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Many classical planning frameworks are built on first-order languages. The first-order ex-
pressive power is desirable for compactly representing actions via schemas, and for speci-
fying quantified conditions such as ¬∃xblocks_door(x). In contrast, several recent epistemic 
planning frameworks are built on propositional epistemic logic. The epistemic language is 
useful to describe planning problems involving higher-order reasoning or epistemic goals 
such as Ka¬problem.
This paper develops a first-order version of Dynamic Epistemic Logic (DEL). In this 
framework, for example, ∃xKx∃yblocks_door(y) is a formula. The formalism combines the 
strengths of DEL (higher-order reasoning) with those of first-order logic (lifted representa-
tion) to model multi-agent epistemic planning. The paper introduces an epistemic language 
with a possible-worlds semantics, followed by novel dynamics given by first-order action 
models and their execution via product updates. Taking advantage of the first-order ma-
chinery, epistemic action schemas are defined to provide compact, problem-independent 
domain descriptions, in the spirit of PDDL.
Concerning metatheory, the paper defines axiomatic normal term-modal logics, shows 
a Canonical Model Theorem-like result which allows establishing completeness through 
frame characterization formulas, shows decidability for the finite agent case, and shows a 
general completeness result for the dynamic extension by reduction axioms.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Most classical planning languages are first-order. Standard formalisms like PDDL [58] and ADL [69], for example, are first-
order. One major reason for using a first-order language over a propositional one is that variables can be used to describe 
actions compactly. For instance, in the PDDL description of BlocksWorld, the action schema stack(X, Y ) uses variables X and 
Y to represent generic blocks and state the preconditions and effects of all actions of the form: “put block X on top of 
block Y ”. This is possible because the action of stacking block A on block B has the same type of effects as the action of 
stacking block C on D; only the names of the blocks are different. Action schemas use variables to exploit this repeated 
structure in actions, resulting in action representations whose size is independent of the number of objects in a domain. 
While stack(X, Y ) describes the preconditions and effects of performing a stack action on any two blocks, regardless of 
total number of blocks, with a propositional language each stack action has to be represented by a separate model, yielding 
n2 − n propositional models for a domain with n blocks. Generally, given an action schema with k variables and n constant 
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symbols standing for domain objects, the schema has up to nk different instantiations, each requiring a separate model in a 
propositional representation.

Dynamic Epistemic Logic (DEL) has proved to be a very expressive framework for epistemic planning, i.e., planning explicitly 
involving e.g. knowledge or belief. DEL uses the language of propositional epistemic logic to describe the knowledge or 
belief held by a community of agents. This language is built from a set of propositional atoms, standard logical connectives, 
and modal operators Ki for each agent i in a fixed set of agent indices I = {1, . . . , n}. An example of a formula is K1 p ∧
K2 K1 p, which expresses that agent 1 knows the propositional atom p and that agent 2 knows that agent 1 knows p. 
Actions in DEL are described by so-called action models [6,7] or variants thereof. Action models describe preconditions 
and effects of events, and provide a rich framework for representing the agents’ uncertainty about such events. However, 
as action models are based on the propositional epistemic language, propositional DEL cannot achieve the generality of 
action schemas. Variabilized, general descriptions are not possible, so one action model is required for each action. Hence, 
while propositional DEL adds a great deal of expressivity to planning, this comes at a cost in terms of representational 
succinctness.

This paper presents a DEL-based epistemic planning framework built on epistemic term-modal logic. The underlying lan-
guage is first-order and includes modalities indexed by first-order terms. Examples of formulas include Kc on(A, B) (agent 
c knows that block A is on block B), Kc∃x on(x, B) (c knows that there is a block on top of B) and ∀yK y∃x on(x, B) (all 
agents know that there is a block on top of B). Term-modal languages thus extend the expressive power of first-order modal 
languages by treating modal operators both as operators and as predicates.

In addition to higher-order knowledge expressions, the first-order apparatus of epistemic term-modal logic allows for 
domain descriptions in terms of objects and relations, as well as abstract reasoning via variables and quantification. The 
term-modal aspect ensures that these first-order aspects also extend to agents and their knowledge. Importantly, the pres-
ence of variables enables the definition of epistemic action schemas. Epistemic action schemas can be exponentially more 
succinct than standard DEL event models (see Section 5.3). Moreover, epistemic action schemas provide an action represen-
tation whose size is independent of the number of agents and objects in the domain. We consider the development of this 
epistemic planning framework our first main contribution.

Our second main contribution is the development of term-modal logic, its dynamic extension and the metatheory for 
both. Many papers have been dedicated to term-modal logic and its metatheory (see Section 9.3 for a detailed review), 
but due to the many complications that may arise in such generalized first-order modal systems, no general completeness 
results have been shown. In this paper, we define a rich but well-behaved semantics that allow us to define axiomatic 
normal term-modal logics and show a Canonical Model Theorem-like result that allow completeness results through frame 
characterization formulas. Adding reduction axioms to the term-modal logics then allow us to show completeness for the 
dynamic extension.

The paper progresses as follows. Section 2 presents SelectiveCommunication used as running example of epistemic plan-
ning. Section 3 presents term-modal logical languages and Section 4 defines state representations: first-order Kripke models 
where the agent set is a part of the domain of quantification. Section 5 introduces action representations (action models) 
and how these may be succinctly represented as action schemas. The action representations are used in Section 6 to define 
epistemic planning problems and related notions, and an example describing a term-modal planning domain and problem 
using a ‘PDDL-like syntax’ is there given. Section 7 details how to extend the term-modal language to allows reasoning 
about actions, Section 8 turns to axiomatic systems and metatheory, while Section 9 turns to related work on epistemic 
planning, dynamic epistemic logic and term-modal logic, respectively. Section 10 contains final remarks and open questions. 
All proofs may be found in Appendix A.

2. A running example

Throughout the paper, we illustrate the planning formalism with a simple running example in a variant of the Selec-
tiveCommunication (SC) domain, adapted from [45]. Here we describe it informally, but it will serve as an example for the 
various formal notions throughout the paper. In the SC(n, m, k, �) domain, there are n agents. Each agent is initially in one 
of m rooms arranged in a corridor. There are k boxes distributed in the rooms, each having one of � available colors. See 
Fig. 1 for an example. Agents can perform four types of actions:

• Move(agent, room1, room2): agents can move from a room to a contiguous room, by going right or left. In this adapta-
tion of the domain, we model the move actions as partially observable: if agent α is in room ρi and moves to room ρ j , 
only the agents in either of the rooms can see that α’s location has changed.

• SenseLoc(agent, agent_or_box, room): while in a room, agents can sense the location of other agents or boxes in that 
room. Other agents in the room notice the sensing action.

• SenseCol(agent, color, box, room): agents can sense the color of a box when they are in the same room as the box. Other 
agents in the room notice the sensing action.

• Announce(agent, color, box, room): agents can make announcements concerning the colors of boxes. If α makes an 
announcement in a room, all agents in the same room or in a contiguous room will hear what was announced. α can 
use announcements to ensure that some agents get to know the truth value of some ϕ while the remaining agents do 
not.
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Fig. 1. A depiction of a possible state in SC(3, 4, 1, 2), where a red box β1 is in room ρ2. (For colored figures, the reader is referred to the web version of 
this article.)

A specific choice for the parameters n, m, k, � yields an instance of the SC domain. For example, SC(3, 4, 1, 2) is the 
instance of SelectiveCommunication involving three agents (α1, α2 and α3), four rooms (ρ1, ρ2, ρ3 and ρ4), one box (β1) and 
two possible colors for the box (e.g., red and green). Fig. 1 depicts a possible state of the environment in this domain.

A possible goal g = g1 ∧ g2 ∧ g3 in this domain is given by the conjunction of the following subgoals:

• g1: α1 and α2 know the color of β1
• g2: α1 knows that α2 knows the color of β1
• g3: α1 knows that α3 does not know the color of β1

That is, g requires α1 to learn the color of β1 and privately communicate this information to α2. I.e., the goal is epistemic; it 
requires α1 to achieve first-order knowledge about the environment (g1) as well as higher-order knowledge about what others 
know (g2 and g3).

The nature of a plan for achieving g depends on the initial state as well as the assumptions made about the planning 
problem. For illustrative purposes, we consider a simple problem. Suppose that only α1 can act and that the initial state s0
satisfies the following conditions:

• c1: each agent knows the location of all agents and the box β1.
• c2: no agent knows the color of β1 (which is in fact red).
• c3: conditions c1 and c2 are common knowledge among the agents.

In this case, α1 can easily reach a state satisfying g from s0. The following plan achieves g: α1 moves to ρ2 , α1 senses the 
color of β1 , α1 announces the color of β1. Of course, more initial uncertainty, or allowing other agents to act (sequentially or 
in parallel), results in more complex tasks. Such tasks can be defined with the formalism presented in this paper; however, 
for a first take on the formalism, this toy problem will be considered.

For additional examples, in [53] we use the framework to model social networks with epistemic dynamics.

3. Language

As term-modal logical languages include first-order aspects, they are parameterized by a signature specifying the non-
logical symbols and their type—i.e., the constants and relation- and function symbols, and the sort and order of arguments 
(agent or object) they apply to. Also variables are here assigned a type.

Notation 1. For a vector v = (x1, ..., xn), let len(v) denote its length, let vi denote its i’th element, i.e., vi := xi , and let v |k
denote its restriction to its prefix of length k, i.e., v |k := (x1, ..., xk).

Definition 1. A signature is a tuple � = (V, C, R, F, t) with V a countably infinite set of variables, and C, R and F countable 
sets of respectively constants, relation symbols and function symbols with the one requirement that {=} ⊆ R. Finally, t is a 
type assignment map that satisfies

1. For x ∈ V, t(x) ∈ {agt, obj} such that both V ∩ t−1(agt) and V ∩ t−1(obj) are countably infinite.
2. For c ∈ C, t(c) ∈ {agt, obj}.
3. For r ∈ R,

(a) for some n ∈N , t(r) ∈ {agt, obj, agt_or_obj}n , and
(b) for =∈ R, t(=) = (agt_or_obj, agt_or_obj).

4. For f ∈ F,
(a) for some n ∈N , t( f ) ∈ {agt, obj, agt_or_obj}n × {agt, obj}, and
(b) if t( f )|n = (t(t1), ..., t(tn)), then t( f (t1, ..., tn)) = t( f )n+1.

Identity is treated as a relation symbol; for it, infix notation is used with = (a, b) written a = b.
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Example 1 (Signature for SelectiveCommunication). The following signature � = (V, C, R, F, t) can be used to specify the 
SC(n, m, k, �) domain introduced in Section 2:

• Variables V = {x�, x, y, z, x1, x2, x3, . . . }.
• Constants C = Agentscon ∪ Roomscon ∪ Boxescon ∪ Colorscon , where Agentscon = {a1, . . . , an}, Roomscon = {r1, . . . , rm}

Boxescon = {b1, . . . , bk} and Colorscon = {c1, . . . , c�}.
• Relation symbols R = {In, Color, Adj, =} where In(x, y) states that agent or box x is in room y, Color(x, y) states that box 

x has color y and Adj(x, y) states that room x is adjacent to room y.
• Function symbols F = ∅.
• Type assignment t with constant types t(x) = agt for x ∈ Agentscon , t(x) = obj for x ∈ Roomscon ∪ Boxescon ∪Colorscon , 

relation types t(In) = (agt_or_obj, obj), and t(Color) = t(Adj) = (obj, obj).

Definition 2. The set of terms T of a signature � = (V, C, R, F, t) is given by the grammar

t ::= x | c | f (t1, ..., tn)

for x ∈ V, c ∈ C and f ∈ F, provided that t1, ..., tn ∈ T and t( f )|len(t( f ))−1 = (t(t1), ..., t(tn)).
A term is ground if it does not contain any variables; it is free if all its terms are (i) variables or (ii) function symbols all 

whose arguments are free terms.

By the definitions of type assignments and terms, it is the case that for all t ∈ T, t(t) ∈ {agt, obj}. This allows for a 
uniform definition of formulas in term-modal languages:

Definition 3. Let � = (V, C, R, F, t) be a signature. Let t1, ..., tn ∈ T and r ∈ R with t(r) = (t(t1), ..., t(tn)), let † ∈ T with 
t(†) = agt, and let x ∈ V. The language L is then given by the grammar

ϕ ::= r(t1, ..., tn) | ¬ϕ | ϕ ∧ ϕ | K†ϕ | ∀xϕ

An atom is a formula obtained by the first clause. An atom is ground if all its terms are ground; it is free if all its terms 
are free. Denote by GroundAtoms(L) and FreeAtoms(L) the set of all ground and free atoms in L, respectively.

Throughout, the standard Boolean connectives as well as �, ⊥ and ∃ are used as meta-linguistic abbreviations as usual. 
We abbreviate inequality expressions of the form ¬(t1 = t2) by (t1 
= t2). Free and bound variables may be defined recur-
sively as usual with the free variables of Ktϕ the free variables of ϕ plus the variables in t . A formula is a sentence if it has 
no free variables. With ϕ ∈L, t ∈ T, x ∈ V, t(x) = t(t) and no bound variables of ϕ occurring in t , the result of replacing all 
occurrences of x in ϕ with t is denoted ϕ(x �→ t).

Remark 1. Ktϕ is read as “agent t knows that ϕ”. Epistemic expressions are only well-defined when t is an agent term. The 
language L neither enforces nor requires a fixed-size agent set, in contrast with standard epistemic languages, where the 
set of operators is given by reference to some index set. Fixed-size agent sets are discussed throughout.

4. State representation

In planning frameworks based on epistemic logic, states are often represented using possible-worlds models, tracing back 
to the work of Hintikka [39] and Kripke [49]. The standard epistemic interpretation of such models—employed here in all 
examples—is one of indistinguishability, as follows. A model contains a set of worlds, each representing a physical state of 
affair. For each agent, a model contains a binary relation on the set of worlds. Under the indistinguishability interpretation, 
this relation is taken to be an equivalence relation. If two worlds are related for agent α, then α cannot distinguish them 
given her current information. I.e., they are informationally indistinguishable for α. Hence, when α in fact is in some world 
w , she cannot tell which of the worlds related to w she is in fact in. The set of worlds indistinguishable from w for agent 
α is therefore sometimes referred to as agent α’s range of uncertainty (at w). The term information cell is used to cover the 
same, and a world in α’s range of uncertainty is said to be considered possible by α (at w). An agent’s range of uncertainty 
determines its knowledge: an agent knows ϕ in world w if ϕ is true in all the worlds in the agent’s range of uncertainty at 
w . For instance, if the agent has no information about two blocks A and B , and therefore cannot tell whether one of them 
is stacked on the other or not, she will consider at least three worlds possible: one in which A is indeed stacked on B , 
one in which it is not, and one in which B is stacked on A. Possible-worlds models represent also all levels of higher-order 
knowledge. E.g. agent α knows that agent β knows ϕ if α does not consider it possible that β considers it possible that ϕ
is false.

A possible-worlds model is formally defined as a structure in general called a Kripke model. Kripke models need not 
enforce any properties on the agents’ relations. Our results hold for the general case, with equivalence relations a special 
case. Under the indistinguishability interpretation, Kripke models are often called epistemic models or epistemic states. For a 
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thorough explanation of the components of a Kripke model, we refer the reader to [8,27]. When the context makes it clear, 
such a structure may simply be called a model. A model consists of a frame and an interpretation. Two things differentiate 
the frame used here from the standard, propositional version. First, a frame here contains a constant domain of elements 
existing in each world. Working with distinct agents and objects, the domain is a disjoint union of two sets, the agent 
domain and the object domain. Second, the accessibility relations over worlds are directly associated with elements in the 
agent domain. The agent domain thereby makes reference to an index set—as used in non-term-modal logical frames—
redundant. The definition of a frame is thereby self-contained.

Definition 4. A frame F is a triple F = (D, W , R) where

1. D := Dagt_or_obj := Dagt∪̇Dobj , called the domain, is the disjoint union of the non-empty sets Dagt and Dobj , called 
the agent domain and the object domain, respectively.

2. W is a non-empty set of worlds.
3. R is a map associating to each agent i ∈ Dagt a binary accessibility relation on W . I.e., R : Dagt −→P(W × W ).

Write Ri for R(i), write w Ri w ′ for (w, w ′) ∈ Ri and write Ri(w) for {w ′ ∈ W : w Ri w ′}. If |Dagt| = n and |Dobj| = m, 
(n, m ∈N), say F is of size (n, m). Denote by F the class of all frames and by F (n,m) the class of all frames of size (n, m).

For propositional modal logic, a frame is augmented by a valuation assigning an extension of worlds to each propositional 
symbol. In the first-order and term-modal cases, each non-logical symbol is assigned an extension in the domain. Here, this 
extension is assigned world-relatively for both relation symbols, function symbols and constants. In particular the last is 
note-worthy: the constants are thereby non-rigid—they may refer to different objects (and agents!) in different worlds. The 
non-rigidity of constants allows for uncertainty about identity cf. the example of Section 6.2 and play an important role 
concerning the validity of frame-property characterizing axioms, cf. Section 8.1.4.

Constants that do not vary with worlds—so-called rigid constants—often come in handy when referring to agents. A rigid 
constant provides a syntactic name for a semantic agent. Rigid constants are a special case: a constant c may be forced rigid 
by assuming its interpretation I(c, w) to be constant over all worlds, i.e., by I(c, w) = I(c, w ′) for all w, w ′ ∈ W .

Definition 5. Let a signature � = (V, C, R, F, t) and a frame F = (D, W , R) be given. An interpretation of � over F is a map 
I satisfying for each w ∈ W :

1. I(=, w) is the set {(d, d) : d ∈ D}.
2. For c ∈ C, I(c, w) ∈ Dt(c) .

3. For r ∈ R, I(r, w) ⊆ ∏len(t(r))
i=1 Dti(r) .

4. For f ∈ F, I( f , w) ⊆ ∏len(t( f ))
i=1 Dti( f ) such that I( f , w) is a (possibly partial) map: i.e.,

if (d1, ..., dk, dlen(t( f ))), (d1, ..., dk, d′
len(t( f ))) ∈ I( f , w), then dlen(t( f )) = d′

len(t( f )) .

With F = (D, W , R) a frame and I an interpretation of � over F , the tuple M = (D, W , R, I) is a model. Both w ∈ F and 
w ∈ M states that w ∈ W . When w ∈ M , the pair (M, w) is a pointed model with w called the designated world.

Satisfaction for all formulas without variable occurrences may be defined over pointed models. To specify satisfaction 
for the full language, variables must also be assigned extension. Letting variable valuations be world independent—or 
rigid—trans-world identification of objects and agents may be made using suitable bound variables, cf. e.g. the de re knowl-
edge in Example 2.

Definition 6. Let a signature � = (V, C, R, F, t) and a frame F = (D, W , R) be given. A valuation of � over F is a map 
v : V −→ D such that v(x) ∈ Dt(x) . An x-variant v ′ of v is a valuation such that v ′(y) = v(y) for all y ∈ V, y 
= x.

Jointly, an interpretation and a valuation assigns an extension to every term t of � relative to every world of a frame. 
The following involved, but uniform, notation will be used throughout to denote the extension of terms:

Definition 7. Let a signature � = (V, C, R, F, t), a model M = (D, W , R, I) and a valuation v be given. The extension of the 
term t ∈ T in M under v is

�t�I,v
w =

⎧⎪⎨
⎪⎩

v(t) if t ∈ V

I(t, w) if t ∈ C

d with (d1, ...,dn,d) ∈ I( f , w) if t = f (t1, ..., tn)



6 A. Occhipinti Liberman et al. / Artificial Intelligence 286 (2020) 103305
Fig. 2. (M0, wred), a pointed epistemic model for the initial state s0 described in Section 2. The agents are uncertain about the color of β1, which may be 
red (wred) or green (w green). This is captured by the edge linking wred and w green . Reflexive edges are not drawn. The name of the actual world, wred , is 
marked with boldface letters.

For exactly the terms t with t(t) = agt, R�t�I,v
w

is then an accessibility relation in M . The extension of terms thus play 
a key role in the satisfaction of modal formulas:

Definition 8. Let � = (V, C, R, F, t), M = (D, W , R, I) and v be given. The satisfaction of formulas of L is given by
M, w �v r(t1, ..., tn) iff (�t1�

I,v
w , ..., �tn�

I,v
w ) ∈ I(r, w) for all r ∈ R, including =.

M, w �v ¬ϕ iff not M, w �v ϕ .
M, w �v ϕ ∧ ψ iff M, w �v ϕ and M, w �v ψ .
M, w �v ∀xϕ iff M, w �u ϕ for every x-variant u of v .
M, w �v Ktϕ iff M, w ′ �v ϕ for all w ′ such that (w, w ′) ∈ R�t�I,v

w
.

Example 2 (Epistemic model for SC(3, 4, 1, 2)). Fig. 2 depicts an epistemic model M0 = (D, W , R, I) for the initial state s0
described in Section 2. Formally, the model M0 = (D, W , R, I) has

• D = Dagt∪̇Dobj , with Dagt = {α1, α2, α3} and Dobj = Roomsobj ∪ Boxesobj ∪ Colorsobj , where Roomsobj =
{ρ1, ρ2, ρ3, ρ4}, Boxesobj = {β1} and Colorsobj = {Red, Green}.

• W = {wred, w green}.
• R(αi) = W × W , for i ∈ {1, 2, 3}.
• The interpretation of all constants is the same in wred and w green , i.e., all constants are rigid: I(ai, u) = αi , I(ri, u) = ρi , 

I(bi, u) = βi , I(green, u) = Green and I(red, u) = Red for all u ∈ W .
• The interpretation of the predicates is as follows: I(In, u) = {(α1, ρ1), (α2, ρ3), (α3, ρ4), (β1, ρ2)}, for all u ∈ W , 

I(Color, wred) = {(β1, red)}, I(Color, w green) = {(β1, green)}. The interpretation of the Adj predicate is as expected.

Following the semantics from Definition 8, it can be seen that M0, wred �v ∀x(KxIn(b1, r2)), i.e., every agent knows the 
location of box β1. Similarly, every agent knows that all agents know this, since M0, wred �v ∀y∀x(K y KxIn(b1, r2)). Moreover, 
the agents know that the box has a color, but not what color it is. They thus have what is called de dicto knowledge of the 
coloring of the box, but not de re knowledge. Agent α3’s de dicto knowledge is captured by M0, wred �v Ka3∃xColor(b1, x), 
while its lack of de re knowledge is captured by M0, wred �v ¬∃xKa3 Color(b1, x). Finally, agent α3 has de re knowledge of 
the box, or as Hintikka [39] puts it, α3 knows what the box is, captured by M0, wred �v ∃xKa3 (x = b1).

5. Action representation

In automated planning, a distinction is often drawn between action schemas, which describe classes of actions in a general 
way, and ground actions, which represent a specific action with a fixed set of agents and objects [35,79]. Action schemas 
use so-called action parameters or variables, which are instantiated into constants to define an action. For example, a schema 
may be used to represent all actions of the form ‘agent x tells y that object z has color u’, where x, y, z and u are variables 
standing for agents and objects. A corresponding ground action is obtained by replacing all free variables by names referring 
to specific agents and objects. For example, a schema instance could be ‘ann tells bob that box1 has color red’.

In DEL, the descriptions of concrete actions are called action models. That is, DEL action models correspond to a ground 
action in classical planning. Following the DEL naming conventions, models of concrete actions will be called action models, 
whereas variabilized models in the spirit of PDDL will be called action schemas. Action models and action schemas, as well 
as a suitable notion of schema instantiation relating the two, are introduced next.

5.1. Action models

Formally and intuitively, action models are closely related to Kripke models. Where Kripke models contains worlds and 
relations, action models instead contain events and relations. Under the standard epistemic interpretation, the relations again 
represent indistinguishability and are again assumed to be equivalence relations. Again, this is a special case of the models 
introduced here.
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The DEL-style action models we add to the term-modal logic setting include preconditions ([6,7]), postconditions ([11,15,
26]) as well as edge-conditions similarly to [13]. Preconditions specify when an event is executable (e.g., a precondition of 
opening the door is that it is closed.) Postconditions describe the physical effects of events (e.g., the door is open after the 
event). Edge-conditions are used to represent how an agent’s observation of an action depends on the agent’s circumstances. 
For example, the way in which an agent αi observes an action performed by agent α j may depend on αi ’s proximity to 
α j or to the objects affected by the action (e.g., to αi , the events of opening and closing the door are distinguishable if αi

can see or hear the door, but else not). Edge-conditions provide a general way to describe actions whose observability is 
context-dependent. The epistemic effects of an action model is encoded by the product update operation by which action 
models are applied to Kripke models (defined below).

In more detail, the components of term-modal action models (Definition 9 below) play the following roles. E represents 
the set of events that might occur as the action is executed. Q is a map that assigns to each edge (e, e′) ∈ E × E an edge-
condition: a formula with a single free variable x� . Given a model M describing the situation in which the action is applied, 
an agent α cannot distinguish e from e′ iff the edge-condition from e to e′ is true in M when the free variable x� is mapped to 
α. Intuitively, if the situation described by the edge-condition is true for α, the way α observes the action does not allow 
her to tell whether e or e′ is taking place. The precondition restricts the applicability of an event e to those states satisfying 
the precondition formula pre(e). Precondition formulas contain no free variables to ensure that their effects are conditional 
only on the model, but not the variable valuation. The postcondition post(e) describes the physical changes induced by 
the event. If both pre(e) and post(e)(r(t1, . . . , tn)) are true in a state s of a model M , then the event e occurs, and after 
its occurrence, r(t1, . . . , tn) is true in the updated version of s. That is, r(t1, . . . , tn) is a conditional effect of event e with 
condition post(e)(r(t1, . . . , tn)).

The language used to state pre- and postconditions in action models is an extension of L, denoted LAM , to be introduced 
in Section 7. This extended language has formulas of the form [A, e]ϕ , which are interpreted as: ‘after event e of action A, 
ϕ holds’. This type of formula makes it possible to mention other actions in the pre- and postconditions of actions, i.e., to 
express syntactically some dependencies or interactions between actions. However, the action model construction does not 
require or depend on the use of LAM rather L, so the reader can safely ignore the details of LAM for now.

Definition 9. An action model A is a tuple A = (E, Q , pre, post) where

1. E is a non-empty, finite set of possible events.
2. Q : (E × E) →LAM , where for each pair (e, e′) the formula Q (e, e′) has exactly one free variable x� .
3. pre : E →LAM is a map that assigns to each event e ∈ E a precondition formula with no free variables.
4. post : E → (GroundAtoms(L) →LAM) is a map that assigns to each event e ∈ E a postcondition for each ground atom.

It is required that post(e)(= (t, t)) = � for each event e, to preserve the meaning of equality. A pair (A, e) consisting of the 
action and an event from E is called a pointed action.

Notation 2. Let A = (E, Q , pre, post) be an action model. We denote by dom(post(e)) the set of atoms for which 
post(e)(r(t1, . . . , tk)) 
= r(t1, . . . , tk). We denote any post(e) that maps every atom to itself by id (the identity function). 
When convenient, we add the superscript “A” to the components of A, so that A = (E A, Q A, preA, postA).

To ensure that postcondition functions are finite objects, each post(e) is often required to be only finitely different from 
the identity function. That is, dom(post(e)) is required to be finite. This allows for a finite encoding of postconditions, as 
only pairs with post(e)(ϕ) 
= ϕ need to be stored in memory. Especially in planning, it should be possible to write down a 
sequence of symbols that completely specifies any given action model in the language. For the sake of generality, we do not 
impose this restriction in the definition of an action model. But for all practical purposes, this standard restriction will be 
needed.

Notation 3. Let A = (E, Q , pre, post) be an action model. When A is illustrated as a labelled graph, for each node e ∈ E , 
we write the precondition and postconditions for e as a pair 〈pre(e); post(e)(ψ1) = ϕ1 ∧ · · · ∧ post(e)(ψn) = ϕn〉. We write 
postconditions such as post(e)(ϕ) = � ∧ post(e)(ψ) = ⊥ using the notation ϕ ∧¬ψ (indicating that the action makes ϕ true 
and ψ false unconditionally). In graphs, we omit the postconditions for atoms ϕ with post(e)(ϕ) = ϕ .

We do not include the edge-conditions for reflexive loops in illustrations, but always assume that for all e ∈ E , Q (e, e) =
(x� = x�), to the effect that all agents retain reflexive relations following updates. When two events e, e′ are connected by a 
line without arrowheads labeled by a single formula ϕ , this means that Q (e, e′) = Q (e′, e) = ϕ , retaining symmetry.

Example 3 (Action models for SC(3, 4, 1, 2)). Figs. 3, 4 and 5 depict graphically the action models for the three actions in the 
plan from in Section 2, i.e., the following movement, sensing and announcement actions: α1 moves to ρ2 , α1 senses the color 
of β1 , α1 announces the color of β1.
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em : 〈In(a1, r1) ∧ Adj(r1, r2);
In(a1, r2) ∧ ¬In(a1, r1)〉

e′
m : 〈�; id〉

∀x(In(x�, x) → (x 
= r1 ∧ x 
= r2))

Fig. 3. Move(a1, r1, r2), the action model for α1 moving from ρ1 to ρ2. Event em describes what is actually taking place (in the drawing for the model, the 
actual event is marked with a double circle). The precondition formula says that α1 is in ρ1 and that ρ2 is next to ρ1. The action changes α1’s location 
to ρ2, as captured by the postcondition. The event e′

m describes the situation in which nothing happens. This is how the action looks to any agent that 
is neither in the room α1 is currently in, nor in the room the agent is moving to. The edge-condition linking the two events captures this observability 
constraint.

es : 〈In(a1, r2) ∧ In(b1, r2) ∧ Color(b1, red); id〉 e′
s : 〈In(a1, r2) ∧ In(b1, r2) ∧ ¬Color(b1, red); id〉

e′′
s : 〈�; id〉

∀x(In(x�, x) → x 
= r2)

∀x(I
n(

x
� , x)

→ x 
= r 2)
∀x(In(x �

, x)→
x 
=

r2 )

Fig. 4. SenseCol(a1, red, b1, r2), the action model for α1 sensing in room ρ2 whether box β1 is red or not. Event es describes what is actually taking place, 
i.e., α1 seeing that the box is red. The action is a purely epistemic action, i.e., it does not change the physical state of the environment, and therefore the 
postcondition post(es) is id. e′

s represents the event in which α1 sees that the box is not red, while e′′
s represents the event in which nothing happens. The 

agents that are not in ρ2 cannot observe what α1 is doing. More precisely, they cannot distinguish between α1 seeing that the box is red, α1 seeing that 
it is not red, and α1 doing nothing. This is captured by the edge-conditions.

ea : 〈In(a1, r2) ∧ Ka1 Color(b1, red); id〉 e′
a : 〈�; id〉

∀x(In(x�, x) → (x 
= r2 ∧ ¬Adj(x, r2)))

Fig. 5. Announce(r1, red, b1, r2), the action model for α1 announcing that β1 is red while in room ρ2. Event ea describes what is actually taking place. The 
precondition formula pre(ea) says that α1 is in ρ2 and that a1 knows that the color of β1 is red. Event e′

a describes the event in which nothing occurs. 
This is what the announcement looks like to any agent that cannot hear the announcement. An agent αi cannot hear α1’s announcement if αi is neither 
in α1’s room nor in a room that is adjacent to it. This is captured by the (identical) edge-conditions Q (ea, e′

a) and Q (e′
a, ea).

5.2. Product update

Having defined epistemic models and action models, we introduce an operation that computes the epistemic model M ′
reached by applying action A in model M . The operation is a first-order variant of product update [7]. Under the indistin-
guishability interpretation, the core epistemic intuition is that to tell two worlds apart after an update, either the agent 
could tell them apart beforehand, or it could tell them apart by something happening in one, but not the other. In slightly 
more detail: Assume that after an update, a model contains worlds (w, e) and (w ′, e′), representing that event e occurred in 
world w , and e′ occurred in w ′ . Then (w, e) is indistinguishable from (w ′, e′) for agent α iff α found both w and w ′ indis-
tinguishable and events e and e′ indistinguishable. Formally, (term-modal) product update is defined below. An explanatory 
remark follows the definition.

Definition 10. Let M = (D, W , R, I) and A = (E, Q , pre, post) be given. The product update of M and A yields the epistemic 
model M ⊗ A = (D ′, W ′, R ′, I ′) where

1. D ′ = D ,
2. W ′ = {(w, e) ∈ W × E : (M, w) �v pre(e)},
3. For each i ∈ Dagt , (w, e)R ′

i(w ′, e′) iff w Ri w ′ and M, w �v[x� �→i] Q (e, e′),
4. I ′(c, (w, e)) = I(c, w) for all c ∈ C, I ′( f , (w, e)) = I( f , w) for all f ∈ F, and I ′(r, (w, e)) = (I(r, w) ∪ r+(w)) \ r−(w), 

where:

r+(w) :={(�t1�I,v
w , . . . , �tk�

I,v
w ) : (M, w) �v post(e)(r(t1, . . . , tk))}

r−(w) :={(�t1�I,v
w , . . . , �tk�

I,v
w ) : (M, w) �v post(e)(r(t1, . . . , tk))}

If (M, w) �v pre(e), (A, e) is applicable to (M, w). If (A, e) is applicable to (M, w), the product update of the two yields the 
pointed epistemic model (M ⊗ A, (w, e)). Else it is undefined.

Remark 2. The components of the updated model are as follows. The domain of the updated model D ′ is unchanged, since 
action models change the state of agents and objects, but do not introduce or remove them. A state (w, e) is in the updated 
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Fig. 6. The pointed model (M0 ⊗ Move(a1, r1, r2), (wred, em)), representing the state after α1 moves into room ρ2. Edges in the reflexive-transitive closure 
of the indistinguishability relations are omitted. At this point, α2 and α3 are uncertain about the location of α1. More precisely, they cannot tell whether 
α1 stayed in room ρ1 or moved to ρ2.

set of states W ′ if, and only if, e is applicable in w , i.e., if (M, w) satisfies the precondition pre(e). As pre(e) has no free 
variables by construction, the set of worlds W ′ is independent of the assignment v . The state (w, e) represents the state 
reached by taking event e in state w . Agent α cannot distinguish (w, e) from (w ′, e′) if (1) α cannot distinguish w from 
w ′ , which is the case if w Rα w ′; and (2) α cannot distinguish e from e′ given its circumstances in w , which is the case if 
the edge-condition Q (e, e′) is true for agent α at (M, w) when x� is mapped to α, i.e., when M, w �v[x� �→i] Q (e, e′). Since 
actions do not change the denotation of ground terms, I ′ agrees with I in this respect. The extension of relations is changed 
according to event postconditions. If the condition post(e)(r(t1, . . . , tk)) is true at (M, w), then the tuple (�t1�

I,v
w , . . . , �tk�

I,v
w )

is added to the extension of r at (w, e), and it is removed otherwise.

Example 4 (Product updates for SC(3, 4, 1, 2)). Starting from the initial epistemic model (M0, wred) from Example 2, we 
model the effects of applying the actions in α1’s plan. First, α1 moves right. This action yields the new pointed model 
(M0 ⊗ Move(a1, r1, r2), (wred, em)), depicted in Fig. 6. The second step is sensing the color of β1. This action yields the 
model (M0 ⊗ Move(a1, r1, r2) ⊗ SenseCol(a1, red, b1, r2), (wred, em, es)), depicted in Fig. 7. Finally, α1 announces in room 
ρ2 that the color of β1 is red. The result of this action is the model (M0 ⊗ Move(a1, r1, r2) ⊗ SenseCol(a1, red, b1, r2) ⊗
Announce(a1, red, b1, r2), (wred, em, es, ea)), depicted in Fig. 8.

5.3. Succinct representation of actions via epistemic action schemas

We introduce epistemic action schemas, which represent sets of actions in a general way, as done in common planning 
formalisms such as PDDL. Schemas use variables to describe actions, rather than constant symbols. These variables denote 
arbitrary agents and objects and are used to describe their roles with respect to a type of action, such as the roles of speaker
and listener in an action of type ‘announcement’.

As anticipated in Section 3, a major reason for introducing schemas is that they result in action representations whose 
size is independent of the number of agents and objects in a domain. For the SelectiveCommunication domain SC(n, m, k, �), 
there are n ·m ·k ·� ·2n−1 possible announcement actions, since each of the n agents could, in each of the m rooms, announce 
about each of the k boxes, that it is of one out of � colors, with one out of the 2n−1 subsets of the other agents hearing 
the announcement. Representing all actions requires n ·m ·k · � · 2n−1 standard DEL action models, i.e., one model per action. 
Variants of standard DEL models such as edge-conditioned models [13] fare substantially better, since the set of hearers is 
implicitly represented in such models, but n · m · k · � models are still required to represent the set of announcements. Other 
variants of DEL are also more succinct than standard DEL action models, e.g. the symbolic models of [21,86]. However, all 
these announcements can be compactly represented with a single epistemic action schema, as shown below in Example 5.

Moreover, epistemic schemas open up the possibility of applying well-known techniques such as least commitment or 
partial order planning [89] to epistemic problems. These approaches use the notion of a partially instantiated action, such as 
Move(B, x, C), where x is a variable whose substitution has not yet been chosen. If specifying a binding constraint for x is 
unnecessary at the current point in the planning process, it is often advantageous to delay this commitment until later, i.e., 
until other necessary parts of the plan are discovered that further constrain what x should be. Other approaches to lifted 
planning, such as hierarchical task networks (HTNs) ([35], ch. 11) similarly exploit partial substitutions to optimize the search 
for solutions. For an epistemic version of lifted HTN planning, the epistemic schemas defined here could play the role of 
primitive tasks.

An epistemic action schema a(x1, . . . , xn) is defined using an action name a and a parameter list (x1, . . . , xn), as done 
e.g. in PDDL. The parameter list fixes a finite set of agents and objects involved in the execution of the action. Schemas 
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Fig. 7. The pointed model (M0 ⊗ Move(a1, r1, r2) ⊗ SenseCol(a1, red, b1, r2), (wred, em, es)), representing the state after α1 senses that β1 is red while 
in room ρ2. Edges in the reflexive-transitive closure of the indistinguishability relations are omitted. Note that, in the actual world, (wred, em, es), α1

does not face any uncertainty. In particular, Ka1 Color(b1, red) is true at (wred, em, es). On the other hand, α2 and α3 have not observed any of α1’s 
actions. That is, α1 may or may not have moved, and it may or may not have sensed whether β1 is red. As a result, it holds at (wred, em, es) that 
∀x(x 
= a1 → ¬KxIn(a1, r2) ∧ ¬KxColor(b1, red)).

Fig. 8. The pointed model representing the state after α1 announces that β1 is red while at room ρ2, (M0 ⊗ Move(a1, r1, r2) ⊗ SenseCol(a1, red, b1, r2) ⊗
Announce(a1, red, b1, r2), (wred, em, es, ea)). Edges in the reflexive-transitive closure of the indistinguishability relations are omitted. Note that, in the actual 
world, (wred, em, es, ea), α1 and α2 do not face any uncertainty; there are no outgoing edges from the actual world for these agents. The goal g as stated 
in Section 2 holds in the actual world: both α1 and α2 know the color of β1, α1 knows that α2 knows this, and α1 knows that α3 does not know this.
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em : 〈In(x, y) ∧ Adj(y, z);
In(x, z) ∧ ¬In(x, y)〉

e′
m : 〈�; id〉

∀x1(In(x�, x1) → (x1 
= y ∧ x1 
= z))

Fig. 9. Move(x, y, z), the action schema for agent x moving from room y to room z.

es : 〈In(x1, x4) ∧ In(x3, x4) ∧ Color(x3, x2); id〉 e′
s : 〈In(x1, x4) ∧ In(x3, x4) ∧ ¬Color(x3, x2); id〉

e′′
s : 〈�; id〉

∀x(In(x�, x) → x 
= x4)

∀x(I
n(

x
� , x)

→ x 
= x4)
∀x(In(x �

, x)→
x 
=

x4 )

Fig. 10. SenseCol(x1, x2, x3, x4), the action schema for x1 sensing in room x4 whether box x3 has color x2.

ea : 〈In(x1, x4) ∧ Kx1 Color(x3, x2); id〉 e′
a : 〈�; id〉

∀x(In(x�, x) → (x 
= x4 ∧ ¬Adj(x, x4)))

Fig. 11. Announce(x1, x2, x3, x4), the action schema for x1 announcing that x3 has color x2 while in room x4.

are required to follow a STRIPS-like scope assumption; all variables referenced in the preconditions or postconditions of an 
action schema must appear in the action’s parameter list. Any agent or object unmentioned in the parameter list is assumed 
to be unrelated to the action’s pre- and postconditions.

Definition 11. An epistemic action schema is of the form a(�x) = (E, Q , pre, post) where

1. a is the action name and �x ∈ Vn is a finite parameter list.
2. E is a non-empty, finite set of events.
3. Q : (E × E) → LAM is an edge-condition function, where the formula Q (e, e′) has a free variable x� of type agt, and 

possibly other free variables all in �x.
4. pre : E →LAM assigns to each event a precondition formula with all free variables in �x.
5. post : E → (FreeAtoms(L) ⇀ LAM) assigns to each event a partial postcondition function such that if y1, . . . , ym all 

occur in �x, then post(e)(r(y1, . . . , ym)) has all free variables from �x; else, post(e)(r(y1, . . . , ym)) is undefined.

Let dom(post(e)) denote the set of atoms for which post(e)(r(t1, . . . , tk)) 
= r(t1, . . . , tk).

The postcondition for each event e is defined as a partial function, with all atoms whose arguments are not a subset 
of those occurring in �x left unaffected. Since the parameter list is required to be finite, this yields a finite encoding of 
postconditions.

Note that the parameter list of a schema may include agent variables. Just like any other action parameter, these variables 
can appear in the preconditions or effects of the schema. This is in line with what occurs in multi-agent extensions of PDDL 
such as MAPL or MA-PDDL [18,48]. Such variables are included to enable the schematization of actions also with respect 
to agents. In this paper, we adopt the epistemic operators from term-modal logic, indexed by agent variables, to achieve 
schematization with respect to agents when formalizing epistemic planning. In order to be able to express epistemic pre- or 
postconditions relative to an agent variable x in an action schema, it is necessary to use the variable in the scope of a modal 
operator. For example, if an action has e.g. a precondition that requires agent x to know P (y, z), we need the term-modal 
formula Kx P (y, z) to express this constraint in a schematic way.

Example 5 (Action schemas for SC(n, m, k, �)). Figs. 9, 10 and 11 depict graphically the action schemas for the movement, 
sensing and announcement actions described in the example from Section 2. The schemas have the same structure as the 
action models from Example 3, but the conditions are now expressed in a general way, via free variables for agents, boxes 
and colors.

As usual in planning, schemas can be instantiated into concrete actions via grounding substitutions. Schema instantiation 
is defined as follows. Let a(x1, . . . , xn) be a schema and σ : {x1, . . . , xn} → C be a grounding substitution, i.e., a mapping 
from variables into constants. For a formula ϕ , let ϕσ be the result of replacing each occurrence of a free variable y in ϕ
by σ(y).
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Definition 12. Let a(x1, . . . , xn) = (E, Q , pre, post) be an action schema and let σ : {x1, . . . , xn} → C be a grounding substitu-
tion. The action model induced by σ is a(σ (x1), . . . , σ(xn)) = (E ′, Q ′, pre′, post′) where

1. E ′ = E .
2. for each e, e′ ∈ E , Q ′(e, e′) = Q (e, e′)σ .
3. for each e ∈ E , pre′(e) = pre(e)σ .
4. for each e ∈ E ,

post′(e)(r(t1, . . . , tn)σ ) =
{

post(e)(r(t1, . . . , tn))σ if post(e)(r(t1, . . . , tn)) is defined,

r(t1, . . . , tn)σ otherwise.

Example 6. The announcement model A1 in Fig. 5 is the ground action of schema S1 from Fig. 11 induced by the substitu-
tion σ = {x1 �→ a2, x2 �→ r3, x3 �→ b1, x4 �→ green}.

6. Problems, plans and solutions

This section defines first-order epistemic planning tasks. An epistemic planning task consists of an initial state, a set of 
actions, and a goal to be achieved. To solve an epistemic planning task, one may take either an external or and internal
perspective [3]. The external perspective is the view of the system designer, who knows the precise initial state and actual 
effect of every action. The internal perspective is the view of an in-system agent, who has uncertainty about the state of the 
world and therefore uncertainty about the effects of executed actions. In the DEL planning framework, an external planning 
task is defined as a special case of a classical planning task (as in, e.g., [4,16]). Following [35], any classical planning domain
can be described as a state-transition system T = (S, A, γ ) where S is a finite or recursively enumerable set of finite states, 
A is a finite set of actions and γ : S × A ⇀ S is a partial, computable state-transition function. A classical planning task is 
a triple (T , s0, SG), where T is a state-transition system, s0 ∈ S is the initial state and SG ⊆ S is the set of goal states. A 
solution to a classical planning task (T , s0, SG) is a plan consisting of a finite sequence of actions a1, a2, . . . , an such that (1) 
For all i ≤ n, γ (γ (. . . γ (γ (s0, a1), a2), . . . , ai−1), ai) is defined, and (2) γ (γ (. . . γ (γ (s0, a1), a2), . . . , an−1), an) ∈ SG . Epistemic 
planning tasks can be defined as special cases of classical planning tasks, as follows.

Definition 13. Let A be a finite set of action schemas. A (first-order) epistemic planning task based on A is a triple P =
(s0, A, ϕG) where the initial state s0 is a finite epistemic state with a finite domain, A is the set of all ground instances of 
the schemas in A, and the goal formula ϕG is a sentence of L. Any epistemic planning task (s0, A, ϕG) induces a classical 
planning task ((S, A, γ ), s0, SG) given by:

• S := {s0 ⊗ a1 ⊗ · · · ⊗ an | n ∈N, ai ∈A}
• SG := {s ∈ S | s � ϕG}
• γ (s, a) := s ⊗ a if a is applicable in s, else undefined.

A solution to an epistemic planning task is a solution to the induced classical planning task.

All the ingredients in this definition of an external planning task can come from the formalism presented here. Note that 
the planner-modeler in such a task is not one of the agents in the domain Dagt . The planner-modeler has access to the 
actual states si , i.e., to pointed models (M, w) where w is the actual world.

Formalisms of internal epistemic planning based on DEL are often defined from the external planning model, either 
by adding structure to the models or making small modifications. For example, [2] represents internal perspectives using 
information cells, which are defined from the accessibility relations of an epistemic model. An alternative involves using 
multi-pointed models or adding a set of so-called designated points to the epistemic model, with each point describing a 
world that the agent considers as possible from its internal perspective (see e.g. [15]). A third approach uses a belief state 
representation of the agent’s internal view as primitive and then defines an epistemic model from it [45]. The approach 
in [3] offers two different flavors of internal view, both defined on the basis of a standard epistemic model. These various 
notions of internal perspective, as well as their associated planning tasks, may be upgraded to our framework without major 
modifications. We believe that the simplest way to add internal perspectives to the present would be to adopt the approach 
proposed by Bolander and Andersen [15]. Save for the fact that such models are multi-pointed, the core semantics remains 
the same. We therefore envision no major difficulty in bringing the internal perspective into our formalism; similarly defined 
multi-pointed structures should suffice. We do not develop the detail here.

6.1. Decidability of the plan existence problem

Having defined first-order epistemic planning tasks, a natural first question is whether the corresponding plan existence 
problem is decidable. We follow Aucher and Bolander [4] in defining the plan existence problem:
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Definition 14. Let n ∈N . PlanEx(n) is the problem: “Given a (first-order) epistemic planning task P = (s0, A, ϕG) where s0
is an n-agent epistemic state, does P have a solution?”.

For propositional DEL, the corresponding problem is undecidable in general [15]. This entails that the unrestricted first-
order problem is undecidable as well, since first-order epistemic planning extends propositional DEL planning. However, 
decidable and reasonably expressive fragments of propositional DEL planning have been found, such as single-agent planning 
and multi-agent planning with non-modal preconditions. In [54], we show that the corresponding first-order fragments are 
also decidable. In that paper, bisimulations for the term-modal models presented here are introduced, and shown to have 
standard model-theoretic properties. Such bisimulations are key in proving the decidability results, as they allow us to show 
that the state spaces for certain planning fragments are finitely representable, up to bisimulation. We state the main results 
here and refer the reader to [54] for details.

Theorem 1 ([54]). PlanEx(1) (single-agent planning) is decidable.

Theorem 2 ([54]). If all actions have non-modal preconditions, then PlanEx(k) is decidable, for k ≥ 1.

6.2. An example with a PDDL-like description

With the above, the dynamic term-modal planning framework of the paper has been introduced. This section contains a 
second example, using its different components in one place. The example also serves to illustrate how uncertainty about 
names may play a role in epistemic planning, and how a term-modal planning domain and an associated planning problem 
may be described using a ‘PDDL-like syntax’. This description is meant as an indication of how such definitions could be 
standardized with a PDDL flavor, but no attempt is made at a precise syntax.

6.2.1. The MachineMalfunction (MM) domain
In the MM(n, m, k) domain, there are n + m agents supervising k machines, the agents’ tasked to ensure that machines 

function correctly at all times, where a choice of n, m and k fixes the universe of the domain. The agents have different 
roles: n of the agents are monitoring the machines for potential malfunctions, while the remaining m agents are system ad-
ministrators, that from behind a terminal may solve any malfunction by issuing a reboot command to the affected machine. 
To reboot a machine, admins need to know its serial number, which a monitor may be uncertain about. Hence, the opti-
mal sequence of actions to fix a malfunction problem will depend on how the knowledge of serial numbers is distributed 
amongst agents. Finally, company policy dictates epistemic preconditions for the actions: monitoring agents are only al-
lowed to report machine as malfunctioning once they know that it is malfunctioning. To avoid deadlock, the requirement 
for admins is weaker: they may reboot any machine once they know some machine is malfunctioning.

The remainder of this section concerns an external epistemic planning task MM_task := (s0; A; ϕg) in MM(1, 2, 2), i.e., 
with one monitor, two admins, and two machines.

6.2.2. Initial state and goal
Fig. 12 depicts the pointed epistemic model s0 := (M0, w0) := ((D, W , R, I), w0), the initial state of MM_task. We aim 

for a simple example. Hence, the administrator/monitor roles are not formally specified, but could straightforwardly be 
assigned using predicates. Before stating the available actions, specify the goal of MM_task to be that some agent knows 
that all machines are not malfunctioning. I.e.,

ϕg := ∃xKx∀y¬Malfunction(y)

With this goal achieved, the agent knowing that no malfunction occurs can announce this to the remaining agents to achieve 
that this becomes known to all, but for simplicity, we have omitted this aspect. The initial state s0 and the goal ϕg may 
then be described in a ‘PDDL-like syntax’, as it would appear in a problem file, cf. Fig. 13.

6.2.3. Available actions as action schemas and domain definition
To finalize the specification of the external epistemic planning task MM_task, the available actions of reporting malfunc-

tions rebooting machines must be defined. To this end, we use the action schemas depicted graphically in Fig. 14. Continuing 
with the ‘PDDL-like syntax’, Fig. 15 describes the MachineMalfunction domain. The figure is suggestive of a possible approach 
to standardizing domain definitions, but again, no formal specification of the syntax is attempted.

6.2.4. Plan and execution
Given the initial state and actions of the external epistemic planning task MM_task, the goal ϕg may be achieved by the 

monitor agent reporting that the machine colloquially called box is malfunctioning, after which the administrator α1 may 
reboot that machine, by knowing its serial number sn1. I.e., the plan π below achieves ϕg , cf. Fig. 16:

π := Malfunction(m1,box),Reboot(a1, sn1)
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Fig. 12. The pointed epistemic model s0 = (M0, w0), the initial state of MM_task. The agent domain Dagt comprises three agents, α1, α2 and μ, for 
simplicity only depicted as edge labels. Agents α1 and α2 are admins, while μ is a monitor. There are two machines, depicted as a box and a ball; beneath 
them are the constants that denote them in that world. In w0, the box machine is denoted in-system by the serial number sn1, but colloquially as box, etc. 
In all worlds, the constants a1, a2 and m1 denote respectively α1, α2 and μ. The red coloring specifies malfunction. The monitor can observe malfunctions, 
while the admins cannot. Neither the monitor nor the newly employed admin α2 know the serial numbers, but α1 does. They all know the colloquial 
descriptions. The monitor knows that both admins face uncertainty about the malfunction, and that α1 knows the serial numbers while α2 does not.

Fig. 13. A ‘PDDL-style syntax’ description of the initial state s0 and the goal ϕ0. A universe of agents and objects is defined using the keyword : universe, 
with constants denoting this domain declared the keyword : constants. The : init keyword precedes the description of the initial state, which comprises 
worlds and edges between worlds. Each world is declared with a keyword : world and encompasses a : constant_map stating what each constant refers 
to as a list of pairs (constant, entity), as well as a list of true ground : atoms (where the closed-world assumption holds). The actual world is defined with 
the : actual_world keyword. The indistinguishability relation for agents is specified with the : edges keyword. For each agent, a set of pairs of worlds 
in the relation is listed, whose reflexive-transitive closure defines the full relation. Finally, the :goal keyword declares the goal.

em : 〈KxMalfunction(y); id〉 er1 : 〈Kx∃zMalfunction(z);¬Malfunction(y)〉 er2 : 〈�; id〉

x� 
= x

Fig. 14. Left: Malfunction(x, y), the action schema for agent x announcing that they know that y is malfunctioning. Right: Reboot(x, y), the action schema 
for agent x rebooting machine y, an action that x is permitted to do only if x knows that some malfunction is occurring, and which is done privately: other 
agents than x are uncertain about its execution.
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Fig. 15. A domain definition for the MM domain in a ‘PDDL-style syntax’. Each action schema includes an : agent executing it as well as the schema’s 
: parameters list. The possible events comprised in the action and their corresponding edge-conditions are listed next. The actual event is defined 
with the : actual_event keyword, under which pre- and postconditions are listed. Postconditions are given as a list of statements of the form 
“ground_atom if condition”. A similar : event keyword is used for non-actual events. The keyword edge-conditions lists, for each pair of 
events, its edge-condition, via a line of the form event1–event1(edge-condition). Both the MALFUNCTION and the REBOOT schemas have epis-
temic preconditions, which can be schematized thanks to the variable-indexed epistemic operators Kx .

Fig. 16. Executing the plan π in s0. Left: The epistemic state s1 := s0 ⊗ Malfunction(m1, box) reached after μ reports that box is malfunctioning. All agents 
learn that a machine is malfunctioning. However, α2 and μ are still unsure about the serial number of the malfunctioning robot, but α1 is not. Right: The 
epistemic state s2 := s1 ⊗ Reboot(a1, box) reached after admin agent α1 reboots sn1. Since α1 has rebooted sn1 privately, α2 and μ still do not know that 
all machines are functioning. However, the goal is achieved: there is some agent (α1) that knows that all machines are functioning.

6.2.5. Knowing who and alternative plans
There are other plans than π that would also solve the external epistemic planning task MM_task, but π achieves the 

goal in the fewest number of steps. The plan π is kept short by making admin α1 act and finally witness the existence 
criteria in the goal ϕg . Admin α1 is well-suited to this purpose because α1 does not face uncertainty about the two names 
box and sn1. For the both names, α1 knows who the names refer to, which in turn entails that in s1, α1 knows what machine 
to reboot.
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Any plan where admin α2, instead of α1, acts, will necessarily be longer, because α2 does not know is uncertain about 
what serial number belong to which machine, and must therefore reboot both machines. More specifically, then given 
s0, any successful plan must start with the announcement Malfunction(m1, box) to the effect that the admins know of a 
malfunction, required for them to execute reboots. From s0, this results in s1 of Fig. 16. From there, both Reboot(a2, sn1) and 
Reboot(a2, sn2) must be performed before α2 knows that no machine is malfunctioning. Hence, the two shortest successful 
plans in which only α2 reboots are

π ′ := Malfunction(m1,box),Reboot(a2, sn1),Reboot(a2, sn2)

π ′′ := Malfunction(m1,box),Reboot(a2, sn2),Reboot(a2, sn1)

Hence, the potential uncertainty introduced by the non-rigidity of constants may be consequential for epistemic plan-
ning. In this simple example, the non-rigid serial numbers refers to objects, but as also agent terms may be non-rigid, 
the presented framework allows modeling situations in which e.g. an agent is uncertain about whom a message must be 
delivered to, or planning in situations involving ‘code names’, known only to a strict subset of agents.

7. Languages for actions

We define a language for reasoning about actions, denoted LAM . This language extends the basic language L with action 
modalities with the form [A, e], where A is an action model and e is an event from A. The language LAM has formulas of 
the form [A, e]ϕ , which are interpreted as: ‘after event e of action A occurs, ϕ is true’. This language extension allows us to 
include formulas mentioning other actions in the pre- and postconditions of some actions, as well as in goal formulas. It is 
thus possible to define, e.g., a goal such as: “Achieve a state in which it is impossible to perform an action that will result 
in ϕ”. With finitely many actions described by the models A = {A1, . . . , An}, such a formula would be 

∧
A∈A,e∈E A [A, e]¬ϕ .

The grammar of LAM is defined by double recursion, adapting a construction well known in the DEL literature (see, e.g., 
appendix H in [8] or [27]).

Definition 15. Let L0 = L, and let AM0 be the set of pointed action models whose precondition formulas are all from L0. 
Define Lk+1 and AMk+1 as follows:

ϕ ::= r(t1, ..., t�) | ¬ϕ | ϕ ∧ ϕ | Ktϕ | ∀xϕ | [A, e]ϕ
where (A, e) ∈ AMk , and let AMk+1 be the set of pointed action models whose precondition formulas are all from Lk+1. 
Lastly, define the language LAM and the set of action models AM as

LAM :=
⋃

k∈N
Lk, AM :=

⋃
k∈N

(AMk)

As with the formulas from the static language L, the formulas from LAM are evaluated over epistemic models.

Definition 16. The satisfaction relation between epistemic models, assignments and formulas of LAM is the smallest exten-
sion of � that satisfies:

M, w �v [A, e]ϕ iff M, w �v pre(e) implies M ⊗ A, (w, e) �v ϕ

This extended satisfaction relation makes it possible to model-check conditions concerning actions. Given a pointed 
model (M, w), we may want to know whether a formula ϕ would hold after a sequence of pointed action models 
(A1, e1), . . . , (An, en) has been executed. This can of course be done by computing a sequence of product updates and 
checking whether M ⊗ A1 ⊗ · · · ⊗ An, (w, e1, . . . , en) � ϕ . But, equivalently, we can check whether the corresponding for-
mula holds at (M, w), i.e., whether M, w � [A1, e1] . . . [An, en]ϕ . If ϕ is a goal formula and (A1, e1), . . . , (An, en) is a plan, 
then model-checking such a formula corresponds to plan verification. Section 8.2.2 gives so-called reduction axioms for LAM

formulas, showing that any formula containing an action modality can be expressed as a formula in the basic epistemic 
language L. Consequently, plan verification could be treated as a problem of model-checking formulas of L in an initial 
state s0 = (M, w).

8. Axiomatic systems and metatheory

This section presents axiom systems for both static and dynamic term-modal logic. Metatheoretical results include sound-
ness and completeness, frame characterizations, and decidability results. All proofs may be found in Appendix A.
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Table 1
Axiom schemata for the minimal normal term-modal logic K.

First-order principles

all propositional tautologies
∀xϕ → ϕ (y/x), for y free in ϕ UE
t = t, for t ∈ T Id
(x = y) → (

ϕ(x) → ϕ(y)
)

PS
(c = c) → ∃x(x = c) ∃Id
x 
= y, if t(x) 
= t(y) DD

Modal and interaction principles

Kt (ϕ → ψ) → (Ktϕ → Ktψ) K
∀xKtϕ → Kt∀xϕ, for x not occurring in t BF
(x 
= y) → Kt (x 
= y) KNI

Inference rules

From ϕ,ϕ → ψ , infer ψ MP
From ϕ, infer Ktϕ KG
From ϕ → ψ , infer ϕ → ∀xψ , for x not free in ϕ UG

8.1. Normal term-modal logic

8.1.1. Axiom system
Table 1 contains the axioms and inference rules for the term-modal logic K. Some are common first-order axioms, like 

Universal Elimination (UE), Reflexivity of Identity (Id), and the Principle of Substitution (PS). In a modal logical context, PS also 
has a modal feature: it is restricted to variables to allow for non-rigid constants. If PS is assumed also for constants, (a =
b) → (Ktϕ(a) → Ktϕ(b)) becomes a theorem, valid only for rigid constants. Existence of Identicals (∃Id) is included to ensure 
that all constants obtains an extension in the canonical models of Section A.1.2; Divided Domain (DD) is included to enforce 
type-distinction between variables logically rather than syntactically. The modal and interaction principles Distribution (K) 
and Knowledge of Non-Identity (KNI) are formulated as standard while the Barcan Formula (BF) has a restriction in the term-
modal case; the Barcan Formula ensures constant domains: its validity implies non-growing domains, illustrated in the proof 
of soundness (Section A.1.1), and its converse implies non-shrinking domains (and is provable in K, cf. e.g. [43, p. 245]). 
Knowledge of Non-Identity reflects the rigidity of variables. The inference rules Modus Ponens (MP), Knowledge Generalization
(KG) and Universal Generalization (UG) contain no surprises.

Notice that nothing in the language or axioms of K specify the number of agents in the system. The number of agents 
emerges as a definable frame characteristic, cf. Section 8.1.4.

8.1.2. Normality
In Section 8.1.3, we formally state that K is complete with respect to the class of all frames. The axioms and inference 

rules sufficient for a complete system are close to standard axiomatizations of first-order modal logic, cf. e.g. [17,31,43]. We 
take the close-to-standard format of the K axioms to indicate the innocence of the term-modal extensions of the syntax 
and semantics. This is further corroborated by the main result of this section, the Canonical Class Theorem on this page. In 
essence, the theorem shows that any closed extension of K is complete with respect to the class of its canonical models. 
The result thus justifies the following definition:

Definition 17. A set of formulas � ⊆ L is called a normal term-modal logic if, and only if, � contains all axioms of Table 1
and is closed under the Table 1’s inference rules. The smallest normal term-modal logic is denoted K.

8.1.3. Canonical class theorem and completeness
In ordinary modal logic, each normal modal logic gives rise to a unique canonical model. In a similar manner, each normal 

term-modal logic � gives rise to a class of canonical models, one for each �-maximal consistent set. Section A contains the 
details of the construction, as well as the proof of the following main theorem:

Theorem 3 (Canonical Class Theorem). Any normal term-modal logic � is strongly complete with respect to its canonical class.

Mirroring the role of the Canonical Model Theorem of ordinary modal logic (see e.g. [12]), we obtain the following 
corollary to Theorem 3:

Corollary 1 (Completeness). The logic K is strongly complete with respect to the class of all frames F .

K is also sound with respect to the class of all frames. Section A.1.1 contains the formal statement and a proof sketch, 
with details given for the axiom K and the Barcan Formula.

8.1.4. Characterizing frame properties
The completeness result of Corollary 1 may be extended to more specific frame classes. Table 2 contains an overview of 

axiom schemata and the frame conditions they characterize. For illustration, proofs for 4 and N are given in Section A.1.3. 
From the Canonical Class Theorem and Table 2, completeness results for standard logics like KD45, S4 and S5 follow as 
corollaries. The principles N and M are special to our term-modal treatment. N and M define domain sizes. Nothing in the 
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Table 2
Term-modal axiom schemata and the frame conditions they characterize.

Axiom Frame condition

∀x
(

Kxϕ → ϕ
)

T Reflexive

∀x(¬Kx⊥) D Serial

∀x
(

Kxϕ → Kx Kxϕ
)

4 Transitive

∀x
(¬Kxϕ → Kx¬Kxϕ

)
5 Euclidean

∃x1, ..., xn

((∧
i≤n Kxi �

) ∧
(∧

i, j≤n,i 
= j xi 
= x j

)
∧ ∀y

(
K y� → ∨

i≤n y = xi
))

N |Dagt| = n

∃x1, ..., xm

((∧
i, j≤m,i 
= j xi 
= x j

)
∧ ∀y

(∨
i≤m y = xi

))
M |D| = m

a, c �→ α
b �→ β

a �→ α
b, c �→ β

a, c �→ α
b �→ β

w w ′ w ′′

α β

Fig. 17. A transitive model invalidating Kc(b = c) → Kc Kc(b = c) at w . With Dagt = {α, β}, all relations are transitive. The notation a �→ α specifies that α
is the extension of the constant a in the given world. In w , it holds that Kc(b = c) as c �→ α in w and b, c �→ β in w ′ (in w , the knowledge that (b = c) is 
held by agent α, as c �→ α in w). World w ′ satisfies Kc(b 
= c) as c �→ β in w ′ and b �→ β, c �→ α in w ′′ (in w ′ , the knowledge that (b 
= c) is held by β , 
as c �→ β in w ′). As a consequence, w ′ also satisfies ¬Kc(b = c). Hence, w does not satisfy Kc Kc(b = c)—that the agent named c (i.e., α) knows that the 
agent named c (i.e., β) knows that (b = c).

language or axioms of K specify the number of agents in the system: as in first-order logic, the domain size is by default 
left unspecified. In ordinary epistemic logic, it is common to assume a fixed, finite index set of agents. The domain size 
principles N and M similarly fixes domain sizes: N fixes the agent domain to size n. It uses the Kx�-expressions to ensure 
that the bound variables are all of type agt. With the quantifications thus ranging only over agents, N specifies specifically 
the size of Dagt . This may be compared to M, which does not put constraints on the type of the bound variables, thereby 
fixing only the size of the joint agent–object domain D . For details concerning N, see Proposition 6 on 28.

The principles T, D, 4 and 5 deviate from their ordinary forms by being quantified. In standard modal logic, the formula

Kcϕ → Kc Kcϕ (1)

characterizes the class of transitive frames. This is not true here, as the constant c may be non-rigid1: see Fig. 17 for a 
transitive model invalidating (1). The invalidity arises as the extension of the c is not fixed under scope of operators: in 
the consequent, the accessibility relation which the inner occurrence of Kc quantifies over need not be the same as the 
accessibility relation of the outer. This makes the appeal to transitivity void.2 The formulation in Table 2 avoids the non-
rigidity problem, but does impose the criteria for all agents uniformly.

8.1.5. Heterogeneous agents
Though treating all agents uniformly is common in epistemic logic, one may desire heterogeneous agents. With the given 

setup, we do not believe this can be done at the level of frames. On the level of models, one option to this end is to attribute 
epistemic criteria to subgroups using predicates; a second is to introduce individual names. In either case, one may desire 
the defining criterion to be rigid. However, full rigidity is not definable in general as models may be disconnected. Local 
rigidity—invariance of interpretation over connected components—is definable by formulas of the forms

∀x(r(x) ↔ ∀yK yr(x)) (2)

∃x((x = a) ∧ ∀yK y(x = a)) (3)

The validity of (2) and (3) characterize features of interpretations: (2) ((3), resp.) is valid in a model M = (D, W , R, I) iff 
for all w, w ′ ∈ W , (w, w ′) ∈ Rα for some α ∈ Dagt implies I(r, w) = I(r, w ′) (I(a, w) = I(a, w ′), resp.). In conjunction with 
formulas of the forms

∀x(r(x) → (Kxϕ → Kx Kxϕ)) (4)

Kaϕ → Ka Kaϕ (5)

one may obtain some individuated control over relation properties.

1 The non-rigidity of constants is reflected in K: Knowledge of Identity is provable for variables, but not for constants. I.e., K proves (x = y) → Kt (x = y), 
but not (a = b) → Kt (a = b).

2 In his 1962 [39], Hintikka argues that Kcϕ → Kc Kcϕ intuitively is valid only if c knows that she is c; i.e., that she knows who c is. Hintikka argues that 
this is captured by ∃xKc(x = c), which makes c locally rigid for the agent: I(c, w ′) = I(c, w) for all w ′ in R I(c,w)(w). Indeed, ∃xKc(x = c) ∧ Kcϕ → Kc Kcϕ
is valid on transitive frames.
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Table 3
Axiom and rule schemata for the system AM.

Reduction axioms

[A, e]r(t1, ..., tn) ↔ (pre(e) → post(e)(r(t1, ..., tn))) Action and atom

[A, e]¬ϕ ↔ (pre(e) → ¬[A, e]ϕ) Action and negation

[A, e](ϕ ∧ ψ) ↔ (([A, e]ϕ) ∧ ([A, e]ψ)) Action and conjunction

[A, e]Ktϕ ↔ ∧
e′∈E (Q (e, e′)(x� �→ t) → Kt [A, e′]ϕ) Action and knowledge

[A, e]∀xϕ ↔ (pre(e) → ∀x[A, e]ϕ) Action and quantification (Dynamic Barcan)

[A, e][A′, e′]ϕ ↔ [(A, e) ◦ (A′, e′)]ϕ Action composition

Inference rules

From ϕ, infer [A, e]ϕ Action necessitation

8.1.6. Decidability
Let Kn and Kn/m be the smallest normal extensions of K with, respectively, the domain size axiom N, and both domain 

size axioms N and M under the proviso that m > n. Kn and Kn/m are then sound and complete with respect to, respectively, 
the class of all frames with exactly n agents, and the class of all frames with exactly n agents and exactly m − n objects. 
These finite domain properties are used in the proof of items 1. and 2. of the below proposition, shown in Section A.1.4. 
Decidability results from the literature are discussed in Section 9.3.

Proposition 1. Let Kn/m, Kn and K be given in L, based on the signature �. Let Lagt ⊆ L contain all formulas containing only 
agent-terms, t ∈ t−1(agt).

1. For all ϕ ∈L, it is decidable whether �Kn/m ϕ or not.
2. a) For all ϕ ∈Lagt , it is decidable whether �Kn ϕ or not. b) In general, it is undecidable.
3. In general, it is undecidable whether �K ϕ or not.

8.2. Dynamic term-modal logic

8.2.1. Axiom system
Table 3 contains the axioms and inference rules for the dynamic term-modal logic AM. In Section 8.2.2, we formally state 

that K + AM is sound and complete with respect to the class of all frames. This completeness result may be extended to 
more specific frame classes, as was the case with K (see Section 8.1.4). The completeness proof for K + AM is by translation, 
a well-known approach in DEL [7,8,27,71]. The axioms in AM are so-called reduction axioms, which enable the translation 
of formulas with action modalities into provably equivalent ones without any action modalities. Then completeness follows 
from the known completeness of the static logic K. For a detailed description of the reduction strategy to completeness, see 
e.g. [27].

The reduction axioms in AM are similar to those used in logics for epistemic actions, introduced by [7]. Naturally, 
as dynamic term-modal logic is first-order, there are reduction axioms for formulas involving quantifiers. Moreover, the 
axiom for formulas with the knowledge operator is non-standard. Unlike standard action models, the ones presented here 
are edge-conditioned and use variable substitutions, which require some modifications. A more detailed comparison of 
these axioms and standard ones is provided in Section 9.2. The Action composition axiom appeals to action models of the 
form (A, e) ◦ (A′, e′). This notation refers to the composition of (A, e) and (A′, e′), defined following [29], but adapted to 
accommodate edge-conditions and first-order atoms:

Definition 18. Let A1 = (E1, Q 1, pre1, post1) and A = (E2, Q 2, pre2, post2) be given. The composition of A1 and A2 is the 
action model A1 ◦ A2 = (E, Q , pre, post) where

1. E = E1 × E2.
2. Q ((e1, f1), (e2, f2)) = Q 1(e1, f1) ∧ [A1, e1]Q 2(e2, f2).
3. pre(e1, e2) = pre(e1) ∧ [A1, e1]pre(e2).
4. dom(post((e1, e2))) = dom(post1(e1)) ∪ dom(post2(e2)) and if r(t1, . . . , tk) ∈ dom(post((e1, e2))), then

post((e1, e2)(r(t1, . . . , tk)) =
{

post1(e1)(r(t1, . . . , tk)) if r(t1, . . . , tk) /∈ dom(post2(e2))

[A, e]post2(e2)(r(t1, . . . , tk)) otherwise

8.2.2. Soundness and completeness via reduction axioms
As anticipated in Section 8.2.1, K + AM is sound and complete with respect to the class of all models.
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Proposition 2 (Soundness of K + AM). K + AM is sound with respect to the class of all models.

The soundness of K + AM (Proposition 2) is established in the standard way, by showing the semantic validity of the 
reduction axioms and inference rules. The proof is straightforward and therefore omitted.

Completeness follows as a corollary from a number of lemmas that are presented in Section A.2.

Corollary 2 (Completeness of K + AM). K + AM is complete with respect to the class of all models. Moreover, any extension of K + AM
obtained by adding axioms characterizing frame conditions is complete with respect to the corresponding class of models.

9. Related work

9.1. Epistemic planning

Several articles on multi-agent epistemic planning have appeared recently. The existing work can be organized along the 
following categories: modeling of epistemic planning, tractability and complexity, and implementation and applications.

On the modeling side, multiple articles have presented formalisms for multi-agent epistemic planning based on DEL [2,
15,57,91]. These models are very expressive, capturing several key aspects of multi-agent epistemic planning. These aspects 
include: epistemic actions and goals, higher-order knowledge and belief, partial observability, etc. A thorough comparison 
of the present framework with existing DEL formalisms is found in Section 9.2.

The rich expressivity of DEL comes at a cost, as planning problems specified in DEL are in general computationally 
difficult to solve (more on this below). This has partly motivated the introduction of simpler formalisms for epistemic 
planning. Some of these formalisms build on classical planning. The model in [70] extends STRIPS to allow knowledge 
declarations in preconditions and postconditions. The framework is however restricted to single-agent planning, does not 
support higher-order reasoning, and allows only a restricted form of quantification. The multi-agent planning frameworks 
in [45,60] follow a compilation approach, translating restricted fragments of epistemic planning into classical planning 
languages.

The approaches in [41,44] describe planning domains via a type of state-transition system extended with epistemic 
information, called a concurrent epistemic game structure (CEGS). This representation makes it easy to define multi-agent 
notions such as ‘joint action’ or ‘multi-agent plan’. However, the representation inherits some of the well-known problems 
of transition-system models, including the lack of compact descriptions of actions and efficient heuristics that can avoid 
building the full state-transition system when planning (see [14] for a discussion of these and other limitations).

The non-DEL formalism that most closely resembles the approach of this paper is the epistemic game description lan-
guage GDL-III [85]. The language is epistemic and first-order. A key feature of this language is that only what agents can 
see and do has to be defined. This is done via declarations that use the keywords Sees and Does, which loosely correspond 
to modalities. GDL-III has a simple syntax and allows compact specifications of actions. For instance, the following GDL-III 
rules [9] describe schematically communication actions which are similar to the ones from Example 5:

Sees(x, ia) ⇔ Does(i,announce(z)) ∧ Obs(i, x))

Sees(y,ϕ) ⇔ Does(i,announce(ϕ)) ∧ Obs(i, y) ∧ Listen(i, y) ∧ ϕ

These two transition rules are interpreted as follows: if agent i announces z then any agent x observing i will receive 
the information ia . Any agent y that observes i and listens to i will learn the content of the announcement, ϕ . Given the 
semantics of GDL-III, it follows that agents who only see ia will know that i made an announcement but will not learn 
the content of the announcement. Agents who observe i, however, will know that ϕ must be true. Moreover, if an agent 
x observes agent i, does not listen to i, but knows that another agent y listens to i, then the semantics entails that x
will know that y will know the content of the announcement after it has been made. The model is therefore schematic 
and context-sensitive, like the epistemic action schemas presented here. The syntax of GDL-III is simpler than that of DEL 
when it comes to representing actions. However, as noted in [30], specifying nested and higher-order knowledge is more 
difficult in GDL-III than in DEL, and the formalism requires more involved semantics. The work in [30] provides a detailed 
comparison of DEL and GDL-III, concluding that GDL-III offers a simpler syntax, while DEL provides simpler semantics. In 
[30], it is shown that large fragments of GDL-III and DEL are equally expressive by giving compilations between the two.

Concerning decidability and complexity, it was first shown in [15] that the general plan existence problem in propo-
sitional DEL planning (i.e., deciding whether a plan exists given a multi-agent planning task) is undecidable. In fact, the 
problem is undecidable with two agents only, no common knowledge, and no postconditions. In [51] it is shown that public 
actions are enough for undecidability when the initial state meets certain technical conditions. That paper also identifies an 
undecidable subclass of small epistemic planning problems comprising two agents, one action, six propositions and a fixed 
goal. The undecidability results straighforwardly apply also to the present framework.

Although the general problem is undecidable, several papers have identified decidable fragments of epistemic planning 
that are still reasonably expressive. Single-agent epistemic planning is decidable [15]. The multi-agent problem becomes 
decidable if actions are only allowed to have propositional preconditions (i.e., no epistemic formulas appear in the precon-
ditions) [91]. The computational complexity of this fragment belongs to (d + 1)-ExpTime for a goal formula whose modal 
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depth is d. If actions are restricted to have propositional preconditions and no postconditions, the plan existence problem 
becomes PSpace-complete [20]. Stronger restrictions, such as allowing only private and public announcements, bring the 
complexity down to NP-complete [16]. As mentioned in Section 6, in [54] we show that single-agent epistemic planning 
and multi-agent planning with non-modal preconditions are also decidable in the term-modal, first-order case described in 
this paper, echoing the results for propositional planning in [15,91].

As for implementation and applications, a number of techniques and planners have been developed over the last decade. 
An approach that has gained popularity is the compilation approach. The idea involves choosing a suitably restricted frag-
ment of DEL that can be encoded in a classical planning language. Epistemic problems are then translated into classical 
ones so that state-of-the-art planners can be used to solve them efficiently. The compilations rely on different restrictions. 
The system in [45] assumes that actions are public, physical actions are deterministic, and that all agents start with a com-
mon initial belief on the set of worlds that are possible. The paper adopts a centralized perspective, with planning done 
off-line from the viewpoint of a single agent. In [46], the authors extend this framework to cover on-line planning from 
the perspective of the agents themselves. The planner in Muise et al. [60] requires a finite depth of nesting of modalities 
and no disjunctions. Cooper et al. [22] use an encoding based on special variables describing what agents can see. The epis-
temic problems expressible with this restricted language are then encoded in PDDL and solved using the Fast Downward 
planner [38]. As mentioned before, the PKS system in [70] encodes epistemic planning using a STRIPS-like language. This 
language can describe single-agent, epistemic planning problems with conditional effects. The PKS system tries to solve 
these problems using an efficient but incomplete algorithm.

A small number of epistemic planners do not rely on compilation into classical planning. The system MEPK [42] performs 
multi-agent epistemic planning from the third-person viewpoint. The system can handle private actions and beliefs, as 
formalized with the modal logic KD45n. The system does not support arbitrary common knowledge but can deal with a 
weaker form of common knowledge. Finally, Le et al. [50] present two forward planners, called EFP and PG-EFP, for multi-
agent epistemic planning. These planners can deal with unlimited nested beliefs, common knowledge, and epistemic goals 
when the number of worlds in the initial state is not too large.

9.2. Dynamic epistemic logic

There is a vast and excellent literature on both epistemic logic and dynamic epistemic logic to which the reader is 
referred for both technical and conceptual introductions—see e.g. [8,10,27,31,39,59,52]. The approach to modeling actions 
taken in this paper is based on the idea of action models applied using product update as introduced first by Baltag, Moss 
and Solecki [7]. The reduction axiom approach to proving completeness for logics with actions was first suggested by Plaza 
[71] for the case of truthful public announcements. Our approach is the same, but for general actions models. It is based on 
[6,8,27].

The format of the action models presented here differs mainly in four aspects from those introduced in [7]: our action 
models have postconditions; are first-order rather than propositional; accommodate term-modal relations; and have condi-
tioned edges. Our approach to postconditions is inspired by [11,29]. From there, it is a straightforward generalization to 
alter pre- and postconditions to allow updates of first-order Kripke models. A substantial departure from the standard is 
the accommodation of term-modal relations and the edge-conditioning. The definition avoids two problems for term-modal 
action models—one pointed out by Kooi [47] and one concerning reduction axioms—by an adjustment of the propositional 
edge-conditioned action models of Bolander [13].3

In the standard definition, an action model A for index set of agents I consists of a finite set of events E = {e, ..., e′}
and a map R : I → P(E × E), plus assignments of pre- and postconditions. In the term-modal treatment, the set I is a 
proper part of the semantics of state representations. Adding an operator [A, e] to the language thus conflates syntax and 
semantics, Kooi points out. In considering reduction actions, we found that this problem runs deep. Consider the standard 
reduction axiom for the modal operator:

[A, e]Kiϕ ↔
⎛
⎝pre(e) →

∧
f :(e, f )∈Ri

Ki[A, f ]ϕ
⎞
⎠ (6)

In (6), the agent index i links the occurrences of the modal operator Ki with the relation Ri used in the quantifying 
conjunction. This link is broken in the term-modal treatment: the “i” indexing the operators is a syntactic term, while 
the “i” indexing the relation is an element of a domain of quantification. Without consulting an interpretation (or variable 
assignment), these two occurrences are unlinked: there is no guarantee that Ri is the relation used in evaluating Kiϕ .

To resolve the conflation problem, Kooi defines action models where accessibility relations over events E are assigned 
to groups of agents on a per-application basis: With � a finite set of mutually inconsistent and jointly exhaustive formulas 
with free variable x, each pointed model (M, w) and variable valuation v defines a partition on the agent domain with cells 

3 Both approaches result in context-sensitive actions: the distinguishability of two events depends on model to be updated. See [13,52,76–78] for argu-
ments to the effect that more context-sensitivity than what is present in standard action models is desirable.
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{d ∈ Dagt : M, w �v[x/d] ϕ(x)} for each ϕ(x) ∈ �; each agent in such a cell (group) is assigned the same accessibility relation 
using a map S : � → P(E × E). In effect, the action model makes no direct reference to the agent domain, thus avoiding 
the conflation problem.

Additionally, Kooi’s definition yields a solution to the problem of unlinked indices as the relations of the action model 
may now be referred to using syntactical constructs. With � = {P1(x), ..., Pn(x)}, a suggestion for a reduction axiom could 
be

[A, e]Ktϕ ↔
⎛
⎝pre(e) →

∧
k≤n

⎛
⎝Pk(t) →

∧
f :(e, f )∈R(Pk)

Kt[A, f ]ϕ
⎞
⎠

⎞
⎠ .

We obtain a similar solution by adjusting the edge-conditioned action model of Bolander [13]. In an edge-conditioned 
action model, whether two events are related for some agent i ∈ I is conditional on whether a given formula is satisfied 
in the pointed model on which the action is executed. Formally, each agent-edge pair is assigned a condition by a map 
Q : I → (E × E →L).

Inspired by both Bolander and Kooi, we use a map Q : E × E → L where Q (e, e′)(x�) has exactly one free variable, 
x� . When the resulting action model is executed on a pointed model (M, w), an edge is present for an agent α ∈ Dagt

if M, w �v[x� �→α] Q (e, e′)(x�). As the condition Q (e, e′)(x�) is a formula, this approach allows the formulation of reduction 
axioms, cf. Section 8.2.1.

Our version of the Q function and Kooi’s approach S are equally general. Given an action model (E, S, pre, post) with 
S : � → P(E × E), let Q : E × E → L be given by Q (e, e′) = ϕ such that (e, e′) ∈ S(ϕ). Then Q emulates S: for all models 
M , M ⊗ (E, S, pre, post) = M ⊗ (E, Q , pre, post). Vice versa, to emulate a map Q , for each A ⊆ E × E , let

ϕA :=
∧

ϕ∈Q (A)

ϕ ∧
∧
ψ∈�

ψ (7)

with � the largest subset of {¬ϕ : ϕ ∈ Q (E × E)\Q (A)} such that (7) is consistent. Then S : ϕA �→ A for each A ⊆ E × E
is a Kooi map that emulates Q . We opt for the edge-conditioned formulation due to its correspondence with the standard 
precondition maps pre : E →L.

Finally, note that both may emulate standard action models over classes of models where each agent α is designated by 
a rigid constant aα (as is conceptually implied by identifying agents with indices). The standard map R : Dagt → P(E × E)

may be emulated by the map Q : E × E →L with Q (e, e′) = ∨
aα : (e,e′)∈Rα

(x = aα).

9.3. Term-modal logic

The term-modal treatment of epistemic operators as behaving both as modal operators and as first-order predicates 
was suggested already by von Wright in his 1951 [87], though the direction was not formally explored. Formally, Hintikka 
allowed the constructions in his 1962 [39], and the term-modal aspects are used in discussions concerning the validity 
of Kaϕ → Ka Kaϕ , where Hintikka notes that the schema is only valid if a knows who a is, captured by ∃xKa(x = a) (see 
also Section 8.1.4 on frame characterizations). Semantically, Hintikka linked individuals and operators in [40] using world-
relative first-order interpretations extended to assign alternatives to individuals in the domain of quantification, D . Work in 
philosophical logic followed Hintikka’s term-modal syntax—even called “standard” by Carlson in 1988 [19]—but the semantic 
link did not pertain: [83] exemplifies a pseudo-use. Carlson enforced the semantic link, using a partial map R : D −→
P(W × W ) to assign accessibility relations to individuals. He further presents a Hintikka-style model set proof theory for a 
three-valued Kripke-style semantics with non-rigid terms, varying domains and reflexive relations, and shows completeness.

In computer science, a format similar to Carlson’s is frequently used when giving the semantics for propositional epis-
temic logic, with the set of agents D treated as an index set instead of a domain of quantification, even in the first-order 
case: e.g., in Fagin et al.’s first-order treatment [31], in a formula like K Alice Governor(Cali f ornia, Pete), both Cali f ornia and 
Pete are first-order terms, but Alice is not—Alice is an agent. Here, then, agents and their names are equated.

The issue of equating agents and their names, and why this is unsatisfactory in many computer science applications, 
is discussed at length by Grove & Halpern [37] and Grove [36]. They identify the following inadequacies: systems that 
equate agents with their names cannot represent agent sets of non-fixed size, do not allow for reference to agent groups, 
for non-rigid names, nor for indexical and relative reasoning (using terms like “me” to express e.g. “the agent to the left 
of me”). In response, [37] develops a propositional epistemic logic with indexical reference obtained by evaluating formulas 
at agent-world pairs, on which [36] builds a first-order variant to additionally handle issues of de dicto/de re-like reference 
scope, as well as multi-naming of agents. The latter is in effect a variant of non-rigid constant, varying domain, term-modal 
logic with formulas evaluated at agent-world pairs. Further, the language contains two sorts, one for agents (like our agt
terms), and one for names.4 This allows explicit reasoning about naming. Adding a third sort to the present framework 

4 Such two sorts are also used by Rendsvig in a quantified, but not term-modal, epistemic logic analysis of semantic competence in relation to Frege’s 
puzzle about identity [74,75].
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would be unproblematic, but the indexical semantics would require in-depth re-working. Similarly, varying agent domains 
would require work, unless emulated by an existence predicate, cf. [32]. Beyond this, the present framework tackles the 
issues raised in [36,37]: agents and names are not equated by the use of (non-rigid) constants of sort agt, that additionally 
allow for multi-naming; agents groups may be denoted by predicates and relative properties by relations; finally, de dicto/de 
re distinctions are expressible using quantification. However, beyond the formal difference and similarities, we would find 
an in-depth philosophical comparison of the interpretation of the two frameworks interesting. In [53], we illustrate the 
system presented here with examples that touch on several of the involved issues.

One reason for sticking with ordinary modal operators even in a first-order setting is that term-modal operators adds 
design choices and possible complications, as discussed by Lomuscio & Colombetti in their early contribution to the term-
modal literature [56]. In constructing a term-modal extension of multi-agent KD45 with non-rigid terms, they discuss how 
to evaluate formulas Baϕ when a is not an agent denoting term. Intuitively, Baϕ should be false, as only agents can truly 
hold beliefs, but—they remark—this would imply the invalidity of Ba(ϕ ∨¬ϕ). They conclude against a two-sorted approach, 
as a similar problem surfaces for formulas Ba Bbϕ when agent a believes that the term b denotes a non-agent.5 Ultimately, 
Lomuscio & Columbetti opt for a partial logic with truth-value gaps, letting the truth-value of Baϕ be undefined when a
denotes a non-agent; they take a valid formula to be sometimes satisfied, but never false. Their semantics are constant domain, 
and each element is, at each world, assigned a set of doxastic alternatives; an element is an agent in world w if it is assigned 
a non-empty set. Hence, agenthood is world-relative. They present an axiom system—which includes a term-modal Barcan 
formula ∀y(Bxϕ(y)) → Bx∀y(ϕ(y)) and quantified frame-characterizing formulas like ∀x(Bxϕ → Bx Bxϕ) like the present 
paper—and show soundness, citing [55] for details.

Bivalent systems are presented by Thalmann [84] and Fitting, Thalmann & Voronkov [33], with these two works coining 
the label ‘term-modal logic’. In their setting, each world w is associated with an inner domain D(w) of objects existing at w , 
with D(w) a subset of the outer domain D, for all w . The inner domains are assumed increasing: if w Rd w ′ for some d ∈ D , 
then D(w) ⊆ D(w ′). Further, terms are assumed rigid and with an interpretation defined at every world (I(c) ∈ D(w) for 
all w ∈ W ). This combination seemingly6 eliminates the need for truth-value gaps, but the problems raised by non-agents 
are not discussed. For several classic frame-conditions, [33,84] presents both sequent and tableau proof systems (K, D, T, K4, 
D4, S4).

Orlandelli & Corsi [62] also investigate sequent calculi for term-modal logics. Their semantics is more general as they 
omit the increasing domain requirement, and—as they also consider Euclidean frames—they also obtain completeness for 
more frame classes. The syntax is without constants, so the rigidity/non-rigidity dichotomy is non-applicable. The semantics 
are bivalent. The combination of varying domains and bivalent semantics is facilitated by the atomic formula satisfaction 
clause

M, w �v r(x1, ..., xn) iff (v(x1), ..., v(xn)) ∈ I(r, w),

with I(r, w) ⊆ Dn again with D the outer domain. E.g., with I(=, w) = {(d, d) ∈ D2 : d ∈ D}, the formula (x = x) is satisfied 
in (M, w) even if v(x) /∈ w . However, as the quantifiers only range over the inner domain of worlds, the semantics oddly 
make p(x) ∧ ∀y¬p(y) satisfiable.

In [47], Kooi introduces a dynamic term-modal logic, including a first-ever first-order version of DEL action models. The 
language of [47] is first-order dynamic logic with wildcard assignment, but where the set of first-order terms is also the 
set of atomic programs, the models for which are constant agents-only domain with non-rigid terms (and very similar to 
our general case, but restricted to agents-only). This language is more expressive than ordinary term-modal logic. The first-
order dynamic logic aspect implies that the validity problem is �1

1 complete, eliminating hope for a finitary proof system. 
However, the expressivity of the language allows the definition of a non-rigid common knowledge. If not for our two-sorted 
domain, our language and semantics could be seen as a special case of Kooi’s. Kooi’s action models are discussed in the 
next section.

Seligman & Wang [88] investigate a fragment Kooi’s system. The fragment allows only basic assignment modalities to 
form a quantifier-free term-modal logic (without function symbols), a fragment rich enough to express de dicto/de re distinc-
tions and knowing who constructions in a setting where names are not common knowledge. The main result is a complete 
axiomatization for the class of S5 models. As Barcan-like formulas are not included in the investigated language fragment 
but are the common characterizers of constant domain semantics, this result is quite non-standard. The authors also discuss 
decidability: providing no hard results, they conclude “We are not that far from the decidability boundary, if not on the 
wrong side.”

Corsi & Orlandelli [23] introduce a generalization of term-modal syntax to be able to express the difference between de 
dicto and de re statements without invoking quantifiers. They introduce complex term-modal operators |t : c

x|p(x) with the 

5 This obstacle is avoided in the present paper by syntactically forcing all operator-subscripts to be of the agent-sort.
6 Seemingly, as we are confused about the satisfaction clause for atomic formulas [33, Def. 7, It. 1], stating that w, V � R(t1, ..., tn) iff w �

R(V (t1), ..., V (tn)) with V (ti) ∈ D , but no specification of the conditions for the right-hand condition, nor any specification of how the relation symbol 
R is assigned extension. However, if this is assumed settled as ordinarily (as in the present paper), the increasing domain assumption seems sufficient to 
obtain a well-behaved semantics, as is the case in ordinary first-order modal logic. See e.g. [34] for an introduction and [43] for details.
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reading that t knows of c that (s)he is p(x). These are interpreted over so-called epistemic transition structures with double-
domains. The resulting indexed epistemic logics are further investigated in [25,24]. It would be interesting to know what the 
relationship is to the also expressive language of Kooi [47].

Where the domain of Kooi [47] consists only of agents, Rendsvig [73] introduces a model with a single-sorted language 
with non-rigid terms that denote elements in a constant domain containing both agents and objects. As in [56], this requires 
an ad hoc solution to the semantics of formulas Kaϕ when a denotes a non-agent. The solution used is to then interpret 
Kaϕ as a global modality. This preserves the bivalence of the systems while making all operators normal. As a result, [73]
presents a canonical model theorem, facilitating completeness proofs for classic frame classes.

The semantics of this paper are based on Achen’s [1], which in turn is a two-sorted refinement of [73]. What we 
consider an improvement of [1] over [73] is exactly the two-sorted approach: distinguishing between agent and object 
terms removes the need to define ad hoc semantics for knowledge operators indexed by non-agents. Taking a two-sorted 
approach eliminates the possibility of modeling agents that are uncertain about whether a given term refers to an agent or 
an object, but results in a system which we consider well-behaved.

Term-modal like, Naumov & Tao [61] present a propositional term-modal logic, but where operators may be indexed by 
sets of terms, making ∃xK{x,a}ϕ a formula. Such operators are given a distributed knowledge semantics in S5 models with 
constant agents-only domain and rigid terms for which a complete axiom systems is presented.

Sawasaki, Sano and Yamada [80] consider a term-modal syntax where operators are indexed by a sequence of terms 
making e.g. ∀x∀yK[x,y]R(x, y) well-formed, with the intended deontic reading that x is obliged by y to ensure R(x, y). They 
present complete axiom system and sequent calculi.

Sedlar [81] also uses rigid terms, agents-only constant domain semantics to represent an epistemic logic of evidence 
using a term-modal language as that presented here. Sedlar shows that his term-modal framework is able to emulate 
monotonic modal logics and epistemic logics with awareness, obtaining a decidability result for the fragment with no 
constants nor functions, but 0-ary predicates and single unary predicate.

Several other authors have also looked at decidability issues for varieties of term-modal logics. Kooi [47] points out that 
the monadic fragment of his system is undecidable by a result of Kripke [49]. As Kripke’s result concerns first-order modal 
logic in general (see e.g. [43, p. 271 ff.]), it applies to broadly to term-modal logics, too. For term-modal logics, Padmanabha 
& Ramanujam [66] even show that the propositional fragment is undecidable. As decidable, they identify the monodic 
fragment (formulas using only one free variable in the scope of a modality). [64] considers model checking for the fragment 
over a restricted model class and [63] presents a translation of the monodic fragment (without identity) into FOML.

In [65], Padmanabha & Ramanujam further investigate a variable-free propositional bi-modal logic with implicit quan-
tification, with formulas [∀]ϕ and [∃]ϕ asserting that along all (resp. some) accessibility relations ϕ is necessary. These 
variable-free formulas thus correspond to the propositional term-modal formulas ∀xKxϕ and ∃xKxϕ . The relevant logic is 
shown decidable, to be bisimulation-invariant fragment of an appropriate two-sorted first-order logic, related to the ‘bundled 
fragment’ of term-modal logic. Model checking for the system is investigated in [68]. In [67] Padmanabha & Ramanujam, 
turn to the two variable fragment of term-modal logic, which they show decidable. The thesis [63] collects a selection of 
the mentioned results, and additionally presents a translation of TML without identity into propositional TML.

For their own system, Orlandelli & Corsi [62] show two fragments decidable, the first propositional with quantifiers 
and operators occurring only in pairs of the forms ∃x[x] or ∀x〈x〉. This fragment simulates non-normal monotone epis-
temic logics. The second fragment allows expressing 1-ary groups’ higher-order knowledge about proposition symbols, e.g. 
with ∀x(p(x) → Kx(K yq)) an allowed formula. Also Pliuškevičius & Pliuškevičienė [72] treats a fragment of propositional 
term-modal logic, but with, term-modal operators for belief and mutual belief, allowing only pair-wise quantifier-operator 
nestings (e.g., for p a propositional atom, ∀xBx∃yB y p is well-formed, while ∀x∃yBx B y p is not). For their agents-only con-
stant domain KD45 semantics, they present a terminating sequent calculus decision procedure. For further decidability 
results, it may be relevant to consult Shtakser [82], who investigates propositional modal languages includes quantification 
over modal operators and predicate symbols that take modal operators as arguments.

Beyond its main decidability result, Padmanabha & Ramanujam [67] also discusses translation of term-modal logic into 
first-order modal logic. In a setting with no constants or function symbols, the authors suggest a translation of TML into
FOML with a single modality K and a new unary predicate P , inductively translating Kxϕ to K (P (x) → ϕ) and K̂xϕ to 
K̂ (P (x) ∧ ϕ). [67] omits the details, but claims this translation produces FOML formulas equi-satisfiable with their TML
originals. This suggests that completeness results for term-modal logics may also be shown indirectly via translation and 
application of well-known results for FOML (see e.g. [43]), instead of by the direct constructions found in the Appendix.7

Whether a translation approach would work for the present framework is an open question, but we have reservations 
concerning the general applicability of the suggested translation.8

7 We thank a reviewer for pointing this out.
8 We hold a reservation as satisfiability is not generally preserved by the translation. In the class of TML models with exactly 2 agents (characterized by 

axiom N for n = 2) wlog called α and β , with constants a and b locally rigid, but non-identical (characterized by ∃x∃y((x 
= y) ∧(x = a) ∧(y = b) ∧∀zKz((x =
a) ∧ (y = b)))), and satisfying for i, j ∈ {α, β}, i 
= j, ∀x, y, z ∈ W , if xRi y and xR j z, then yRi z (characterized by ∀x∀y(((x 
= y) ∧ K̂x� ∧ K̂ yϕ) → Kx K̂ yϕ)), 
the formula ∃x∃y((x 
= y) ∧ K̂ y� ∧ K̂x K̂x� ∧ Kx Kx¬K̂x�) is satisfiable. However, the translation of the latter is not satisfiable in the class of FOML models 
characterized by the translation of the three former.
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10. Final remarks

We conclude with open questions we see in relation to epistemic planning, and a summary of the main contributions of 
the paper. The following are some possible avenues for future research:

1. Decidability and complexity. As presented in the literature review on epistemic planning with propositional DEL (Sec-
tion 9.1), results exist concerning the undecidability of several classes of epistemic planning problems, but decidability 
and complexity results also exist. It is clear that the negative results apply in the richer setting of this paper. In [54], we 
show that some of the positive decidability results can be established in the decidable finite-agent setting of dynamic 
term-modal logic (i.e., decidability for single-agent planning and multi-agent planning with non-modal preconditions). 
It is an open question whether any other decidability results can be extended as well, and the complexity of first-order 
epistemic planning has not been studied.

2. Reasoning about schematic actions. In extension to defining first-order variants of action models, it was natural to de-
fine action schemas to obtain succinct action representations. These action schemas are however not described by the 
dynamic languages and logics introduced. We find it an interesting question how the languages and logics should be 
altered to obtain a logic of action schemas. Constructing such a logic could possibly draw connections to recent work 
on Arbitrary Public Announcement Logic and its generalizations, cf. e.g. [5,28].

3. Supporting other planning features. A possibly fruitful avenue for future research is to devise a first-order probabilistic DEL 
framework for probabilistic epistemic planning. In the standard planning literature, probabilistic PDDL is often used to 
support probabilistic effects, allowing the specification of Markov decision processes [90]. There is a rich literature on 
probabilistic propositional DEL on which a first-order setting for probabilistic epistemic planning could be based (for 
an overview, see [8, Appendix L]). Other well-known planning features, such as numeric fluents, temporal aspects, etc., 
could also be integrated.

Finally, we briefly recall what we see as the main contributions of the paper:

1. A first-order dynamic epistemic logic. The paper develops novel dynamics for a variant of term-modal logic with the addi-
tion of first-order action models. It thereby generalizes propositional DEL to a setting allowing full first-order epistemic 
reasoning about both objects and agents.

2. A compact epistemic domain definition language. As the epistemic planning formalism developed builds on first-order logic, 
it allows for a compact specification of domain dynamics via epistemic action schemas. Such schematization is inspired by 
that used in PDDL, and to the best of our knowledge, it provides the most compact representation of actions available 
in the DEL framework. The setting conservatively extends propositional DEL, in the sense that it contains it as a special 
case, inheriting the ingredients of the DEL planning framework.

3. Expressive, yet decidable axiom systems for reasoning about epistemic actions. On the reasoning side, the paper develops 
static and dynamic axiom systems that are well-behaved. Although the logical languages proposed are fairly expressive, 
it is shown that sound, complete and decidable systems exist for several natural classes of models.
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Appendix A. Proof appendix

A.1. Term-modal logic

This section establishes the results stated in Section 8.1. The logic K is well-behaved, with standard techniques for 
establishing strong completeness carrying over from the propositional and quantified modal logic cases. Therefore, the 
section presents only proof strategy, with non-standard elements given special attention. Full details may be found in [1].

The involved notions are standard (see e.g. [12,17,43]), but we remark that a formula ϕ is valid over a class of frames 
X iff for every frame F = (D, W , R) ∈ X , every interpretation I over F , every world w ∈ W and every valuation v , it is the 
case that M, w �v ϕ . That ϕ is a semantic consequence of the formula-set � over a class X is written � �X ϕ . For ϕ provable 
from the assumptions � in the logic �, write � �� ϕ . In both cases, when � = ∅, it is omitted.
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A.1.1. Soundness

Proposition 3. The system K is sound with respect to the class F of all frames: for all ϕ ∈L, if �K ϕ , then �F ϕ .

Proof. The proof is standard: the axioms of K are shown valid over F and the rules of inference are shown to preserve 
validity. To give a feel, arguments follow for the K axiom and the Barcan Formula.

K: Let M be a model based on an arbitrary frame F ∈ F , let w ∈ M and let v be a valuation; let Kt�, ϕ, ψ ∈ L. To show 
that M, w �v Kt

(
ϕ → ψ

) → (
Ktϕ → Ktψ

)
, assume M, w �v Kt

(
ϕ → ψ

)
. As Kt� ∈ L, �t�I,v

w ∈ Dagt by assumption. Hence 
F contains an accessibility relation R�t�I,v

w
. Having fixed the accessibility relation going through the term t to the agent 

domain, the argument is standard: By the semantics of Kt , M, w ′ �v ϕ → ψ for every w ′ ∈ M with w ′ ∈ R�t�I,v
w

(w). Hence 
M, w ′ �v ¬ϕ or M, w ′ �v ψ . If all such w ′ satisfies ϕ , M, w �v Ktϕ; but then each w ′ must also satisfy ψ , so M, w �v Ktψ , 
and hence M, w �v Ktϕ → Ktψ . Else, some such w ′ satisfies ¬ϕ; then M, w �v ¬Ktϕ , so M, w �v Ktϕ → Ktψ .

BF: Let M, w, v, ϕ and t be as above. Pick a variable x 
= t and assume that M, w �v ∀xKtϕ . Then for all x-variants v ′ of v , 
M, w �v Ktϕ (i.e., intuitively, if x is free in ϕ so that Ktϕ(x) defines a predicate, all elements in the t(x)-domain of w fall 
in this predicate’s extension). From M, w �v Ktϕ , it follows that for all w ′ ∈ R�t�I,v

w
(w), M, w ′ �v ′ ϕ (intuitively, as v ′ is an 

arbitrary x-variant v , all t(x)-elements existing in w ′ fall in the extension of ϕ(x). This would not hold if elements could 
exist in w ′ that do not exist in w). As v ′ is an arbitrary x-variant of v , it follows that M, w ′ �v ∀xϕ (again, illegitimate if
new elements could spring to existence). As w ′ was arbitrary from R�t�I,v

w
(w), finally M, w �v Kt∀xϕ . �

A.1.2. Completeness
This section establishes that the system K is strongly complete with respect to the class F of all frames. I.e.,

for all � ⊆ L, for all ϕ ∈ L, if � �F ϕ, then � �K ϕ.

This follows as a corollary of the section’s main result, the Canonical Class Theorem (Theorem 3) which states that any 
normal term-modal logic is strongly complete with respect to its canonical class.

The theorem is established by appeal to the following well-known9 proposition linking satisfaction and completeness:

Proposition 4. A logic � is strongly complete with respect to a class of structure S iff every �-consistent set of formulas is satisfiable 
on some s ∈ S .

By this proposition, a completeness proof can be undertaken as an existence proof: For a consistent set of formulas �, a 
satisfying model from the appropriate class must be found. In the propositional case, one model is constructed for all con-
sistent sets simultaneously, giving rise to the propositional Canonical Model Theorem (see e.g. [12]): any normal propositional 
modal logic is strongly complete with respect to its canonical model.

The present proof cannot rely on single canonical model. As variables are semantically rigid and any signature � in-
cludes identity, the same identity statements between variables are true across all worlds of any model-valuation pair. A 
canonical model defined as usual would not satisfy this: with consistent sets forming the basis of worlds, if two worlds 
are disconnected by all accessibility relations, then they need not satisfy the same identity statements between variables. 
Hence, a rigid variable valuation cannot be defined. Further, different K-consistent sets may give rise to different domains. 
Hence, non-constant domains result, and the construction is thus not of the appropriate class. Therefore, our construction 
is of a canonical model per consistent set, resulting in a canonical class.

The construction contains first-order aspects irrelevant in the propositional case and term-modal logical aspects ir-
relevant to the standard quantified case, but the approach is familiar: worlds are maximally consistent sets that bear 
witnesses, ensured constructable by Lindenbaum-like lemmas; domains are equivalence classes of variables induced by 
identity statements; and canonical accessibility relations, interpretation and valuation are defined as expected. That the 
canonical accessibility relations are well-defined requires an additional lemma, but a familiar Existence Lemma facilitates a 
familiar Truth Lemma, which in combination with the above Proposition 4 yields the main result.

A.1.2.1. Canonical worlds Fix a signature � = (V, C, R, F, t), its language L and a normal term-modal logic � ⊆ L. When a 
set � ⊆L is maximal �-consistent (defined as usual [12]), call � a �-mcs.

Maximal consistency does not suffice for a set to be a canonical world in the first-order case. It must also be ensured 
that whenever a formula of the form ¬∀xϕ is included in �, then � must bear witness to this “falsity” of ∀xϕ10:

9 See e.g. [12, p. 194].
10 Witnesses bearing is called the ∀-property in [43, p. 257]; that the set is saturated is also used in the literature.
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Definition 19. A set � ⊆ L bears witnesses if for every ϕ ∈ L, for every variable x, there is some variable y such that (
ϕ(y/x) → ∀xϕ

) ∈ �.

If a set � bear witnesses, then so does every super-set of �. If � is a �-mcs that bears witnesses and contains ¬∀xϕ , 
then for some y ∈ V, ¬ϕ(y/x) ∈ �.

To ensure that every �-mcs can be extended to one bearing witnesses, countably infinite sets of both agent and object 
variables beyond those in V are needed. Define the extended signature �+ as (V+, C, R, F, t+) where V ⊆ V+ , t+(x) = t(x)
for all x ∈ V ∪ C ∪ R ∪ F and both (t+)−1(agt) ∩ V+\V and (t+)−1(obj) ∩ V+\V are countably infinite. Let L+ be the 
term-modal language based on �+ . Then L ⊆ L+ . The following two lemmas then ensure that the worlds of the canonical 
models are constructable:

Lemma 1 (Lindenbaum). If � ⊆L is �-consistent, then there is a �-mcs �′ such that � ⊆ �′ .

Lemma 2 (Witnessed). If � ⊆L is �-consistent, then there is a set �+ ⊆L+ such that � ⊆ �+ and �+ bears witnesses.

A.1.2.2. Canonical models To avoid the issue remarked in this section’s introduction, a canonical model is defined per �-mcs, 
ensuring that all worlds share its identity theory:

Definition 20. The sets �, �′ ⊆L+ have the same identity theory if for all x, y ∈ V+, (x = y) ∈ � iff (x = y) ∈ �′ .

Definition 21. Let � ⊆ L be a normal term-modal logic. Let � ⊆ L be �-consistent and let �∗ ⊆ L+ be maximal �-
consistent, witness bearing and such that � ⊆ �∗ (existing by Lemmas 1 and 2). The canonical model for (�, �∗) is 
M(�,�∗) = (D, W , R, I) such that

1. D := Dagt∪̇Dobj := {
[x] : x ∈ (t+)−1(agt) ∩ V+}⋃̇{

[y] : y ∈ (t+)−1(agt) ∩ V+}
where [z] := {

z′ ∈ V+ : (
z = z′) ∈ �∗}.

2. W is the set of all maximal �-consistent, witness bearing sets of formulas from L+ that share identity theory with �∗ .
3. R : Dagt →P(W ×W ) such that for all α ∈ Dagt , (w, w ′) ∈ R(α) iff for every formula Kxϕ ∈L+ with x ∈ α, if Kxϕ ∈ w , 

then ϕ ∈ w ′ ,
4. and

(a) I(r, w) =
{([x1], ..., [xn]) ∈ ∏len(t(r))

i=1 Dti(r) : r(x1, ..., xn) ∈ w
}

, for all r ∈ R;

(b) I( f , w) =
{([x1], ..., [xn]) ∈ ∏len(t( f ))

i=1 Dti( f ) : ( f (x1, ..., xn−1) = xn) ∈ w
}

, for all f ∈ F;

(c) I(c, w) = {([x]) ∈ Dt(c) : (c = x) ∈ w
}

, for all c ∈ C.

The canonical valuation v for (�, �∗) is given by v(x) = [x] for all x ∈ V+ .

A.1.2.3. Lemmas: uniformity, existence and truth The canonical model for (�, �∗) is a model for L. Notably, the domain is 
well-defined by the identity theory sharing requirement and a two-partition by the inclusion of the DD axiom. Further, 
I(c, w) is well-defined as for every world w , there exists some x ∈ V+ for which (c = x) ∈ w . See [1] for details. Foremost, 
the map R is well-defined, as is ensured by the following lemma:

Lemma 3 (Uniformity). Let Kxϕ ∈ w ∈ W with v(x) = α. Then for all y ∈ V+ for which v(x) = v(y), also K yϕ ∈ w.

Proof. Assume Kxϕ ∈ w ∈ W with v(x) = α, and let v(x) = v(y). Then [x] = [y], so by identity theory sharing assumption, 
(x = y) ∈ w ′ for every w ′ ∈ W ; in particular, (x = y) ∈ w . By PS, (x = y) → (

Kxϕ → K yϕ
) ∈ w . By MP, 

(
Kxϕ → K yϕ

) ∈ w
and by MP again, K yϕ ∈ w . �

As in the propositional case, the proof of the Truth Lemma below relies on the below Existence Lemma. A proof for 
standard first-order modal logic may be found in [43]; details for term-modal logic may be found in [1].

Lemma 4 (Existence). If w ∈ W and ¬Kxϕ ∈ w, then there exists a w ′ ∈ W such that (w, w ′) ∈ R�x�I,v
w

and ϕ ∈ w ′ .

Lemma 5 (Truth). For all ϕ ∈L+ , for all w ∈ W , and for the canonical v, M(�,�∗), w �v ϕ iff ϕ ∈ w.

Proof. The proof proceeds by induction on the complexity of ϕ . For the quantified formulas, appeal is made to w bearing 
witnesses. The negated modal case relies on the Existence Lemma. See [1] for full details. �
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A.1.2.4. Canonical class theorem The canonical models defined facilitate the application of Proposition 4 to conclude strong 
completeness of � with respect to its canonical class:

Definition 22. The canonical class of models for the normal term-modal logic � is the set C� of canonical models M(�,�∗)

for �-consistent � ⊆L.

Theorem 3 (Canonical Class Theorem). Any normal term-modal logic � is strongly complete with respect to its canonical class.

Proof. By Proposition 4, it suffices to find for each �-consistent set � some s ∈ C� that satisfies �. One such is 
(M(�,�∗), �∗), which exists by the Lindenbaum and Witnessed Lemmas. As � ⊆ �∗ , the Truth Lemma ensures that
(M(�,�∗), �∗) �v � for v the canonical valuation. �
Corollary 1 (Completeness). The logic K is strongly complete with respect to the class of all frames F .

Proof. A frame F ∈ F that satisfies the K-consistent set � is the frame of the canonical model M(K,�∗): � is satisfied at �∗
under the canonical valuation. �
A.1.3. Frame characterization proofs

For illustrative purposes, we show two of the claims made in Table 2, Section 8.1.4.

Proposition 5. For ϕ ∈ L, ∀x(Kxϕ → Kx Kxϕ) is valid on the frame F = (D, W , R) if, and only if, R(α) is transitive for every α ∈
Dagt .

Proof. ⇐: Let M be build on the frame F in which Rα is transitive for all α ∈ Dagt . Let v be an arbitrary valuation and 
assume M, w �v Kxϕ . Then M, w ′ �v ϕ for all w ′ ∈ R v(x)(w). For a contradiction, assume M, w �v ¬Kx Kxϕ . Then there 
exists a w∗ ∈ R v(x)(w) such that M, w∗ �v ¬Kxϕ , and hence there exists a w∗∗ ∈ R v(x)(w∗) such that M, w∗∗ �v ¬ϕ . But 
R v(x) is transitive, so w∗∗ ∈ R v(x)(w). Hence w∗∗ satisfies both ϕ and ¬ϕ . On pain of contradiction, M, w �v Kx Kxϕ . As v
was arbitrary, M, w �v ∀x(Kxϕ → Kx Kxϕ). ⇒: By contraposition. �
Proposition 6. The formula ∃x1, ..., xn

((∧
i≤n Kxi �

) ∧
(∧

i, j≤n,i 
= j xi 
= x j

)
∧ ∀y

(
K y� → ∨

i≤n y = xi
))

is valid on the frame F =
(W , D, R) if, and only if, |Dagt| = n.

Proof. Notice first that the formula, call it N , is only well-formed iff the variables x1, ..., xn, y are all of type agt, ensured 
by them appearing as modal operator subscripts. This ensures that the quantifications range only over Dagt .

⇐: Assume given a pointed model (M, w) build on a frame F = (W , D, R) with |Dagt| = n. Assume Dagt enumerated 
such that Dagt = {α1, ..., αn}. Let v be an arbitrary valuation. We argue that M, w �v N . Let v ′ be the valuation identical to 
v on all points, except for each i ≤ n, v ′(xi) = αi . Then M, w �v ′

((∧
i≤n Kxi �

) ∧
(∧

i, j≤n,i 
= j xi 
= x j

)
∧ ∀y

(
K y� → ∨

i≤n y =
xi

))
, as it satisfies each conjunct: First, M, w �v ′

∧
i≤n Kxi �, trivially. Second, M, w �v ′

∧
i, j≤n,i 
= j xi 
= x j as v ′(xi) 
= v ′(x j)

for all i, j ≤ n, i 
= j, by construction of v ′ . Third and finally, M, w �v ′ ∀y 
(

K y� → ∨
i≤n y = xi

)
: as y is of type agt, for any 

y-variant v ′′ of v ′ , v ′′ ∈ Dagt , but then v ′′(y) = v ′′(xi) for some i ≤ n, by construction of v ′ , satisfying the antecedent.
⇒: Assume given a pointed model (M, w) build on a frame F = (W , D, R) with |Dagt| 
= n. Let v be an arbitrary 

valuation. We argue that not M, w �v N , as (M, w) will falsify either the second or the third conjunct (the first conjunct 
is satisfied: as each variable xi is of type agt for all i ≤ n, each Kxi � is satisfied at w under any valuation). If |Dagt| < n, 
then under any valuation v , (M, w) will falsify the second conjunct: as each variable xi is of type agt, v(xi) ∈ Dagt for 
all i ∈ 1, ...,n. But then v(xi) = v(x j) for at least two i, j ≤ n, i 
= j. But then M, w �v xi = x j , contrary to the second 
conjunct. If |Dagt| > n, then under any valuation v , (M, w) will falsify the third conjunct, as there exists a y-variant v ′
of v such that v ′(y) 
= v(xi) for any i ≤ n. The existence of this y-variant v ′ is ensured by |Dagt| > n, which implies that 
Dagt/v(xi) : i ≤ n 
= ∅, so that we can assume v ′ y ∈ Dagt/v(xi) : i ≤ n. �
A.1.4. Decidability

Proposition 7. Let Kn/m, Kn and K be given in L, based on the signature �. Let Lagt ⊆L contain all formulas containing only agent-
terms, t ∈ t−1(agt).

1. For all ϕ ∈L, it is decidable whether �Kn/m ϕ or not.
2. a) For all ϕ ∈Lagt , it is decidable whether �Kn ϕ or not. b) In general, �Kn ϕ is undecidable.
3. In general, �K ϕ is undecidable.
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Proof. 1. Kn/m is sound and complete w.r.t. F n/m . To check the validity of any ϕ ∈ L over F n/m is a finite procedure: Up to 
isomorphism, all F ∈ F n/m share domain D = Dagt∪̇Dobj , |Dagt| = n, |Dobj| = (m − n). There are finitely many non-logical 
symbols in ϕ; symbols not in ϕ are irrelevant to its satisfaction. With D fixed, any w ∈ F will be assigned one of finitely 
many extensions of ϕ ’s non-logical symbols: thus, the maximal set of distinct ϕ-relevant worlds Wϕ is finite. As ϕ has 
modal depth k, whether M, w �v ϕ depends on at most all worlds within k steps from w . Checking whether M, w �v ϕ is 
thus a finite procedure for all formulas given the finiteness of D . Finally, up to bisimulation, the set of graphs over Wϕ and 
{R(α), α ∈ Dagt} with maximal path length k is finite: hence, the set of needed to be checked pointed models is finite. 2a.
For any ϕ ∈ Lagt , ϕ is a theorem of Kn iff it is a theorem of Kn/m , for any m > n. For such ϕ , to determine whether �Kn ϕ , 
we can thus check whether �Kn/n+1 ϕ , which is decidable by 1. 2b and 3. General undecidability for Kn and K follows as 
both contain unrestricted first-order logic for the arbitrary object domain. �
A.2. Dynamic term-modal logic: completeness through translation

The completeness proof for the dynamic logic K + AM is based on a reduction argument. The argument relies on the 
existence of so-called reduction axioms for the dynamic language LAM . The axioms used for this specific proof are listed in 
Table 3 and can be used to translate every formula from the dynamic language LAM into a provably equivalent L-formula. 
Given this translation, the completeness of the dynamic logic follows from the known completeness of the static logic K, 
established in Corollary 1. The building blocks of the specific reduction argument required to prove completeness for K + AM
are provided below.

First, we provide a translation that by finite iterative application to any formula in the dynamic language LAM results 
in a formula from the static language L. The translation is left-to-right: a formula occurring on the left is translated to the 
formula on the right.

Definition 23. The translation τ :LAM →LAM is defined as follows:

τ ((t1 = t2)) = (t1 = t2)

τ (r(t1, ..., tn)) = r(t1, ..., tn)

τ (¬ϕ) = ¬τ (ϕ)

τ (ϕ ∧ ψ) = τ (ϕ) ∧ τ (ψ)

τ (Ktϕ) = Ktτ (ϕ)

τ (∀xϕ) = ∀xτ (ϕ)

τ ([A, e]r(t1, ..., tn)) = τ (pre(e) → postA(e)(r(t1, ..., tn)))

τ ([A, e]¬ϕ) = τ (pre(e) → ¬[A, e]ϕ)

τ ([A, e](ϕ ∧ ψ)) = τ ([A, e]ϕ ∧ [A, e]ψ)

τ ([A, e]Ktϕ) = τ (pre(e) →
∧

e′∈E A

(Q (e, e′)(x� �→ t)Kt[A, e′]ϕ))

τ ([A, e]∀xϕ) = τ (pre(e) → ∀x[A, e]ϕ)

τ ([A, e][A′, e′]ϕ) = τ ([A, e ◦ A′, e′]ϕ)

Next, we adapt the formula complexity function introduced by [27].

Definition 24. The complexity c :LAM →N is defined as follows, where GA(L) abbreviates GroundAtoms(L):

c(r(t1, ..., tn)) = 1

c(¬ϕ) = 1 + c(ϕ)

c(ϕ ∧ ϕ′) = 1 + max(c(ϕ), c(ϕ′))
c(Ktϕ) = 1 + c(ϕ)

c(∀xϕ) = 1 + c(ϕ)

c([A, e]ϕ) = (4 + c(A)) · c(ϕ)

c(A) = max

⎛
⎝ ⋃

e,e′∈E,r(t ,...,t )∈GA(L)

{c(preA(e))} ∪ {c(postA(e)(r(t1, . . . , tn))} ∪ {c(Q (e, e′))}
⎞
⎠

1 n
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A standard ordering lemma ensures that the right side of a given reduction axiom is indeed less complex than the left 
side.

Lemma 6. For all ϕ , ψ and χ :

1. c(ψ) ≥ c(ϕ) if ϕ ∈ Sub(ψ) (where Sub(ψ) is the set of subformulas of ψ)
2. c([A, e]r(t1, ..., tn)) > c(pre(e) → post(e)(r(t1, ..., tn)))

3. c([A, e]¬ϕ) > c(pre(e) → ¬[A, e]ϕ))

4. c([A, e](ϕ ∧ ψ)) > c(([A, e]ϕ) ∧ ([A, e]ψ))

5. c([A, e]Ktϕ) > c(pre(e) → ∧
e′∈E (Q (e, e′)(x� �→ t)Kt[A, e′]ϕ))

6. c([A, e]∀xϕ) > c(pre(e) → ∀x[A, e]ϕ)

7. c([A, e][A′, e′]ϕ) > c([A, e ◦ A′, e′]ϕ)

Proof. The proofs are straightforward, along the lines of those provided in [27, Chapter 7]. �
The complexity function c induces an ordering of LAM formulas which is used to prove the following Lemma, stating 

that the two sides of a reduction axiom are indeed provably equivalent.

Lemma 7. For all ϕ ∈LAM : �K+AM ϕ ↔ τ (ϕ).

Proof. The proof is by induction on the complexity c(ϕ). It is similar to the one provided in [27, Chapter 7]. �
The completeness of K + AM (Corollary 2) follows from the soundness of the dynamic proof system, Lemma 7 and the 

completeness of the static sub-system (Corollary 1). The argument, which is standard, is as follows.

Proposition 8. � ϕ implies �K+AM ϕ , for all ϕ ∈LAM .

Proof. Suppose � ϕ . Since �K+AM ϕ ↔ τ (ϕ) (Lemma 7), we have � ϕ ↔ τ (ϕ) by the soundness of the proof system K + AM. 
Thus � τ (ϕ). The formula τ (ϕ) does not contain any action model modalities. Given � τ (ϕ), by the completeness of K
(Corollary 1), it follows that �K τ (ϕ). As K is a subsystem of K + AM, we thus have �K+AM τ (ϕ). Since �K+AM ϕ ↔ τ (ϕ) and 
�K+AM τ (ϕ), it follows that �K+AM ϕ . �

The completeness result for any system extending K + AM with frame-characterizing axioms follows from the same type 
of argument.
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This is an erratum to the paper Dynamic term-modal logics for first-order epistemic planning, [1].
Following publication, Prof. Andreas Herzig noticed two issues, one concerning identity and the definition of action 

models, and another concerning the introduced product update and the associated reduction axiom for atomic formulas. In 
this erratum, we describe and fix these issues.

1. Preserving the meaning of the identity symbol

Herzig notes that a central definition—that of an action model—has an issue that may be exploited to break the semantics 
by dis-aligning the relation symbol = from its intended use as identity.

The issue concerns Def. 9, specifically the definition of the postcondition function post. Postconditions are defined there 
as follows:

post : E → (GroundAtoms(L) →LAM) is a map that assigns to each event e ∈ E a postcondition for each ground atom. 
It is required that post(e)(= (t, t)) = � for each event e, to preserve the meaning of equality.

The requirement that post(e)(= (t, t)) = � is not sufficiently strong to ensure the meaning of equality/identity. The 
postcondition function still allows changing the truth value of atomic propositions of the form t1 = t2, e.g. by changing 
t1 = t2 from false to true using an event e ∈ E with post(e)(t1 = t2) = �.

This was unintentional, and may be exploited: turning t1 = t2 from false to true may be used to add a pair (d1, d2)

to the extension of the identity predicate =, despite d1 and d2 being distinct elements. If the event e is applied to a 
world w which satisfies ¬(t1 = t2), the extension of = in their update (w, e) will be incorrect: the pair (d1, d2) will be in 
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I ′(=, (w, e)), which should contain only pairs (d, d′) with d = d′ , cf. Def. 5. Hence, = may be made to no-longer satisfy its 
intended use, and be made to invalidate the axioms of DTML that concern identity.

The issue is fixed by ensuring that the extension of = is unchanged by updates. This may be ensured by changing the 
last sentence of Def. 9 to:

It is required that post(e)((t = t′)) = (t = t′) for all events e ∈ E and all t, t′ ∈ T, to preserve the meaning of identity.

This change ensures that identity is correctly preserved under updates:

Lemma 1. For any terms t, t′ ∈ T, any valuation v, any pointed model (M, w) = (D, W , R, I, w) and any pointed action model 
(A, e) = (E, Q , pre, post, e), M, w �v t = t′ iff M ⊗ A, (w, e) �v t = t′ .

Proof. Let M ⊗ A = (D ′, W ′, R ′, I ′). Recall from Def. 10 that:

I ′(r, (w, e)) = (I(r, w) ∪ r+(w)) \ r−(w)

When r is the identity symbol, we get:

1. I(=, w) = {(d, d) : d ∈ D} (Def. 5).
2. =+(w) = {(�t1�I,v

w , �t2�I,v
w ) : (M, w) �v post(e)((t1 = t2))} = {(�t1�I,v

w , �t2�I,v
w ) : (M, w) �v (t1 = t2)}, since

post(e)((t = t′)) = (t = t′). Thus, =+(w) ⊆ I(=, w).
3. =−(w) = {(�t1�I,v

w , �t2�I,v
w ) : (M, w) 
�v post(e)((t1 = t2))} = {(�t1�I,v

w , �t2�I,v
w ) : (M, w) 
�v (t1 = t2)}, again from

post(e)((t = t′)) = (t = t′). So, =−(w) ⊆ {(d, d′) : d, d′ ∈ D, d 
= d′}, which means that =−(w) ∩ I(=, w) = ∅.

From this, letting still r stand for the identity symbol, we get that I(r, w) ∪ r+(w) = I(r, w), which with r−(w) ∩ I(r, w) = ∅
entails the following:

I ′(r, (w, e)) = (I(r, w) ∪ r+(w)) \ r−(w)

= I(r, w) \ r−(w)

= I(r, w)

That is, I(=, w) = I ′(=, (w, e)). Thus:

M, w �v (t = t′) ⇔ (�t�I,v
w ,

�
t′�I,v

w ) ∈ I(=, w) (satisfaction of formulas, Def. 8)

⇔ �t�I,v
w = �

t′�I,v
w (interpretation of equality symbol, Def. 5)

⇔ �t�I ′,v
(w,e) = �

t′�I ′,v
(w,e) (from the reasoning above, showing that I(=, w) = I ′(=, (w, e))

⇔ M ⊗ A, (w, e) �v (t = t′). �
2. Reduction axiom for atoms

The second issue noticed by Herzig concerns the reduction axioms used to axiomatize the dynamic logic presented in the 
paper. The issue concerns the axiom called “Action and atom”. The axiom is currently stated as follows:

[A, e]r(t1, ..., tn) ↔ (pre(e) → post(e)(r(t1, ..., tn)))

The problem with this axiom is that, in the term-modal setting, postconditions for atoms may “interact” through their 
ground terms, if these refer to the same elements in the domain. E.g., the postcondition for one atom r(t1, ..., tn) can affect 
the truth value of another atom r(t′

1, ..., t
′
n) after the update, if ti and t′

i refer to the same elements, for each i = 1, ..., n.1

However, interaction between atoms is not accounted for by the original axiom.
Let us illustrate how postconditions can interact. Suppose we have a model with interpretation function I and let w

be a world in this model. Consider two atoms r(t1, ..., tn) and r(t′
1, ..., t

′
n) such that M, w �v

∧n
i=1(ti = t′

i). Note that 
this implies that M, w �v r(t1, ..., tn) ↔ r(t′

1, ..., t
′
n). Suppose that these two atoms are false in w . Consider an action 

model A with a single event e, with precondition pre(e) = �, the postcondition post(e)(r(t1, . . . , tn)) = �, and all other 
postconditions are given as post(e)(r′(t′

1, . . . , t
′
n)) = r′(t′

1, . . . , t
′
n). As post(e)(r(t1, . . . , tn)) = �, (�t1�I,v

w , . . . , �tn�I,v
w ) ∈ r+(w). 

1 Interestingly, this interdependence of atoms is specific to dynamics with first-order logical atoms; in a propositional modal setting, a postcondition for 

propositional atom p can only change the truth value of p, it has no way of altering the truth value of e.g. q.
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Moreover, given (i) post(e)(r′(t′
1, . . . , t

′
n)) = r′(t′

1, . . . , t
′
n), (ii) M, w �v ¬r′(t′

1, . . . , t
′
n) and (iii) M, w �v

∧n
i=1(ti = t′

i), we have 
(�t1�I,v

w , . . . , �tn�I,v
w ) ∈ r−(w). Recall the definition of product update:

I ′(r, (w, e)) = (I(r, w) ∪ r+(w)) \ r−(w)

I.e., whenever a tuple (�t1�I,v
w , . . . , �tn�I,v

w ) ∈ (r+(w) ∩ r−(w)), “priority” is given to r−, since the set difference operation 
is applied last. This means that although the action model has the postcondition post(e)(r(t1, . . . , tn)) = �, the atom 
r(t1, . . . , tn) will not be true after the update, since the postcondition requiring it to be false, post(e)(r′(t′

1, . . . , t
′
n)) =

r′(t′
1, . . . , t

′
n), takes priority over it. Hence the reduction atom

[A, e]r(t1, ..., tn) ↔ (pre(e) → post(e)(r(t1, ..., tn)))

is not true in (M, w), as in this case the axiom boils down to M, w �v [A, e]r(t1, ..., tn) ↔ �.
To address this issue and produce a correct axiomatization, we suggest the following two revisions:

1. Require that each event of an action model only changes a finite number of ground atoms, ensured by adding as last 
sentence to Def. 9:

It is required that the set G(e) := {ϕ ∈ GroundAtoms(L) : post(e)(ϕ) 
= ϕ} is finite, for each event e.

2. Revise the Action and atom axiom from Table 3 to

[A, e]r(t1, ..., tn) ↔
⎛
⎝pre(e) →

∧
(t′1,...,t′n)∈GT(e)n

((
n∧

i=1

(t′
i = ti)

)
→ post(e)(r(t′

1, ..., t′
n))

)⎞
⎠ (1)

where GT(e) is the set of ground terms that occur in any formula of G(e).

Neither of these revisions affect other results in the paper. The revision to postcondition functions ensures that they may 
be finitely represented. Thus the revision (voids) the paragraph immediately following Notation 2, which in the published 
version states that we do not make such a restriction.2

The revised version of the axiom takes the possible interaction of atoms into account by ensuring that the postconditions 
for r(t1, ..., tn) and r(t′

1, ..., t
′
n) are dependent when ti = t′

i for each i = 1, ..., n.

Lemma 2. For any language L based on a signature � = (V, C, R, F, t), for any action model (A, e) based on the extended language 
LAM , the formula (1) is valid over the class of all frames F .

Proof. Let (M, w), (A, e) and v be arbitrary. There are two cases: where (A, e) is not applicable to (M, w) and where it is.

Assume (A, e) is not applicable to (M, w), i.e. that (M, w) 
�v pre(e). By Definition 16, for any ϕ ∈LAM , (M, w) �v [A, e]ϕ
iff (M, w) �v pre(e) implies (M ⊗ A, (w, e)) �v ϕ . The inapplicability of (A, e) to (M, w) implies that (M, w) satisfies both 
sides of (1) under any valuation v .

Assume (A, e) is applicable to (M, w), i.e. that (M, w)�v pre(e).
For the left-to-right implication of the reduction axiom, assume that (M, w) �v [A, e]r(t1, ..., tn). The following holds:

(M, w) �v [A, e]r(t1, ..., tn) (assumption)

⇔ (M ⊗ A, (w, e)) �v r(t1, ..., tn) (satisfaction of dynamic formulas, Def. 16)

⇔ (�t1�I ′,v
(w,e), ..., �tn�I ′,v

(w,e)) ∈ I ′(r, (w, e)) (satisfaction of formulas, Def. 8)

⇔ (�t1�I ′,v
(w,e), ..., �tn�I ′,v

(w,e)) ∈ (I(r, w) ∪ r+(w))\r−(w) (product update, Def. 10)

⇔ (�t1�I,v
w , ..., �tn�I,v

w ) ∈ (I(r, w) ∪ r+(w))\r−(w) (as terms never change extension

under product updates, Def. 10)

The latter implies that (M, w) �v post(e)(r(t1, ..., tn)): If (�t1�I,v
w , ..., �tn�I,v

w ) ∈ I(r, w)\r−(w), then, by definition of 
r−(w), it is not the case that (M, w) 
�v post(e)(r(t1, ..., tn)), so (M, w) �v post(e)(r(t1, ..., tn)). Else, (�t1�I,v

w , ..., �tn�I,v
w ) ∈

2 Our first instinct was to restrict the language to signatures that give rise to a finite set of ground terms G and conjugate over Gn in the revised axiom. 
To ensure a finite set of ground terms, one must use only a finite set of constants C, in combination with e.g. an empty set of function symbols F, or 
a finite set of function symbols and the restriction that a term may only feature each function symbol f applied finitely many times (up to some fixed 

number k). We thank Herzig for suggesting the weaker and more finely targeted restriction above.
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r+(w)\r−(w), so, by definition of r+(w), (M, w) �v post(e)(r(t1, ..., tn)). As (M, w) �v post(e)(r(t1, ..., tn)), it follows that, 
for any t′

1, ..., t
′
n for which �t′

i�I,v
w = �ti�I,v

w for i = 1, ..., n, (M, w) �v post(e)(r(t′
1, ..., t

′
n)). In particular, this is the case for all 

the finitely many grounded terms GT(e). Hence the conjunction

(M, w) �v

∧
(t′1,...,t′n)∈GT(e)n

(
n∧

i=1

(t′
i = ti) → post(e)(r(t′

1, ..., t′
n))

)
.

For the right-to-left implication, assume

(M, w) �v

∧
(t′1,...,t′n)∈GT(e)n

(
n∧

i=1

(t′
i = ti) → post(e)(r(t′

1, ..., t′
n))

)
.

This implies specifically that

(M, w) �v

n∧
i=1

(ti = ti) → post(e)(r(t1, ..., tn))

so (�t1�I,v
(w,e), ..., �tn�I,v

(w,e)) ∈ r+(w). Hence (�t1�I ′,v
w , ..., �tn�I ′,v

w ) ∈ I ′(r, w), as �ti�I ′,v
(w,e) = �ti�I,v

w for each i = 1, ..., n. Therefore, 
(M ⊗ A, (w, e)) �v r(t1, ..., tn), and so (M, w) �v [A, e]r(t1, ..., tn). �
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