{i1}v_i^{n}\Bigr )\\ & \qquad -\Bigl (-m_{01}U_0^{n}+\sum _{i=1}^{s}m_{i1}U_i^{n}\Bigr )\Bigl (-m_{01}V_0^{n}+\sum _{i=1}^{s}m_{i1}V_i^{n}\Bigr )\Big ]\\ &+\chi \Delta t\Bigl [\Bigl (-m_{02}u_0^{n}+\sum _{i=1}^{s}m_{i2}u_i^{n}\Bigr )\Bigl (-m_{02}v_0^{n}+\sum _{i=1}^{s}m_{i2}v_i^{n}\Bigr )\\ & \qquad -\Bigl (-m_{02}U_0^{n}+\sum _{i=1}^{s}m_{i2}U_i^{n}\Bigr )\Bigl (-m_{02}V_0^{n}+\sum _{i=1}^{s}m_{i2}V_i^{n}\Bigr )\Bigr ] \\& -\chi \Delta t \Bigl [ m_{00}(\tilde {u}^n_0v^n_0+U^n_0\tilde {v}^n_0) - \Bigl (\tilde {u}^n_0\sum _{i=1}^sm_{i0}v^n_i+U^n_0\sum _{i=1}^sm_{i0}\tilde {v}^n_i\Bigr ) \Bigr ]\\& -\Delta t \Bigl [ r\tilde {u}^n_0[1-(u^n_0+U^n_0)]-\tilde {u}^n_0 v^n_0-U^n_0\tilde {v}^n_0 \Bigr ]+{\mathcal {O}(\Delta t,h^2,k^2).} \end {split}\end {equation}


\begin {equation}\begin {split}\label {esquema2d12} \tilde {u}_0^{n+1}=& ~\tilde {u}_0^{n}\Bigl [1-\Delta t \Bigl (Dm_{00}+\chi m_{01}^2V_0^n+\chi m_{02}^2V_0^n \Bigr )\\& \qquad -\Delta t\chi \Bigl (m_{01}\sum _{i=1}^sm_{i1}v_i^n+m_{02}\sum _{i=1}^{{s}} m_{i2}v_i^n + \sum _{i=1}^sm_{i0}v^n_i \Bigr )\\ &\qquad -\Delta t \Big (\chi m_{00} v_0^n- r[1-(u^n_0+U^n_0)]- v^n_0 \Bigr )\Bigr ] \\& +\Delta t\Bigl [D\sum _{i=1}^sm_{i0}\tilde {u}_i^n -\chi m_{01}V_0^n\sum _{i=1}^sm_{i1}\tilde {u}_i^n -\chi m_{02}V_0^n\sum _{i=1}^sm_{i2}\tilde {u}_i^n\\ & \qquad +\Bigl (\chi \sum _{i=1}^sm_{i1}v_i^n\Bigr )\sum _{i=1}^sm_{i1}\tilde {u}_i^n +\Bigl (\chi \sum _{i=1}^sm_{i2}v_i^n\Bigr )\sum _{i=1}^sm_{i2}\tilde {u}_i^n\Bigr ] \\& +\Delta t ~\tilde {v}_0^n\Bigl [ \chi \Bigl (m_{01}^2+ m_{02}^2)U_0^n- m_{01}\sum _{i=1}^sm_{i1}u_i^n \Bigl )\\ & \qquad -\chi m_{02}\sum _{i=1}^sm_{i2}u_i^n-\chi m_{00} U_0^n-U^n_0\Bigr ]\\ &+\Delta t\Bigl [-\chi m_{01}U_0^n\sum _{i=1}^sm_{i1}\tilde {v}_i^n-\chi m_{02}U_0^n\sum _{i=1}^sm_{i2}\tilde {v}_i^n\\ &\qquad +\chi \Bigl (\sum _{i=1}^sm_{i1}U_i^n\Bigr )\sum _{i=1}^sm_{i1}\tilde {v}_i^n +\chi \Bigl (\sum _{i=1}^sm_{i2}U_i^n\Bigr )\sum _{i=1}^sm_{i2}\tilde {v}_i^n\Bigr ]\\ &+{\mathcal {O}(\Delta t,h^2,k^2).} \end {split}\end {equation}


$\tilde {u}^n:=\max _{i\in \{0,\ldots ,s\}}|\tilde {u}_i^n|$


$\tilde {v}^n:=\max _{i\in \{0,\ldots ,s\}}|\tilde {v}_i^n|$


\begin {equation}\label {esquema2d13} \begin {split} \tilde {u}^{n+1}&\leq \tilde {u}^{n}\Biggl [\hspace {0.05 cm}\Biggl |1-\Delta t\Bigl [Dm_{00}-\chi m_{01}^2V_0^n-\chi m_{02}^2V_0^n +\chi m_{00} v_0^n+v^n_0 \\& \qquad +r[1-(u^n_0+U^n_0)]+\chi \Bigl (m_{01}\sum _{i=1}^sm_{i1}v_i^n+m_{02}\sum _{i=1}^{{s}} m_{i2}v_i^n - \sum _{i=1}^sm_{i0}v^n_i \Bigr ) \Bigr ]\Biggr |\\ & \qquad +\Delta t \hspace {0.05 cm} D\sum _{i=1}^s|m_{i0}| +\chi \Bigl |m_{01}V_0^n\sum _{i=1}^sm_{i1} \Bigr | +\chi \Bigl |m_{02}V_0^n\sum _{i=1}^sm_{i2}\Bigr |\\ &\qquad +\Bigl |\chi \sum _{i=1}^sm_{i1}v_i^n\Bigr |\sum _{i=1}^s|m_{i1}| +\Bigl |\chi \sum _{i=1}^sm_{i2}v_i^n\Bigr |\sum _{i=1}^s|m_{i2}|\Biggr ] \\&~+\tilde {v}^{{n}} \Delta t \Biggl [\hspace {0.05 cm} \Biggl |\chi \Bigl ( (m_{01}^2+ m_{02}^2) U_0^n- m_{01}\sum _{i=1}^sm_{i1}u_i^n - m_{02}\sum _{i=1}^sm_{i2}u_i^n- m_{00} U_0^n \Bigr )-U^n_0\Biggr |\\ & \qquad +\chi \Bigl ( \hspace {0.05 cm}\Bigl |m_{01}U_0^n\sum _{i=1}^sm_{i1}\Bigr | + \Bigl |m_{02}U_0^n\sum _{i=1}^sm_{i2} \Bigr |+\Bigl |\sum _{i=1}^sm_{i1}U_i^n\Bigr |\sum _{i=1}^s|m_{i1}| \Bigr )\\ & \qquad + \chi \Bigl |\sum _{i=1}^sm_{i2}U_i^n\Bigr |\sum _{i=1}^s|m_{i2}|\Biggr ]+{\mathcal {O}(\Delta t,h^2,k^2).} \end {split}\end {equation}


\begin {equation}\label {esquema2d14} \tilde {v}^{n+1}_0=\tilde {v}^n_0\Bigl [1-\Delta t \hspace {0.05 cm}(1+m_{00})\Bigl ]+\Delta t \cdot a\tilde {u}_0^n+\Delta t\sum _{i=1}^{s}m_{0i} {\tilde {v}_i^n}+{\mathcal {O}(\Delta t,h^2,k^2)},\end {equation}


$\tilde {u}^n$


$\tilde {v}^n$


\begin {equation}\label {esquema2d15} \tilde {v}^{n+1}\leq \Delta t \cdot \hspace {0.05 cm}a\tilde {u}^n+\Bigl [\Big |1-\Delta t(1+m_{00})\Big |+\Delta t\sum _{i=1}^{s}|m_{0i}|\Bigr ]\tilde {v}^n+{\mathcal {O}(\Delta t,h^2,k^2).}\end {equation}


\begin {equation}\label {esquema2d16} \left ( \begin {array}{c} \tilde {u}^{n+1} \\ \tilde {v}^{n+1}\\ \end {array} \right )\leq \left ( \begin {array}{cc} M_{11} & M_{12}\\ M_{21} & M_{22}\\ \end {array} \right )\left ( \begin {array}{c} \tilde {u}^n \\ \tilde {v}^n\\ \end {array} \right ) +{\mathcal {O}(\Delta t,h^2,k^2)},\end {equation}


$M_{21}$


$M_{22}$


$M_{11}, M_{12}$


\begin {equation}\label {A1B1} M_{11}=\Bigl |1-\Delta t \cdot D \hspace {0.05 cm}m_{00}\Bigr |+\Delta t \cdot D\sum _{i=1}^s|m_{i0}|+A_1 \cdot \Delta t,\quad M_{12}=\Delta t \cdot B_1,\end {equation}


$A_1$


$B_1$


\begin {equation}M:=\left ( \begin {array}{cc} \displaystyle \Bigl |1-\Delta t \cdot D \hspace {0.05 cm}m_{00}\Bigr |+\Delta t \cdot D\sum _{i=1}^s|m_{i0}|+A_1 \cdot \Delta t & \Delta t \cdot B_1\\ \displaystyle \Delta t \cdot a & \displaystyle \Bigl |1-\Delta t(1+m_{00})\Bigr |+\Delta t\sum _{i=1}^s|m_{i0}|\\ \end {array} \right ). \label {Xeqn33-33}\end {equation}


$M$


$n \to \infty $


$\|\cdot \|_1$


$M$


$\|M\|_1 < 1$


\begin {equation*}\|M\|_1=\Bigl |1-\Delta t\cdot Dm_{00}\Bigr |+\Delta t \cdot D\sum _{i=1}^s|m_{i0}|+A_1 \cdot \Delta t + \Delta t \cdot B_1,\end {equation*}


$\|M\|_1<1$


\begin {equation*}\Bigl |1-\Delta t \cdot Dm_{00} \Bigr | <1-\Delta t \cdot D\sum _{i=1}^s|m_{i0}|-A_1 \cdot \Delta t -\Delta t \cdot B_1,\end {equation*}


\begin {equation*}\Delta t<\dfrac {2}{Dm_{00}+D\sum _{i=1}^s|m_{i0}|+A_1+B_1}.\end {equation*}


\begin {equation*}\|M\|_1=\Delta t \cdot a+\Bigl |1-\Delta t(1+m_{00})\Bigr |+\Delta t\sum _{i=1}^s|m_{i0}|,\end {equation*}


$\|M\|_1 < 1$


\begin {equation*}\Bigl |1-\Delta t (1+m_{00})\Bigr |<1-\Delta t \cdot a-\Delta t\sum _{i=1}^s|m_{i0}|,\end {equation*}


\begin {equation*}\Delta t<\dfrac {2}{1+m_{00}+\sum _{i=1}^s|m_{i0}|+ a}.\end {equation*}


$f$


$r > f$


$r < f$


$r$


\begin {equation}\label {6.1} D = 0.5, \quad \chi = 2, \quad r = 1, \quad a = 1,\end {equation}


$f(x,t)$


$\Omega := (0,1)$


$40$


$\text {dist}^{-4}$


$\Delta t = 2.5 \cdot 10^{-4}$


$\Omega $


$f(x,t) \equiv f$


$r$


$f$


$r<f$


$r<f$


$(0,f)$


\begin {equation*}f(x,t) \equiv 1.5 > 1 = r,\end {equation*}


$u(x,0)$


$v(x,0)$


$(0,f)$


$f$


$r$


$-uv$


$(0,f)$


\begin {equation}\label {6.2} u(x,0) = 0.1 \cdot (1+\cos (3 \pi x)), \quad v(x,0) = 1.5 + 0.01 \cdot \sin (8\pi x),\end {equation}


$(0,f) = (0,1.5)$


$t = 10$


$f = 1.5 > r$


$0 \leq t \leq 2$


$u$


$v$


$u(x,0)$


$v(x,0)$


$u$


$v$


$t = 0.5$


$u$


$v$


$-v$


$v = f = 1.5$


$r > f$


$r > f$


$(0,f)$


$(u_*,v_*)$


\begin {equation*}f(x,t) \equiv 0.5 < 1 = r.\end {equation*}


$(0,f)$


$(u_*, v_*)$


$(0,f)$


$(0,f)$


$f$


$(0,f)$


$(u_*, v_*)$


$f = 0.5 < r$


$r$


$f$


$u_* = 0.25$


$v$


$v_* = 0.75$


$(u_*,v_*)$


$t = 5$


$(u_*,v_*)$


$||u(.,t)-u_*||_{L^\infty (\Omega )}$


$||v(.,t)-v_*||_{L^\infty (\Omega )}$


$(u_*, v_*) = (0.25, 0.75)$


$L^\infty (\Omega )$


$5$


$||u(.,t)-u_*||_{L^\infty (\Omega )}$


$||v(.,t)-v_*||_{L^\infty (\Omega )}$


$0$


$(u_*, v_*)$


\begin {equation}\label {6.3} u(x,0) = u_* + 0.1\cdot \sin (\pi x), \quad v(x,0) = v_* + 0.3 \cdot \sin (\pi x),\end {equation}


$f(x,t) \equiv 0.5 < 1 = r$


$x = 1/2$


$(u_*, v_*)$


$f = 0.5 < r$


$u$


$v$


$u_*$


$v_*$


$(u_*, v_*)$


$t = 0.01$


$u$


$x = 1/2$


$t = 0.1$


$u_* = 0.25$


$v$


$t = 0.1$


$v_* = 0.75$


$||u(.,t)-u_*||_{L^\infty (\Omega )}$


$||v(.,t)-v_*||_{L^\infty (\Omega )}$


$(u_*, v_*) = (0.25, 0.75)$


$L^\infty (\Omega )$


$u_*$


$v_*$


$u$


$t = 2$


$v$


$t=4$


$t$


$u$


$v$


$u_*$


$v_*$


$f$


$a=0$


$a=0$


$r_{\min }$


$T-$


$\hat {f}(t)$


$f$


$r$


$(\tilde {u}, \tilde {v})$


$\tilde {u} \to 0$


$t \to \infty $


$\hat {f}$


$r$


$T-$


$u(x,0)$


$v(x,0)$


$(u,v)$


$a=0$


$r_{\min }$


\begin {equation}\label {6.4} f(x,t) = 0.5 \cdot \big [1+\cos (\pi t)\big ],\end {equation}


$T = 2$


$a$


$a=0$


$f$


$r_{\min }$


$f$


$\hat {f} = f$


\begin {equation*}r_{\min } = \frac {1}{T} \int _0^T \hat {f}(s) ~ds = \frac {1}{2} \int _0^2 0.5 \cdot \big [1+\cos (\pi s)\big ] ~ds = 0.5.\end {equation*}


$r = 1 > 0.5 = r_{\min }$


$u(x,0)$


$v(x,0)$


$(\tilde {u}_0, \tilde {v}_0)$


\begin {equation}\label {6.5} \tilde {v}_0 = \frac {1}{e^T - 1} \int _0^T \hat {f}(s) e^s ~ds = \frac {1}{2} \left (1 + \frac {1}{\pi ^2 + 1} \right ),\end {equation}


\begin {equation}\label {6.6} \tilde {v}(t) = \frac {1}{2} \left (1 + \frac {1}{\pi ^2 + 1} \big (\pi \sin (\pi t) + \cos (\pi t) \big ) \right ).\end {equation}


$\tilde {u}_0$


\begin {equation}\label {n6.7} \tilde {u}_0 = \frac {e^{\displaystyle \int _0^T (r-\tilde {v}(s)) ~ds} - 1}{ \displaystyle \int _0^T \left ( r ~e^{\displaystyle \int _0^s (r- \tilde {v}(\tau ))~ d \tau } \right ) ~ds} \approx 0.5214\end {equation}


$(\tilde {u},\tilde {v})$


\begin {equation}\label {6.8} u(x,0) = 0.3 + 0.1 \cdot \sin (\pi x), \quad v(x,0)= 0.3 \cdot \sin (\pi x).\end {equation}


$u$


$v$


$a=0$


$f(x,t)$


$r>r_{\min }$


$(u,v)$


$(\tilde {u}, \tilde {v})$


$x=1/2$


$(u,v)$


$(\tilde {u}, \tilde {v})$


$x = 1/2$


$u$


$v$


$x = 1/2$


$u(1/2,t)$


$v(1/2,t)$


$u$


$v$


$r$


$t = 2$


$-uv$


$\tilde {u}$


$t = 8$


$v$


$\tilde {v}$


$t = 4$


$(u_*, v_*)$


$\hat {f}$


$\hat {f}$


$a=0$


\begin {equation}\label {6.9} f(x,t) = 1.5 \cdot \big [1+\cos (\pi t)\big ].\end {equation}


$f$


$f$


$\hat {f} = f$


\begin {equation*}r_{\min } = \frac {1}{2} \int _0^2 1.5 \cdot \big [1 + \cos (\pi s)\big ] ~ds = 1.5.\end {equation*}


$r_{\min } = 1.5$


$r = 1 < r_{\min }$


$f$


$a=0$


$f(x,t)$


$r<r_{\min }$


$u$


$-uv$


$f$


$v$


$\tilde {v}$


$r$


$(u,v)$


$(\tilde {u}, \tilde {v})$


$x = 1/2$


$u$


$v$


$x = 1/2$


$u$


$v$


$a>0$


$a > 0$


$(u,v)$


$(\tilde {u}, \tilde {v})$


$\Omega $


$(\tilde {u}, \tilde {v})$


$a=1$


$f$


$a=0$


$f(x,t)$


$x = 1/2$


$x = 1/2$


$(u_*, v_*)$


$\hat {f}$


$u$


$v$


$a=0$


$a$


$u_*$


$0.5$


$a=0$


$0.25$


$u(x,0)$


$u_*$


$u$


$u_*$


$v$


$1$


$x=1/2$


$t=2$


$v_*$


$0.5$


$a=0$


$0.75$


$f$


$a>0$


$\Omega = (-\pi , \pi )$


\begin {equation}\label {6.10} D = 0.1, \quad \chi = 9, \quad r = 1, \quad a=1, \quad f(x,t) \equiv 0.\end {equation}


$\chi $


$(u^*, v^*) = (0.5, 0.5)$


\begin {equation}\label {6.11} u(x,0) = u^* = 0.5, \quad v(x,0) = v^* +0.01 \cdot \sin (8x) = 0.5 +0.01 \cdot \sin (8x).\end {equation}


$t = 15$


$u$


$u$


$u$


$t = 2$


$u^*$


$0.4$


$0.6$


$t = 4$


$x = -2$


$x =-0.5$


$x = 1$


$x = \pi $


$t = 5$


$t = 7.5$


$4$


$1$


$x = -\pi $


$t = 12$


$t = 15$


$\Omega =(-\frac {3\pi }{2},\frac {3\pi }{2})$


$\chi =6$


$u$


$t = 5$


$t=7$


$t = 11.5$


$\chi $


$2.5$


$5$


$l^{\infty }$


$f$


$(0,f)$


$(u_*, v_*)$


$(u_*, v_*)$


$r$


$r>f$


$(0,f)$


$(u_*, v_*)$


$r < f$


$(0,f)$


$f$


$a=0$


$\tilde {v}$


$r_{\min }$


$T$


$r>r_{\min }$


$r \leq r_{\min }$


$u$


$r<f$


$r>f$


$a=0$


$r>r_{\min }$


$r<r_{\min }$


$a>0$
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chemotaxis agent) [3] and, when its concentration can no longer be regulated by the cells’ scavenging enzymes, can induce bacterial 
death [4] (see [5] for an analysis of the effects and killing rates of E. coli under different levels of exposure to 𝐻2𝑂2).

Similar scenarios arise in bacterial species that naturally produce antibiotics, which can at times generate toxic effects against 
the cells themselves. For example, Bacillus subtilis, which produces bacilysin, may be susceptible to its effect under certain mutations, 
resulting in self-inhibition or cell death. A detailed description of how different antibiotic-producing organisms avoid such autotoxicity 
can be found in [6].

To describe these interactions, we model the process by the following initial-boundary value problem
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜕𝑢
𝜕𝑡

= 𝐷𝑢Δ𝑢 + 𝜒∇ ⋅ (𝑢∇𝑣) + 𝑟𝑢
(

1 − 𝑢
𝐾

)

− 𝛿𝑢𝑣, 𝑥 ∈ Ω, 𝑡 > 0,

𝜕𝑣
𝜕𝑡

= 𝐷𝑣Δ𝑣 + 𝑎𝑢 − 𝑏𝑣 + 𝑓 (𝑥, 𝑡), 𝑥 ∈ Ω, 𝑡 > 0,

𝜕𝑢
𝜕𝜈

= 𝜕𝑣
𝜕𝜈

= 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑣(𝑥, 0) = 𝑣0(𝑥), 𝑥 ∈ Ω,

(1)

in a smooth and bounded domain Ω ⊂ ℝ𝑛, where
• 𝑢 and 𝑣 denote the bacterial population density and the chemical concentration, respectively.
• 𝐷𝑢 > 0, 𝐷𝑣 > 0 and 𝜒 > 0 are the diffusion coefficients of the bacteria and the substance, and the negative chemotaxis sensitivity, 
respectively.

• 𝑟 > 0, 𝐾 > 0 and 𝛿 > 0 are the growth rate of the logistic model, its carrying capacity, and the death rate of the bacteria caused 
by the substance, respectively.

• 𝑎 ≥ 0, 𝑏 > 0 and 𝑓 (𝑥, 𝑡) ≥ 0 for all 𝑥 ∈ Ω, 𝑡 > 0 are the self-production rate of the substance by the bacteria (in the case 𝑎 = 0, the 
substance is not secreted by the bacteria, for instance when it represents and exogenous antibiotic), the degradation rate of the 
substance, and the known external supply of substance, respectively.

• 𝑢0(𝑥) and 𝑣0(𝑥) are the nonnegative initial values.

Historically, systems modeling chemotaxis were first introduced in the works of Keller and Segel [7,8] in the early 1970s, consid-
ering equations of the form

⎧

⎪

⎨

⎪

⎩

𝜕𝑢
𝜕𝑡

= 𝐷1Δ𝑢 − ∇ ⋅ (𝜒𝑢∇𝑣) + 𝑓 (𝑢), 𝑥 ∈ Ω, 𝑡 > 0,

𝜏 𝜕𝑣
𝜕𝑡

= 𝐷2Δ𝑣 + 𝑎𝑢 − 𝑏𝑣, 𝑥 ∈ Ω, 𝑡 > 0,
(2)

for positive parameters 𝜒, 𝑎, 𝑏, a known function 𝑓 representing the intrinsic dynamics of the species, and 𝜏 ∈ {0, 1}, accounting for 
the possible difference in the timescales of 𝑢 and 𝑣. System (2) was first introduced to model the aggregation process of a slime mold, 
although many variations have been studied over the years, corresponding to different biological scenarios (see the surveys [9–11]).

Competitive dynamics in the form of Lotka-Volterra terms have also been studied within different variations of chemotaxis models. 
The following system composed of two competitive species responding to one stimulus that induces positive chemotaxis has been 
extensively studied.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕𝑢
𝜕𝑡

= 𝐷1Δ𝑢 − 𝜒1∇ ⋅ (𝑢∇𝑤) + 𝜇1𝑢(1 − 𝑢 − 𝑎1𝑣), 𝑥 ∈ Ω, 𝑡 > 0,

𝜕𝑣
𝜕𝑡

= 𝐷2Δ𝑣 − 𝜒2∇ ⋅ (𝑢∇𝑤) + 𝜇2𝑣(1 − 𝑎2𝑢 − 𝑣), 𝑥 ∈ Ω, 𝑡 > 0,

𝜏 𝜕𝑤
𝜕𝑡

= 𝐷3Δ𝑤 − 𝛾𝑤 + 𝛼𝑢 + 𝛽𝑣, 𝑥 ∈ Ω, 𝑡 > 0,

(3)

where in this case, 𝑢 and 𝑣 denote the population densities of the two species, while 𝑤 is the concentration of the chemical substance. 
The parabolic case (corresponding to 𝜏 = 1) was analyzed by Bai and Winkler in [12], where the global existence of solutions for 
𝑛 ≤ 2 was proven under certain restrictions for 𝜇1 and 𝜇2. The large time convergence of solutions to its spatially homogeneous steady 
states was also studied. These results were improved later in [13], with lighter restrictions on 𝜇1 and 𝜇2. The higher dimensional case 
was analyzed in [14]

Respectively, the elliptic case (for 𝜏 = 0) has been studied in [15] for the weakly competitive case (0 < 𝑎1, 𝑎2 < 1) with similar 
restrictions for 𝜇1, 𝜇2 and 𝜒1, 𝜒2 leading to the convergence to its spatially homogeneous steady states. In [16] a competitive exclusion 
result is obtained.

In this paper, we consider a single species, with the competitive term appearing only in the first equation of (1), representing the 
cell death induced by the chemical.

After introducing the rescaled variables

𝑢̃ = 𝑢
𝐾
, 𝑣̃ = 𝛿𝐾

𝑏
𝑣, 𝑥̃ =

√

𝑏
𝐷𝑣

𝑥, 𝑡 = 𝑏𝑡,

and the dimensionless parameters

𝐷 =
𝐷𝑢
𝐷𝑣

, 𝜒 =
𝑏𝜒

𝛿𝐾𝐷𝑣
, 𝑟̃ = 𝑟

𝑏
, 𝑎̃ = 𝑎𝛿𝐾2

𝑏2
, 𝑓 = 𝛿𝐾

𝑏2
𝑓,
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the system can be rewritten as follows. For simplicity, the tildes have been dropped.
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜕𝑢
𝜕𝑡

= 𝐷Δ𝑢 + 𝜒∇ ⋅ (𝑢∇𝑣) + 𝑟𝑢(1 − 𝑢) − 𝑢𝑣, 𝑥 ∈ Ω, 𝑡 > 0,

𝜕𝑣
𝜕𝑡

= Δ𝑣 + 𝑎𝑢 − 𝑣 + 𝑓 (𝑥, 𝑡), 𝑥 ∈ Ω, 𝑡 > 0,

𝜕𝑢
𝜕𝜈

= 𝜕𝑣
𝜕𝜈

= 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑣(𝑥, 0) = 𝑣0(𝑥), 𝑥 ∈ Ω.

(4)

Throughout this paper, we study the local stability of the spatially homogeneous steady states of system (4) when 𝑓 is a constant 
supply, as well as the periodicity of solutions for choices of 𝑓 with a persisting time-periodic behavior.

For a constant 𝑓 , system (4) admits two spatially homogeneous steady states, given by

(0, 𝑓 ), (𝑢∗, 𝑣∗) ∶=
(

𝑟 − 𝑓
𝑟 + 𝑎

,
𝑟(𝑓 + 𝑎)
𝑟 + 𝑎

)

.

The nontrivial state (𝑢∗, 𝑣∗) is only biologically relevant if 𝑟 > 𝑓 , that is, when the bacterial growth rate is greater than the external 
supply of the substance. Conversely, if 𝑟 < 𝑓 , the only nonnegative equilibrium is given by (0, 𝑓 ). The linearized dynamics and local 
stability of these solutions are studied in Section 2.

The analysis of system (4) under a supply 𝑓 with persisting periodic behavior is carried out in Section 3. Specifically, we assume 
that 𝑓 is asymptotically periodic, in the sense that there exists a time periodic function 𝑓 ∶ [0,+∞) → ℝ depending only on 𝑡, such 
that

lim
𝑡→+∞

sup
𝑥∈Ω

|𝑓 (𝑥, 𝑡) − 𝑓 (𝑡)| = 0.

Under this assumption, it has recently been proven in [17] that, with additional hypotheses, the solution (𝑢, 𝑣) of system (4) converges 
in time to those of the associated ODE system

⎧

⎪

⎨

⎪

⎩

𝑑𝑢̃
𝑑𝑡

= 𝑟𝑢̃(1 − 𝑢̃) − 𝑢̃𝑣̃, 𝑡 > 0,

𝑑𝑣̃
𝑑𝑡

= 𝑎𝑢̃ − 𝑣̃ + 𝑓 (𝑡), 𝑡 > 0,
(5)

with initial values
𝑢̃(0) = 1

|Ω| ∫Ω
𝑢(𝑥, 0) 𝑑𝑥, 𝑣̃(0) = 1

|Ω| ∫Ω
𝑣(𝑥, 0) 𝑑𝑥. (6)

However, it remains unclear under which conditions do (𝑢̃, 𝑣̃) inherit the periodicity of 𝑓 . Here, we provide a partial answer, proving 
that in the case 𝑎 = 0 there exists a unique positive periodic solution if a threshold value for 𝑟 is satisfied. Moreover, when 𝑎 > 0, 
numerical experiments performed also allow us to obtain such periodic solutions under particular choices of 𝑟. In these cases, a 
numerical resolution of system (4) shows that, as expected, the periodic behavior of the solutions to the ODE system (5) is inherited 
by the PDE system, with solutions (𝑢, 𝑣) converging uniformly in time to (𝑢̃, 𝑣̃).

For such numerical study, we employ the Generalized Finite Difference (GFD) method, a meshless approach that has been suc-
cessfully applied to a wide range of nonlinear problems. Precisely within the context of chemotaxis systems, the authors in [18–22] 
study various extensions of the Keller-Segel model, including parabolic-parabolic, parabolic-elliptic and parabolic-ODE problems.

In our case, after a preliminary introduction of the method in Section 4, we derive conditions for the convergence of an explicit 
scheme in Section 5, which allows us to compute numerical solutions to system (4). Various simulation results are included in Section 6 
to illustrate the cases studied analytically throughout the previous sections, including the local stability of the steady states and the 
eventual periodicity of solutions, as well as a brief subsection regarding pattern formation in the system. Lastly, the conclusions are 
collected in Section 7.

2.  Linearized dynamics and local stability

To begin the analysis of system (4), we study the local stability of its spatially homogeneous steady states. While global existence 
and boundedness of solutions to system (4), are analyzed in [17], the present work focuses on the dynamics near homogeneous 
equilibria. With the aim of numerically exploring the properties of the system, this local stability analysis serves as a basis for the 
expected behavior of solutions.
To this end, the spatially homogeneous steady states of system (4) are obtained by solving

⎧

⎪

⎨

⎪

⎩

0 = 𝑟𝑢
(

1 − 𝑢 − 𝑣
𝑟

)

,

0 = 𝑎𝑢 − 𝑣 + 𝑓 (𝑥, 𝑡).

Such solutions can only exist for a constant source term 𝑓 (𝑥, 𝑡) ≡ 𝑓 , yielding the two equilibria

(0, 𝑓 ), (𝑢∗, 𝑣∗) ∶=
(

𝑟 − 𝑓
𝑟 + 𝑎

,
𝑟(𝑓 + 𝑎)
𝑟 + 𝑎

)

. (7)
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From a biological perspective, we require that both 𝑢 and 𝑣 are nonnegative, and thus (𝑢∗, 𝑣∗) is only meaningful if 𝑟 > 𝑓 , that is, 
when the logistic growth rate of the population is greater than the external supply of the substance.

To assess the local stability of the steady states (7), we make use of the principle of linearized stability for quasilinear parabolic 
problems, [23]. As the analysis is standard (see for instance [24] for a similar derivation with full details) we only outline the main 
steps. Letting (𝑢̄, 𝑣̄) denote any of the previous spatially homogeneous steady states, we consider perturbed solutions of the form

𝑢 = 𝑢̄ + 𝜀𝜙, 𝑣 = 𝑣̄ + 𝜀𝜂 (8)

for 0 < 𝜀 ≪ 1. Substituting into system (4) and neglecting the terms of order 𝜀2, the following linearized system is obtained
⎧

⎪

⎨

⎪

⎩

𝜕𝜙
𝜕𝑡

= 𝐷Δ𝜙 + 𝜒𝑢̄Δ𝜂+[(1 − 2𝑢̄)𝑟 − 𝑣̄]𝜙 − 𝑢̄𝜂, 𝑥 ∈ Ω, 𝑡 > 0,

𝜕𝜂
𝜕𝑡

= Δ𝜂 + 𝑎𝜙 − 𝜂, 𝑥 ∈ Ω, 𝑡 > 0,
(9)

together with Neumann homogeneous boundary conditions and their respective initial values. The local stability analysis of the 
linearized system (9) reduces to studying the eigenvalues of 𝑨𝑛 ∶= −𝜆𝑛𝑫 + 𝑱  for all 𝑛 ∈ {0, 1, 2,…}, where

𝑫 =
(

𝐷 𝜒𝑢̄
0 1

)

, 𝑱 =
(

(1 − 2𝑢̄)𝑟 − 𝑣̄ −𝑢̄
𝑎 −1

)

,

and {𝜆𝑛}𝑛∈ℕ∪{0} is the sequence of eigenvalues
0 = 𝜆0 < 𝜆1 ≤ 𝜆2 ≤ … , with lim

𝑛→∞
𝜆𝑛 = +∞ (10)

of the operator −Δ over Ω with Neumann homogeneous boundary conditions.
We recall that a given spatially homogeneous steady state (𝑢̄, 𝑣̄) is locally asymptotically stable if and only if all the eigenvalues of 

𝑨𝑛 have negative real part for all 𝑛 ∈ ℕ ∪ {0} =∶ ℕ0. On the contrary, if there exists 𝑛 such that 𝑨𝑛 has at least one eigenvalue with 
positive real part, then (𝑢̄, 𝑣̄) is unstable.  The computations for the first state, (𝑢̄, 𝑣̄) = (0, 𝑓 ), yield

𝑨𝑛 =
(

−𝜆𝑛𝐷 + 𝑟 − 𝑓 0
𝑎 −𝜆𝑛 − 1

)

,

whose eigenvalues are trivially given by 𝜇𝑛1 ∶= −𝜆𝑛𝐷 + 𝑟 − 𝑓 and 𝜇𝑛2 ∶= −𝜆𝑛 − 1. It is then clear from (10) that 𝜇𝑛2 < 0 for all 𝑛 ∈ ℕ0. 
With respect to 𝜇𝑛1 , as 𝜆0 = 0, it follows that 𝜇01 < 0 if and only if 𝑟 < 𝑓 . For 𝑛 ≥ 1, as the sequence 𝜆𝑛 is increasing, 𝜇𝑛1 < 𝜇01 . We 
therefore conclude that (0, 𝑓 ) is locally asymptotically stable if and only if 𝑟 < 𝑓 , while for 𝑟 > 𝑓 , the point is unstable.

Similarly, for (𝑢̄, 𝑣̄) = (𝑢∗, 𝑣∗) =
(

𝑟 − 𝑓
𝑟 + 𝑎

,
𝑟(𝑓 + 𝑎)
𝑟 + 𝑎

)

, 𝑨𝑛 is given by

𝑨𝑛 =
⎛

⎜

⎜

⎝

−𝜆𝑛𝐷 +
𝑟(𝑓 − 𝑟)
𝑟 + 𝑎

𝑓 − 𝑟
𝑟 + 𝑎

(𝜆𝑛𝜒 + 1)

𝑎 −𝜆𝑛 − 1

⎞

⎟

⎟

⎠

Denoting again by 𝜇𝑛1 , 𝜇𝑛2  the two eigenvalues of 𝑨𝑛 for every 𝑛 ∈ ℕ0, as 𝑨𝑛 is a 2 × 2 matrix, we have

tr(𝑨𝑛) = 𝜇𝑛1 + 𝜇𝑛2 = −𝜆𝑛𝐷 +
𝑟(𝑓 − 𝑟)
𝑟 + 𝑎

− 𝜆𝑛 − 1,

det(𝑨𝑛) = 𝜇𝑛1𝜇𝑛2 = −(𝜆𝑛 + 1)
(

−𝜆𝑛𝐷 +
𝑟(𝑓 − 𝑟)
𝑟 + 𝑎

)

− 𝑎 ⋅
𝑓 − 𝑟
𝑟 + 𝑎

⋅ (𝜆𝑛𝜒 + 1).

Given that, for biological relevance, we are only interested in the case 𝑟 > 𝑓 , clearly 𝜇𝑛1 + 𝜇𝑛2 < 0 and 𝜇𝑛1𝜇𝑛2 > 0 for all 𝑛 ∈ ℕ0, 
resulting in the local asymptotic stability of the state (𝑢∗, 𝑣∗).

As a consequence, we conclude that

• If 𝑟 < 𝑓 , the only nonnegative spatially homogeneous steady state is (0, 𝑓 ), which is locally asymptotically stable.
• If 𝑟 > 𝑓 , both spatially homogeneous steady states, (0, 𝑓 ) and (𝑢∗, 𝑣∗), are biologically meaningful. In this case, (0, 𝑓 ) is unstable, 
whereas (𝑢∗, 𝑣∗) is locally asymptotically stable.

From a biological point of view, if 𝑟 < 𝑓 —this is, if the constant external supply of the substance exceeds the logistic growth rate of 
the bacteria— then (0, 𝑓 ) is the only existing spatially homogeneous steady state, and is locally asymptotically stable. Consequently, 
sufficiently small perturbations around this equilibrium decay over time, as the intrinsic bacterial growth is not large enough to 
compensate the death term −𝑢𝑣, due to the high concentration of 𝑣 that originate from the large supply rate 𝑓 .

On the contrary, if 𝑟 > 𝑓 , the state (0, 𝑓 ) is unstable, as the external supply is smaller than the logistic growth rate, fostering 
the bacterial proliferation. The other spatially homogeneous steady state, (𝑢∗, 𝑣∗) of coexistence of the bacteria and the species, is 
locally asymptotically stable. In this case, despite the growth being greater than the supply, both 𝑢 and 𝑣 are large enough for −𝑢𝑣 to 
significantly counteract it.

We remark that the local stability is independent of the remaining parameters, 𝐷, 𝜒 and 𝑎, and thus the linearized dynamics of 
the system are governed solely by the balance between the constant supply rate 𝑓 and the logistic growth rate 𝑟.
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3.  Periodic solutions

Next, we analyze the existence of periodic solutions to system (4) under a source 𝑓 with asymptotic periodic behavior, that is, 
satisfying

lim
𝑡→+∞

sup
𝑥∈Ω

|𝑓 (𝑥, 𝑡) − 𝑓 (𝑡)| = 0,

for a certain time-periodic function 𝑓 of period 𝑇 > 0. This assumption is standard and has been employed in other similar works 
such as [25,26].

As stated in the introduction, it has been proven in [17] that under suitable hypotheses, the solution (𝑢, 𝑣) of system (4) converges 
in time to (𝑢̃, 𝑣̃), the solution of the associated ODE system (5) with initial values given by the spatial averages of 𝑢(𝑥, 0) and 𝑣(𝑥, 0), 
as stated in (6). Consequently, periodic behavior in the full PDE model can be characterized by periodicity in the ODE dynamics. The 
aim of this section is to therefore identify conditions under which (𝑢̃, 𝑣̃) inherit the periodicity of 𝑓 , which then lead to periodicity of 
(𝑢, 𝑣).

We first consider the case 𝑎 = 0, corresponding to a situation in which the substance is not produced by the bacteria. In this case, 
the associated ODE system reduces to

⎧

⎪

⎨

⎪

⎩

𝑑𝑢̃
𝑑𝑡

= 𝑟𝑢̃(1 − 𝑢̃) − 𝑢̃𝑣̃, 𝑡 > 0,

𝑑𝑣̃
𝑑𝑡

= −𝑣̃ + 𝑓 (𝑡), 𝑡 > 0,
(11)

where the second equation is now linear and uncoupled, allowing for an explicit characterization of its periodic solutions. Solving 
for 𝑣̃, one obtains

𝑣̃(𝑡) = 𝑒−𝑡
[

𝑣̃0 + ∫

𝑡

0
𝑓 (𝑠)𝑒𝑠 𝑑𝑠

]

. (12)

Given that 𝑓 is 𝑇−periodic, a necessary and sufficient condition for 𝑣̃ to be 𝑇−periodic as well is that 𝑣̃(𝑇 ) = 𝑣̃0. Thus, to yield this 
condition, it follows from (12) that 𝑣0 must satisfy

𝑣̃0 =
1

𝑒𝑇 − 1 ∫

𝑇

0
𝑓 (𝑠)𝑒𝑠 𝑑𝑠. (13)

A similar analysis can be done for 𝑢̃, noting that, for a known 𝑣̃, it becomes a Bernoulli equation, which can again be explicitly solved. 
By considering 𝑤̃ = 𝑢̃−1, a linear equation in 𝑤̃ is retrieved, whose solution is given by

𝑤̃(𝑡) = 𝑒
−∫

𝑡

0
(𝑟 − 𝑣̃(𝑠)) 𝑑𝑠⎡

⎢

⎢

⎢

⎣

1
𝑢̃0

+ ∫

𝑡

0

⎛

⎜

⎜

⎜

⎝

𝑟 𝑒∫

𝑠

0
(𝑟 − 𝑣̃(𝜏)) 𝑑𝜏⎞

⎟

⎟

⎟

⎠

𝑑𝑠

⎤

⎥

⎥

⎥

⎦

. (14)

Thus, assuming 𝑣̃ is periodic, provided 𝑣̃0 satisfies (13), the periodicity of 𝑢̃ is ensured if and only if 𝑢̃(𝑇 ) = 𝑢̃0 or equivalently 𝑤̃(𝑇 ) =
𝑤̃0 ∶= 1∕𝑢̃0. This leads to

𝑢̃0 =
𝑒∫

𝑇

0
(𝑟 − 𝑣̃(𝑠)) 𝑑𝑠

− 1

∫

𝑇

0

⎛

⎜

⎜

⎜

⎝

𝑟 𝑒∫

𝑠

0
(𝑟 − 𝑣̃(𝜏)) 𝑑𝜏⎞

⎟

⎟

⎟

⎠

𝑑𝑠

. (15)

Hence, the solution (𝑢̃, 𝑣̃) of (11) is 𝑇−periodic if and only if the initial values (𝑢̃0, 𝑣̃0) satisfy (13) and (15).
It is important to emphasize that (𝑢̃0, 𝑣̃0) are not arbitrary, as they are uniquely determined by (6) as the spatial averages of 

the initial bacterial and chemical distributions 𝑢(𝑥, 0) and 𝑣(𝑥, 0). As a result, the periodicity conditions (13) and (15) translate into 
constraints on the admissible initial data of the full PDE system (4).

An important bound can be derived from (15). For biological relevance, only positive solutions are considered. In particular, the 
positivity of 𝑢̃0, requires

𝑒∫

𝑇

0
(𝑟 − 𝑣̃(𝑠)) 𝑑𝑠

− 1 > 0,

or equivalently

𝑟 > 1
𝑇 ∫

𝑇

0
𝑣̃(𝑠) 𝑑𝑠.

This yields the threshold

𝑟min =
1
𝑇 ∫

𝑇

0
𝑣̃(𝑠) 𝑑𝑠. (16)
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If 𝑟 > 𝑟min and (𝑢̃0, 𝑣̃0) are taken according to (15) and (13), then the unique solution (𝑢̃, 𝑣̃) of system (11) is positive and 𝑇−periodic. 
Moreover, this solution is such that for any other positive choice of initial values, the associated solution converges in time to it. On 
the contrary, if 𝑟 ≤ 𝑟min, no solution with such properties exists, and for any pair of initial values, 𝑢̃ → 0 as 𝑡 → ∞.

Notice that in fact the threshold (16) acts as bound for 𝑟 with respect to the choice of 𝑓 , given that 𝑣̃ is independent from 𝑟. 
Directly substituting the expression for 𝑣̃ given in (12) into (16) and integrating by parts using the value of 𝑣̃0 from (13), yields

𝑟min =
1
𝑇 ∫

𝑇

0
𝑓 (𝑠) 𝑑𝑠. (17)

Thus, for a given 𝑓 , only a species with a logistic growth rate above 𝑟min can sustain a periodically oscillatory regime. This result 
highlights a threshold phenomenon analogous to that observed in the local stability analysis for constant sources. In this case, the 
existence of periodic solutions of the associated ODE system is governed by condition (17), involving solely the logistic growth rate 
𝑟 and the average value of 𝑓 over [0, 𝑇 ]. This is similar to the result obtained for a constant source satisfying 𝑟 > 𝑓 , for which the 
coexistence equilibrium (𝑢∗, 𝑣∗) was locally asymptotically stable.

Biologically, these dynamics —either periodicity or local stability— arise only when the logistic growth rate of the species is 
sufficiently large compared to the external supply, either in terms of its average over one period or directly its value in the case of 
a constant supply. Conversely, when the supply exceeds the logistic growth rate, the bacterial population is driven to extinction in 
both settings.

For the case 𝑎 > 0, corresponding to a substance self-produced by the bacteria, the existence and properties of periodic solutions 
to the associated ODE system have so far been investigated only at the numerical level; see Section 6.2. A complete analytical 
characterization of this regime still remains open due to the nonlinear coupling of the equations.

4.  Preliminaries for the numerical method

In order to numerically solve system (4), we employ the Generalized Finite Difference (GFD) method. This meshless approach, 
developed as an extension of the classical Finite Difference method, allows for a set of nodes that may be irregularly distributed 
over the domain —thus avoiding any geometrical restrictions— on which an approximation of the solution is computed. A numerical 
scheme is constructed by obtaining finite difference approximation formulae for the partial derivatives. Below, we outline the basics 
of the method before presenting in Section 5 the numerical scheme obtained.

To do so, let Ω be the considered domain in ℝ𝑚 and 𝑀 = {x1,x2,…x𝑁} a discretization of such domain, where we seek to 
approximate the solution of a given equation. For ease of notation and without loss of generality, we consider dimension 𝑚 = 2 and 
we fix an interior node of 𝑀 which we denote by x0. In a neighborhood of x0, we select a subset 𝑉 = {x1,x2,… ,x𝑠} ⊂ 𝑀 ⧵ {x0}, of 
𝑠 nodes, which constitute what is known as an 𝐸𝑠−star. There exist different geometrical criteria, such as distance-based, quadrant 
or octant criteria (see [27]) to select the 𝑠 nodes preventing ill-behaved stars.

In order to obtain the finite difference approximations for the derivatives of an arbitrary function 𝑓 (x, 𝑡) at x0 ∶= (𝑥0, 𝑦0), we 
consider its truncated second-order Taylor expansion. Denoting as usual by 𝐹 𝑛

𝑖  the sought approximation of 𝑓 (x𝑖, 𝑛Δ𝑡) (although we 
omit the time dependence 𝑛 for the moment) we obtain

𝐹𝑖 ≈ 𝐹0 + (x𝑖 − x0)∇𝐹0 +
1
2
(x𝑖 − x0)𝑇𝐻𝐹0 (x𝑖 − x0). (18)

We next define the vectors

d ∶=

(

𝜕𝐹0
𝜕𝑥

,
𝜕𝐹0
𝜕𝑦

,
𝜕2𝐹0

𝜕𝑥2
,
𝜕2𝐹0

𝜕𝑦2
,
𝜕2𝐹0
𝜕𝑥𝜕𝑦

)𝑇

, c𝑖 =

(

ℎ𝑖, 𝑘𝑖,
ℎ2𝑖
2
,
𝑘2𝑖
2
, ℎ𝑖𝑘𝑖

)𝑇

,

where d contains the partial derivatives of that we seek to approximate, and c𝑖 is defined for each node x𝑖 ∶= (𝑥𝑖, 𝑦𝑖) ∈ 𝑉 , where 
ℎ𝑖 ∶= 𝑥𝑖 − 𝑥0 and 𝑘𝑖 ∶= 𝑦𝑖 − 𝑦0.

Based on the approximation (18), we define the following weighted sum of the quadratic errors made when approximating each 
𝐹𝑖, for 𝑖 ∈ {1,… , 𝑠}, by the above Taylor expansion centered on x0.

𝐵(d) =
𝑠
∑

𝑖=1
𝑤2

𝑖 (𝐹0 − 𝐹𝑖 + c𝑇𝑖 d)
2 + (ℎ2𝑖 , 𝑘

2
𝑖 ).

The weights 𝑤𝑖 = 𝑤(ℎ𝑖, 𝑘𝑖) are positive symmetric functions that decrease in magnitude as the distance to the center x0 increases, as 
defined in Lancaster and Salkauskas [28]. Some commonly used weights are inverse powers (dist−4 or dist−6) or exponential weights, 
𝑒−dist

2  (more details can be found in [29]). To obtain the best second-order least-squares approximation of the partial derivatives of 
𝑓 , 𝐵 is minimized with respect to d, yielding the following linear system of equations

𝑠
∑

𝑖=1
𝑤2

𝑖 c𝑖c
𝑇
𝑖 d = −

𝑠
∑

𝑖=1
𝑤2

𝑖 (𝐹0 − 𝐹𝑖)c𝑖.
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The coefficient matrix is A ∶=
𝑠
∑

𝑖=1
𝑤2

𝑖 c𝑖c
𝑇
𝑖 ∈ 5×5(ℝ), which can be expressed as

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ℎ1 ℎ2 ⋯ ℎ𝑠
𝑘1 𝑘2 ⋯ 𝑘𝑠
ℎ21
2

ℎ22
2

⋯
ℎ2𝑠
2

𝑘21
2

𝑘22
2

⋯
𝑘2𝑠
2

ℎ1𝑘1 ℎ2𝑘2 ⋯ ℎ𝑠𝑘𝑠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⋅

⎛

⎜

⎜

⎜

⎜

⎝

𝑤2
1

𝑤2
2

⋱
𝑤2

𝑠

⎞

⎟

⎟

⎟

⎟

⎠

⋅

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ℎ1 𝑘1
ℎ21
2

𝑘21
2

ℎ1𝑘1

ℎ2 𝑘2
ℎ22
2

𝑘22
2

ℎ2𝑘2
⋮ ⋮ ⋮ ⋮ ⋮

ℎ𝑠 𝑘𝑠
ℎ2𝑠
2

𝑘2𝑠
2

ℎ𝑠𝑘𝑠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(19)

Properties of A are well-known, and can be consulted in [29]. In particular, it is positive definite and, therefore,

d = −𝐹0

𝑠
∑

𝑖=1
𝑤2

𝑖A
−1c𝑖 +

𝑠
∑

𝑖=1
𝐹𝑖𝑤

2
𝑖A

−1c𝑖 + (ℎ2, 𝑘2),

where we denote by

ℎ ∶= max
𝑖∈{1,…𝑠}

ℎ𝑖, 𝑘 ∶= max
𝑖∈{1,…𝑠}

𝑘𝑖.

In addition, for simplicity, we write

𝒎𝑖 = 𝑤2
𝑖A

−1c𝑖, 𝒎0 =
𝑠
∑

𝑖=1
𝒎𝑖,

and denote 𝒎0 =∶ (𝑚01, 𝑚02, 𝑚03, 𝑚04, 𝑚05)𝑇  (and similarly for 𝒎𝑖). This allows us to express the partial derivatives of the function 𝑓 as 
a linear combination of its values over the points of the star, yielding

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜕𝐹 (x0, 𝑛Δ𝑡)
𝜕𝑥

= −𝑚01𝐹 𝑛
0 +

∑𝑠
𝑖=1 𝑚𝑖1𝐹 𝑛

𝑖 + (ℎ2, 𝑘2),
𝜕𝐹 (x0, 𝑛Δ𝑡)

𝜕𝑦
= −𝑚02𝐹 𝑛

0 +
∑𝑠

𝑖=1 𝑚𝑖2𝐹 𝑛
𝑖 + (ℎ2, 𝑘2),

𝜕2𝐹 (x0, 𝑛Δ𝑡)
𝜕𝑥2

+
𝜕2𝐹 (x0, 𝑛Δ𝑡)

𝜕𝑦2
= −(𝑚03 + 𝑚04)𝐹 𝑛

0 +
∑𝑠

𝑖=1(𝑚𝑖3 + 𝑚𝑖4)𝐹 𝑛
𝑖

=∶ −𝑚00𝐹0 +
∑𝑠

𝑖=1 𝑚𝑖0𝐹𝑖 + (ℎ2, 𝑘2).

(20)

For the time derivative, in order to obtain an explicit scheme, its approximation is computed through a classical first-order forward 
difference formula

𝜕𝐹 (x0, 𝑛Δ𝑡)
𝜕𝑡

=
𝐹 𝑛+1
0 − 𝐹 𝑛

0
Δ𝑡

+ (Δ𝑡), (21)

at evenly spaced time points. Thus, for a given second-order parabolic equation, substituting the finite difference approximations
(20) and (21), yields an explicit GFD scheme. For system (4), we present the scheme in the next section, proving its convergence to 
the continuous solution.

5.  Numerical scheme and convergence

Having developed the fundamentals of the GFD method in the previous section, we now turn to system (4) and obtain an explicit 
scheme for its numerical approximation.

Substituting the second-order finite difference formulae (20) for the spatial derivative and the first-order forward difference (21) 
into system (4) provides the following explicit GFD scheme

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑢𝑛+10 = 𝑢𝑛0 + Δ𝑡
[

𝐷
(

−𝑚00𝑢𝑛0 +
∑𝑠

𝑖=1 𝑚0𝑖𝑢𝑛𝑖
)

− 𝜒𝑢𝑛0
(

−𝑚00𝑣𝑛0 +
∑𝑠

𝑖=1 𝑚0𝑖𝑣𝑛𝑖
)]

+𝜒Δ𝑡
(

−𝑚01𝑢𝑛0 +
∑𝑠

𝑖=1 𝑚𝑖1𝑢𝑛𝑖
)(

−𝑚01𝑣𝑛0 +
∑𝑠

𝑖=1 𝑚𝑖1𝑣𝑛𝑖
)

+𝜒Δ𝑡
(

−𝑚02𝑢𝑛0 +
∑𝑠

𝑖=1 𝑚𝑖2𝑢𝑛𝑖
)(

−𝑚02𝑣𝑛0 +
∑𝑠

𝑖=1 𝑚𝑖2𝑣𝑛𝑖
)

+Δ𝑡 ⋅ 𝑟𝑢𝑛0
(

1 − 𝑢𝑛0
)

− Δ𝑡 ⋅ 𝑢𝑛0𝑣
𝑛
0,

𝑣𝑛+10 = 𝑣𝑛0
[

1 − Δ𝑡 ⋅ (1 + 𝑚00)
]

+ Δ𝑡 ⋅ 𝑎𝑢𝑛0 + Δ𝑡
∑𝑠

𝑖=1 𝑚0𝑖𝑣𝑛𝑖 + 𝑓 𝑛
0 ,

(22)

initiated at 𝑡 = 0 with the initial values 𝑢(𝑥, 0) and 𝑣(𝑥, 0). The explicit nature of scheme (22) requires, as usual, the determination of 
an upper bound for the time step Δ𝑡 that guarantees its convergence. To do so, we first define the following quantities for each inner 
node
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𝐴1 ∶ = |

|

|

𝜒𝑉 𝑛
0
(

𝑚2
01 + 𝑚2

02
)

− 𝜒
(

𝑚01

𝑠
∑

𝑖=1
𝑚𝑖1𝑉

𝑛
𝑖 + 𝑚02

𝑠
∑

𝑖=1
𝑚𝑖2𝑉

𝑛
𝑖

)

− (𝜒 − 𝜇)(𝑢𝑛0 + 𝑈𝑛
0 ) + 𝜒𝑉 𝑛

0 − 𝜇
(

1 + 𝑓 (𝑥0, 𝑦0, 𝑛Δ𝑡)
)

|

|

|

+ 𝜒𝑣𝑛0
(

|𝑚01|

𝑠
∑

𝑖=1
|𝑚𝑖1| + |𝑚02|

𝑠
∑

𝑖=1
|𝑚𝑖2|

)

+ 𝜒
(

|

|

|

𝑠
∑

𝑖=1
𝑚𝑖1𝑉

𝑛
𝑖
|

|

|

𝑠
∑

𝑖=1
|𝑚𝑖1| +

|

|

|

𝑠
∑

𝑖=1
𝑚𝑖2𝑉

𝑛
𝑖
|

|

|

𝑠
∑

𝑖=1
|𝑚𝑖2|

)

,

(23)

𝐵1 ∶ = |

|

|

−𝜒𝑢𝑛0(𝑚
2
01 + 𝑚2

02 + 1) + 𝜒
(

𝑚01

𝑠
∑

𝑖=1
𝑚𝑖1𝑢

𝑛
𝑖 + 𝑚02

𝑠
∑

𝑖=1
𝑚𝑖2𝑢

𝑛
𝑖

)

|

|

|

+ 𝜒𝑈𝑛
0

(

|𝑚01|

𝑠
∑

𝑖=1
|𝑚𝑖1| + |𝑚02|

𝑠
∑

𝑖=1
|𝑚𝑖2|

)

+ 𝜒
(

|

|

|

𝑠
∑

𝑖=1
𝑚𝑖1𝑈

𝑛
𝑖
|

|

|

𝑠
∑

𝑖=1
|𝑚𝑖1| +

|

|

|

𝑠
∑

𝑖=1
𝑚𝑖2𝑈

𝑛
𝑖
|

|

|

𝑠
∑

𝑖=1
|𝑚𝑖2|

)

,

(24)

which are finite constants as a consequence of the uniform 𝐿∞(Ω) bounds of the solution of system (4).

Theorem 1. Let 𝑈, 𝑉 ∈ 4(Ω × (0,∞)) be the exact solution of (1). Then, the GFD explicit scheme (22) is convergent if for every inner node

Δ𝑡 < min

{

2
𝐷𝑚00 +𝐷

∑𝑠
𝑖=1 |𝑚𝑖0| + 𝐴1 + 𝐵1

, 2
1 + 𝑚00 +

∑𝑠
𝑖=1 |𝑚𝑖0| + 𝑎

}

, (25)

for the values of 𝐴1 and 𝐵1 given in (23) and (24).

Proof of Theorem 1
Let 𝑢𝑛𝑗  denote the numerical approximation of 𝑢 at node 𝑗 and time 𝑛Δ𝑡 (similarly for 𝑣𝑛𝑗 ), and let 𝑈𝑛

𝑗  and 𝑉 𝑛
𝑗  be the exact solutions 

evaluated at the same node and time. We define the discrete errors by

𝑢̃𝑛𝑗 ∶= 𝑢𝑛𝑗 − 𝑈𝑛
𝑗 , 𝑣̃𝑛𝑗 ∶= 𝑣𝑛𝑗 − 𝑉 𝑛

𝑗

Beginning by the 𝑢 equation, subtracting the numerical scheme (22) from the exact solution yields the following expression

𝑢̃𝑛+10 = 𝑢̃𝑛0 +𝐷Δ𝑡
(

−𝑚00𝑢̃
𝑛
0 +

𝑠
∑

𝑖=1
𝑚𝑖0𝑢̃

𝑛
𝑖

)

+ 𝜒Δ𝑡
[(

−𝑚01𝑢
𝑛
0 +

𝑠
∑

𝑖=1
𝑚𝑖1𝑢

𝑛
𝑖

)(

−𝑚01𝑣
𝑛
0 +

𝑠
∑

𝑖=1
𝑚𝑖1𝑣

𝑛
𝑖

)

−
(

−𝑚01𝑈
𝑛
0 +

𝑠
∑

𝑖=1
𝑚𝑖1𝑈

𝑛
𝑖

)(

−𝑚01𝑉
𝑛
0 +

𝑠
∑

𝑖=1
𝑚𝑖1𝑉

𝑛
𝑖

)]

+ 𝜒Δ𝑡
[(

−𝑚02𝑢
𝑛
0 +

𝑠
∑

𝑖=1
𝑚𝑖2𝑢

𝑛
𝑖

)(

−𝑚02𝑣
𝑛
0 +

𝑠
∑

𝑖=1
𝑚𝑖2𝑣

𝑛
𝑖

)

−
(

−𝑚02𝑈
𝑛
0 +

𝑠
∑

𝑖=1
𝑚𝑖2𝑈

𝑛
𝑖

)(

−𝑚02𝑉
𝑛
0 +

𝑠
∑

𝑖=1
𝑚𝑖2𝑉

𝑛
𝑖

)]

− 𝜒Δ𝑡
[

𝑚00(𝑢̃𝑛0𝑣
𝑛
0 + 𝑈𝑛

0 𝑣̃
𝑛
0) −

(

𝑢̃𝑛0

𝑠
∑

𝑖=1
𝑚𝑖0𝑣

𝑛
𝑖 + 𝑈𝑛

0

𝑠
∑

𝑖=1
𝑚𝑖0𝑣̃

𝑛
𝑖

)]

− Δ𝑡
[

𝑟𝑢̃𝑛0[1 − (𝑢𝑛0 + 𝑈𝑛
0 )] − 𝑢̃𝑛0𝑣

𝑛
0 − 𝑈𝑛

0 𝑣̃
𝑛
0

]

+ (Δ𝑡, ℎ2, 𝑘2).

(26)
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By expanding the products and regrouping terms, we obtain
𝑢̃𝑛+10 = 𝑢̃𝑛0

[

1 − Δ𝑡
(

𝐷𝑚00 + 𝜒𝑚2
01𝑉

𝑛
0 + 𝜒𝑚2

02𝑉
𝑛
0

)

− Δ𝑡𝜒
(

𝑚01

𝑠
∑

𝑖=1
𝑚𝑖1𝑣

𝑛
𝑖 + 𝑚02

𝑠
∑

𝑖=1
𝑚𝑖2𝑣

𝑛
𝑖 +

𝑠
∑

𝑖=1
𝑚𝑖0𝑣

𝑛
𝑖

)

− Δ𝑡
(

𝜒𝑚00𝑣
𝑛
0 − 𝑟[1 − (𝑢𝑛0 + 𝑈𝑛

0 )] − 𝑣𝑛0
)]

+ Δ𝑡
[

𝐷
𝑠
∑

𝑖=1
𝑚𝑖0𝑢̃

𝑛
𝑖 − 𝜒𝑚01𝑉

𝑛
0

𝑠
∑

𝑖=1
𝑚𝑖1𝑢̃

𝑛
𝑖 − 𝜒𝑚02𝑉

𝑛
0

𝑠
∑

𝑖=1
𝑚𝑖2𝑢̃

𝑛
𝑖

+
(

𝜒
𝑠
∑

𝑖=1
𝑚𝑖1𝑣

𝑛
𝑖

)

𝑠
∑

𝑖=1
𝑚𝑖1𝑢̃

𝑛
𝑖 +

(

𝜒
𝑠
∑

𝑖=1
𝑚𝑖2𝑣

𝑛
𝑖

)

𝑠
∑

𝑖=1
𝑚𝑖2𝑢̃

𝑛
𝑖

]

+ Δ𝑡 𝑣̃𝑛0
[

𝜒
(

𝑚2
01 + 𝑚2

02)𝑈
𝑛
0 − 𝑚01

𝑠
∑

𝑖=1
𝑚𝑖1𝑢

𝑛
𝑖

)

− 𝜒𝑚02

𝑠
∑

𝑖=1
𝑚𝑖2𝑢

𝑛
𝑖 − 𝜒𝑚00𝑈

𝑛
0 − 𝑈𝑛

0

]

+ Δ𝑡
[

−𝜒𝑚01𝑈
𝑛
0

𝑠
∑

𝑖=1
𝑚𝑖1𝑣̃

𝑛
𝑖 − 𝜒𝑚02𝑈

𝑛
0

𝑠
∑

𝑖=1
𝑚𝑖2𝑣̃

𝑛
𝑖

+ 𝜒
(

𝑠
∑

𝑖=1
𝑚𝑖1𝑈

𝑛
𝑖

)

𝑠
∑

𝑖=1
𝑚𝑖1𝑣̃

𝑛
𝑖 + 𝜒

(

𝑠
∑

𝑖=1
𝑚𝑖2𝑈

𝑛
𝑖

)

𝑠
∑

𝑖=1
𝑚𝑖2𝑣̃

𝑛
𝑖

]

+ (Δ𝑡, ℎ2, 𝑘2).

(27)

Next, we define 𝑢̃𝑛 ∶= max𝑖∈{0,…,𝑠} |𝑢̃𝑛𝑖 |, and 𝑣̃𝑛 ∶= max𝑖∈{0,…,𝑠} |𝑣̃𝑛𝑖 |, rewriting (27) as

𝑢̃𝑛+1 ≤ 𝑢̃𝑛
[

|

|

|

|

|

1 − Δ𝑡
[

𝐷𝑚00 − 𝜒𝑚2
01𝑉

𝑛
0 − 𝜒𝑚2

02𝑉
𝑛
0 + 𝜒𝑚00𝑣

𝑛
0 + 𝑣𝑛0

+ 𝑟[1 − (𝑢𝑛0 + 𝑈𝑛
0 )] + 𝜒

(

𝑚01

𝑠
∑

𝑖=1
𝑚𝑖1𝑣

𝑛
𝑖 + 𝑚02

𝑠
∑

𝑖=1
𝑚𝑖2𝑣

𝑛
𝑖 −

𝑠
∑

𝑖=1
𝑚𝑖0𝑣

𝑛
𝑖

)]|

|

|

|

|

+ Δ𝑡 𝐷
𝑠
∑

𝑖=1
|𝑚𝑖0| + 𝜒||

|

𝑚01𝑉
𝑛
0

𝑠
∑

𝑖=1
𝑚𝑖1

|

|

|

+ 𝜒||
|

𝑚02𝑉
𝑛
0

𝑠
∑

𝑖=1
𝑚𝑖2

|

|

|

+ |

|

|

𝜒
𝑠
∑

𝑖=1
𝑚𝑖1𝑣

𝑛
𝑖
|

|

|

𝑠
∑

𝑖=1
|𝑚𝑖1| +

|

|

|

𝜒
𝑠
∑

𝑖=1
𝑚𝑖2𝑣

𝑛
𝑖
|

|

|

𝑠
∑

𝑖=1
|𝑚𝑖2|

]

+ 𝑣̃𝑛Δ𝑡

[

|

|

|

|

|

𝜒
(

(𝑚2
01 + 𝑚2

02)𝑈
𝑛
0 − 𝑚01

𝑠
∑

𝑖=1
𝑚𝑖1𝑢

𝑛
𝑖 − 𝑚02

𝑠
∑

𝑖=1
𝑚𝑖2𝑢

𝑛
𝑖 − 𝑚00𝑈

𝑛
0

)

− 𝑈𝑛
0

|

|

|

|

|

+ 𝜒
(

|

|

|

𝑚01𝑈
𝑛
0

𝑠
∑

𝑖=1
𝑚𝑖1

|

|

|

+ |

|

|

𝑚02𝑈
𝑛
0

𝑠
∑

𝑖=1
𝑚𝑖2

|

|

|

+ |

|

|

𝑠
∑

𝑖=1
𝑚𝑖1𝑈

𝑛
𝑖
|

|

|

𝑠
∑

𝑖=1
|𝑚𝑖1|

)

+ 𝜒||
|

𝑠
∑

𝑖=1
𝑚𝑖2𝑈

𝑛
𝑖
|

|

|

𝑠
∑

𝑖=1
|𝑚𝑖2|

]

+ (Δ𝑡, ℎ2, 𝑘2).

(28)

Proceeding similarly for the second equation of system (4) we obtain

𝑣̃𝑛+10 = 𝑣̃𝑛0
[

1 − Δ𝑡 (1 + 𝑚00)
]

+Δ𝑡 ⋅ 𝑎𝑢̃𝑛0 + Δ𝑡
𝑠
∑

𝑖=1
𝑚0𝑖𝑣̃

𝑛
𝑖 + (Δ𝑡, ℎ2, 𝑘2), (29)

and therefore, by definition of 𝑢̃𝑛 and 𝑣̃𝑛, taking maximums yields

𝑣̃𝑛+1 ≤ Δ𝑡 ⋅ 𝑎𝑢̃𝑛 +
[

|

|

|

1 − Δ𝑡(1 + 𝑚00)
|

|

|

+ Δ𝑡
𝑠
∑

𝑖=1
|𝑚0𝑖|

]

𝑣̃𝑛 + (Δ𝑡, ℎ2, 𝑘2). (30)

Inequalities (28) and (30) can be rewritten as
(

𝑢̃𝑛+1

𝑣̃𝑛+1

)

≤
(

𝑀11 𝑀12
𝑀21 𝑀22

)(

𝑢̃𝑛

𝑣̃𝑛

)

+ (Δ𝑡, ℎ2, 𝑘2), (31)

where 𝑀21 and 𝑀22 are the coefficients in (30) and 𝑀11,𝑀12 are given by

𝑀11 =
|

|

|

1 − Δ𝑡 ⋅𝐷𝑚00
|

|

|

+ Δ𝑡 ⋅𝐷
𝑠
∑

𝑖=1
|𝑚𝑖0| + 𝐴1 ⋅ Δ𝑡, 𝑀12 = Δ𝑡 ⋅ 𝐵1, (32)
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for the values of 𝐴1 and 𝐵1 considered in (23) and (24). Thus, the square matrix in (31) is

𝑀 ∶=

⎛

⎜

⎜

⎜

⎜

⎝

|

|

|

1 − Δ𝑡 ⋅𝐷𝑚00
|

|

|

+ Δ𝑡 ⋅𝐷
𝑠
∑

𝑖=1
|𝑚𝑖0| + 𝐴1 ⋅ Δ𝑡 Δ𝑡 ⋅ 𝐵1

Δ𝑡 ⋅ 𝑎 |

|

|

1 − Δ𝑡(1 + 𝑚00)
|

|

|

+ Δ𝑡
𝑠
∑

𝑖=1
|𝑚𝑖0|

⎞

⎟

⎟

⎟

⎟

⎠

. (33)

To complete the proof, having obtained expression (31), we impose a condition on the norm of the matrix 𝑀 to prove that the errors 
converge to zero as 𝑛 → ∞. Specifically, we employ the ‖ ⋅ ‖1 norm, defined as the maximum absolute row sum of 𝑀 , and require 
that ‖𝑀‖1 < 1.

If, on the one hand, we have

‖𝑀‖1 =
|

|

|

1 − Δ𝑡 ⋅𝐷𝑚00
|

|

|

+ Δ𝑡 ⋅𝐷
𝑠
∑

𝑖=1
|𝑚𝑖0| + 𝐴1 ⋅ Δ𝑡 + Δ𝑡 ⋅ 𝐵1,

then, ‖𝑀‖1 < 1 is equivalent to

|

|

|

1 − Δ𝑡 ⋅𝐷𝑚00
|

|

|

< 1 − Δ𝑡 ⋅𝐷
𝑠
∑

𝑖=1
|𝑚𝑖0| − 𝐴1 ⋅ Δ𝑡 − Δ𝑡 ⋅ 𝐵1,

which holds since we imposed condition (25), which includes

Δ𝑡 < 2
𝐷𝑚00 +𝐷

∑𝑠
𝑖=1 |𝑚𝑖0| + 𝐴1 + 𝐵1

.

Otherwise, if the contrary is true, this is

‖𝑀‖1 = Δ𝑡 ⋅ 𝑎 + |

|

|

1 − Δ𝑡(1 + 𝑚00)
|

|

|

+ Δ𝑡
𝑠
∑

𝑖=1
|𝑚𝑖0|,

then ‖𝑀‖1 < 1 is equivalent to,

|

|

|

1 − Δ𝑡(1 + 𝑚00)
|

|

|

< 1 − Δ𝑡 ⋅ 𝑎 − Δ𝑡
𝑠
∑

𝑖=1
|𝑚𝑖0|,

which again holds under the assumption (25) in Theorem 1, as in particular

Δ𝑡 < 2
1 + 𝑚00 +

∑𝑠
𝑖=1 |𝑚𝑖0| + 𝑎

.

6.  Numerical study

Making use of the GFD scheme (22) developed in Section 5, we next turn to compute numerical approximations of the solution 
of system (4). In order to assess the different cases studied throughout the article, we consider various choices of 𝑓 . First a constant 
supply is considered, including both the case 𝑟 > 𝑓 and 𝑟 < 𝑓 . Then, the asymptotic periodicity of solutions is studied for time-periodic 
supplies, including average values above and below 𝑟. In addition, we also include a section concerning pattern formation, as well as 
a final numerical estimate of the order of convergence of the method.

For clarity of presentation, although the GFD method has been formulated in two spatial dimensions, all numerical simulations 
are performed on a one-dimensional domain. This allows for simpler visualization of the results without loss of generality, since the 
method and its implementation can be easily extended to higher dimensions.

Throughout the simulations, we consider the following parameter set, unless otherwise stated

𝐷 = 0.5, 𝜒 = 2, 𝑟 = 1, 𝑎 = 1, (34)

under different choices of the external supply 𝑓 (𝑥, 𝑡).
We take the one-dimensional domain Ω ∶= (0, 1) and a set of 40 nodes unevenly distributed over the interval. The weights we 

considered as dist−4, and the time step as Δ𝑡 = 2.5 ⋅ 10−4, which is small enough to grant the convergence of the scheme for the 
chosen discretization of Ω.

6.1.  Constant external supplies

We begin by investigating the dynamics of system (4) under constant supply rates, with 𝑓 (𝑥, 𝑡) ≡ 𝑓 . As determined in Section 2, 
the balance between 𝑟 and 𝑓 determines the linearized dynamics of the system.
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Fig. 1. Numerical solution to system (4) with parameters (34), 𝑓 = 1.5 > 𝑟, and initial values (35).

Fig. 2. Different time profiles of the solution represented in Fig. 1. The 𝑢 component of the solution is represented in the top panel, with the 𝑣
component in the bottom panel.

6.1.1.  The case 𝑟 < 𝑓
Our analysis starts by considering a sufficiently large external supply of the substance, satisfying 𝑟 < 𝑓 . In this case, the only 

biologically meaningful spatially homogeneous steady state is (0, 𝑓 ), which is locally asymptotically stable. For this purpose, we 
choose for instance

𝑓 (𝑥, 𝑡) ≡ 1.5 > 1 = 𝑟,

and initialize the system with 𝑢(𝑥, 0) and 𝑣(𝑥, 0) taken as small perturbations of (0, 𝑓 ).
Since the selected supply rate 𝑓 is greater than the logistic growth rate 𝑟, we expect the concentration of the substance to attain 

sufficiently high levels, so that the cell death term −𝑢𝑣 dominates bacterial proliferation, ultimately driving the solution back toward 
(0, 𝑓 ).

We consider the following initial values
𝑢(𝑥, 0) = 0.1 ⋅ (1 + cos(3𝜋𝑥)), 𝑣(𝑥, 0) = 1.5 + 0.01 ⋅ sin(8𝜋𝑥), (35)

close to (0, 𝑓 ) = (0, 1.5). We solve the equations using the GFD scheme (22) until 𝑡 = 10. Fig. 1 depicts the spatial and temporal 
evolution of the numerical solutions for this case. The one-dimensional spatial setting allows for a three-dimensional representation 
of the solution, with time advancing to the right. For a better representation of the initial dynamics of the system, different time 
profiles for 0 ≤ 𝑡 ≤ 2 are also represented in Fig. 2.

As can be seen in both images, the oscillatory shape of the initial values 𝑢(𝑥, 0) and 𝑣(𝑥, 0) is rapidly lost due to diffusion, with both 
𝑢 and 𝑣 rapidly flattening before 𝑡 = 0.5. In the case of the bacterial population 𝑢, as expected, the overall high concentrations of the 
substance effectively prevent its growth, and the solution converges uniformly to zero. With respect to 𝑣, the large supply induces a 
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Fig. 3. Numerical solution to system (4) with parameters (34), 𝑓 = 0.5 < 𝑟, and initial values (35).

Fig. 4. Convergence of the solution represented in Fig. 3 to the steady state (𝑢∗, 𝑣∗) = (0.25, 0.75) in 𝐿∞(Ω) norm.

steep initial increase —visible in the bottom panel of Fig. 2— which is soon compensated as the degradation term −𝑣 becomes larger, 
decaying uniformly in time to the steady state, 𝑣 = 𝑓 = 1.5.

6.1.2.  The case 𝑟 > 𝑓
Next, we explore the case 𝑟 > 𝑓 , which admits two different nonnegative spatially homogeneous steady states, the previous one 

(0, 𝑓 ), as well as the coexistence state (𝑢∗, 𝑣∗) given in (7). To illustrate this case, we consider the same parameter set (34), this time 
taking

𝑓 (𝑥, 𝑡) ≡ 0.5 < 1 = 𝑟.

In this regime, the logistic growth rate dominates the supply of the substance, which makes (0, 𝑓 ) unstable, and (𝑢∗, 𝑣∗) locally 
asymptotically stable. To study both equilibria, we compute two numerical solutions of the system, using initial values close to these 
steady states.

First, for studying the dynamics close to (0, 𝑓 ), we consider the same initial values from the previous case, given by (35), and 
analyze the differences that arise. As in this case the equilibrium (0, 𝑓 ) becomes unstable, we expect that the change in the supply rate 
𝑓 results in a solution that moves away from (0, 𝑓 ) and possibly converges to (𝑢∗, 𝑣∗), which is in turn locally asymptotically stable.

Computing again the solution using the GFD scheme (22) and the same node distribution yields the outcome depicted in Fig. 3.
The results in Fig. 3 agree with the expected behavior. Since the logistic growth rate 𝑟 is significantly larger than the external supply 

𝑓 , the bacterial population rapidly proliferates, approaching the coexistence level 𝑢∗ = 0.25. For the substance concentration 𝑣, the 
combined effect of the constant external supply and bacterial self-production overcome the degradation term, leading to an increase 
toward the equilibrium value 𝑣∗ = 0.75. As in the previous case, the spatial oscillations from the initial values are quickly suppressed 
by diffusion for both components. This initial smoothing is followed by a growth phase, during which the solution approaches (𝑢∗, 𝑣∗)
until approximately 𝑡 = 5, after which the solution keeps gradually converging to the equilibrium.

To analyze this convergence to (𝑢∗, 𝑣∗), the time evolution of ||𝑢(., 𝑡) − 𝑢∗||𝐿∞(Ω) and ||𝑣(., 𝑡) − 𝑣∗||𝐿∞(Ω) is represented in Fig. 4.
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Fig. 5. Numerical solution to system (4) with parameters (34), 𝑓 = 0.5 < 𝑟, and initial values (36).

Fig. 6. Different time profiles of the solution represented in Fig. 5. The 𝑢 component of the solution is represented in the top panel, with the 𝑣
component in the bottom panel.

As can be seen on both panels, the previously described growth phase occurs during the first 5 time instants, as reflected by the 
decrease in the norms. From then on, both ||𝑢(., 𝑡) − 𝑢∗||𝐿∞(Ω) and ||𝑣(., 𝑡) − 𝑣∗||𝐿∞(Ω) remain close to 0, indicating the convergence to 
the steady state.

Next, we consider two initial values close to the coexistence equilibrium (𝑢∗, 𝑣∗) in order to assess its local asymptotic stability. 
To explore the resulting dynamics, we take for instance

𝑢(𝑥, 0) = 𝑢∗ + 0.1 ⋅ sin(𝜋𝑥), 𝑣(𝑥, 0) = 𝑣∗ + 0.3 ⋅ sin(𝜋𝑥), (36)

again with parameters (34) and 𝑓 (𝑥, 𝑡) ≡ 0.5 < 1 = 𝑟. Since both initial data attain their maximum at the center of the domain, at 
𝑥 = 1∕2, negative chemotaxis will drive bacteria away from this region, leading them toward the sides. From then on, we again 
expect diffusion to flatten the shape of the solutions, while returning asymptotically to (𝑢∗, 𝑣∗).

The results for this scenario are shown in Fig. 5. As in the first case, to better illustrate these dynamics at short time scales, several 
time profiles of the solution are represented in Fig. 6.

As shown in Fig. 5, since both initial values lie above 𝑢∗ and 𝑣∗, the corresponding solutions experience a time decay toward the 
coexistence equilibrium (𝑢∗, 𝑣∗), to which they uniformly converge.

On short time scales, the dynamics are strongly influenced by chemotaxis. At 𝑡 = 0.01, represented in red in Fig. 6, the initial shape 
of 𝑢 has already been significantly altered, with an increase of the bacterial density near the boundaries and a considerable reduction 
at 𝑥 = 1∕2, which, however, still hosts the maximum bacterial density. By 𝑡 = 0.1, depicted in yellow, this chemotaxis-driven migration 
is completed, with the center of the domain having the lowest bacterial concentration. From then on, the density is homogenized 
throughout the domain due to diffusion, being progressively reduced while converging to 𝑢∗ = 0.25.

Regarding the substance concentration 𝑣, by 𝑡 = 0.1, diffusion has already flattened the shape of the solution, which similarly 
approaches 𝑣∗ = 0.75 as time passes.

For the study of the convergence, the time evolution of ||𝑢(., 𝑡) − 𝑢∗||𝐿∞(Ω) and ||𝑣(., 𝑡) − 𝑣∗||𝐿∞(Ω) are represented in Fig. 7.
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Fig. 7. Convergence of the solution represented in Fig. 5 to the steady state (𝑢∗, 𝑣∗) = (0.25, 0.75) in 𝐿∞(Ω) norm.

It is worth noting that both solutions actually achieve their corresponding steady state value, 𝑢∗ and 𝑣∗, independently at a finite 
time. For 𝑢, this occurs shortly before 𝑡 = 2, while for 𝑣 it is close to 𝑡 = 4. However, as the equilibrium values are not reached 
simultaneously, the solution keeps evolving, until for larger values of 𝑡, both 𝑢 and 𝑣 asymptotically converge to 𝑢∗ and 𝑣∗

6.2.  Periodicity

Having studied the dynamics of system (4) for constant values of 𝑓 , we now turn to time-periodic supplies, with the aim of 
describing the resulting asymptotically periodic regime.

6.2.1.  The case 𝑎 = 0
We first consider the case 𝑎 = 0, for which the threshold 𝑟min was characterized in (17). We recall that for a given 𝑇−periodic 

function 𝑓 (𝑡) —to which 𝑓 converges in time— if its average value over one period exceeds the logistic growth rate 𝑟, then the 
solution (𝑢̃, 𝑣̃) of system (5) satisfies 𝑢̃ → 0 as 𝑡 → ∞. If, on the other hand the average of 𝑓 is less than 𝑟, there exists a unique positive 
𝑇−periodic solution to system (5) characterized by the initial values (13) and (15), to which any other solution with positive initial 
values converges.

Since for any pair of initial values 𝑢(𝑥, 0) and 𝑣(𝑥, 0), the solution (𝑢, 𝑣) to the original PDE system (4) is known to converge in time 
to the solution of the associated ODE system (5) with initial values (6), the asymptotic periodic behavior of solutions to system (4) 
in the case 𝑎 = 0 is fully characterized by the threshold 𝑟min.

To begin the numerical study, we first consider the time-periodic supply

𝑓 (𝑥, 𝑡) = 0.5 ⋅
[

1 + cos(𝜋𝑡)
]

, (37)

of period 𝑇 = 2, and the parameter set (34), except for 𝑎, which we keep fixed at 𝑎 = 0.
To determine wether 𝑓 induces a periodic response in the system or not, we compute the threshold 𝑟min from (17). For this choice 

of 𝑓 , as it is directly spatially homogeneous, we have 𝑓 = 𝑓 , and thus

𝑟min =
1
𝑇 ∫

𝑇

0
𝑓 (𝑠) 𝑑𝑠 = 1

2 ∫

2

0
0.5 ⋅

[

1 + cos(𝜋𝑠)
]

𝑑𝑠 = 0.5.

As the logistic growth rate of the species satisfies 𝑟 = 1 > 0.5 = 𝑟min, the solution to system (4) will asymptotically reach a periodic 
regime for any positive pair of initial values 𝑢(𝑥, 0) and 𝑣(𝑥, 0). To characterize this periodic regime, we determine the initial values 
(𝑢̃0, 𝑣̃0) for the ODE system, as given in (13) and (15). First

𝑣̃0 =
1

𝑒𝑇 − 1 ∫

𝑇

0
𝑓 (𝑠)𝑒𝑠 𝑑𝑠 = 1

2

(

1 + 1
𝜋2 + 1

)

, (38)

and with it

𝑣̃(𝑡) = 1
2

(

1 + 1
𝜋2 + 1

(

𝜋 sin(𝜋𝑡) + cos(𝜋𝑡)
)

)

. (39)
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Fig. 8. Numerical solution to system (4) with parameters (34) except for 𝑎 = 0, 𝑓 (𝑥, 𝑡) in (37) (satisfying 𝑟 > 𝑟min) and initial values (41).

Fig. 9. Convergence of the solution (𝑢, 𝑣) from Fig. 8 to (𝑢̃, 𝑣̃) at 𝑥 = 1∕2.

This allows us to compute 𝑢̃0 as

𝑢̃0 =
𝑒∫

𝑇

0
(𝑟 − 𝑣̃(𝑠)) 𝑑𝑠

− 1

∫

𝑇

0

⎛

⎜

⎜

⎜

⎝

𝑟 𝑒∫

𝑠

0
(𝑟 − 𝑣̃(𝜏)) 𝑑𝜏⎞

⎟

⎟

⎟

⎠

𝑑𝑠

≈ 0.5214 (40)

To study how the numerical solution to the PDE system converges to the unique positive periodic solution (𝑢̃, 𝑣̃) of the ODE system
(5) generated by (38) and (40), we select a pair of initial values. For instance, similar to those of the previous example, we consider

𝑢(𝑥, 0) = 0.3 + 0.1 ⋅ sin(𝜋𝑥), 𝑣(𝑥, 0) = 0.3 ⋅ sin(𝜋𝑥). (41)

The evolution of 𝑢 and 𝑣 is depicted in Fig. 8, where the asymptotic periodicity can already be observed.
To better analyze the transition toward the periodic regime and the convergence of (𝑢, 𝑣) to (𝑢̃, 𝑣̃), we fix 𝑥 = 1∕2 and plot in Fig. 9 

the time evolution of 𝑢 and 𝑣 at said coordinate.
Given the shape of the initial bacterial and substance distributions —with both having a maximum precisely at 𝑥 = 1∕2— as in 

previous case, the bacterial population migrate away from the center of the domain, as reflected by the sudden decrease of 𝑢(1∕2, 𝑡)
in the first instants. Diffusion causes 𝑣(1∕2, 𝑡) to also decrease initially, albeit less intensely. From there on, the logistic dynamics of 
the bacteria and the external supply of the substance boost the growth of both 𝑢 and 𝑣. With 𝑟 being sufficiently large, the bacteria 
soon grow until reaching a first maximum near 𝑡 = 2. The death term −𝑢𝑣 prevents a greater increase of the population, which begins 
to oscillate, indicating the periodic response to the source. This translates into an eventual convergence to 𝑢̃, with both curves being 
nearly identical soon after 𝑡 = 8. The convergence of 𝑣 to 𝑣̃ is faster, having very similar values already at 𝑡 = 4.

Communications in Nonlinear Science and Numerical Simulation 156 (2026) 109645 

15 



F. Herrero-Hervás and M. Negreanu

Fig. 10. Numerical solution to system (4) with parameters (34) except for 𝑎 = 0, 𝑓 (𝑥, 𝑡) in (42) (satisfying 𝑟 < 𝑟min) and initial values (41).

Fig. 11. Convergence of the solution (𝑢, 𝑣) from Fig. 10 to (𝑢̃, 𝑣̃) at 𝑥 = 1∕2.

In addition to the solution trajectories, the figure includes gray dashed horizontal lines corresponding to (𝑢∗, 𝑣∗), the steady state
(7), computed by taking the average of 𝑓 as the constant supply rate. This shows that, in this periodic regime, the dynamics of the 
system are governed by oscillations around the equilibrium associated to a constant supply of the average value of 𝑓 .

Secondly, we consider the same biological setting, in terms of the parameter set (34) with 𝑎 = 0 and the initial values (41), but 
with a new supply term, given by

𝑓 (𝑥, 𝑡) = 1.5 ⋅
[

1 + cos(𝜋𝑡)
]

. (42)

This choice of 𝑓 entails the same periodic structure as the previous one considered in (37), but with a larger amplitude factor. Again, 
since 𝑓 contains no spatial heterogeneities, we have 𝑓 = 𝑓 , with a corresponding threshold value of

𝑟min =
1
2 ∫

2

0
1.5 ⋅

[

1 + cos(𝜋𝑠)
]

𝑑𝑠 = 1.5.

Hence, only a species with a logistic growth rate above 𝑟min = 1.5 can sustain a periodic regime of the type described above. For this 
case, however, as 𝑟 = 1 < 𝑟min, the largeness of 𝑓 is expected to drive the population to zero due to the high concentration of the 
substance.

The corresponding numerical solution is shown in Fig. 10. As expected, instead of converging to a time-periodic solution, the 
bacterial density 𝑢 suffers an oscillating decay. In this regime, the logistic growth of the species is insufficient to compensate for the 
high concentrations that the substance reaches, which induce a strong death term −𝑢𝑣.

In contrast, the periodicity of 𝑓 is inherited only by the substance concentration 𝑣, which asymptotically reaches a periodic regime, 
as can be deduced from the explicit expression for 𝑣̃ given in (12), which is independent of 𝑟. This can be further visualized in Fig. 11, 
where the time evolution of 𝑢 and 𝑣 is depicted at the fixed coordinate 𝑥 = 1∕2, showing on the one hand the decay for 𝑢 and on the 
other hand the asymptotic periodicity for 𝑣.
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Fig. 12. Numerical solution to system (4) with parameters (34), 𝑓 (𝑥, 𝑡) in (37) and initial values (41).

Fig. 13. Convergence to periodic solutions at 𝑥 = 1∕2.

6.2.2.  The case 𝑎 > 0
To complete the study of the periodic dynamics, we consider one example with 𝑎 > 0, where the substance is self-produced by 

the bacteria. While time convergence of (𝑢, 𝑣) to (𝑢̃, 𝑣̃) still holds uniformly in Ω, explicit threshold conditions characterizing the 
periodicity of (𝑢̃, 𝑣̃) are still lacking.

We take the full parameter set (34) (again with 𝑎 = 1), the initial values (41) and the supply 𝑓 considered in (37), which resulted 
in asymptotically periodic behavior for the case 𝑎 = 0.

The numerical solutions are represented in Fig. 12, again with the time evolution at 𝑥 = 1∕2 in Fig. 13, including the reference 
values (𝑢∗, 𝑣∗) computed again by taking again the average of 𝑓 over one period as a constant supply.

As can be seen in both figures, both 𝑢 and 𝑣 again appear to converge toward an asymptotically periodic regime, although with 
stark contrast to the results obtained for this same scenario with 𝑎 = 0, depicted in Fig. 8. In the present case, the positive value 
of 𝑎 results in a decrease of the associated value of 𝑢∗, from the previous 0.5 for 𝑎 = 0 to the current 0.25. Consequently, since the 
initial value 𝑢(𝑥, 0) now lies significantly above 𝑢∗, after a short time span in which chemotaxis governs the dynamics of the system, 
𝑢 experiences a decrease until approaching 𝑢∗, around which the periodic oscillations are centered.

For the substance concentration 𝑣, the self-production term leads to overall higher results, nearly reaching 1 at 𝑥 = 1∕2, shortly 
after 𝑡 = 2, at the time when the bacterial density is also at its maximum. The associated value of 𝑣∗ is now higher as well, from 0.5
for 𝑎 = 0 to 0.75 in this case.

Thus, the periodicity induced by the supply 𝑓 is preserved for this case with 𝑎 > 0. However, the self-production of the substance 
alters the periodic regime by increasing the average substance concentration, which in turn results in a decrease in the level around 
which the bacterial density oscillates.
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Fig. 14. Numerical solution to system (4) with parameter values (43) and initial values (44).

Fig. 15. Evolution of the 𝑢 component of the solution from Fig. 14.

6.3.  Arising patterns

Lastly, we devote this section to show some spatial patterns that can be generated by system (4) under certain parameter con-
figurations, when local stability is not preserved. The topic of pattern formation in chemotaxis systems has been widely studied, for 
instance in [30], where a large range of one-dimensional patterns are described.

To obtain meaningful results, we consider a longer domain, in this case Ω = (−𝜋, 𝜋) and first take the following parameters

𝐷 = 0.1, 𝜒 = 9, 𝑟 = 1, 𝑎 = 1, 𝑓 (𝑥, 𝑡) ≡ 0. (43)

Notice that in this case the process in mainly chemotaxis-driven, due to the largeness of 𝜒 . As initial values, we consider a small 
perturbation around (𝑢∗, 𝑣∗) = (0.5, 0.5), given by

𝑢(𝑥, 0) = 𝑢∗ = 0.5, 𝑣(𝑥, 0) = 𝑣∗ + 0.01 ⋅ sin(8𝑥) = 0.5 + 0.01 ⋅ sin(8𝑥). (44)

The numerical solution up to 𝑡 = 15 is represented in Fig. 14. Focusing on the bacterial density 𝑢, we observe the formation of localized 
clusters of bacteria with high population densities, while other regions of the domain remain nearly empty.

To better illustrate the emergence, interaction, and merging of these clusters, Fig. 15 represents several time profiles of the solution 
𝑢, together with a vertical view of the left panel in Fig. 14.

We observe that until 𝑡 = 2, the solution remains close to the homogeneous equilibrium 𝑢∗, with different small aggregations whose 
amplitudes are bounded between 0.4 and 0.6. From this time onward, certain peaks start to emerge, as can be seen at the left panel 
at 𝑡 = 4. The highest bacterial concentrations are located near 𝑥 = −2, 𝑥 = −0.5, 𝑥 = 1 and the boundary 𝑥 = 𝜋.

The two central peaks eventually merge into a single aggregate, shortly before 𝑡 = 5, which can be better visualized in the right 
diagram. The remaining two interior clusters merge again before 𝑡 = 7.5. At this stage, the bacterial density at the center of the 
resulting cluster is nearly 4, significantly exceeding the carrying capacity of the logistic model, which is normalized to 1. As a result, 
the population density subsequently decreases.

Finally, a third peak emerges near the left boundary 𝑥 = −𝜋 after 𝑡 = 12, as shown in the right panel, which can also be seen in 
the final profile at 𝑡 = 15, where all population densities have already fallen below 2.
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Fig. 16. Numerical solution to system (4) with parameter values (43) and initial values (44).

Table 1 
Maximum error in 𝑙∞ for three different meshes 
and numerical order of convergence.
 Number of nodes 𝑙∞ norm of the error  O.C.
 10 0.00114  -
 19 5.4183 ⋅ 10−4  2.103
 37 2.0811 ⋅ 10−4  2.603

Similar patters also arise when considering a larger domain, for instance by considering Ω = (− 3𝜋
2 , 3𝜋2 ), with the same parameters 

as in (43), except for 𝜒 = 6. The results are represented once again in Fig. 16, only for the 𝑢 component of the solution, with different 
time profiles on the left panel and a vertical view on the right one.

Though at the initial stages, up to approximately 𝑡 = 5, the solution does not present great spatial heterogeneity, four distinct 
bacterial clusters eventually emerge, shortly before 𝑡 = 7. First, one near the left boundary; two at the center of the domain, which 
subsequently merge into a single aggregate at around 𝑡 = 11.5, and a fourth one on the right half of the domain. Due to the lower 
value of 𝜒 compared to the previous case, these aggregations do not attain the same high population densities. In particular, the 
bacterial density remains below 2.5 throughout the simulation –reached when both central clusters merge– whereas previously the 
maximum value was slightly below 5.

6.4.  Numerical order of convergence

As a final remark, in this last subsection we numerically estimate the order of convergence (O.C.) of the proposed scheme. We 
compare an artificial solution over three different meshes with 10, 19 and 37 nodes, yielding the results in Table 1, where we see 
that the estimated order of convergence is close to its actual value, 2.

7.  Conclusions

Throughout this paper, a mathematical model describing the interaction between a biological species and a chemical substance, 
was presented and analyzed. The model, governed by system (4), incorporates cell motility, negative chemotaxis, and logistic growth 
for the bacterial population, together with lethality induced by the substance and an external supply term.

The local stability of the spatially homogeneous steady states was studied in Section 2 for constant supply rates 𝑓 . Two different 
equilibria, (0, 𝑓 ) and (𝑢∗, 𝑣∗), given in (7), were obtained. The coexistence equilibrium (𝑢∗, 𝑣∗) is biologically meaningful only when 
the logistic growth rate 𝑟 satisfies 𝑟 > 𝑓 . In this regime, as the growth rate of the species exceeds the external supply, the state (0, 𝑓 )
is unstable, whereas (𝑢∗, 𝑣∗) is locally asymptotically stable. Conversely, if 𝑟 < 𝑓 , the external supply dominates the bacterial growth, 
and (0, 𝑓 ) becomes locally asymptotically stable, with any bacterial proliferation being suppressed by the high concentration of the 
chemical substance.

In Section 3, the case of an asymptotically time-periodic source function 𝑓 was studied, through a reduction to the associated 
ODE system (5). In the absence of self-production of the substance by the bacteria (that it, the case 𝑎 = 0), an explicit expression 
for the second component 𝑣̃ could be obtained, which allowed us to characterize the initial conditions leading to periodic solutions. 
Moreover, a threshold value 𝑟min, defined in (17), was obtained, in terms of the average of the periodic supply over one period. 
This threshold guarantees the existence of a unique positive 𝑇 -periodic solution to the ODE system whenever 𝑟 > 𝑟min, constructed 
by means of the initial data (13) and (15). Under these conditions, solutions of the full PDE system converge asymptotically in time 
to this periodic regime. If, on the contrary, 𝑟 ≤ 𝑟min no such solution exists, leading the bacterial density 𝑢 to a time decay toward 
extinction.
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The remainder of the paper was devoted to numerical investigations. In Section 4, a brief introduction to the Generalized Finite 
Difference (GFD) method is provided, which we employ to approximate the solution of the model. The explicit numerical scheme
(22) was presented in Section 5, together with a stability condition on the time step ensuring convergence, established in Theorem 1.

Numerical simulations presented in Section 6 confirm the analytical results on linear stability and periodic behavior obtained in 
the previous section. In particular, the stability properties of the equilibria for the cases 𝑟 < 𝑓 and 𝑟 > 𝑓 were illustrated in Figs. 1–2, 
and Figs. 3–7, respectively. The convergence toward time-periodic solutions was also demonstrated numerically, first for 𝑎 = 0 both 
in the regime 𝑟 > 𝑟min, where solutions converge to a positive periodic orbit (Fig. 9), and in the case 𝑟 < 𝑟min, where the bacterial 
population exhibits an oscillatory decay (Fig. 11), as well as for 𝑎 > 0, where asymptotic periodicity was also obtained (Fig. 13). 
Finally, qualitative observations on pattern formation in the full PDE system and numerical convergence properties of the scheme 
were reported in Figs. 14–16 and Table 1, respectively.
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